huge_memory.c 81 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088
  1. /*
  2. * Copyright (C) 2009 Red Hat, Inc.
  3. *
  4. * This work is licensed under the terms of the GNU GPL, version 2. See
  5. * the COPYING file in the top-level directory.
  6. */
  7. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  8. #include <linux/mm.h>
  9. #include <linux/sched.h>
  10. #include <linux/highmem.h>
  11. #include <linux/hugetlb.h>
  12. #include <linux/mmu_notifier.h>
  13. #include <linux/rmap.h>
  14. #include <linux/swap.h>
  15. #include <linux/shrinker.h>
  16. #include <linux/mm_inline.h>
  17. #include <linux/dax.h>
  18. #include <linux/kthread.h>
  19. #include <linux/khugepaged.h>
  20. #include <linux/freezer.h>
  21. #include <linux/mman.h>
  22. #include <linux/pagemap.h>
  23. #include <linux/migrate.h>
  24. #include <linux/hashtable.h>
  25. #include <linux/userfaultfd_k.h>
  26. #include <linux/page_idle.h>
  27. #include <asm/tlb.h>
  28. #include <asm/pgalloc.h>
  29. #include "internal.h"
  30. /*
  31. * By default transparent hugepage support is disabled in order that avoid
  32. * to risk increase the memory footprint of applications without a guaranteed
  33. * benefit. When transparent hugepage support is enabled, is for all mappings,
  34. * and khugepaged scans all mappings.
  35. * Defrag is invoked by khugepaged hugepage allocations and by page faults
  36. * for all hugepage allocations.
  37. */
  38. unsigned long transparent_hugepage_flags __read_mostly =
  39. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  40. (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  41. #endif
  42. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  43. (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  44. #endif
  45. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
  46. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  47. (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  48. /* default scan 8*512 pte (or vmas) every 30 second */
  49. static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  50. static unsigned int khugepaged_pages_collapsed;
  51. static unsigned int khugepaged_full_scans;
  52. static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  53. /* during fragmentation poll the hugepage allocator once every minute */
  54. static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  55. static struct task_struct *khugepaged_thread __read_mostly;
  56. static DEFINE_MUTEX(khugepaged_mutex);
  57. static DEFINE_SPINLOCK(khugepaged_mm_lock);
  58. static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  59. /*
  60. * default collapse hugepages if there is at least one pte mapped like
  61. * it would have happened if the vma was large enough during page
  62. * fault.
  63. */
  64. static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  65. static int khugepaged(void *none);
  66. static int khugepaged_slab_init(void);
  67. static void khugepaged_slab_exit(void);
  68. #define MM_SLOTS_HASH_BITS 10
  69. static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
  70. static struct kmem_cache *mm_slot_cache __read_mostly;
  71. /**
  72. * struct mm_slot - hash lookup from mm to mm_slot
  73. * @hash: hash collision list
  74. * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  75. * @mm: the mm that this information is valid for
  76. */
  77. struct mm_slot {
  78. struct hlist_node hash;
  79. struct list_head mm_node;
  80. struct mm_struct *mm;
  81. };
  82. /**
  83. * struct khugepaged_scan - cursor for scanning
  84. * @mm_head: the head of the mm list to scan
  85. * @mm_slot: the current mm_slot we are scanning
  86. * @address: the next address inside that to be scanned
  87. *
  88. * There is only the one khugepaged_scan instance of this cursor structure.
  89. */
  90. struct khugepaged_scan {
  91. struct list_head mm_head;
  92. struct mm_slot *mm_slot;
  93. unsigned long address;
  94. };
  95. static struct khugepaged_scan khugepaged_scan = {
  96. .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  97. };
  98. static void set_recommended_min_free_kbytes(void)
  99. {
  100. struct zone *zone;
  101. int nr_zones = 0;
  102. unsigned long recommended_min;
  103. for_each_populated_zone(zone)
  104. nr_zones++;
  105. /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
  106. recommended_min = pageblock_nr_pages * nr_zones * 2;
  107. /*
  108. * Make sure that on average at least two pageblocks are almost free
  109. * of another type, one for a migratetype to fall back to and a
  110. * second to avoid subsequent fallbacks of other types There are 3
  111. * MIGRATE_TYPES we care about.
  112. */
  113. recommended_min += pageblock_nr_pages * nr_zones *
  114. MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
  115. /* don't ever allow to reserve more than 5% of the lowmem */
  116. recommended_min = min(recommended_min,
  117. (unsigned long) nr_free_buffer_pages() / 20);
  118. recommended_min <<= (PAGE_SHIFT-10);
  119. if (recommended_min > min_free_kbytes) {
  120. if (user_min_free_kbytes >= 0)
  121. pr_info("raising min_free_kbytes from %d to %lu "
  122. "to help transparent hugepage allocations\n",
  123. min_free_kbytes, recommended_min);
  124. min_free_kbytes = recommended_min;
  125. }
  126. setup_per_zone_wmarks();
  127. }
  128. static int start_stop_khugepaged(void)
  129. {
  130. int err = 0;
  131. if (khugepaged_enabled()) {
  132. if (!khugepaged_thread)
  133. khugepaged_thread = kthread_run(khugepaged, NULL,
  134. "khugepaged");
  135. if (unlikely(IS_ERR(khugepaged_thread))) {
  136. pr_err("khugepaged: kthread_run(khugepaged) failed\n");
  137. err = PTR_ERR(khugepaged_thread);
  138. khugepaged_thread = NULL;
  139. goto fail;
  140. }
  141. if (!list_empty(&khugepaged_scan.mm_head))
  142. wake_up_interruptible(&khugepaged_wait);
  143. set_recommended_min_free_kbytes();
  144. } else if (khugepaged_thread) {
  145. kthread_stop(khugepaged_thread);
  146. khugepaged_thread = NULL;
  147. }
  148. fail:
  149. return err;
  150. }
  151. static atomic_t huge_zero_refcount;
  152. struct page *huge_zero_page __read_mostly;
  153. struct page *get_huge_zero_page(void)
  154. {
  155. struct page *zero_page;
  156. retry:
  157. if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
  158. return READ_ONCE(huge_zero_page);
  159. zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
  160. HPAGE_PMD_ORDER);
  161. if (!zero_page) {
  162. count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
  163. return NULL;
  164. }
  165. count_vm_event(THP_ZERO_PAGE_ALLOC);
  166. preempt_disable();
  167. if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
  168. preempt_enable();
  169. __free_pages(zero_page, compound_order(zero_page));
  170. goto retry;
  171. }
  172. /* We take additional reference here. It will be put back by shrinker */
  173. atomic_set(&huge_zero_refcount, 2);
  174. preempt_enable();
  175. return READ_ONCE(huge_zero_page);
  176. }
  177. static void put_huge_zero_page(void)
  178. {
  179. /*
  180. * Counter should never go to zero here. Only shrinker can put
  181. * last reference.
  182. */
  183. BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
  184. }
  185. static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
  186. struct shrink_control *sc)
  187. {
  188. /* we can free zero page only if last reference remains */
  189. return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
  190. }
  191. static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
  192. struct shrink_control *sc)
  193. {
  194. if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
  195. struct page *zero_page = xchg(&huge_zero_page, NULL);
  196. BUG_ON(zero_page == NULL);
  197. __free_pages(zero_page, compound_order(zero_page));
  198. return HPAGE_PMD_NR;
  199. }
  200. return 0;
  201. }
  202. static struct shrinker huge_zero_page_shrinker = {
  203. .count_objects = shrink_huge_zero_page_count,
  204. .scan_objects = shrink_huge_zero_page_scan,
  205. .seeks = DEFAULT_SEEKS,
  206. };
  207. #ifdef CONFIG_SYSFS
  208. static ssize_t double_flag_show(struct kobject *kobj,
  209. struct kobj_attribute *attr, char *buf,
  210. enum transparent_hugepage_flag enabled,
  211. enum transparent_hugepage_flag req_madv)
  212. {
  213. if (test_bit(enabled, &transparent_hugepage_flags)) {
  214. VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
  215. return sprintf(buf, "[always] madvise never\n");
  216. } else if (test_bit(req_madv, &transparent_hugepage_flags))
  217. return sprintf(buf, "always [madvise] never\n");
  218. else
  219. return sprintf(buf, "always madvise [never]\n");
  220. }
  221. static ssize_t double_flag_store(struct kobject *kobj,
  222. struct kobj_attribute *attr,
  223. const char *buf, size_t count,
  224. enum transparent_hugepage_flag enabled,
  225. enum transparent_hugepage_flag req_madv)
  226. {
  227. if (!memcmp("always", buf,
  228. min(sizeof("always")-1, count))) {
  229. set_bit(enabled, &transparent_hugepage_flags);
  230. clear_bit(req_madv, &transparent_hugepage_flags);
  231. } else if (!memcmp("madvise", buf,
  232. min(sizeof("madvise")-1, count))) {
  233. clear_bit(enabled, &transparent_hugepage_flags);
  234. set_bit(req_madv, &transparent_hugepage_flags);
  235. } else if (!memcmp("never", buf,
  236. min(sizeof("never")-1, count))) {
  237. clear_bit(enabled, &transparent_hugepage_flags);
  238. clear_bit(req_madv, &transparent_hugepage_flags);
  239. } else
  240. return -EINVAL;
  241. return count;
  242. }
  243. static ssize_t enabled_show(struct kobject *kobj,
  244. struct kobj_attribute *attr, char *buf)
  245. {
  246. return double_flag_show(kobj, attr, buf,
  247. TRANSPARENT_HUGEPAGE_FLAG,
  248. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  249. }
  250. static ssize_t enabled_store(struct kobject *kobj,
  251. struct kobj_attribute *attr,
  252. const char *buf, size_t count)
  253. {
  254. ssize_t ret;
  255. ret = double_flag_store(kobj, attr, buf, count,
  256. TRANSPARENT_HUGEPAGE_FLAG,
  257. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  258. if (ret > 0) {
  259. int err;
  260. mutex_lock(&khugepaged_mutex);
  261. err = start_stop_khugepaged();
  262. mutex_unlock(&khugepaged_mutex);
  263. if (err)
  264. ret = err;
  265. }
  266. return ret;
  267. }
  268. static struct kobj_attribute enabled_attr =
  269. __ATTR(enabled, 0644, enabled_show, enabled_store);
  270. static ssize_t single_flag_show(struct kobject *kobj,
  271. struct kobj_attribute *attr, char *buf,
  272. enum transparent_hugepage_flag flag)
  273. {
  274. return sprintf(buf, "%d\n",
  275. !!test_bit(flag, &transparent_hugepage_flags));
  276. }
  277. static ssize_t single_flag_store(struct kobject *kobj,
  278. struct kobj_attribute *attr,
  279. const char *buf, size_t count,
  280. enum transparent_hugepage_flag flag)
  281. {
  282. unsigned long value;
  283. int ret;
  284. ret = kstrtoul(buf, 10, &value);
  285. if (ret < 0)
  286. return ret;
  287. if (value > 1)
  288. return -EINVAL;
  289. if (value)
  290. set_bit(flag, &transparent_hugepage_flags);
  291. else
  292. clear_bit(flag, &transparent_hugepage_flags);
  293. return count;
  294. }
  295. /*
  296. * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
  297. * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
  298. * memory just to allocate one more hugepage.
