genalloc.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698
  1. /*
  2. * Basic general purpose allocator for managing special purpose
  3. * memory, for example, memory that is not managed by the regular
  4. * kmalloc/kfree interface. Uses for this includes on-device special
  5. * memory, uncached memory etc.
  6. *
  7. * It is safe to use the allocator in NMI handlers and other special
  8. * unblockable contexts that could otherwise deadlock on locks. This
  9. * is implemented by using atomic operations and retries on any
  10. * conflicts. The disadvantage is that there may be livelocks in
  11. * extreme cases. For better scalability, one allocator can be used
  12. * for each CPU.
  13. *
  14. * The lockless operation only works if there is enough memory
  15. * available. If new memory is added to the pool a lock has to be
  16. * still taken. So any user relying on locklessness has to ensure
  17. * that sufficient memory is preallocated.
  18. *
  19. * The basic atomic operation of this allocator is cmpxchg on long.
  20. * On architectures that don't have NMI-safe cmpxchg implementation,
  21. * the allocator can NOT be used in NMI handler. So code uses the
  22. * allocator in NMI handler should depend on
  23. * CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG.
  24. *
  25. * Copyright 2005 (C) Jes Sorensen <jes@trained-monkey.org>
  26. *
  27. * This source code is licensed under the GNU General Public License,
  28. * Version 2. See the file COPYING for more details.
  29. */
  30. #include <linux/slab.h>
  31. #include <linux/export.h>
  32. #include <linux/bitmap.h>
  33. #include <linux/rculist.h>
  34. #include <linux/interrupt.h>
  35. #include <linux/genalloc.h>
  36. #include <linux/of_device.h>
  37. static inline size_t chunk_size(const struct gen_pool_chunk *chunk)
  38. {
  39. return chunk->end_addr - chunk->start_addr + 1;
  40. }
  41. static int set_bits_ll(unsigned long *addr, unsigned long mask_to_set)
  42. {
  43. unsigned long val, nval;
  44. nval = *addr;
  45. do {
  46. val = nval;
  47. if (val & mask_to_set)
  48. return -EBUSY;
  49. cpu_relax();
  50. } while ((nval = cmpxchg(addr, val, val | mask_to_set)) != val);
  51. return 0;
  52. }
  53. static int clear_bits_ll(unsigned long *addr, unsigned long mask_to_clear)
  54. {
  55. unsigned long val, nval;
  56. nval = *addr;
  57. do {
  58. val = nval;
  59. if ((val & mask_to_clear) != mask_to_clear)
  60. return -EBUSY;
  61. cpu_relax();
  62. } while ((nval = cmpxchg(addr, val, val & ~mask_to_clear)) != val);
  63. return 0;
  64. }
  65. /*
  66. * bitmap_set_ll - set the specified number of bits at the specified position
  67. * @map: pointer to a bitmap
  68. * @start: a bit position in @map
  69. * @nr: number of bits to set
  70. *
  71. * Set @nr bits start from @start in @map lock-lessly. Several users
  72. * can set/clear the same bitmap simultaneously without lock. If two
  73. * users set the same bit, one user will return remain bits, otherwise
  74. * return 0.
  75. */
  76. static int bitmap_set_ll(unsigned long *map, int start, int nr)
  77. {
  78. unsigned long *p = map + BIT_WORD(start);
  79. const int size = start + nr;
  80. int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
  81. unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
  82. while (nr - bits_to_set >= 0) {
  83. if (set_bits_ll(p, mask_to_set))
  84. return nr;
  85. nr -= bits_to_set;
  86. bits_to_set = BITS_PER_LONG;
  87. mask_to_set = ~0UL;
  88. p++;
  89. }
  90. if (nr) {
  91. mask_to_set &= BITMAP_LAST_WORD_MASK(size);
  92. if (set_bits_ll(p, mask_to_set))
  93. return nr;
  94. }
  95. return 0;
  96. }
  97. /*
  98. * bitmap_clear_ll - clear the specified number of bits at the specified position
  99. * @map: pointer to a bitmap
  100. * @start: a bit position in @map
  101. * @nr: number of bits to set
  102. *
  103. * Clear @nr bits start from @start in @map lock-lessly. Several users
  104. * can set/clear the same bitmap simultaneously without lock. If two
  105. * users clear the same bit, one user will return remain bits,
  106. * otherwise return 0.
