stop_machine.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616
  1. /*
  2. * kernel/stop_machine.c
  3. *
  4. * Copyright (C) 2008, 2005 IBM Corporation.
  5. * Copyright (C) 2008, 2005 Rusty Russell rusty@rustcorp.com.au
  6. * Copyright (C) 2010 SUSE Linux Products GmbH
  7. * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
  8. *
  9. * This file is released under the GPLv2 and any later version.
  10. */
  11. #include <linux/completion.h>
  12. #include <linux/cpu.h>
  13. #include <linux/init.h>
  14. #include <linux/kthread.h>
  15. #include <linux/export.h>
  16. #include <linux/percpu.h>
  17. #include <linux/sched.h>
  18. #include <linux/stop_machine.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/kallsyms.h>
  21. #include <linux/smpboot.h>
  22. #include <linux/atomic.h>
  23. #include <linux/lglock.h>
  24. /*
  25. * Structure to determine completion condition and record errors. May
  26. * be shared by works on different cpus.
  27. */
  28. struct cpu_stop_done {
  29. atomic_t nr_todo; /* nr left to execute */
  30. bool executed; /* actually executed? */
  31. int ret; /* collected return value */
  32. struct completion completion; /* fired if nr_todo reaches 0 */
  33. };
  34. /* the actual stopper, one per every possible cpu, enabled on online cpus */
  35. struct cpu_stopper {
  36. struct task_struct *thread;
  37. spinlock_t lock;
  38. bool enabled; /* is this stopper enabled? */
  39. struct list_head works; /* list of pending works */
  40. struct cpu_stop_work stop_work; /* for stop_cpus */
  41. };
  42. static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper);
  43. static bool stop_machine_initialized = false;
  44. /*
  45. * Avoids a race between stop_two_cpus and global stop_cpus, where
  46. * the stoppers could get queued up in reverse order, leading to
  47. * system deadlock. Using an lglock means stop_two_cpus remains
  48. * relatively cheap.
  49. */
  50. DEFINE_STATIC_LGLOCK(stop_cpus_lock);
  51. static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo)
  52. {
  53. memset(done, 0, sizeof(*done));
  54. atomic_set(&done->nr_todo, nr_todo);
  55. init_completion(&done->completion);
  56. }
  57. /* signal completion unless @done is NULL */
  58. static void cpu_stop_signal_done(struct cpu_stop_done *done, bool executed)
  59. {
  60. if (done) {
  61. if (executed)
  62. done->executed = true;
  63. if (atomic_dec_and_test(&done->nr_todo))
  64. complete(&done->completion);
  65. }
  66. }
  67. /* queue @work to @stopper. if offline, @work is completed immediately */
  68. static void cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work)
  69. {
  70. struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
  71. unsigned long flags;
  72. spin_lock_irqsave(&stopper->lock, flags);
  73. if (stopper->enabled) {
  74. list_add_tail(&work->list, &stopper->works);
  75. wake_up_process(stopper->thread);
  76. } else
  77. cpu_stop_signal_done(work->done, false);
  78. spin_unlock_irqrestore(&stopper->lock, flags);
  79. }
  80. /**
  81. * stop_one_cpu - stop a cpu
  82. * @cpu: cpu to stop
  83. * @fn: function to execute
  84. * @arg: argument to @fn
  85. *
  86. * Execute @fn(@arg) on @cpu. @fn is run in a process context with
  87. * the highest priority preempting any task on the cpu and
  88. * monopolizing it. This function returns after the execution is
  89. * complete.
  90. *
  91. * This function doesn't guarantee @cpu stays online till @fn
  92. * completes. If @cpu goes down in the middle, execution may happen
  93. * partially or fully on different cpus. @fn should either be ready
  94. * for that or the caller should ensure that @cpu stays online until
  95. * this function completes.
  96. *
  97. * CONTEXT:
  98. * Might sleep.
  99. *
  100. * RETURNS:
  101. * -ENOENT if @fn(@arg) was not executed because @cpu was offline;
  102. * otherwise, the return value of @fn.