  299. */
  300. static ssize_t defrag_show(struct kobject *kobj,
  301. struct kobj_attribute *attr, char *buf)
  302. {
  303. return double_flag_show(kobj, attr, buf,
  304. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  305. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  306. }
  307. static ssize_t defrag_store(struct kobject *kobj,
  308. struct kobj_attribute *attr,
  309. const char *buf, size_t count)
  310. {
  311. return double_flag_store(kobj, attr, buf, count,
  312. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  313. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  314. }
  315. static struct kobj_attribute defrag_attr =
  316. __ATTR(defrag, 0644, defrag_show, defrag_store);
  317. static ssize_t use_zero_page_show(struct kobject *kobj,
  318. struct kobj_attribute *attr, char *buf)
  319. {
  320. return single_flag_show(kobj, attr, buf,
  321. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  322. }
  323. static ssize_t use_zero_page_store(struct kobject *kobj,
  324. struct kobj_attribute *attr, const char *buf, size_t count)
  325. {
  326. return single_flag_store(kobj, attr, buf, count,
  327. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  328. }
  329. static struct kobj_attribute use_zero_page_attr =
  330. __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
  331. #ifdef CONFIG_DEBUG_VM
  332. static ssize_t debug_cow_show(struct kobject *kobj,
  333. struct kobj_attribute *attr, char *buf)
  334. {
  335. return single_flag_show(kobj, attr, buf,
  336. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  337. }
  338. static ssize_t debug_cow_store(struct kobject *kobj,
  339. struct kobj_attribute *attr,
  340. const char *buf, size_t count)
  341. {
  342. return single_flag_store(kobj, attr, buf, count,
  343. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  344. }
  345. static struct kobj_attribute debug_cow_attr =
  346. __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
  347. #endif /* CONFIG_DEBUG_VM */
  348. static struct attribute *hugepage_attr[] = {
  349. &enabled_attr.attr,
  350. &defrag_attr.attr,
  351. &use_zero_page_attr.attr,
  352. #ifdef CONFIG_DEBUG_VM
  353. &debug_cow_attr.attr,
  354. #endif
  355. NULL,
  356. };
  357. static struct attribute_group hugepage_attr_group = {
  358. .attrs = hugepage_attr,
  359. };
  360. static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
  361. struct kobj_attribute *attr,
  362. char *buf)
  363. {
  364. return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
  365. }
  366. static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
  367. struct kobj_attribute *attr,
  368. const char *buf, size_t count)
  369. {
  370. unsigned long msecs;
  371. int err;
  372. err = kstrtoul(buf, 10, &msecs);
  373. if (err || msecs > UINT_MAX)
  374. return -EINVAL;
  375. khugepaged_scan_sleep_millisecs = msecs;
  376. wake_up_interruptible(&khugepaged_wait);
  377. return count;
  378. }
  379. static struct kobj_attribute scan_sleep_millisecs_attr =
  380. __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
  381. scan_sleep_millisecs_store);
  382. static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
  383. struct kobj_attribute *attr,
  384. char *buf)
  385. {
  386. return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
  387. }
  388. static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
  389. struct kobj_attribute *attr,
  390. const char *buf, size_t count)
  391. {
  392. unsigned long msecs;
  393. int err;
  394. err = kstrtoul(buf, 10, &msecs);
  395. if (err || msecs > UINT_MAX)
  396. return -EINVAL;
  397. khugepaged_alloc_sleep_millisecs = msecs;
  398. wake_up_interruptible(&khugepaged_wait);
  399. return count;
  400. }
  401. static struct kobj_attribute alloc_sleep_millisecs_attr =
  402. __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
  403. alloc_sleep_millisecs_store);
  404. static ssize_t pages_to_scan_show(struct kobject *kobj,
  405. struct kobj_attribute *attr,
  406. char *buf)
  407. {
  408. return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
  409. }
  410. static ssize_t pages_to_scan_store(struct kobject *kobj,
  411. struct kobj_attribute *attr,
  412. const char *buf, size_t count)
  413. {
  414. int err;
  415. unsigned long pages;
  416. err = kstrtoul(buf, 10, &pages);
  417. if (err || !pages || pages > UINT_MAX)
  418. return -EINVAL;
  419. khugepaged_pages_to_scan = pages;
  420. return count;
  421. }
  422. static struct kobj_attribute pages_to_scan_attr =
  423. __ATTR(pages_to_scan, 0644, pages_to_scan_show,
  424. pages_to_scan_store);
  425. static ssize_t pages_collapsed_show(struct kobject *kobj,
  426. struct kobj_attribute *attr,
  427. char *buf)
  428. {
  429. return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
  430. }
  431. static struct kobj_attribute pages_collapsed_attr =
  432. __ATTR_RO(pages_collapsed);
  433. static ssize_t full_scans_show(struct kobject *kobj,
  434. struct kobj_attribute *attr,
  435. char *buf)
  436. {
  437. return sprintf(buf, "%u\n", khugepaged_full_scans);
  438. }
  439. static struct kobj_attribute full_scans_attr =
  440. __ATTR_RO(full_scans);
  441. static ssize_t khugepaged_defrag_show(struct kobject *kobj,
  442. struct kobj_attribute *attr, char *buf)
  443. {
  444. return single_flag_show(kobj, attr, buf,
  445. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  446. }
  447. static ssize_t khugepaged_defrag_store(struct kobject *kobj,
  448. struct kobj_attribute *attr,
  449. const char *buf, size_t count)
  450. {
  451. return single_flag_store(kobj, attr, buf, count,
  452. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  453. }
  454. static struct kobj_attribute khugepaged_defrag_attr =
  455. __ATTR(defrag, 0644, khugepaged_defrag_show,
  456. khugepaged_defrag_store);
  457. /*
  458. * max_ptes_none controls if khugepaged should collapse hugepages over
  459. * any unmapped ptes in turn potentially increasing the memory
  460. * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
  461. * reduce the available free memory in the system as it
  462. * runs. Increasing max_ptes_none will instead potentially reduce the
  463. * free memory in the system during the khugepaged scan.
  464. */
  465. static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
  466. struct kobj_attribute *attr,
  467. char *buf)
  468. {
  469. return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
  470. }
  471. static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
  472. struct kobj_attribute *attr,
  473. const char *buf, size_t count)
  474. {
  475. int err;
  476. unsigned long max_ptes_none;
  477. err = kstrtoul(buf, 10, &max_ptes_none);
  478. if (err || max_ptes_none > HPAGE_PMD_NR-1)
  479. return -EINVAL;
  480. khugepaged_max_ptes_none = max_ptes_none;
  481. return count;
  482. }
  483. static struct kobj_attribute khugepaged_max_ptes_none_attr =
  484. __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
  485. khugepaged_max_ptes_none_store);
  486. static struct attribute *khugepaged_attr[] = {
  487. &khugepaged_defrag_attr.attr,
  488. &khugepaged_max_ptes_none_attr.attr,
  489. &pages_to_scan_attr.attr,
  490. &pages_collapsed_attr.attr,
  491. &full_scans_attr.attr,
  492. &scan_sleep_millisecs_attr.attr,
  493. &alloc_sleep_millisecs_attr.attr,
  494. NULL,
  495. };
  496. static struct attribute_group khugepaged_attr_group = {
  497. .attrs = khugepaged_attr,
  498. .name = "khugepaged",
  499. };
  500. static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
  501. {
  502. int err;
  503. *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
  504. if (unlikely(!*hugepage_kobj)) {
  505. pr_err("failed to create transparent hugepage kobject\n");
  506. return -ENOMEM;
  507. }
  508. err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
  509. if (err) {
  510. pr_err("failed to register transparent hugepage group\n");
  511. goto delete_obj;
  512. }
  513. err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
  514. if (err) {
  515. pr_err("failed to register transparent hugepage group\n");
  516. goto remove_hp_group;
  517. }
  518. return 0;
  519. remove_hp_group:
  520. sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
  521. delete_obj:
  522. kobject_put(*hugepage_kobj);
  523. return err;
  524. }
  525. static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  526. {
  527. sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
  528. sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
  529. kobject_put(hugepage_kobj);
  530. }
  531. #else
  532. static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
  533. {
  534. return 0;
  535. }
  536. static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  537. {
  538. }
  539. #endif /* CONFIG_SYSFS */
  540. static int __init hugepage_init(void)
  541. {
  542. int err;
  543. struct kobject *hugepage_kobj;
  544. if (!has_transparent_hugepage()) {
  545. transparent_hugepage_flags = 0;
  546. return -EINVAL;
  547. }
  548. err = hugepage_init_sysfs(&hugepage_kobj);
  549. if (err)
  550. goto err_sysfs;
  551. err = khugepaged_slab_init();
  552. if (err)
  553. goto err_slab;
  554. err = register_shrinker(&huge_zero_page_shrinker);
  555. if (err)
  556. goto err_hzp_shrinker;
  557. /*
  558. * By default disable transparent hugepages on smaller systems,
  559. * where the extra memory used could hurt more than TLB overhead
  560. * is likely to save. The admin can still enable it through /sys.
  561. */
  562. if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
  563. transparent_hugepage_flags = 0;
  564. return 0;
  565. }
  566. err = start_stop_khugepaged();
  567. if (err)
  568. goto err_khugepaged;
  569. return 0;
  570. err_khugepaged:
  571. unregister_shrinker(&huge_zero_page_shrinker);
  572. err_hzp_shrinker:
  573. khugepaged_slab_exit();
  574. err_slab:
  575. hugepage_exit_sysfs(hugepage_kobj);
  576. err_sysfs:
  577. return err;
  578. }
  579. subsys_initcall(hugepage_init);
  580. static int __init setup_transparent_hugepage(char *str)
  581. {
  582. int ret = 0;
  583. if (!str)
  584. goto out;
  585. if (!strcmp(str, "always")) {
  586. set_bit(TRANSPARENT_HUGEPAGE_FLAG,
  587. &transparent_hugepage_flags);
  588. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  589. &transparent_hugepage_flags);
  590. ret = 1;
  591. } else if (!strcmp(str, "madvise")) {
  592. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  593. &transparent_hugepage_flags);
  594. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  595. &transparent_hugepage_flags);
  596. ret = 1;
  597. } else if (!strcmp(str, "never")) {
  598. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  599. &transparent_hugepage_flags);
  600. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  601. &transparent_hugepage_flags);
  602. ret = 1;
  603. }
  604. out:
  605. if (!ret)
  606. pr_warn("transparent_hugepage= cannot parse, ignored\n");
  607. return ret;
  608. }
  609. __setup("transparent_hugepage=", setup_transparent_hugepage);
  610. pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
  611. {
  612. if (likely(vma->vm_flags & VM_WRITE))
  613. pmd = pmd_mkwrite(pmd);
  614. return pmd;
  615. }
  616. static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
  617. {
  618. pmd_t entry;
  619. entry = mk_pmd(page, prot);
  620. entry = pmd_mkhuge(entry);
  621. return entry;
  622. }
  623. static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
  624. struct vm_area_struct *vma,
  625. unsigned long address, pmd_t *pmd,
  626. struct page *page, gfp_t gfp,
  627. unsigned int flags)
  628. {
  629. struct mem_cgroup *memcg;
  630. pgtable_t pgtable;
  631. spinlock_t *ptl;
  632. unsigned long haddr = address & HPAGE_PMD_MASK;
  633. VM_BUG_ON_PAGE(!PageCompound(page), page);
  634. if (mem_cgroup_try_charge(page, mm, gfp, &memcg)) {
  635. put_page(page);
  636. count_vm_event(THP_FAULT_FALLBACK);
  637. return VM_FAULT_FALLBACK;
  638. }
  639. pgtable = pte_alloc_one(mm, haddr);
  640. if (unlikely(!pgtable)) {
  641. mem_cgroup_cancel_charge(page, memcg);
  642. put_page(page);
  643. return VM_FAULT_OOM;
  644. }
  645. clear_huge_page(page, haddr, HPAGE_PMD_NR);
  646. /*
  647. * The memory barrier inside __SetPageUptodate makes sure that
  648. * clear_huge_page writes become visible before the set_pmd_at()
  649. * write.