  107. */
  108. static int bitmap_clear_ll(unsigned long *map, int start, int nr)
  109. {
  110. unsigned long *p = map + BIT_WORD(start);
  111. const int size = start + nr;
  112. int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
  113. unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
  114. while (nr - bits_to_clear >= 0) {
  115. if (clear_bits_ll(p, mask_to_clear))
  116. return nr;
  117. nr -= bits_to_clear;
  118. bits_to_clear = BITS_PER_LONG;
  119. mask_to_clear = ~0UL;
  120. p++;
  121. }
  122. if (nr) {
  123. mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
  124. if (clear_bits_ll(p, mask_to_clear))
  125. return nr;
  126. }
  127. return 0;
  128. }
  129. /**
  130. * gen_pool_create - create a new special memory pool
  131. * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
  132. * @nid: node id of the node the pool structure should be allocated on, or -1
  133. *
  134. * Create a new special memory pool that can be used to manage special purpose
  135. * memory not managed by the regular kmalloc/kfree interface.
  136. */
  137. struct gen_pool *gen_pool_create(int min_alloc_order, int nid)
  138. {
  139. struct gen_pool *pool;
  140. pool = kmalloc_node(sizeof(struct gen_pool), GFP_KERNEL, nid);
  141. if (pool != NULL) {
  142. spin_lock_init(&pool->lock);
  143. INIT_LIST_HEAD(&pool->chunks);
  144. pool->min_alloc_order = min_alloc_order;
  145. pool->algo = gen_pool_first_fit;
  146. pool->data = NULL;
  147. pool->name = NULL;
  148. }
  149. return pool;
  150. }
  151. EXPORT_SYMBOL(gen_pool_create);
  152. /**
  153. * gen_pool_add_virt - add a new chunk of special memory to the pool
  154. * @pool: pool to add new memory chunk to
  155. * @virt: virtual starting address of memory chunk to add to pool
  156. * @phys: physical starting address of memory chunk to add to pool
  157. * @size: size in bytes of the memory chunk to add to pool
  158. * @nid: node id of the node the chunk structure and bitmap should be
  159. * allocated on, or -1
  160. *
  161. * Add a new chunk of special memory to the specified pool.
  162. *
  163. * Returns 0 on success or a -ve errno on failure.
  164. */
  165. int gen_pool_add_virt(struct gen_pool *pool, unsigned long virt, phys_addr_t phys,
  166. size_t size, int nid)
  167. {
  168. struct gen_pool_chunk *chunk;
  169. int nbits = size >> pool->min_alloc_order;
  170. int nbytes = sizeof(struct gen_pool_chunk) +
  171. BITS_TO_LONGS(nbits) * sizeof(long);
  172. chunk = kzalloc_node(nbytes, GFP_KERNEL, nid);
  173. if (unlikely(chunk == NULL))
  174. return -ENOMEM;
  175. chunk->phys_addr = phys;
  176. chunk->start_addr = virt;
  177. chunk->end_addr = virt + size - 1;
  178. atomic_set(&chunk->avail, size);
  179. spin_lock(&pool->lock);
  180. list_add_rcu(&chunk->next_chunk, &pool->chunks);
  181. spin_unlock(&pool->lock);
  182. return 0;
  183. }
  184. EXPORT_SYMBOL(gen_pool_add_virt);
  185. /**
  186. * gen_pool_virt_to_phys - return the physical address of memory
  187. * @pool: pool to allocate from
  188. * @addr: starting address of memory
  189. *
  190. * Returns the physical address on success, or -1 on error.
  191. */
  192. phys_addr_t gen_pool_virt_to_phys(struct gen_pool *pool, unsigned long addr)
  193. {
  194. struct gen_pool_chunk *chunk;
  195. phys_addr_t paddr = -1;
  196. rcu_read_lock();
  197. list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
  198. if (addr >= chunk->start_addr && addr <= chunk->end_addr) {
  199. paddr = chunk->phys_addr + (addr - chunk->start_addr);
  200. break;
  201. }
  202. }
  203. rcu_read_unlock();
  204. return paddr;
  205. }
  206. EXPORT_SYMBOL(gen_pool_virt_to_phys);
  207. /**
  208. * gen_pool_destroy - destroy a special memory pool
  209. * @pool: pool to destroy
  210. *
  211. * Destroy the specified special memory pool. Verifies that there are no
  212. * outstanding allocations.