  103. */
  104. int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
  105. {
  106. struct cpu_stop_done done;
  107. struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done };
  108. cpu_stop_init_done(&done, 1);
  109. cpu_stop_queue_work(cpu, &work);
  110. wait_for_completion(&done.completion);
  111. return done.executed ? done.ret : -ENOENT;
  112. }
  113. /* This controls the threads on each CPU. */
  114. enum multi_stop_state {
  115. /* Dummy starting state for thread. */
  116. MULTI_STOP_NONE,
  117. /* Awaiting everyone to be scheduled. */
  118. MULTI_STOP_PREPARE,
  119. /* Disable interrupts. */
  120. MULTI_STOP_DISABLE_IRQ,
  121. /* Run the function */
  122. MULTI_STOP_RUN,
  123. /* Exit */
  124. MULTI_STOP_EXIT,
  125. };
  126. struct multi_stop_data {
  127. cpu_stop_fn_t fn;
  128. void *data;
  129. /* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */
  130. unsigned int num_threads;
  131. const struct cpumask *active_cpus;
  132. enum multi_stop_state state;
  133. atomic_t thread_ack;
  134. };
  135. static void set_state(struct multi_stop_data *msdata,
  136. enum multi_stop_state newstate)
  137. {
  138. /* Reset ack counter. */
  139. atomic_set(&msdata->thread_ack, msdata->num_threads);
  140. smp_wmb();
  141. msdata->state = newstate;
  142. }
  143. /* Last one to ack a state moves to the next state. */
  144. static void ack_state(struct multi_stop_data *msdata)
  145. {
  146. if (atomic_dec_and_test(&msdata->thread_ack))
  147. set_state(msdata, msdata->state + 1);
  148. }
  149. /* This is the cpu_stop function which stops the CPU. */
  150. static int multi_cpu_stop(void *data)
  151. {
  152. struct multi_stop_data *msdata = data;
  153. enum multi_stop_state curstate = MULTI_STOP_NONE;
  154. int cpu = smp_processor_id(), err = 0;
  155. unsigned long flags;
  156. bool is_active;
  157. /*
  158. * When called from stop_machine_from_inactive_cpu(), irq might
  159. * already be disabled. Save the state and restore it on exit.
  160. */
  161. local_save_flags(flags);
  162. if (!msdata->active_cpus)
  163. is_active = cpu == cpumask_first(cpu_online_mask);
  164. else
  165. is_active = cpumask_test_cpu(cpu, msdata->active_cpus);
  166. /* Simple state machine */
  167. do {
  168. /* Chill out and ensure we re-read multi_stop_state. */
  169. cpu_relax();
  170. if (msdata->state != curstate) {
  171. curstate = msdata->state;
  172. switch (curstate) {
  173. case MULTI_STOP_DISABLE_IRQ:
  174. local_irq_disable();
  175. hard_irq_disable();
  176. break;
  177. case MULTI_STOP_RUN:
  178. if (is_active)
  179. err = msdata->fn(msdata->data);
  180. break;
  181. default:
  182. break;
  183. }
  184. ack_state(msdata);
  185. }
  186. } while (curstate != MULTI_STOP_EXIT);
  187. local_irq_restore(flags);
  188. return err;
  189. }
  190. /**
  191. * stop_two_cpus - stops two cpus
  192. * @cpu1: the cpu to stop
  193. * @cpu2: the other cpu to stop
  194. * @fn: function to execute
  195. * @arg: argument to @fn
  196. *
  197. * Stops both the current and specified CPU and runs @fn on one of them.
  198. *
  199. * returns when both are completed.
  200. */
  201. int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg)
  202. {
  203. struct cpu_stop_done done;
  204. struct cpu_stop_work work1, work2;
  205. struct multi_stop_data msdata;
  206. preempt_disable();
  207. msdata = (struct multi_stop_data){
  208. .fn = fn,
  209. .data = arg,
  210. .num_threads = 2,
  211. .active_cpus = cpumask_of(cpu1),
  212. };
  213. work1 = work2 = (struct cpu_stop_work){
  214. .fn = multi_cpu_stop,
  215. .arg = &msdata,
  216. .done = &done
  217. };
  218. cpu_stop_init_done(&done, 2);
  219. set_state(&msdata, MULTI_STOP_PREPARE);
  220. /*
  221. * If we observe both CPUs active we know _cpu_down() cannot yet have
  222. * queued its stop_machine works and therefore ours will get executed
  223. * first. Or its not either one of our CPUs that's getting unplugged,
  224. * in which case we don't care.