  650. */
  651. __SetPageUptodate(page);
  652. ptl = pmd_lock(mm, pmd);
  653. if (unlikely(!pmd_none(*pmd))) {
  654. spin_unlock(ptl);
  655. mem_cgroup_cancel_charge(page, memcg);
  656. put_page(page);
  657. pte_free(mm, pgtable);
  658. } else {
  659. pmd_t entry;
  660. /* Deliver the page fault to userland */
  661. if (userfaultfd_missing(vma)) {
  662. int ret;
  663. spin_unlock(ptl);
  664. mem_cgroup_cancel_charge(page, memcg);
  665. put_page(page);
  666. pte_free(mm, pgtable);
  667. ret = handle_userfault(vma, address, flags,
  668. VM_UFFD_MISSING);
  669. VM_BUG_ON(ret & VM_FAULT_FALLBACK);
  670. return ret;
  671. }
  672. entry = mk_huge_pmd(page, vma->vm_page_prot);
  673. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  674. page_add_new_anon_rmap(page, vma, haddr);
  675. mem_cgroup_commit_charge(page, memcg, false);
  676. lru_cache_add_active_or_unevictable(page, vma);
  677. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  678. set_pmd_at(mm, haddr, pmd, entry);
  679. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  680. atomic_long_inc(&mm->nr_ptes);
  681. spin_unlock(ptl);
  682. count_vm_event(THP_FAULT_ALLOC);
  683. }
  684. return 0;
  685. }
  686. static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
  687. {
  688. return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
  689. }
  690. /* Caller must hold page table lock. */
  691. static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
  692. struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
  693. struct page *zero_page)
  694. {
  695. pmd_t entry;
  696. if (!pmd_none(*pmd))
  697. return false;
  698. entry = mk_pmd(zero_page, vma->vm_page_prot);
  699. entry = pmd_mkhuge(entry);
  700. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  701. set_pmd_at(mm, haddr, pmd, entry);
  702. atomic_long_inc(&mm->nr_ptes);
  703. return true;
  704. }
  705. int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  706. unsigned long address, pmd_t *pmd,
  707. unsigned int flags)
  708. {
  709. gfp_t gfp;
  710. struct page *page;
  711. unsigned long haddr = address & HPAGE_PMD_MASK;
  712. if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
  713. return VM_FAULT_FALLBACK;
  714. if (unlikely(anon_vma_prepare(vma)))
  715. return VM_FAULT_OOM;
  716. if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
  717. return VM_FAULT_OOM;
  718. if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
  719. transparent_hugepage_use_zero_page()) {
  720. spinlock_t *ptl;
  721. pgtable_t pgtable;
  722. struct page *zero_page;
  723. bool set;
  724. int ret;
  725. pgtable = pte_alloc_one(mm, haddr);
  726. if (unlikely(!pgtable))
  727. return VM_FAULT_OOM;
  728. zero_page = get_huge_zero_page();
  729. if (unlikely(!zero_page)) {
  730. pte_free(mm, pgtable);
  731. count_vm_event(THP_FAULT_FALLBACK);
  732. return VM_FAULT_FALLBACK;
  733. }
  734. ptl = pmd_lock(mm, pmd);
  735. ret = 0;
  736. set = false;
  737. if (pmd_none(*pmd)) {
  738. if (userfaultfd_missing(vma)) {
  739. spin_unlock(ptl);
  740. ret = handle_userfault(vma, address, flags,
  741. VM_UFFD_MISSING);
  742. VM_BUG_ON(ret & VM_FAULT_FALLBACK);
  743. } else {
  744. set_huge_zero_page(pgtable, mm, vma,
  745. haddr, pmd,
  746. zero_page);
  747. spin_unlock(ptl);
  748. set = true;
  749. }
  750. } else
  751. spin_unlock(ptl);
  752. if (!set) {
  753. pte_free(mm, pgtable);
  754. put_huge_zero_page();
  755. }
  756. return ret;
  757. }
  758. gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
  759. page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
  760. if (unlikely(!page)) {
  761. count_vm_event(THP_FAULT_FALLBACK);
  762. return VM_FAULT_FALLBACK;
  763. }
  764. return __do_huge_pmd_anonymous_page(mm, vma, address, pmd, page, gfp,
  765. flags);
  766. }
  767. static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
  768. pmd_t *pmd, unsigned long pfn, pgprot_t prot, bool write)
  769. {
  770. struct mm_struct *mm = vma->vm_mm;
  771. pmd_t entry;
  772. spinlock_t *ptl;
  773. ptl = pmd_lock(mm, pmd);
  774. if (pmd_none(*pmd)) {
  775. entry = pmd_mkhuge(pfn_pmd(pfn, prot));
  776. if (write) {
  777. entry = pmd_mkyoung(pmd_mkdirty(entry));
  778. entry = maybe_pmd_mkwrite(entry, vma);
  779. }
  780. set_pmd_at(mm, addr, pmd, entry);
  781. update_mmu_cache_pmd(vma, addr, pmd);
  782. }
  783. spin_unlock(ptl);
  784. }
  785. int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
  786. pmd_t *pmd, unsigned long pfn, bool write)
  787. {
  788. pgprot_t pgprot = vma->vm_page_prot;
  789. /*
  790. * If we had pmd_special, we could avoid all these restrictions,
  791. * but we need to be consistent with PTEs and architectures that
  792. * can't support a 'special' bit.
  793. */
  794. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  795. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  796. (VM_PFNMAP|VM_MIXEDMAP));
  797. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  798. BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
  799. if (addr < vma->vm_start || addr >= vma->vm_end)
  800. return VM_FAULT_SIGBUS;
  801. if (track_pfn_insert(vma, &pgprot, pfn))
  802. return VM_FAULT_SIGBUS;
  803. insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
  804. return VM_FAULT_NOPAGE;
  805. }
  806. int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  807. pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
  808. struct vm_area_struct *vma)
  809. {
  810. spinlock_t *dst_ptl, *src_ptl;
  811. struct page *src_page;
  812. pmd_t pmd;
  813. pgtable_t pgtable;
  814. int ret;
  815. ret = -ENOMEM;
  816. pgtable = pte_alloc_one(dst_mm, addr);
  817. if (unlikely(!pgtable))
  818. goto out;
  819. dst_ptl = pmd_lock(dst_mm, dst_pmd);
  820. src_ptl = pmd_lockptr(src_mm, src_pmd);
  821. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  822. ret = -EAGAIN;
  823. pmd = *src_pmd;
  824. if (unlikely(!pmd_trans_huge(pmd))) {
  825. pte_free(dst_mm, pgtable);
  826. goto out_unlock;
  827. }
  828. /*
  829. * When page table lock is held, the huge zero pmd should not be
  830. * under splitting since we don't split the page itself, only pmd to
  831. * a page table.
  832. */
  833. if (is_huge_zero_pmd(pmd)) {
  834. struct page *zero_page;
  835. /*
  836. * get_huge_zero_page() will never allocate a new page here,
  837. * since we already have a zero page to copy. It just takes a
  838. * reference.
  839. */
  840. zero_page = get_huge_zero_page();
  841. set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
  842. zero_page);
  843. ret = 0;
  844. goto out_unlock;
  845. }
  846. if (unlikely(pmd_trans_splitting(pmd))) {
  847. /* split huge page running from under us */
  848. spin_unlock(src_ptl);
  849. spin_unlock(dst_ptl);
  850. pte_free(dst_mm, pgtable);
  851. wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
  852. goto out;
  853. }
  854. src_page = pmd_page(pmd);
  855. VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
  856. get_page(src_page);
  857. page_dup_rmap(src_page);
  858. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  859. pmdp_set_wrprotect(src_mm, addr, src_pmd);
  860. pmd = pmd_mkold(pmd_wrprotect(pmd));
  861. pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
  862. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  863. atomic_long_inc(&dst_mm->nr_ptes);
  864. ret = 0;
  865. out_unlock:
  866. spin_unlock(src_ptl);
  867. spin_unlock(dst_ptl);
  868. out:
  869. return ret;
  870. }
  871. void huge_pmd_set_accessed(struct mm_struct *mm,
  872. struct vm_area_struct *vma,
  873. unsigned long address,
  874. pmd_t *pmd, pmd_t orig_pmd,
  875. int dirty)
  876. {
  877. spinlock_t *ptl;
  878. pmd_t entry;
  879. unsigned long haddr;
  880. ptl = pmd_lock(mm, pmd);
  881. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  882. goto unlock;
  883. entry = pmd_mkyoung(orig_pmd);
  884. haddr = address & HPAGE_PMD_MASK;
  885. if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
  886. update_mmu_cache_pmd(vma, address, pmd);
  887. unlock:
  888. spin_unlock(ptl);
  889. }
  890. /*
  891. * Save CONFIG_DEBUG_PAGEALLOC from faulting falsely on tail pages
  892. * during copy_user_huge_page()'s copy_page_rep(): in the case when
  893. * the source page gets split and a tail freed before copy completes.
  894. * Called under pmd_lock of checked pmd, so safe from splitting itself.
  895. */
  896. static void get_user_huge_page(struct page *page)
  897. {
  898. if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
  899. struct page *endpage = page + HPAGE_PMD_NR;
  900. atomic_add(HPAGE_PMD_NR, &page->_count);
  901. while (++page < endpage)
  902. get_huge_page_tail(page);
  903. } else {
  904. get_page(page);
  905. }
  906. }
  907. static void put_user_huge_page(struct page *page)
  908. {
  909. if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
  910. struct page *endpage = page + HPAGE_PMD_NR;
  911. while (page < endpage)
  912. put_page(page++);
  913. } else {
  914. put_page(page);
  915. }
  916. }
  917. static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
  918. struct vm_area_struct *vma,
  919. unsigned long address,
  920. pmd_t *pmd, pmd_t orig_pmd,
  921. struct page *page,
  922. unsigned long haddr)
  923. {
  924. struct mem_cgroup *memcg;
  925. spinlock_t *ptl;
  926. pgtable_t pgtable;
  927. pmd_t _pmd;
  928. int ret = 0, i;
  929. struct page **pages;
  930. unsigned long mmun_start; /* For mmu_notifiers */
  931. unsigned long mmun_end; /* For mmu_notifiers */
  932. pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
  933. GFP_KERNEL);
  934. if (unlikely(!pages)) {
  935. ret |= VM_FAULT_OOM;
  936. goto out;
  937. }
  938. for (i = 0; i < HPAGE_PMD_NR; i++) {
  939. pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
  940. __GFP_OTHER_NODE,
  941. vma, address, page_to_nid(page));
  942. if (unlikely(!pages[i] ||
  943. mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
  944. &memcg))) {
  945. if (pages[i])
  946. put_page(pages[i]);
  947. while (--i >= 0) {
  948. memcg = (void *)page_private(pages[i]);
  949. set_page_private(pages[i], 0);
  950. mem_cgroup_cancel_charge(pages[i], memcg);
  951. put_page(pages[i]);
  952. }
  953. kfree(pages);
  954. ret |= VM_FAULT_OOM;
  955. goto out;
  956. }
  957. set_page_private(pages[i], (unsigned long)memcg);
  958. }
  959. for (i = 0; i < HPAGE_PMD_NR; i++) {
  960. copy_user_highpage(pages[i], page + i,
  961. haddr + PAGE_SIZE * i, vma);
  962. __SetPageUptodate(pages[i]);
  963. cond_resched();
  964. }
  965. mmun_start = haddr;
  966. mmun_end = haddr + HPAGE_PMD_SIZE;
  967. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  968. ptl = pmd_lock(mm, pmd);
  969. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  970. goto out_free_pages;
  971. VM_BUG_ON_PAGE(!PageHead(page), page);
  972. pmdp_huge_clear_flush_notify(vma, haddr, pmd);
  973. /* leave pmd empty until pte is filled */
  974. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  975. pmd_populate(mm, &_pmd, pgtable);
  976. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  977. pte_t *pte, entry;
  978. entry = mk_pte(pages[i], vma->vm_page_prot);
  979. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  980. memcg = (void *)page_private(pages[i]);
  981. set_page_private(pages[i], 0);
  982. page_add_new_anon_rmap(pages[i], vma, haddr);
  983. mem_cgroup_commit_charge(pages[i], memcg, false);
  984. lru_cache_add_active_or_unevictable(pages[i], vma);
  985. pte = pte_offset_map(&_pmd, haddr);
  986. VM_BUG_ON(!pte_none(*pte));
  987. set_pte_at(mm, haddr, pte, entry);
  988. pte_unmap(pte);
  989. }
  990. kfree(pages);
  991. smp_wmb(); /* make pte visible before pmd */
  992. pmd_populate(mm, pmd, pgtable);
  993. page_remove_rmap(page);
  994. spin_unlock(ptl);
  995. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  996. ret |= VM_FAULT_WRITE;
  997. put_page(page);
  998. out:
  999. return ret;
  1000. out_free_pages:
  1001. spin_unlock(ptl);
  1002. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1003. for (i = 0; i < HPAGE_PMD_NR; i++) {
  1004. memcg = (void *)page_private(pages[i]);
  1005. set_page_private(pages[i], 0);
  1006. mem_cgroup_cancel_charge(pages[i], memcg);
  1007. put_page(pages[i]);
  1008. }
  1009. kfree(pages);
  1010. goto out;
  1011. }
  1012. int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1013. unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
  1014. {
  1015. spinlock_t *ptl;
  1016. int ret = 0;
  1017. struct page *page = NULL, *new_page;
  1018. struct mem_cgroup *memcg;
  1019. unsigned long haddr;
  1020. unsigned long mmun_start; /* For mmu_notifiers */
  1021. unsigned long mmun_end; /* For mmu_notifiers */
  1022. gfp_t huge_gfp; /* for allocation and charge */
  1023. ptl = pmd_lockptr(mm, pmd);
  1024. VM_BUG_ON_VMA(!vma->anon_vma, vma);
  1025. haddr = address & HPAGE_PMD_MASK;
  1026. if (is_huge_zero_pmd(orig_pmd))
  1027. goto alloc;
  1028. spin_lock(ptl);
  1029. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  1030. goto out_unlock;
  1031. page = pmd_page(orig_pmd);
  1032. VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
  1033. if (page_mapcount(page) == 1) {
  1034. pmd_t entry;
  1035. entry = pmd_mkyoung(orig_pmd);
  1036. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  1037. if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
  1038. update_mmu_cache_pmd(vma, address, pmd);
  1039. ret |= VM_FAULT_WRITE;
  1040. goto out_unlock;
  1041. }
  1042. get_user_huge_page(page);
  1043. spin_unlock(ptl);
  1044. alloc:
  1045. if (transparent_hugepage_enabled(vma) &&
  1046. !transparent_hugepage_debug_cow()) {
  1047. huge_gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
  1048. new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
  1049. } else
  1050. new_page = NULL;
  1051. if (unlikely(!new_page)) {
  1052. if (!page) {
  1053. split_huge_page_pmd(vma, address, pmd);
  1054. ret |= VM_FAULT_FALLBACK;
  1055. } else {
  1056. ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
  1057. pmd, orig_pmd, page, haddr);
  1058. if (ret & VM_FAULT_OOM) {
  1059. split_huge_page(page);
  1060. ret |= VM_FAULT_FALLBACK;
  1061. }
  1062. put_user_huge_page(page);
  1063. }
  1064. count_vm_event(THP_FAULT_FALLBACK);
  1065. goto out;
  1066. }
  1067. if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg))) {
  1068. put_page(new_page);
  1069. if (page) {
  1070. split_huge_page(page);
  1071. put_user_huge_page(page);
  1072. } else
  1073. split_huge_page_pmd(vma, address, pmd);
  1074. ret |= VM_FAULT_FALLBACK;
  1075. count_vm_event(THP_FAULT_FALLBACK);
  1076. goto out;
  1077. }
  1078. count_vm_event(THP_FAULT_ALLOC);
  1079. if (!page)
  1080. clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
  1081. else
  1082. copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
  1083. __SetPageUptodate(new_page);
  1084. mmun_start = haddr;
  1085. mmun_end = haddr + HPAGE_PMD_SIZE;
  1086. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1087. spin_lock(ptl);
  1088. if (page)
  1089. put_user_huge_page(page);
  1090. if (unlikely(!pmd_same(*pmd, orig_pmd))) {
  1091. spin_unlock(ptl);
  1092. mem_cgroup_cancel_charge(new_page, memcg);
  1093. put_page(new_page);
  1094. goto out_mn;
  1095. } else {
  1096. pmd_t entry;
  1097. entry = mk_huge_pmd(new_page, vma->vm_page_prot);
  1098. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  1099. pmdp_huge_clear_flush_notify(vma, haddr, pmd);
  1100. page_add_new_anon_rmap(new_page, vma, haddr);
  1101. mem_cgroup_commit_charge(new_page, memcg, false);
  1102. lru_cache_add_active_or_unevictable(new_page, vma);
  1103. set_pmd_at(mm, haddr, pmd, entry);
  1104. update_mmu_cache_pmd(vma, address, pmd);
  1105. if (!page) {
  1106. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  1107. put_huge_zero_page();
  1108. } else {
  1109. VM_BUG_ON_PAGE(!PageHead(page), page);
  1110. page_remove_rmap(page);
  1111. put_page(page);
  1112. }
  1113. ret |= VM_FAULT_WRITE;
  1114. }
  1115. spin_unlock(ptl);
  1116. out_mn:
  1117. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1118. out:
  1119. return ret;
  1120. out_unlock:
  1121. spin_unlock(ptl);
  1122. return ret;
  1123. }
  1124. struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
  1125. unsigned long addr,
  1126. pmd_t *pmd,
  1127. unsigned int flags)
  1128. {
  1129. struct mm_struct *mm = vma->vm_mm;
  1130. struct page *page = NULL;
  1131. assert_spin_locked(pmd_lockptr(mm, pmd));
  1132. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  1133. goto out;
  1134. /* Avoid dumping huge zero page */
  1135. if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
  1136. return ERR_PTR(-EFAULT);
  1137. /* Full NUMA hinting faults to serialise migration in fault paths */
  1138. if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
  1139. goto out;
  1140. page = pmd_page(*pmd);
  1141. VM_BUG_ON_PAGE(!PageHead(page), page);
  1142. if (flags & FOLL_TOUCH) {
  1143. pmd_t _pmd;
  1144. /*
  1145. * We should set the dirty bit only for FOLL_WRITE but
  1146. * for now the dirty bit in the pmd is meaningless.