  213. */
  214. void gen_pool_destroy(struct gen_pool *pool)
  215. {
  216. struct list_head *_chunk, *_next_chunk;
  217. struct gen_pool_chunk *chunk;
  218. int order = pool->min_alloc_order;
  219. int bit, end_bit;
  220. list_for_each_safe(_chunk, _next_chunk, &pool->chunks) {
  221. chunk = list_entry(_chunk, struct gen_pool_chunk, next_chunk);
  222. list_del(&chunk->next_chunk);
  223. end_bit = chunk_size(chunk) >> order;
  224. bit = find_next_bit(chunk->bits, end_bit, 0);
  225. BUG_ON(bit < end_bit);
  226. kfree(chunk);
  227. }
  228. kfree_const(pool->name);
  229. kfree(pool);
  230. }
  231. EXPORT_SYMBOL(gen_pool_destroy);
  232. /**
  233. * gen_pool_alloc - allocate special memory from the pool
  234. * @pool: pool to allocate from
  235. * @size: number of bytes to allocate from the pool
  236. *
  237. * Allocate the requested number of bytes from the specified pool.
  238. * Uses the pool allocation function (with first-fit algorithm by default).
  239. * Can not be used in NMI handler on architectures without
  240. * NMI-safe cmpxchg implementation.
  241. */
  242. unsigned long gen_pool_alloc(struct gen_pool *pool, size_t size)
  243. {
  244. struct gen_pool_chunk *chunk;
  245. unsigned long addr = 0;
  246. int order = pool->min_alloc_order;
  247. int nbits, start_bit = 0, end_bit, remain;
  248. #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
  249. BUG_ON(in_nmi());
  250. #endif
  251. if (size == 0)
  252. return 0;
  253. nbits = (size + (1UL << order) - 1) >> order;
  254. rcu_read_lock();
  255. list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
  256. if (size > atomic_read(&chunk->avail))
  257. continue;
  258. end_bit = chunk_size(chunk) >> order;
  259. retry:
  260. start_bit = pool->algo(chunk->bits, end_bit, start_bit, nbits,
  261. pool->data);
  262. if (start_bit >= end_bit)
  263. continue;
  264. remain = bitmap_set_ll(chunk->bits, start_bit, nbits);
  265. if (remain) {
  266. remain = bitmap_clear_ll(chunk->bits, start_bit,
  267. nbits - remain);
  268. BUG_ON(remain);
  269. goto retry;
  270. }
  271. addr = chunk->start_addr + ((unsigned long)start_bit << order);
  272. size = nbits << order;
  273. atomic_sub(size, &chunk->avail);
  274. break;
  275. }
  276. rcu_read_unlock();
  277. return addr;
  278. }
  279. EXPORT_SYMBOL(gen_pool_alloc);
  280. /**
  281. * gen_pool_dma_alloc - allocate special memory from the pool for DMA usage
  282. * @pool: pool to allocate from
  283. * @size: number of bytes to allocate from the pool
  284. * @dma: dma-view physical address return value. Use NULL if unneeded.
  285. *
  286. * Allocate the requested number of bytes from the specified pool.
  287. * Uses the pool allocation function (with first-fit algorithm by default).
  288. * Can not be used in NMI handler on architectures without
  289. * NMI-safe cmpxchg implementation.
  290. */
  291. void *gen_pool_dma_alloc(struct gen_pool *pool, size_t size, dma_addr_t *dma)
  292. {
  293. unsigned long vaddr;
  294. if (!pool)
  295. return NULL;
  296. vaddr = gen_pool_alloc(pool, size);
  297. if (!vaddr)
  298. return NULL;
  299. if (dma)
  300. *dma = gen_pool_virt_to_phys(pool, vaddr);
  301. return (void *)vaddr;
  302. }
  303. EXPORT_SYMBOL(gen_pool_dma_alloc);
  304. /**
  305. * gen_pool_free - free allocated special memory back to the pool
  306. * @pool: pool to free to
  307. * @addr: starting address of memory to free back to pool
  308. * @size: size in bytes of memory to free
  309. *
  310. * Free previously allocated special memory back to the specified
  311. * pool. Can not be used in NMI handler on architectures without
  312. * NMI-safe cmpxchg implementation.