  225. *
  226. * This relies on the stopper workqueues to be FIFO.
  227. */
  228. if (!cpu_active(cpu1) || !cpu_active(cpu2)) {
  229. preempt_enable();
  230. return -ENOENT;
  231. }
  232. lg_double_lock(&stop_cpus_lock, cpu1, cpu2);
  233. cpu_stop_queue_work(cpu1, &work1);
  234. cpu_stop_queue_work(cpu2, &work2);
  235. lg_double_unlock(&stop_cpus_lock, cpu1, cpu2);
  236. preempt_enable();
  237. wait_for_completion(&done.completion);
  238. return done.executed ? done.ret : -ENOENT;
  239. }
  240. /**
  241. * stop_one_cpu_nowait - stop a cpu but don't wait for completion
  242. * @cpu: cpu to stop
  243. * @fn: function to execute
  244. * @arg: argument to @fn
  245. * @work_buf: pointer to cpu_stop_work structure
  246. *
  247. * Similar to stop_one_cpu() but doesn't wait for completion. The
  248. * caller is responsible for ensuring @work_buf is currently unused
  249. * and will remain untouched until stopper starts executing @fn.
  250. *
  251. * CONTEXT:
  252. * Don't care.
  253. */
  254. void stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
  255. struct cpu_stop_work *work_buf)
  256. {
  257. *work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, };
  258. cpu_stop_queue_work(cpu, work_buf);
  259. }
  260. /* static data for stop_cpus */
  261. static DEFINE_MUTEX(stop_cpus_mutex);
  262. static void queue_stop_cpus_work(const struct cpumask *cpumask,
  263. cpu_stop_fn_t fn, void *arg,
  264. struct cpu_stop_done *done)
  265. {
  266. struct cpu_stop_work *work;
  267. unsigned int cpu;
  268. /*
  269. * Disable preemption while queueing to avoid getting
  270. * preempted by a stopper which might wait for other stoppers
  271. * to enter @fn which can lead to deadlock.
  272. */
  273. lg_global_lock(&stop_cpus_lock);
  274. for_each_cpu(cpu, cpumask) {
  275. work = &per_cpu(cpu_stopper.stop_work, cpu);
  276. work->fn = fn;
  277. work->arg = arg;
  278. work->done = done;
  279. cpu_stop_queue_work(cpu, work);
  280. }
  281. lg_global_unlock(&stop_cpus_lock);
  282. }
  283. static int __stop_cpus(const struct cpumask *cpumask,
  284. cpu_stop_fn_t fn, void *arg)
  285. {
  286. struct cpu_stop_done done;
  287. cpu_stop_init_done(&done, cpumask_weight(cpumask));
  288. queue_stop_cpus_work(cpumask, fn, arg, &done);
  289. wait_for_completion(&done.completion);
  290. return done.executed ? done.ret : -ENOENT;
  291. }
  292. /**
  293. * stop_cpus - stop multiple cpus
  294. * @cpumask: cpus to stop
  295. * @fn: function to execute
  296. * @arg: argument to @fn
  297. *
  298. * Execute @fn(@arg) on online cpus in @cpumask. On each target cpu,
  299. * @fn is run in a process context with the highest priority
  300. * preempting any task on the cpu and monopolizing it. This function
  301. * returns after all executions are complete.
  302. *
  303. * This function doesn't guarantee the cpus in @cpumask stay online
  304. * till @fn completes. If some cpus go down in the middle, execution
  305. * on the cpu may happen partially or fully on different cpus. @fn
  306. * should either be ready for that or the caller should ensure that
  307. * the cpus stay online until this function completes.
  308. *
  309. * All stop_cpus() calls are serialized making it safe for @fn to wait
  310. * for all cpus to start executing it.
  311. *
  312. * CONTEXT:
  313. * Might sleep.
  314. *
  315. * RETURNS:
  316. * -ENOENT if @fn(@arg) was not executed at all because all cpus in
  317. * @cpumask were offline; otherwise, 0 if all executions of @fn
  318. * returned 0, any non zero return value if any returned non zero.