  1147. * And if the dirty bit will become meaningful and
  1148. * we'll only set it with FOLL_WRITE, an atomic
  1149. * set_bit will be required on the pmd to set the
  1150. * young bit, instead of the current set_pmd_at.
  1151. */
  1152. _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
  1153. if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
  1154. pmd, _pmd, 1))
  1155. update_mmu_cache_pmd(vma, addr, pmd);
  1156. }
  1157. if ((flags & FOLL_POPULATE) && (vma->vm_flags & VM_LOCKED)) {
  1158. if (page->mapping && trylock_page(page)) {
  1159. lru_add_drain();
  1160. if (page->mapping)
  1161. mlock_vma_page(page);
  1162. unlock_page(page);
  1163. }
  1164. }
  1165. page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
  1166. VM_BUG_ON_PAGE(!PageCompound(page), page);
  1167. if (flags & FOLL_GET)
  1168. get_page_foll(page);
  1169. out:
  1170. return page;
  1171. }
  1172. /* NUMA hinting page fault entry point for trans huge pmds */
  1173. int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1174. unsigned long addr, pmd_t pmd, pmd_t *pmdp)
  1175. {
  1176. spinlock_t *ptl;
  1177. struct anon_vma *anon_vma = NULL;
  1178. struct page *page;
  1179. unsigned long haddr = addr & HPAGE_PMD_MASK;
  1180. int page_nid = -1, this_nid = numa_node_id();
  1181. int target_nid, last_cpupid = -1;
  1182. bool page_locked;
  1183. bool migrated = false;
  1184. bool was_writable;
  1185. int flags = 0;
  1186. /* A PROT_NONE fault should not end up here */
  1187. BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
  1188. ptl = pmd_lock(mm, pmdp);
  1189. if (unlikely(!pmd_same(pmd, *pmdp)))
  1190. goto out_unlock;
  1191. /*
  1192. * If there are potential migrations, wait for completion and retry
  1193. * without disrupting NUMA hinting information. Do not relock and
  1194. * check_same as the page may no longer be mapped.
  1195. */
  1196. if (unlikely(pmd_trans_migrating(*pmdp))) {
  1197. page = pmd_page(*pmdp);
  1198. spin_unlock(ptl);
  1199. wait_on_page_locked(page);
  1200. goto out;
  1201. }
  1202. page = pmd_page(pmd);
  1203. BUG_ON(is_huge_zero_page(page));
  1204. page_nid = page_to_nid(page);
  1205. last_cpupid = page_cpupid_last(page);
  1206. count_vm_numa_event(NUMA_HINT_FAULTS);
  1207. if (page_nid == this_nid) {
  1208. count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
  1209. flags |= TNF_FAULT_LOCAL;
  1210. }
  1211. /* See similar comment in do_numa_page for explanation */
  1212. if (!(vma->vm_flags & VM_WRITE))
  1213. flags |= TNF_NO_GROUP;
  1214. /*
  1215. * Acquire the page lock to serialise THP migrations but avoid dropping
  1216. * page_table_lock if at all possible
  1217. */
  1218. page_locked = trylock_page(page);
  1219. target_nid = mpol_misplaced(page, vma, haddr);
  1220. if (target_nid == -1) {
  1221. /* If the page was locked, there are no parallel migrations */
  1222. if (page_locked)
  1223. goto clear_pmdnuma;
  1224. }
  1225. /* Migration could have started since the pmd_trans_migrating check */
  1226. if (!page_locked) {
  1227. spin_unlock(ptl);
  1228. wait_on_page_locked(page);
  1229. page_nid = -1;
  1230. goto out;
  1231. }
  1232. /*
  1233. * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
  1234. * to serialises splits
  1235. */
  1236. get_page(page);
  1237. spin_unlock(ptl);
  1238. anon_vma = page_lock_anon_vma_read(page);
  1239. /* Confirm the PMD did not change while page_table_lock was released */
  1240. spin_lock(ptl);
  1241. if (unlikely(!pmd_same(pmd, *pmdp))) {
  1242. unlock_page(page);
  1243. put_page(page);
  1244. page_nid = -1;
  1245. goto out_unlock;
  1246. }
  1247. /* Bail if we fail to protect against THP splits for any reason */
  1248. if (unlikely(!anon_vma)) {
  1249. put_page(page);
  1250. page_nid = -1;
  1251. goto clear_pmdnuma;
  1252. }
  1253. /*
  1254. * Migrate the THP to the requested node, returns with page unlocked
  1255. * and access rights restored.
  1256. */
  1257. spin_unlock(ptl);
  1258. migrated = migrate_misplaced_transhuge_page(mm, vma,
  1259. pmdp, pmd, addr, page, target_nid);
  1260. if (migrated) {
  1261. flags |= TNF_MIGRATED;
  1262. page_nid = target_nid;
  1263. } else
  1264. flags |= TNF_MIGRATE_FAIL;
  1265. goto out;
  1266. clear_pmdnuma:
  1267. BUG_ON(!PageLocked(page));
  1268. was_writable = pmd_write(pmd);
  1269. pmd = pmd_modify(pmd, vma->vm_page_prot);
  1270. pmd = pmd_mkyoung(pmd);
  1271. if (was_writable)
  1272. pmd = pmd_mkwrite(pmd);
  1273. set_pmd_at(mm, haddr, pmdp, pmd);
  1274. update_mmu_cache_pmd(vma, addr, pmdp);
  1275. unlock_page(page);
  1276. out_unlock:
  1277. spin_unlock(ptl);
  1278. out:
  1279. if (anon_vma)
  1280. page_unlock_anon_vma_read(anon_vma);
  1281. if (page_nid != -1)
  1282. task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
  1283. return 0;
  1284. }
  1285. int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  1286. pmd_t *pmd, unsigned long addr)
  1287. {
  1288. pmd_t orig_pmd;
  1289. spinlock_t *ptl;
  1290. if (__pmd_trans_huge_lock(pmd, vma, &ptl) != 1)
  1291. return 0;
  1292. /*
  1293. * For architectures like ppc64 we look at deposited pgtable
  1294. * when calling pmdp_huge_get_and_clear. So do the
  1295. * pgtable_trans_huge_withdraw after finishing pmdp related
  1296. * operations.
  1297. */
  1298. orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
  1299. tlb->fullmm);
  1300. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  1301. if (vma_is_dax(vma)) {
  1302. spin_unlock(ptl);
  1303. if (is_huge_zero_pmd(orig_pmd))
  1304. put_huge_zero_page();
  1305. } else if (is_huge_zero_pmd(orig_pmd)) {
  1306. pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
  1307. atomic_long_dec(&tlb->mm->nr_ptes);
  1308. spin_unlock(ptl);
  1309. put_huge_zero_page();
  1310. } else {
  1311. struct page *page = pmd_page(orig_pmd);
  1312. page_remove_rmap(page);
  1313. VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
  1314. add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
  1315. VM_BUG_ON_PAGE(!PageHead(page), page);
  1316. pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
  1317. atomic_long_dec(&tlb->mm->nr_ptes);
  1318. spin_unlock(ptl);
  1319. tlb_remove_page(tlb, page);
  1320. }
  1321. return 1;
  1322. }
  1323. int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
  1324. unsigned long old_addr,
  1325. unsigned long new_addr, unsigned long old_end,
  1326. pmd_t *old_pmd, pmd_t *new_pmd)
  1327. {
  1328. spinlock_t *old_ptl, *new_ptl;
  1329. int ret = 0;
  1330. pmd_t pmd;
  1331. struct mm_struct *mm = vma->vm_mm;
  1332. if ((old_addr & ~HPAGE_PMD_MASK) ||
  1333. (new_addr & ~HPAGE_PMD_MASK) ||
  1334. old_end - old_addr < HPAGE_PMD_SIZE ||
  1335. (new_vma->vm_flags & VM_NOHUGEPAGE))
  1336. goto out;
  1337. /*
  1338. * The destination pmd shouldn't be established, free_pgtables()
  1339. * should have release it.
  1340. */
  1341. if (WARN_ON(!pmd_none(*new_pmd))) {
  1342. VM_BUG_ON(pmd_trans_huge(*new_pmd));
  1343. goto out;
  1344. }
  1345. /*
  1346. * We don't have to worry about the ordering of src and dst
  1347. * ptlocks because exclusive mmap_sem prevents deadlock.
  1348. */
  1349. ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
  1350. if (ret == 1) {
  1351. new_ptl = pmd_lockptr(mm, new_pmd);
  1352. if (new_ptl != old_ptl)
  1353. spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
  1354. pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
  1355. VM_BUG_ON(!pmd_none(*new_pmd));
  1356. if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
  1357. pgtable_t pgtable;
  1358. pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
  1359. pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
  1360. }
  1361. set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
  1362. if (new_ptl != old_ptl)
  1363. spin_unlock(new_ptl);
  1364. spin_unlock(old_ptl);
  1365. }
  1366. out:
  1367. return ret;
  1368. }
  1369. /*
  1370. * Returns
  1371. * - 0 if PMD could not be locked
  1372. * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
  1373. * - HPAGE_PMD_NR is protections changed and TLB flush necessary
  1374. */
  1375. int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1376. unsigned long addr, pgprot_t newprot, int prot_numa)
  1377. {
  1378. struct mm_struct *mm = vma->vm_mm;
  1379. spinlock_t *ptl;
  1380. int ret = 0;
  1381. if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
  1382. pmd_t entry;
  1383. bool preserve_write = prot_numa && pmd_write(*pmd);
  1384. ret = 1;
  1385. /*
  1386. * Avoid trapping faults against the zero page. The read-only
  1387. * data is likely to be read-cached on the local CPU and
  1388. * local/remote hits to the zero page are not interesting.