  313. */
  314. void gen_pool_free(struct gen_pool *pool, unsigned long addr, size_t size)
  315. {
  316. struct gen_pool_chunk *chunk;
  317. int order = pool->min_alloc_order;
  318. int start_bit, nbits, remain;
  319. #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
  320. BUG_ON(in_nmi());
  321. #endif
  322. nbits = (size + (1UL << order) - 1) >> order;
  323. rcu_read_lock();
  324. list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
  325. if (addr >= chunk->start_addr && addr <= chunk->end_addr) {
  326. BUG_ON(addr + size - 1 > chunk->end_addr);
  327. start_bit = (addr - chunk->start_addr) >> order;
  328. remain = bitmap_clear_ll(chunk->bits, start_bit, nbits);
  329. BUG_ON(remain);
  330. size = nbits << order;
  331. atomic_add(size, &chunk->avail);
  332. rcu_read_unlock();
  333. return;
  334. }
  335. }
  336. rcu_read_unlock();
  337. BUG();
  338. }
  339. EXPORT_SYMBOL(gen_pool_free);
  340. /**
  341. * gen_pool_for_each_chunk - call func for every chunk of generic memory pool
  342. * @pool: the generic memory pool
  343. * @func: func to call
  344. * @data: additional data used by @func
  345. *
  346. * Call @func for every chunk of generic memory pool. The @func is
  347. * called with rcu_read_lock held.
  348. */
  349. void gen_pool_for_each_chunk(struct gen_pool *pool,
  350. void (*func)(struct gen_pool *pool, struct gen_pool_chunk *chunk, void *data),
  351. void *data)
  352. {
  353. struct gen_pool_chunk *chunk;
  354. rcu_read_lock();
  355. list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk)
  356. func(pool, chunk, data);
  357. rcu_read_unlock();
  358. }
  359. EXPORT_SYMBOL(gen_pool_for_each_chunk);
  360. /**
  361. * addr_in_gen_pool - checks if an address falls within the range of a pool
  362. * @pool: the generic memory pool
  363. * @start: start address
  364. * @size: size of the region
  365. *
  366. * Check if the range of addresses falls within the specified pool. Returns
  367. * true if the entire range is contained in the pool and false otherwise.
  368. */
  369. bool addr_in_gen_pool(struct gen_pool *pool, unsigned long start,
  370. size_t size)
  371. {
  372. bool found = false;
  373. unsigned long end = start + size - 1;
  374. struct gen_pool_chunk *chunk;
  375. rcu_read_lock();
  376. list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk) {
  377. if (start >= chunk->start_addr && start <= chunk->end_addr) {
  378. if (end <= chunk->end_addr) {
  379. found = true;
  380. break;
  381. }
  382. }
  383. }
  384. rcu_read_unlock();
  385. return found;
  386. }
  387. /**
  388. * gen_pool_avail - get available free space of the pool
  389. * @pool: pool to get available free space
  390. *
  391. * Return available free space of the specified pool.
  392. */
  393. size_t gen_pool_avail(struct gen_pool *pool)
  394. {
  395. struct gen_pool_chunk *chunk;
  396. size_t avail = 0;
  397. rcu_read_lock();
  398. list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
  399. avail += atomic_read(&chunk->avail);
  400. rcu_read_unlock();
  401. return avail;
  402. }
  403. EXPORT_SYMBOL_GPL(gen_pool_avail);
  404. /**
  405. * gen_pool_size - get size in bytes of memory managed by the pool
  406. * @pool: pool to get size
  407. *
  408. * Return size in bytes of memory managed by the pool.