  319. */
  320. int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
  321. {
  322. int ret;
  323. /* static works are used, process one request at a time */
  324. mutex_lock(&stop_cpus_mutex);
  325. ret = __stop_cpus(cpumask, fn, arg);
  326. mutex_unlock(&stop_cpus_mutex);
  327. return ret;
  328. }
  329. /**
  330. * try_stop_cpus - try to stop multiple cpus
  331. * @cpumask: cpus to stop
  332. * @fn: function to execute
  333. * @arg: argument to @fn
  334. *
  335. * Identical to stop_cpus() except that it fails with -EAGAIN if
  336. * someone else is already using the facility.
  337. *
  338. * CONTEXT:
  339. * Might sleep.
  340. *
  341. * RETURNS:
  342. * -EAGAIN if someone else is already stopping cpus, -ENOENT if
  343. * @fn(@arg) was not executed at all because all cpus in @cpumask were
  344. * offline; otherwise, 0 if all executions of @fn returned 0, any non
  345. * zero return value if any returned non zero.
  346. */
  347. int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
  348. {
  349. int ret;
  350. /* static works are used, process one request at a time */
  351. if (!mutex_trylock(&stop_cpus_mutex))
  352. return -EAGAIN;
  353. ret = __stop_cpus(cpumask, fn, arg);
  354. mutex_unlock(&stop_cpus_mutex);
  355. return ret;
  356. }
  357. static int cpu_stop_should_run(unsigned int cpu)
  358. {
  359. struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
  360. unsigned long flags;
  361. int run;
  362. spin_lock_irqsave(&stopper->lock, flags);
  363. run = !list_empty(&stopper->works);
  364. spin_unlock_irqrestore(&stopper->lock, flags);
  365. return run;
  366. }
  367. static void cpu_stopper_thread(unsigned int cpu)
  368. {
  369. struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
  370. struct cpu_stop_work *work;
  371. int ret;
  372. repeat:
  373. work = NULL;
  374. spin_lock_irq(&stopper->lock);
  375. if (!list_empty(&stopper->works)) {
  376. work = list_first_entry(&stopper->works,
  377. struct cpu_stop_work, list);
  378. list_del_init(&work->list);
  379. }
  380. spin_unlock_irq(&stopper->lock);
  381. if (work) {
  382. cpu_stop_fn_t fn = work->fn;
  383. void *arg = work->arg;
  384. struct cpu_stop_done *done = work->done;
  385. char ksym_buf[KSYM_NAME_LEN] __maybe_unused;
  386. /* cpu stop callbacks are not allowed to sleep */
  387. preempt_disable();
  388. ret = fn(arg);
  389. if (ret)
  390. done->ret = ret;
  391. /* restore preemption and check it's still balanced */
  392. preempt_enable();
  393. WARN_ONCE(preempt_count(),
  394. "cpu_stop: %s(%p) leaked preempt count\n",
  395. kallsyms_lookup((unsigned long)fn, NULL, NULL, NULL,
  396. ksym_buf), arg);
  397. cpu_stop_signal_done(done, true);
  398. goto repeat;
  399. }
  400. }
  401. extern void sched_set_stop_task(int cpu, struct task_struct *stop);
  402. static void cpu_stop_create(unsigned int cpu)
  403. {
  404. sched_set_stop_task(cpu, per_cpu(cpu_stopper.thread, cpu));
  405. }
  406. static void cpu_stop_park(unsigned int cpu)
  407. {
  408. struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
  409. struct cpu_stop_work *work, *tmp;
  410. unsigned long flags;
  411. /* drain remaining works */
  412. spin_lock_irqsave(&stopper->lock, flags);
  413. list_for_each_entry_safe(work, tmp, &stopper->works, list) {
  414. list_del_init(&work->list);
  415. cpu_stop_signal_done(work->done, false);
  416. }
  417. stopper->enabled = false;
  418. spin_unlock_irqrestore(&stopper->lock, flags);
  419. }
  420. static void cpu_stop_unpark(unsigned int cpu)
  421. {
  422. struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
  423. spin_lock_irq(&stopper->lock);
  424. stopper->enabled = true;
  425. spin_unlock_irq(&stopper->lock);
  426. }
  427. static struct smp_hotplug_thread cpu_stop_threads = {
  428. .store = &cpu_stopper.thread,
  429. .thread_should_run = cpu_stop_should_run,