  1389. */
  1390. if (prot_numa && is_huge_zero_pmd(*pmd)) {
  1391. spin_unlock(ptl);
  1392. return ret;
  1393. }
  1394. if (!prot_numa || !pmd_protnone(*pmd)) {
  1395. entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
  1396. entry = pmd_modify(entry, newprot);
  1397. if (preserve_write)
  1398. entry = pmd_mkwrite(entry);
  1399. ret = HPAGE_PMD_NR;
  1400. set_pmd_at(mm, addr, pmd, entry);
  1401. BUG_ON(!preserve_write && pmd_write(entry));
  1402. }
  1403. spin_unlock(ptl);
  1404. }
  1405. return ret;
  1406. }
  1407. /*
  1408. * Returns 1 if a given pmd maps a stable (not under splitting) thp.
  1409. * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
  1410. *
  1411. * Note that if it returns 1, this routine returns without unlocking page
  1412. * table locks. So callers must unlock them.
  1413. */
  1414. int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
  1415. spinlock_t **ptl)
  1416. {
  1417. *ptl = pmd_lock(vma->vm_mm, pmd);
  1418. if (likely(pmd_trans_huge(*pmd))) {
  1419. if (unlikely(pmd_trans_splitting(*pmd))) {
  1420. spin_unlock(*ptl);
  1421. wait_split_huge_page(vma->anon_vma, pmd);
  1422. return -1;
  1423. } else {
  1424. /* Thp mapped by 'pmd' is stable, so we can
  1425. * handle it as it is. */
  1426. return 1;
  1427. }
  1428. }
  1429. spin_unlock(*ptl);
  1430. return 0;
  1431. }
  1432. /*
  1433. * This function returns whether a given @page is mapped onto the @address
  1434. * in the virtual space of @mm.
  1435. *
  1436. * When it's true, this function returns *pmd with holding the page table lock
  1437. * and passing it back to the caller via @ptl.
  1438. * If it's false, returns NULL without holding the page table lock.
  1439. */
  1440. pmd_t *page_check_address_pmd(struct page *page,
  1441. struct mm_struct *mm,
  1442. unsigned long address,
  1443. enum page_check_address_pmd_flag flag,
  1444. spinlock_t **ptl)
  1445. {
  1446. pgd_t *pgd;
  1447. pud_t *pud;
  1448. pmd_t *pmd;
  1449. if (address & ~HPAGE_PMD_MASK)
  1450. return NULL;
  1451. pgd = pgd_offset(mm, address);
  1452. if (!pgd_present(*pgd))
  1453. return NULL;
  1454. pud = pud_offset(pgd, address);
  1455. if (!pud_present(*pud))
  1456. return NULL;
  1457. pmd = pmd_offset(pud, address);
  1458. *ptl = pmd_lock(mm, pmd);
  1459. if (!pmd_present(*pmd))
  1460. goto unlock;
  1461. if (pmd_page(*pmd) != page)
  1462. goto unlock;
  1463. /*
  1464. * split_vma() may create temporary aliased mappings. There is
  1465. * no risk as long as all huge pmd are found and have their
  1466. * splitting bit set before __split_huge_page_refcount
  1467. * runs. Finding the same huge pmd more than once during the
  1468. * same rmap walk is not a problem.
  1469. */
  1470. if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
  1471. pmd_trans_splitting(*pmd))
  1472. goto unlock;
  1473. if (pmd_trans_huge(*pmd)) {
  1474. VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
  1475. !pmd_trans_splitting(*pmd));
  1476. return pmd;
  1477. }
  1478. unlock:
  1479. spin_unlock(*ptl);
  1480. return NULL;
  1481. }
  1482. static int __split_huge_page_splitting(struct page *page,
  1483. struct vm_area_struct *vma,
  1484. unsigned long address)
  1485. {
  1486. struct mm_struct *mm = vma->vm_mm;
  1487. spinlock_t *ptl;
  1488. pmd_t *pmd;
  1489. int ret = 0;
  1490. /* For mmu_notifiers */
  1491. const unsigned long mmun_start = address;
  1492. const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
  1493. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1494. pmd = page_check_address_pmd(page, mm, address,
  1495. PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
  1496. if (pmd) {
  1497. /*
  1498. * We can't temporarily set the pmd to null in order
  1499. * to split it, the pmd must remain marked huge at all
  1500. * times or the VM won't take the pmd_trans_huge paths
  1501. * and it won't wait on the anon_vma->root->rwsem to
  1502. * serialize against split_huge_page*.
  1503. */
  1504. pmdp_splitting_flush(vma, address, pmd);
  1505. ret = 1;
  1506. spin_unlock(ptl);
  1507. }
  1508. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1509. return ret;
  1510. }
  1511. static void __split_huge_page_refcount(struct page *page,
  1512. struct list_head *list)
  1513. {
  1514. int i;
  1515. struct zone *zone = page_zone(page);
  1516. struct lruvec *lruvec;
  1517. int tail_count = 0;
  1518. /* prevent PageLRU to go away from under us, and freeze lru stats */
  1519. spin_lock_irq(&zone->lru_lock);
  1520. lruvec = mem_cgroup_page_lruvec(page, zone);
  1521. compound_lock(page);
  1522. /* complete memcg works before add pages to LRU */
  1523. mem_cgroup_split_huge_fixup(page);
  1524. for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
  1525. struct page *page_tail = page + i;
  1526. /* tail_page->_mapcount cannot change */
  1527. BUG_ON(page_mapcount(page_tail) < 0);
  1528. tail_count += page_mapcount(page_tail);
  1529. /* check for overflow */
  1530. BUG_ON(tail_count < 0);
  1531. BUG_ON(atomic_read(&page_tail->_count) != 0);
  1532. /*
  1533. * tail_page->_count is zero and not changing from
  1534. * under us. But get_page_unless_zero() may be running
  1535. * from under us on the tail_page. If we used
  1536. * atomic_set() below instead of atomic_add(), we
  1537. * would then run atomic_set() concurrently with
  1538. * get_page_unless_zero(), and atomic_set() is
  1539. * implemented in C not using locked ops. spin_unlock
  1540. * on x86 sometime uses locked ops because of PPro
  1541. * errata 66, 92, so unless somebody can guarantee
  1542. * atomic_set() here would be safe on all archs (and
  1543. * not only on x86), it's safer to use atomic_add().
  1544. */
  1545. atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
  1546. &page_tail->_count);
  1547. /* after clearing PageTail the gup refcount can be released */
  1548. smp_mb__after_atomic();
  1549. page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  1550. page_tail->flags |= (page->flags &
  1551. ((1L << PG_referenced) |
  1552. (1L << PG_swapbacked) |
  1553. (1L << PG_mlocked) |
  1554. (1L << PG_uptodate) |
  1555. (1L << PG_active) |
  1556. (1L << PG_unevictable)));
  1557. page_tail->flags |= (1L << PG_dirty);
  1558. /* clear PageTail before overwriting first_page */
  1559. smp_wmb();
  1560. if (page_is_young(page))
  1561. set_page_young(page_tail);
  1562. if (page_is_idle(page))
  1563. set_page_idle(page_tail);
  1564. /*
  1565. * __split_huge_page_splitting() already set the
  1566. * splitting bit in all pmd that could map this
  1567. * hugepage, that will ensure no CPU can alter the
  1568. * mapcount on the head page. The mapcount is only
  1569. * accounted in the head page and it has to be
  1570. * transferred to all tail pages in the below code. So
  1571. * for this code to be safe, the split the mapcount
  1572. * can't change. But that doesn't mean userland can't
  1573. * keep changing and reading the page contents while
  1574. * we transfer the mapcount, so the pmd splitting
  1575. * status is achieved setting a reserved bit in the
  1576. * pmd, not by clearing the present bit.
  1577. */
  1578. page_tail->_mapcount = page->_mapcount;
  1579. BUG_ON(page_tail->mapping);
  1580. page_tail->mapping = page->mapping;
  1581. page_tail->index = page->index + i;
  1582. page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
  1583. BUG_ON(!PageAnon(page_tail));
  1584. BUG_ON(!PageUptodate(page_tail));
  1585. BUG_ON(!PageDirty(page_tail));
  1586. BUG_ON(!PageSwapBacked(page_tail));
  1587. lru_add_page_tail(page, page_tail, lruvec, list);
  1588. }
  1589. atomic_sub(tail_count, &page->_count);
  1590. BUG_ON(atomic_read(&page->_count) <= 0);
  1591. __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
  1592. ClearPageCompound(page);
  1593. compound_unlock(page);
  1594. spin_unlock_irq(&zone->lru_lock);
  1595. for (i = 1; i < HPAGE_PMD_NR; i++) {
  1596. struct page *page_tail = page + i;
  1597. BUG_ON(page_count(page_tail) <= 0);
  1598. /*
  1599. * Tail pages may be freed if there wasn't any mapping
  1600. * like if add_to_swap() is running on a lru page that
  1601. * had its mapping zapped. And freeing these pages
  1602. * requires taking the lru_lock so we do the put_page
  1603. * of the tail pages after the split is complete.
  1604. */
  1605. put_page(page_tail);
  1606. }
  1607. /*
  1608. * Only the head page (now become a regular page) is required
  1609. * to be pinned by the caller.
  1610. */
  1611. BUG_ON(page_count(page) <= 0);
  1612. }
  1613. static int __split_huge_page_map(struct page *page,
  1614. struct vm_area_struct *vma,
  1615. unsigned long address)
  1616. {
  1617. struct mm_struct *mm = vma->vm_mm;
  1618. spinlock_t *ptl;
  1619. pmd_t *pmd, _pmd;
  1620. int ret = 0, i;
  1621. pgtable_t pgtable;
  1622. unsigned long haddr;
  1623. pmd = page_check_address_pmd(page, mm, address,
  1624. PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
  1625. if (pmd) {
  1626. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  1627. pmd_populate(mm, &_pmd, pgtable);
  1628. if (pmd_write(*pmd))
  1629. BUG_ON(page_mapcount(page) != 1);
  1630. haddr = address;
  1631. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  1632. pte_t *pte, entry;
  1633. BUG_ON(PageCompound(page+i));
  1634. /*
  1635. * Note that NUMA hinting access restrictions are not
  1636. * transferred to avoid any possibility of altering
  1637. * permissions across VMAs.
  1638. */
  1639. entry = mk_pte(page + i, vma->vm_page_prot);
  1640. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1641. if (!pmd_write(*pmd))
  1642. entry = pte_wrprotect(entry);
  1643. if (!pmd_young(*pmd))
  1644. entry = pte_mkold(entry);
  1645. pte = pte_offset_map(&_pmd, haddr);
  1646. BUG_ON(!pte_none(*pte));
  1647. set_pte_at(mm, haddr, pte, entry);
  1648. pte_unmap(pte);
  1649. }
  1650. smp_wmb(); /* make pte visible before pmd */
  1651. /*
  1652. * Up to this point the pmd is present and huge and
  1653. * userland has the whole access to the hugepage
  1654. * during the split (which happens in place). If we
  1655. * overwrite the pmd with the not-huge version
  1656. * pointing to the pte here (which of course we could
  1657. * if all CPUs were bug free), userland could trigger
  1658. * a small page size TLB miss on the small sized TLB
  1659. * while the hugepage TLB entry is still established
  1660. * in the huge TLB. Some CPU doesn't like that. See
  1661. * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
  1662. * Erratum 383 on page 93. Intel should be safe but is
  1663. * also warns that it's only safe if the permission
  1664. * and cache attributes of the two entries loaded in
  1665. * the two TLB is identical (which should be the case
  1666. * here). But it is generally safer to never allow
  1667. * small and huge TLB entries for the same virtual
  1668. * address to be loaded simultaneously. So instead of
  1669. * doing "pmd_populate(); flush_tlb_range();" we first
  1670. * mark the current pmd notpresent (atomically because
  1671. * here the pmd_trans_huge and pmd_trans_splitting
  1672. * must remain set at all times on the pmd until the
  1673. * split is complete for this pmd), then we flush the
  1674. * SMP TLB and finally we write the non-huge version
  1675. * of the pmd entry with pmd_populate.
  1676. */
  1677. pmdp_invalidate(vma, address, pmd);
  1678. pmd_populate(mm, pmd, pgtable);
  1679. ret = 1;
  1680. spin_unlock(ptl);
  1681. }
  1682. return ret;
  1683. }
  1684. /* must be called with anon_vma->root->rwsem held */
  1685. static void __split_huge_page(struct page *page,
  1686. struct anon_vma *anon_vma,
  1687. struct list_head *list)
  1688. {
  1689. int mapcount, mapcount2;
  1690. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1691. struct anon_vma_chain *avc;
  1692. BUG_ON(!PageHead(page));
  1693. BUG_ON(PageTail(page));
  1694. mapcount = 0;
  1695. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1696. struct vm_area_struct *vma = avc->vma;
  1697. unsigned long addr = vma_address(page, vma);
  1698. BUG_ON(is_vma_temporary_stack(vma));
  1699. mapcount += __split_huge_page_splitting(page, vma, addr);
  1700. }
  1701. /*
  1702. * It is critical that new vmas are added to the tail of the
  1703. * anon_vma list. This guarantes that if copy_huge_pmd() runs
  1704. * and establishes a child pmd before
  1705. * __split_huge_page_splitting() freezes the parent pmd (so if
  1706. * we fail to prevent copy_huge_pmd() from running until the
  1707. * whole __split_huge_page() is complete), we will still see
  1708. * the newly established pmd of the child later during the
  1709. * walk, to be able to set it as pmd_trans_splitting too.