  409. */
  410. size_t gen_pool_size(struct gen_pool *pool)
  411. {
  412. struct gen_pool_chunk *chunk;
  413. size_t size = 0;
  414. rcu_read_lock();
  415. list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
  416. size += chunk_size(chunk);
  417. rcu_read_unlock();
  418. return size;
  419. }
  420. EXPORT_SYMBOL_GPL(gen_pool_size);
  421. /**
  422. * gen_pool_set_algo - set the allocation algorithm
  423. * @pool: pool to change allocation algorithm
  424. * @algo: custom algorithm function
  425. * @data: additional data used by @algo
  426. *
  427. * Call @algo for each memory allocation in the pool.
  428. * If @algo is NULL use gen_pool_first_fit as default
  429. * memory allocation function.
  430. */
  431. void gen_pool_set_algo(struct gen_pool *pool, genpool_algo_t algo, void *data)
  432. {
  433. rcu_read_lock();
  434. pool->algo = algo;
  435. if (!pool->algo)
  436. pool->algo = gen_pool_first_fit;
  437. pool->data = data;
  438. rcu_read_unlock();
  439. }
  440. EXPORT_SYMBOL(gen_pool_set_algo);
  441. /**
  442. * gen_pool_first_fit - find the first available region
  443. * of memory matching the size requirement (no alignment constraint)
  444. * @map: The address to base the search on
  445. * @size: The bitmap size in bits
  446. * @start: The bitnumber to start searching at
  447. * @nr: The number of zeroed bits we're looking for
  448. * @data: additional data - unused
  449. */
  450. unsigned long gen_pool_first_fit(unsigned long *map, unsigned long size,
  451. unsigned long start, unsigned int nr, void *data)
  452. {
  453. return bitmap_find_next_zero_area(map, size, start, nr, 0);
  454. }
  455. EXPORT_SYMBOL(gen_pool_first_fit);
  456. /**
  457. * gen_pool_first_fit_order_align - find the first available region
  458. * of memory matching the size requirement. The region will be aligned
  459. * to the order of the size specified.
  460. * @map: The address to base the search on
  461. * @size: The bitmap size in bits
  462. * @start: The bitnumber to start searching at
  463. * @nr: The number of zeroed bits we're looking for
  464. * @data: additional data - unused
  465. */
  466. unsigned long gen_pool_first_fit_order_align(unsigned long *map,
  467. unsigned long size, unsigned long start,
  468. unsigned int nr, void *data)
  469. {
  470. unsigned long align_mask = roundup_pow_of_two(nr) - 1;
  471. return bitmap_find_next_zero_area(map, size, start, nr, align_mask);
  472. }
  473. EXPORT_SYMBOL(gen_pool_first_fit_order_align);
  474. /**
  475. * gen_pool_best_fit - find the best fitting region of memory
  476. * macthing the size requirement (no alignment constraint)
  477. * @map: The address to base the search on
  478. * @size: The bitmap size in bits
  479. * @start: The bitnumber to start searching at
  480. * @nr: The number of zeroed bits we're looking for
  481. * @data: additional data - unused
  482. *
  483. * Iterate over the bitmap to find the smallest free region
  484. * which we can allocate the memory.
  485. */
  486. unsigned long gen_pool_best_fit(unsigned long *map, unsigned long size,
  487. unsigned long start, unsigned int nr, void *data)
  488. {
  489. unsigned long start_bit = size;
  490. unsigned long len = size + 1;
  491. unsigned long index;
  492. index = bitmap_find_next_zero_area(map, size, start, nr, 0);
  493. while (index < size) {
  494. int next_bit = find_next_bit(map, size, index + nr);
  495. if ((next_bit - index) < len) {
  496. len = next_bit - index;
  497. start_bit = index;
  498. if (len == nr)
  499. return start_bit;
  500. }
  501. index = bitmap_find_next_zero_area(map, size,
  502. next_bit + 1, nr, 0);
  503. }
  504. return start_bit;
  505. }
  506. EXPORT_SYMBOL(gen_pool_best_fit);
  507. static void devm_gen_pool_release(struct device *dev, void *res)
  508. {
  509. gen_pool_destroy(*(struct gen_pool **)res);
  510. }
  511. static int devm_gen_pool_match(struct device *dev, void *res, void *data)
  512. {
  513. struct gen_pool **p = res;
  514. /* NULL data matches only a pool without an assigned name */
  515. if (!data && !(*p)->name)
  516. return 1;
  517. if (!data || !(*p)->name)
  518. return 0;
  519. return !strcmp((*p)->name, data);
  520. }
  521. /**
  522. * gen_pool_get - Obtain the gen_pool (if any) for a device
  523. * @dev: device to retrieve the gen_pool from
  524. * @name: name of a gen_pool or NULL, identifies a particular gen_pool on device
  525. *
  526. * Returns the gen_pool for the device if one is present, or NULL.