  430. .thread_fn = cpu_stopper_thread,
  431. .thread_comm = "migration/%u",
  432. .create = cpu_stop_create,
  433. .setup = cpu_stop_unpark,
  434. .park = cpu_stop_park,
  435. .pre_unpark = cpu_stop_unpark,
  436. .selfparking = true,
  437. };
  438. static int __init cpu_stop_init(void)
  439. {
  440. unsigned int cpu;
  441. for_each_possible_cpu(cpu) {
  442. struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
  443. spin_lock_init(&stopper->lock);
  444. INIT_LIST_HEAD(&stopper->works);
  445. }
  446. BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads));
  447. stop_machine_initialized = true;
  448. return 0;
  449. }
  450. early_initcall(cpu_stop_init);
  451. #ifdef CONFIG_STOP_MACHINE
  452. static int __stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus)
  453. {
  454. struct multi_stop_data msdata = {
  455. .fn = fn,
  456. .data = data,
  457. .num_threads = num_online_cpus(),
  458. .active_cpus = cpus,
  459. };
  460. if (!stop_machine_initialized) {
  461. /*
  462. * Handle the case where stop_machine() is called
  463. * early in boot before stop_machine() has been
  464. * initialized.
  465. */
  466. unsigned long flags;
  467. int ret;
  468. WARN_ON_ONCE(msdata.num_threads != 1);
  469. local_irq_save(flags);
  470. hard_irq_disable();
  471. ret = (*fn)(data);
  472. local_irq_restore(flags);
  473. return ret;
  474. }
  475. /* Set the initial state and stop all online cpus. */
  476. set_state(&msdata, MULTI_STOP_PREPARE);
  477. return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata);
  478. }
  479. int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus)
  480. {
  481. int ret;
  482. /* No CPUs can come up or down during this. */
  483. get_online_cpus();
  484. ret = __stop_machine(fn, data, cpus);
  485. put_online_cpus();
  486. return ret;
  487. }
  488. EXPORT_SYMBOL_GPL(stop_machine);
  489. /**
  490. * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU
  491. * @fn: the function to run
  492. * @data: the data ptr for the @fn()
  493. * @cpus: the cpus to run the @fn() on (NULL = any online cpu)
  494. *
  495. * This is identical to stop_machine() but can be called from a CPU which
  496. * is not active. The local CPU is in the process of hotplug (so no other
  497. * CPU hotplug can start) and not marked active and doesn't have enough
  498. * context to sleep.
  499. *
  500. * This function provides stop_machine() functionality for such state by
  501. * using busy-wait for synchronization and executing @fn directly for local
  502. * CPU.
  503. *
  504. * CONTEXT:
  505. * Local CPU is inactive. Temporarily stops all active CPUs.
  506. *
  507. * RETURNS:
  508. * 0 if all executions of @fn returned 0, any non zero return value if any
  509. * returned non zero.
  510. */
  511. int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data,
  512. const struct cpumask *cpus)
  513. {
  514. struct multi_stop_data msdata = { .fn = fn, .data = data,
  515. .active_cpus = cpus };
  516. struct cpu_stop_done done;
  517. int ret;
  518. /* Local CPU must be inactive and CPU hotplug in progress. */
  519. BUG_ON(cpu_active(raw_smp_processor_id()));
  520. msdata.num_threads = num_active_cpus() + 1; /* +1 for local */
  521. /* No proper task established and can't sleep - busy wait for lock. */
  522. while (!mutex_trylock(&stop_cpus_mutex))
  523. cpu_relax();
  524. /* Schedule work on other CPUs and execute directly for local CPU */
  525. set_state(&msdata, MULTI_STOP_PREPARE);
  526. cpu_stop_init_done(&done, num_active_cpus());
  527. queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata,
  528. &done);
  529. ret = multi_cpu_stop(&msdata);
  530. /* Busy wait for completion. */
  531. while (!completion_done(&done.completion))
  532. cpu_relax();
  533. mutex_unlock(&stop_cpus_mutex);
  534. return ret ?: done.ret;
  535. }
  536. #endif /* CONFIG_STOP_MACHINE */