  1710. */
  1711. if (mapcount != page_mapcount(page)) {
  1712. pr_err("mapcount %d page_mapcount %d\n",
  1713. mapcount, page_mapcount(page));
  1714. BUG();
  1715. }
  1716. __split_huge_page_refcount(page, list);
  1717. mapcount2 = 0;
  1718. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1719. struct vm_area_struct *vma = avc->vma;
  1720. unsigned long addr = vma_address(page, vma);
  1721. BUG_ON(is_vma_temporary_stack(vma));
  1722. mapcount2 += __split_huge_page_map(page, vma, addr);
  1723. }
  1724. if (mapcount != mapcount2) {
  1725. pr_err("mapcount %d mapcount2 %d page_mapcount %d\n",
  1726. mapcount, mapcount2, page_mapcount(page));
  1727. BUG();
  1728. }
  1729. }
  1730. /*
  1731. * Split a hugepage into normal pages. This doesn't change the position of head
  1732. * page. If @list is null, tail pages will be added to LRU list, otherwise, to
  1733. * @list. Both head page and tail pages will inherit mapping, flags, and so on
  1734. * from the hugepage.
  1735. * Return 0 if the hugepage is split successfully otherwise return 1.
  1736. */
  1737. int split_huge_page_to_list(struct page *page, struct list_head *list)
  1738. {
  1739. struct anon_vma *anon_vma;
  1740. int ret = 1;
  1741. BUG_ON(is_huge_zero_page(page));
  1742. BUG_ON(!PageAnon(page));
  1743. /*
  1744. * The caller does not necessarily hold an mmap_sem that would prevent
  1745. * the anon_vma disappearing so we first we take a reference to it
  1746. * and then lock the anon_vma for write. This is similar to
  1747. * page_lock_anon_vma_read except the write lock is taken to serialise
  1748. * against parallel split or collapse operations.
  1749. */
  1750. anon_vma = page_get_anon_vma(page);
  1751. if (!anon_vma)
  1752. goto out;
  1753. anon_vma_lock_write(anon_vma);
  1754. ret = 0;
  1755. if (!PageCompound(page))
  1756. goto out_unlock;
  1757. BUG_ON(!PageSwapBacked(page));
  1758. __split_huge_page(page, anon_vma, list);
  1759. count_vm_event(THP_SPLIT);
  1760. BUG_ON(PageCompound(page));
  1761. out_unlock:
  1762. anon_vma_unlock_write(anon_vma);
  1763. put_anon_vma(anon_vma);
  1764. out:
  1765. return ret;
  1766. }
  1767. #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
  1768. int hugepage_madvise(struct vm_area_struct *vma,
  1769. unsigned long *vm_flags, int advice)
  1770. {
  1771. switch (advice) {
  1772. case MADV_HUGEPAGE:
  1773. #ifdef CONFIG_S390
  1774. /*
  1775. * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
  1776. * can't handle this properly after s390_enable_sie, so we simply
  1777. * ignore the madvise to prevent qemu from causing a SIGSEGV.
  1778. */
  1779. if (mm_has_pgste(vma->vm_mm))
  1780. return 0;
  1781. #endif
  1782. /*
  1783. * Be somewhat over-protective like KSM for now!
  1784. */
  1785. if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
  1786. return -EINVAL;
  1787. *vm_flags &= ~VM_NOHUGEPAGE;
  1788. *vm_flags |= VM_HUGEPAGE;
  1789. /*
  1790. * If the vma become good for khugepaged to scan,
  1791. * register it here without waiting a page fault that
  1792. * may not happen any time soon.
  1793. */
  1794. if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
  1795. return -ENOMEM;
  1796. break;
  1797. case MADV_NOHUGEPAGE:
  1798. /*
  1799. * Be somewhat over-protective like KSM for now!
  1800. */
  1801. if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
  1802. return -EINVAL;
  1803. *vm_flags &= ~VM_HUGEPAGE;
  1804. *vm_flags |= VM_NOHUGEPAGE;
  1805. /*
  1806. * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
  1807. * this vma even if we leave the mm registered in khugepaged if
  1808. * it got registered before VM_NOHUGEPAGE was set.
  1809. */
  1810. break;
  1811. }
  1812. return 0;
  1813. }
  1814. static int __init khugepaged_slab_init(void)
  1815. {
  1816. mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
  1817. sizeof(struct mm_slot),
  1818. __alignof__(struct mm_slot), 0, NULL);
  1819. if (!mm_slot_cache)
  1820. return -ENOMEM;
  1821. return 0;
  1822. }
  1823. static void __init khugepaged_slab_exit(void)
  1824. {
  1825. kmem_cache_destroy(mm_slot_cache);
  1826. }
  1827. static inline struct mm_slot *alloc_mm_slot(void)
  1828. {
  1829. if (!mm_slot_cache) /* initialization failed */
  1830. return NULL;
  1831. return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
  1832. }
  1833. static inline void free_mm_slot(struct mm_slot *mm_slot)
  1834. {
  1835. kmem_cache_free(mm_slot_cache, mm_slot);
  1836. }
  1837. static struct mm_slot *get_mm_slot(struct mm_struct *mm)
  1838. {
  1839. struct mm_slot *mm_slot;
  1840. hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
  1841. if (mm == mm_slot->mm)
  1842. return mm_slot;
  1843. return NULL;
  1844. }
  1845. static void insert_to_mm_slots_hash(struct mm_struct *mm,
  1846. struct mm_slot *mm_slot)
  1847. {
  1848. mm_slot->mm = mm;
  1849. hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
  1850. }
  1851. static inline int khugepaged_test_exit(struct mm_struct *mm)
  1852. {
  1853. return atomic_read(&mm->mm_users) == 0;
  1854. }
  1855. int __khugepaged_enter(struct mm_struct *mm)
  1856. {
  1857. struct mm_slot *mm_slot;
  1858. int wakeup;
  1859. mm_slot = alloc_mm_slot();
  1860. if (!mm_slot)
  1861. return -ENOMEM;
  1862. /* __khugepaged_exit() must not run from under us */
  1863. VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
  1864. if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
  1865. free_mm_slot(mm_slot);
  1866. return 0;
  1867. }
  1868. spin_lock(&khugepaged_mm_lock);
  1869. insert_to_mm_slots_hash(mm, mm_slot);
  1870. /*
  1871. * Insert just behind the scanning cursor, to let the area settle
  1872. * down a little.
  1873. */
  1874. wakeup = list_empty(&khugepaged_scan.mm_head);
  1875. list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
  1876. spin_unlock(&khugepaged_mm_lock);
  1877. atomic_inc(&mm->mm_count);
  1878. if (wakeup)
  1879. wake_up_interruptible(&khugepaged_wait);
  1880. return 0;
  1881. }
  1882. int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
  1883. unsigned long vm_flags)
  1884. {
  1885. unsigned long hstart, hend;
  1886. if (!vma->anon_vma)
  1887. /*
  1888. * Not yet faulted in so we will register later in the
  1889. * page fault if needed.
  1890. */
  1891. return 0;
  1892. if (vma->vm_ops)
  1893. /* khugepaged not yet working on file or special mappings */
  1894. return 0;
  1895. VM_BUG_ON_VMA(vm_flags & VM_NO_THP, vma);
  1896. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1897. hend = vma->vm_end & HPAGE_PMD_MASK;
  1898. if (hstart < hend)
  1899. return khugepaged_enter(vma, vm_flags);
  1900. return 0;
  1901. }
  1902. void __khugepaged_exit(struct mm_struct *mm)
  1903. {
  1904. struct mm_slot *mm_slot;
  1905. int free = 0;
  1906. spin_lock(&khugepaged_mm_lock);
  1907. mm_slot = get_mm_slot(mm);
  1908. if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
  1909. hash_del(&mm_slot->hash);
  1910. list_del(&mm_slot->mm_node);
  1911. free = 1;
  1912. }
  1913. spin_unlock(&khugepaged_mm_lock);
  1914. if (free) {
  1915. clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1916. free_mm_slot(mm_slot);
  1917. mmdrop(mm);
  1918. } else if (mm_slot) {
  1919. /*
  1920. * This is required to serialize against
  1921. * khugepaged_test_exit() (which is guaranteed to run
  1922. * under mmap sem read mode). Stop here (after we
  1923. * return all pagetables will be destroyed) until
  1924. * khugepaged has finished working on the pagetables
  1925. * under the mmap_sem.
  1926. */
  1927. down_write(&mm->mmap_sem);
  1928. up_write(&mm->mmap_sem);
  1929. }
  1930. }
  1931. static void release_pte_page(struct page *page)
  1932. {
  1933. /* 0 stands for page_is_file_cache(page) == false */
  1934. dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1935. unlock_page(page);
  1936. putback_lru_page(page);
  1937. }
  1938. static void release_pte_pages(pte_t *pte, pte_t *_pte)
  1939. {
  1940. while (--_pte >= pte) {
  1941. pte_t pteval = *_pte;
  1942. if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
  1943. release_pte_page(pte_page(pteval));
  1944. }
  1945. }
  1946. static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
  1947. unsigned long address,
  1948. pte_t *pte)
  1949. {
  1950. struct page *page;
  1951. pte_t *_pte;
  1952. int none_or_zero = 0;
  1953. bool referenced = false, writable = false;
  1954. for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
  1955. _pte++, address += PAGE_SIZE) {
  1956. pte_t pteval = *_pte;
  1957. if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
  1958. if (!userfaultfd_armed(vma) &&
  1959. ++none_or_zero <= khugepaged_max_ptes_none)
  1960. continue;
  1961. else
  1962. goto out;
  1963. }
  1964. if (!pte_present(pteval))
  1965. goto out;
  1966. page = vm_normal_page(vma, address, pteval);
  1967. if (unlikely(!page))
  1968. goto out;
  1969. VM_BUG_ON_PAGE(PageCompound(page), page);
  1970. VM_BUG_ON_PAGE(!PageAnon(page), page);
  1971. VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
  1972. /*
  1973. * We can do it before isolate_lru_page because the
  1974. * page can't be freed from under us. NOTE: PG_lock
  1975. * is needed to serialize against split_huge_page
  1976. * when invoked from the VM.
  1977. */
  1978. if (!trylock_page(page))
  1979. goto out;
  1980. /*
  1981. * cannot use mapcount: can't collapse if there's a gup pin.
  1982. * The page must only be referenced by the scanned process
  1983. * and page swap cache.
  1984. */
  1985. if (page_count(page) != 1 + !!PageSwapCache(page)) {
  1986. unlock_page(page);
  1987. goto out;
  1988. }
  1989. if (pte_write(pteval)) {
  1990. writable = true;
  1991. } else {
  1992. if (PageSwapCache(page) && !reuse_swap_page(page)) {
  1993. unlock_page(page);
  1994. goto out;
  1995. }
  1996. /*
  1997. * Page is not in the swap cache. It can be collapsed
  1998. * into a THP.
  1999. */
  2000. }
  2001. /*
  2002. * Isolate the page to avoid collapsing an hugepage
  2003. * currently in use by the VM.
  2004. */
  2005. if (isolate_lru_page(page)) {
  2006. unlock_page(page);
  2007. goto out;
  2008. }
  2009. /* 0 stands for page_is_file_cache(page) == false */
  2010. inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
  2011. VM_BUG_ON_PAGE(!PageLocked(page), page);
  2012. VM_BUG_ON_PAGE(PageLRU(page), page);
  2013. /* If there is no mapped pte young don't collapse the page */
  2014. if (pte_young(pteval) ||
  2015. page_is_young(page) || PageReferenced(page) ||
  2016. mmu_notifier_test_young(vma->vm_mm, address))
  2017. referenced = true;
  2018. }
  2019. if (likely(referenced && writable))
  2020. return 1;
  2021. out:
  2022. release_pte_pages(pte, _pte);
  2023. return 0;
  2024. }
  2025. static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
  2026. struct vm_area_struct *vma,
  2027. unsigned long address,
  2028. spinlock_t *ptl)
  2029. {
  2030. pte_t *_pte;
  2031. for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
  2032. pte_t pteval = *_pte;
  2033. struct page *src_page;
  2034. if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
  2035. clear_user_highpage(page, address);
  2036. add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
  2037. if (is_zero_pfn(pte_pfn(pteval))) {
  2038. /*
  2039. * ptl mostly unnecessary.
  2040. */
  2041. spin_lock(ptl);
  2042. /*
  2043. * paravirt calls inside pte_clear here are
  2044. * superfluous.
  2045. */
  2046. pte_clear(vma->vm_mm, address, _pte);
  2047. spin_unlock(ptl);
  2048. }
  2049. } else {
  2050. src_page = pte_page(pteval);
  2051. copy_user_highpage(page, src_page, address, vma);
  2052. VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
  2053. release_pte_page(src_page);
  2054. /*
  2055. * ptl mostly unnecessary, but preempt has to
  2056. * be disabled to update the per-cpu stats
  2057. * inside page_remove_rmap().