  527. */
  528. struct gen_pool *gen_pool_get(struct device *dev, const char *name)
  529. {
  530. struct gen_pool **p;
  531. p = devres_find(dev, devm_gen_pool_release, devm_gen_pool_match,
  532. (void *)name);
  533. if (!p)
  534. return NULL;
  535. return *p;
  536. }
  537. EXPORT_SYMBOL_GPL(gen_pool_get);
  538. /**
  539. * devm_gen_pool_create - managed gen_pool_create
  540. * @dev: device that provides the gen_pool
  541. * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
  542. * @nid: node selector for allocated gen_pool, %NUMA_NO_NODE for all nodes
  543. * @name: name of a gen_pool or NULL, identifies a particular gen_pool on device
  544. *
  545. * Create a new special memory pool that can be used to manage special purpose
  546. * memory not managed by the regular kmalloc/kfree interface. The pool will be
  547. * automatically destroyed by the device management code.
  548. */
  549. struct gen_pool *devm_gen_pool_create(struct device *dev, int min_alloc_order,
  550. int nid, const char *name)
  551. {
  552. struct gen_pool **ptr, *pool;
  553. const char *pool_name = NULL;
  554. /* Check that genpool to be created is uniquely addressed on device */
  555. if (gen_pool_get(dev, name))
  556. return ERR_PTR(-EINVAL);
  557. if (name) {
  558. pool_name = kstrdup_const(name, GFP_KERNEL);
  559. if (!pool_name)
  560. return ERR_PTR(-ENOMEM);
  561. }
  562. ptr = devres_alloc(devm_gen_pool_release, sizeof(*ptr), GFP_KERNEL);
  563. if (!ptr)
  564. goto free_pool_name;
  565. pool = gen_pool_create(min_alloc_order, nid);
  566. if (!pool)
  567. goto free_devres;
  568. *ptr = pool;
  569. pool->name = pool_name;
  570. devres_add(dev, ptr);
  571. return pool;
  572. free_devres:
  573. devres_free(ptr);
  574. free_pool_name:
  575. kfree_const(pool_name);
  576. return ERR_PTR(-ENOMEM);
  577. }
  578. EXPORT_SYMBOL(devm_gen_pool_create);
  579. #ifdef CONFIG_OF
  580. /**
  581. * of_gen_pool_get - find a pool by phandle property
  582. * @np: device node
  583. * @propname: property name containing phandle(s)
  584. * @index: index into the phandle array
  585. *
  586. * Returns the pool that contains the chunk starting at the physical
  587. * address of the device tree node pointed at by the phandle property,
  588. * or NULL if not found.
  589. */
  590. struct gen_pool *of_gen_pool_get(struct device_node *np,
  591. const char *propname, int index)
  592. {
  593. struct platform_device *pdev;
  594. struct device_node *np_pool, *parent;
  595. const char *name = NULL;
  596. struct gen_pool *pool = NULL;
  597. np_pool = of_parse_phandle(np, propname, index);
  598. if (!np_pool)
  599. return NULL;
  600. pdev = of_find_device_by_node(np_pool);
  601. if (!pdev) {
  602. /* Check if named gen_pool is created by parent node device */
  603. parent = of_get_parent(np_pool);
  604. pdev = of_find_device_by_node(parent);
  605. of_node_put(parent);
  606. of_property_read_string(np_pool, "label", &name);
  607. if (!name)
  608. name = np_pool->name;
  609. }
  610. if (pdev)
  611. pool = gen_pool_get(&pdev->dev, name);
  612. of_node_put(np_pool);
  613. return pool;
  614. }
  615. EXPORT_SYMBOL_GPL(of_gen_pool_get);
  616. #endif /* CONFIG_OF */