  2058. */
  2059. spin_lock(ptl);
  2060. /*
  2061. * paravirt calls inside pte_clear here are
  2062. * superfluous.
  2063. */
  2064. pte_clear(vma->vm_mm, address, _pte);
  2065. page_remove_rmap(src_page);
  2066. spin_unlock(ptl);
  2067. free_page_and_swap_cache(src_page);
  2068. }
  2069. address += PAGE_SIZE;
  2070. page++;
  2071. }
  2072. }
  2073. static void khugepaged_alloc_sleep(void)
  2074. {
  2075. DEFINE_WAIT(wait);
  2076. add_wait_queue(&khugepaged_wait, &wait);
  2077. freezable_schedule_timeout_interruptible(
  2078. msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
  2079. remove_wait_queue(&khugepaged_wait, &wait);
  2080. }
  2081. static int khugepaged_node_load[MAX_NUMNODES];
  2082. static bool khugepaged_scan_abort(int nid)
  2083. {
  2084. int i;
  2085. /*
  2086. * If zone_reclaim_mode is disabled, then no extra effort is made to
  2087. * allocate memory locally.
  2088. */
  2089. if (!zone_reclaim_mode)
  2090. return false;
  2091. /* If there is a count for this node already, it must be acceptable */
  2092. if (khugepaged_node_load[nid])
  2093. return false;
  2094. for (i = 0; i < MAX_NUMNODES; i++) {
  2095. if (!khugepaged_node_load[i])
  2096. continue;
  2097. if (node_distance(nid, i) > RECLAIM_DISTANCE)
  2098. return true;
  2099. }
  2100. return false;
  2101. }
  2102. #ifdef CONFIG_NUMA
  2103. static int khugepaged_find_target_node(void)
  2104. {
  2105. static int last_khugepaged_target_node = NUMA_NO_NODE;
  2106. int nid, target_node = 0, max_value = 0;
  2107. /* find first node with max normal pages hit */
  2108. for (nid = 0; nid < MAX_NUMNODES; nid++)
  2109. if (khugepaged_node_load[nid] > max_value) {
  2110. max_value = khugepaged_node_load[nid];
  2111. target_node = nid;
  2112. }
  2113. /* do some balance if several nodes have the same hit record */
  2114. if (target_node <= last_khugepaged_target_node)
  2115. for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
  2116. nid++)
  2117. if (max_value == khugepaged_node_load[nid]) {
  2118. target_node = nid;
  2119. break;
  2120. }
  2121. last_khugepaged_target_node = target_node;
  2122. return target_node;
  2123. }
  2124. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  2125. {
  2126. if (IS_ERR(*hpage)) {
  2127. if (!*wait)
  2128. return false;
  2129. *wait = false;
  2130. *hpage = NULL;
  2131. khugepaged_alloc_sleep();
  2132. } else if (*hpage) {
  2133. put_page(*hpage);
  2134. *hpage = NULL;
  2135. }
  2136. return true;
  2137. }
  2138. static struct page *
  2139. khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
  2140. struct vm_area_struct *vma, unsigned long address,
  2141. int node)
  2142. {
  2143. VM_BUG_ON_PAGE(*hpage, *hpage);
  2144. /*
  2145. * Before allocating the hugepage, release the mmap_sem read lock.
  2146. * The allocation can take potentially a long time if it involves
  2147. * sync compaction, and we do not need to hold the mmap_sem during
  2148. * that. We will recheck the vma after taking it again in write mode.
  2149. */
  2150. up_read(&mm->mmap_sem);
  2151. *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
  2152. if (unlikely(!*hpage)) {
  2153. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  2154. *hpage = ERR_PTR(-ENOMEM);
  2155. return NULL;
  2156. }
  2157. count_vm_event(THP_COLLAPSE_ALLOC);
  2158. return *hpage;
  2159. }
  2160. #else
  2161. static int khugepaged_find_target_node(void)
  2162. {
  2163. return 0;
  2164. }
  2165. static inline struct page *alloc_hugepage(int defrag)
  2166. {
  2167. return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
  2168. HPAGE_PMD_ORDER);
  2169. }
  2170. static struct page *khugepaged_alloc_hugepage(bool *wait)
  2171. {
  2172. struct page *hpage;
  2173. do {
  2174. hpage = alloc_hugepage(khugepaged_defrag());
  2175. if (!hpage) {
  2176. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  2177. if (!*wait)
  2178. return NULL;
  2179. *wait = false;
  2180. khugepaged_alloc_sleep();
  2181. } else
  2182. count_vm_event(THP_COLLAPSE_ALLOC);
  2183. } while (unlikely(!hpage) && likely(khugepaged_enabled()));
  2184. return hpage;
  2185. }
  2186. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  2187. {
  2188. if (!*hpage)
  2189. *hpage = khugepaged_alloc_hugepage(wait);
  2190. if (unlikely(!*hpage))
  2191. return false;
  2192. return true;
  2193. }
  2194. static struct page *
  2195. khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
  2196. struct vm_area_struct *vma, unsigned long address,
  2197. int node)
  2198. {
  2199. up_read(&mm->mmap_sem);
  2200. VM_BUG_ON(!*hpage);
  2201. return *hpage;
  2202. }
  2203. #endif
  2204. static bool hugepage_vma_check(struct vm_area_struct *vma)
  2205. {
  2206. if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
  2207. (vma->vm_flags & VM_NOHUGEPAGE))
  2208. return false;
  2209. if (!vma->anon_vma || vma->vm_ops)
  2210. return false;
  2211. if (is_vma_temporary_stack(vma))
  2212. return false;
  2213. VM_BUG_ON_VMA(vma->vm_flags & VM_NO_THP, vma);
  2214. return true;
  2215. }
  2216. static void collapse_huge_page(struct mm_struct *mm,
  2217. unsigned long address,
  2218. struct page **hpage,
  2219. struct vm_area_struct *vma,
  2220. int node)
  2221. {
  2222. pmd_t *pmd, _pmd;
  2223. pte_t *pte;
  2224. pgtable_t pgtable;
  2225. struct page *new_page;
  2226. spinlock_t *pmd_ptl, *pte_ptl;
  2227. int isolated;
  2228. unsigned long hstart, hend;
  2229. struct mem_cgroup *memcg;
  2230. unsigned long mmun_start; /* For mmu_notifiers */
  2231. unsigned long mmun_end; /* For mmu_notifiers */
  2232. gfp_t gfp;
  2233. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  2234. /* Only allocate from the target node */
  2235. gfp = alloc_hugepage_gfpmask(khugepaged_defrag(), __GFP_OTHER_NODE) |
  2236. __GFP_THISNODE;
  2237. /* release the mmap_sem read lock. */
  2238. new_page = khugepaged_alloc_page(hpage, gfp, mm, vma, address, node);
  2239. if (!new_page)
  2240. return;
  2241. if (unlikely(mem_cgroup_try_charge(new_page, mm,
  2242. gfp, &memcg)))
  2243. return;
  2244. /*
  2245. * Prevent all access to pagetables with the exception of
  2246. * gup_fast later hanlded by the ptep_clear_flush and the VM
  2247. * handled by the anon_vma lock + PG_lock.
  2248. */
  2249. down_write(&mm->mmap_sem);
  2250. if (unlikely(khugepaged_test_exit(mm)))
  2251. goto out;
  2252. vma = find_vma(mm, address);
  2253. if (!vma)
  2254. goto out;
  2255. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  2256. hend = vma->vm_end & HPAGE_PMD_MASK;
  2257. if (address < hstart || address + HPAGE_PMD_SIZE > hend)
  2258. goto out;
  2259. if (!hugepage_vma_check(vma))
  2260. goto out;
  2261. pmd = mm_find_pmd(mm, address);
  2262. if (!pmd)
  2263. goto out;
  2264. anon_vma_lock_write(vma->anon_vma);
  2265. pte = pte_offset_map(pmd, address);
  2266. pte_ptl = pte_lockptr(mm, pmd);
  2267. mmun_start = address;
  2268. mmun_end = address + HPAGE_PMD_SIZE;
  2269. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  2270. pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
  2271. /*
  2272. * After this gup_fast can't run anymore. This also removes
  2273. * any huge TLB entry from the CPU so we won't allow
  2274. * huge and small TLB entries for the same virtual address
  2275. * to avoid the risk of CPU bugs in that area.
  2276. */
  2277. _pmd = pmdp_collapse_flush(vma, address, pmd);
  2278. spin_unlock(pmd_ptl);
  2279. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2280. spin_lock(pte_ptl);
  2281. isolated = __collapse_huge_page_isolate(vma, address, pte);
  2282. spin_unlock(pte_ptl);
  2283. if (unlikely(!isolated)) {
  2284. pte_unmap(pte);
  2285. spin_lock(pmd_ptl);
  2286. BUG_ON(!pmd_none(*pmd));
  2287. /*
  2288. * We can only use set_pmd_at when establishing
  2289. * hugepmds and never for establishing regular pmds that
  2290. * points to regular pagetables. Use pmd_populate for that
  2291. */
  2292. pmd_populate(mm, pmd, pmd_pgtable(_pmd));
  2293. spin_unlock(pmd_ptl);
  2294. anon_vma_unlock_write(vma->anon_vma);
  2295. goto out;
  2296. }
  2297. /*
  2298. * All pages are isolated and locked so anon_vma rmap
  2299. * can't run anymore.
  2300. */
  2301. anon_vma_unlock_write(vma->anon_vma);
  2302. __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
  2303. pte_unmap(pte);
  2304. __SetPageUptodate(new_page);
  2305. pgtable = pmd_pgtable(_pmd);
  2306. _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
  2307. _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
  2308. /*
  2309. * spin_lock() below is not the equivalent of smp_wmb(), so
  2310. * this is needed to avoid the copy_huge_page writes to become
  2311. * visible after the set_pmd_at() write.
  2312. */
  2313. smp_wmb();
  2314. spin_lock(pmd_ptl);
  2315. BUG_ON(!pmd_none(*pmd));
  2316. page_add_new_anon_rmap(new_page, vma, address);
  2317. mem_cgroup_commit_charge(new_page, memcg, false);
  2318. lru_cache_add_active_or_unevictable(new_page, vma);
  2319. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  2320. set_pmd_at(mm, address, pmd, _pmd);
  2321. update_mmu_cache_pmd(vma, address, pmd);
  2322. spin_unlock(pmd_ptl);
  2323. *hpage = NULL;
  2324. khugepaged_pages_collapsed++;
  2325. out_up_write:
  2326. up_write(&mm->mmap_sem);
  2327. return;
  2328. out:
  2329. mem_cgroup_cancel_charge(new_page, memcg);
  2330. goto out_up_write;
  2331. }
  2332. static int khugepaged_scan_pmd(struct mm_struct *mm,
  2333. struct vm_area_struct *vma,
  2334. unsigned long address,
  2335. struct page **hpage)
  2336. {
  2337. pmd_t *pmd;
  2338. pte_t *pte, *_pte;
  2339. int ret = 0, none_or_zero = 0;
  2340. struct page *page;
  2341. unsigned long _address;
  2342. spinlock_t *ptl;
  2343. int node = NUMA_NO_NODE;
  2344. bool writable = false, referenced = false;
  2345. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  2346. pmd = mm_find_pmd(mm, address);
  2347. if (!pmd)
  2348. goto out;
  2349. memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
  2350. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2351. for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
  2352. _pte++, _address += PAGE_SIZE) {
  2353. pte_t pteval = *_pte;
  2354. if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
  2355. if (!userfaultfd_armed(vma) &&
  2356. ++none_or_zero <= khugepaged_max_ptes_none)
  2357. continue;
  2358. else
  2359. goto out_unmap;
  2360. }
  2361. if (!pte_present(pteval))
  2362. goto out_unmap;
  2363. if (pte_write(pteval))
  2364. writable = true;
  2365. page = vm_normal_page(vma, _address, pteval);
  2366. if (unlikely(!page))
  2367. goto out_unmap;
  2368. /*
  2369. * Record which node the original page is from and save this
  2370. * information to khugepaged_node_load[].
  2371. * Khupaged will allocate hugepage from the node has the max
  2372. * hit record.
  2373. */
  2374. node = page_to_nid(page);
  2375. if (khugepaged_scan_abort(node))
  2376. goto out_unmap;
  2377. khugepaged_node_load[node]++;
  2378. VM_BUG_ON_PAGE(PageCompound(page), page);
  2379. if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
  2380. goto out_unmap;
  2381. /*
  2382. * cannot use mapcount: can't collapse if there's a gup pin.
  2383. * The page must only be referenced by the scanned process
  2384. * and page swap cache.
  2385. */
  2386. if (page_count(page) != 1 + !!PageSwapCache(page))
  2387. goto out_unmap;
  2388. if (pte_young(pteval) ||
  2389. page_is_young(page) || PageReferenced(page) ||
  2390. mmu_notifier_test_young(vma->vm_mm, address))
  2391. referenced = true;
  2392. }
  2393. if (referenced && writable)
  2394. ret = 1;
  2395. out_unmap:
  2396. pte_unmap_unlock(pte, ptl);
  2397. if (ret) {
  2398. node = khugepaged_find_target_node();
  2399. /* collapse_huge_page will return with the mmap_sem released */
  2400. collapse_huge_page(mm, address, hpage, vma, node);
  2401. }
  2402. out:
  2403. return ret;
  2404. }
  2405. static void collect_mm_slot(struct mm_slot *mm_slot)
  2406. {
  2407. struct mm_struct *mm = mm_slot->mm;
  2408. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  2409. if (khugepaged_test_exit(mm)) {
  2410. /* free mm_slot */
  2411. hash_del(&mm_slot->hash);
  2412. list_del(&mm_slot->mm_node);
  2413. /*
  2414. * Not strictly needed because the mm exited already.
  2415. *
  2416. * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  2417. */
  2418. /* khugepaged_mm_lock actually not necessary for the below */
  2419. free_mm_slot(mm_slot);
  2420. mmdrop(mm);
  2421. }
  2422. }
  2423. static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
  2424. struct page **hpage)
  2425. __releases(&khugepaged_mm_lock)
  2426. __acquires(&khugepaged_mm_lock)
  2427. {
  2428. struct mm_slot *mm_slot;
  2429. struct mm_struct *mm;
  2430. struct vm_area_struct *vma;
  2431. int progress = 0;
  2432. VM_BUG_ON(!pages);
  2433. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  2434. if (khugepaged_scan.mm_slot)
  2435. mm_slot = khugepaged_scan.mm_slot;
  2436. else {
  2437. mm_slot = list_entry(khugepaged_scan.mm_head.next,
  2438. struct mm_slot, mm_node);
  2439. khugepaged_scan.address = 0;
  2440. khugepaged_scan.mm_slot = mm_slot;
  2441. }
  2442. spin_unlock(&khugepaged_mm_lock);
  2443. mm = mm_slot->mm;
  2444. down_read(&mm->mmap_sem);
  2445. if (unlikely(khugepaged_test_exit(mm)))
  2446. vma = NULL;
  2447. else
  2448. vma = find_vma(mm, khugepaged_scan.address);
  2449. progress++;
  2450. for (; vma; vma = vma->vm_next) {
  2451. unsigned long hstart, hend;
  2452. cond_resched();
  2453. if (unlikely(khugepaged_test_exit(mm))) {
  2454. progress++;
  2455. break;
  2456. }
  2457. if (!hugepage_vma_check(vma)) {
  2458. skip:
  2459. progress++;
  2460. continue;
  2461. }
  2462. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  2463. hend = vma->vm_end & HPAGE_PMD_MASK;
  2464. if (hstart >= hend)
  2465. goto skip;
  2466. if (khugepaged_scan.address > hend)
  2467. goto skip;
  2468. if (khugepaged_scan.address < hstart)
  2469. khugepaged_scan.address = hstart;
  2470. VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
  2471. while (khugepaged_scan.address < hend) {
  2472. int ret;
  2473. cond_resched();
  2474. if (unlikely(khugepaged_test_exit(mm)))
  2475. goto breakouterloop;
  2476. VM_BUG_ON(khugepaged_scan.address < hstart ||
  2477. khugepaged_scan.address + HPAGE_PMD_SIZE >
  2478. hend);
  2479. ret = khugepaged_scan_pmd(mm, vma,
  2480. khugepaged_scan.address,
  2481. hpage);
  2482. /* move to next address */
  2483. khugepaged_scan.address += HPAGE_PMD_SIZE;
  2484. progress += HPAGE_PMD_NR;
  2485. if (ret)
  2486. /* we released mmap_sem so break loop */
  2487. goto breakouterloop_mmap_sem;
  2488. if (progress >= pages)
  2489. goto breakouterloop;
  2490. }
  2491. }
  2492. breakouterloop:
  2493. up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
  2494. breakouterloop_mmap_sem:
  2495. spin_lock(&khugepaged_mm_lock);
  2496. VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
  2497. /*
  2498. * Release the current mm_slot if this mm is about to die, or
  2499. * if we scanned all vmas of this mm.
  2500. */
  2501. if (khugepaged_test_exit(mm) || !vma) {
  2502. /*
  2503. * Make sure that if mm_users is reaching zero while
  2504. * khugepaged runs here, khugepaged_exit will find
  2505. * mm_slot not pointing to the exiting mm.
  2506. */
  2507. if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
  2508. khugepaged_scan.mm_slot = list_entry(
  2509. mm_slot->mm_node.next,
  2510. struct mm_slot, mm_node);
  2511. khugepaged_scan.address = 0;
  2512. } else {
  2513. khugepaged_scan.mm_slot = NULL;
  2514. khugepaged_full_scans++;
  2515. }
  2516. collect_mm_slot(mm_slot);
  2517. }
  2518. return progress;
  2519. }
  2520. static int khugepaged_has_work(void)
  2521. {
  2522. return !list_empty(&khugepaged_scan.mm_head) &&
  2523. khugepaged_enabled();
  2524. }
  2525. static int khugepaged_wait_event(void)
  2526. {
  2527. return !list_empty(&khugepaged_scan.mm_head) ||
  2528. kthread_should_stop();
  2529. }
  2530. static void khugepaged_do_scan(void)
  2531. {
  2532. struct page *hpage = NULL;
  2533. unsigned int progress = 0, pass_through_head = 0;
  2534. unsigned int pages = khugepaged_pages_to_scan;
  2535. bool wait = true;
  2536. barrier(); /* write khugepaged_pages_to_scan to local stack */
  2537. while (progress < pages) {
  2538. if (!khugepaged_prealloc_page(&hpage, &wait))
  2539. break;
  2540. cond_resched();
  2541. if (unlikely(kthread_should_stop() || try_to_freeze()))
  2542. break;
  2543. spin_lock(&khugepaged_mm_lock);
  2544. if (!khugepaged_scan.mm_slot)
  2545. pass_through_head++;
  2546. if (khugepaged_has_work() &&
  2547. pass_through_head < 2)
  2548. progress += khugepaged_scan_mm_slot(pages - progress,
  2549. &hpage);
  2550. else
  2551. progress = pages;
  2552. spin_unlock(&khugepaged_mm_lock);
  2553. }
  2554. if (!IS_ERR_OR_NULL(hpage))
  2555. put_page(hpage);
  2556. }
  2557. static void khugepaged_wait_work(void)
  2558. {
  2559. if (khugepaged_has_work()) {
  2560. if (!khugepaged_scan_sleep_millisecs)
  2561. return;
  2562. wait_event_freezable_timeout(khugepaged_wait,
  2563. kthread_should_stop(),
  2564. msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
  2565. return;
  2566. }
  2567. if (khugepaged_enabled())
  2568. wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
  2569. }
  2570. static int khugepaged(void *none)
  2571. {
  2572. struct mm_slot *mm_slot;
  2573. set_freezable();
  2574. set_user_nice(current, MAX_NICE);
  2575. while (!kthread_should_stop()) {
  2576. khugepaged_do_scan();
  2577. khugepaged_wait_work();
  2578. }
  2579. spin_lock(&khugepaged_mm_lock);
  2580. mm_slot = khugepaged_scan.mm_slot;
  2581. khugepaged_scan.mm_slot = NULL;
  2582. if (mm_slot)
  2583. collect_mm_slot(mm_slot);
  2584. spin_unlock(&khugepaged_mm_lock);
  2585. return 0;
  2586. }
  2587. static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
  2588. unsigned long haddr, pmd_t *pmd)
  2589. {
  2590. struct mm_struct *mm = vma->vm_mm;
  2591. pgtable_t pgtable;
  2592. pmd_t _pmd;
  2593. int i;
  2594. pmdp_huge_clear_flush_notify(vma, haddr, pmd);
  2595. /* leave pmd empty until pte is filled */
  2596. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  2597. pmd_populate(mm, &_pmd, pgtable);
  2598. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  2599. pte_t *pte, entry;
  2600. entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
  2601. entry = pte_mkspecial(entry);
  2602. pte = pte_offset_map(&_pmd, haddr);
  2603. VM_BUG_ON(!pte_none(*pte));
  2604. set_pte_at(mm, haddr, pte, entry);
  2605. pte_unmap(pte);
  2606. }
  2607. smp_wmb(); /* make pte visible before pmd */
  2608. pmd_populate(mm, pmd, pgtable);
  2609. put_huge_zero_page();
  2610. }
  2611. void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
  2612. pmd_t *pmd)
  2613. {
  2614. spinlock_t *ptl;
  2615. struct page *page = NULL;
  2616. struct mm_struct *mm = vma->vm_mm;
  2617. unsigned long haddr = address & HPAGE_PMD_MASK;
  2618. unsigned long mmun_start; /* For mmu_notifiers */
  2619. unsigned long mmun_end; /* For mmu_notifiers */
  2620. BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
  2621. mmun_start = haddr;
  2622. mmun_end = haddr + HPAGE_PMD_SIZE;
  2623. again:
  2624. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  2625. ptl = pmd_lock(mm, pmd);
  2626. if (unlikely(!pmd_trans_huge(*pmd)))
  2627. goto unlock;
  2628. if (vma_is_dax(vma)) {
  2629. pmd_t _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
  2630. if (is_huge_zero_pmd(_pmd))
  2631. put_huge_zero_page();
  2632. } else if (is_huge_zero_pmd(*pmd)) {
  2633. __split_huge_zero_page_pmd(vma, haddr, pmd);
  2634. } else {
  2635. page = pmd_page(*pmd);
  2636. VM_BUG_ON_PAGE(!page_count(page), page);
  2637. get_page(page);
  2638. }
  2639. unlock:
  2640. spin_unlock(ptl);
  2641. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2642. if (!page)
  2643. return;
  2644. split_huge_page(page);
  2645. put_page(page);
  2646. /*
  2647. * We don't always have down_write of mmap_sem here: a racing
  2648. * do_huge_pmd_wp_page() might have copied-on-write to another
  2649. * huge page before our split_huge_page() got the anon_vma lock.
  2650. */
  2651. if (unlikely(pmd_trans_huge(*pmd)))
  2652. goto again;
  2653. }
  2654. void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
  2655. pmd_t *pmd)
  2656. {
  2657. struct vm_area_struct *vma;
  2658. vma = find_vma(mm, address);
  2659. BUG_ON(vma == NULL);
  2660. split_huge_page_pmd(vma, address, pmd);
  2661. }
  2662. static void split_huge_page_address(struct mm_struct *mm,
  2663. unsigned long address)
  2664. {
  2665. pgd_t *pgd;
  2666. pud_t *pud;
  2667. pmd_t *pmd;
  2668. VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
  2669. pgd = pgd_offset(mm, address);
  2670. if (!pgd_present(*pgd))
  2671. return;
  2672. pud = pud_offset(pgd, address);
  2673. if (!pud_present(*pud))
  2674. return;
  2675. pmd = pmd_offset(pud, address);
  2676. if (!pmd_present(*pmd))
  2677. return;
  2678. /*
  2679. * Caller holds the mmap_sem write mode, so a huge pmd cannot
  2680. * materialize from under us.
  2681. */
  2682. split_huge_page_pmd_mm(mm, address, pmd);
  2683. }
  2684. void vma_adjust_trans_huge(struct vm_area_struct *vma,
  2685. unsigned long start,
  2686. unsigned long end,
  2687. long adjust_next)
  2688. {
  2689. /*
  2690. * If the new start address isn't hpage aligned and it could
  2691. * previously contain an hugepage: check if we need to split
  2692. * an huge pmd.
  2693. */
  2694. if (start & ~HPAGE_PMD_MASK &&
  2695. (start & HPAGE_PMD_MASK) >= vma->vm_start &&
  2696. (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2697. split_huge_page_address(vma->vm_mm, start);
  2698. /*
  2699. * If the new end address isn't hpage aligned and it could
  2700. * previously contain an hugepage: check if we need to split
  2701. * an huge pmd.
  2702. */
  2703. if (end & ~HPAGE_PMD_MASK &&
  2704. (end & HPAGE_PMD_MASK) >= vma->vm_start &&
  2705. (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2706. split_huge_page_address(vma->vm_mm, end);
  2707. /*
  2708. * If we're also updating the vma->vm_next->vm_start, if the new
  2709. * vm_next->vm_start isn't page aligned and it could previously
  2710. * contain an hugepage: check if we need to split an huge pmd.
  2711. */
  2712. if (adjust_next > 0) {
  2713. struct vm_area_struct *next = vma->vm_next;
  2714. unsigned long nstart = next->vm_start;
  2715. nstart += adjust_next << PAGE_SHIFT;
  2716. if (nstart & ~HPAGE_PMD_MASK &&
  2717. (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
  2718. (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
  2719. split_huge_page_address(next->vm_mm, nstart);
  2720. }
  2721. }