core.c 205 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564
  1. /*
  2. * kernel/sched/core.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/unistd.h>
  65. #include <linux/pagemap.h>
  66. #include <linux/hrtimer.h>
  67. #include <linux/tick.h>
  68. #include <linux/debugfs.h>
  69. #include <linux/ctype.h>
  70. #include <linux/ftrace.h>
  71. #include <linux/slab.h>
  72. #include <linux/init_task.h>
  73. #include <linux/binfmts.h>
  74. #include <linux/context_tracking.h>
  75. #include <linux/compiler.h>
  76. #include <asm/switch_to.h>
  77. #include <asm/tlb.h>
  78. #include <asm/irq_regs.h>
  79. #include <asm/mutex.h>
  80. #ifdef CONFIG_PARAVIRT
  81. #include <asm/paravirt.h>
  82. #endif
  83. #include "sched.h"
  84. #include "../workqueue_internal.h"
  85. #include "../smpboot.h"
  86. #define CREATE_TRACE_POINTS
  87. #include <trace/events/sched.h>
  88. DEFINE_MUTEX(sched_domains_mutex);
  89. DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  90. static void update_rq_clock_task(struct rq *rq, s64 delta);
  91. void update_rq_clock(struct rq *rq)
  92. {
  93. s64 delta;
  94. lockdep_assert_held(&rq->lock);
  95. if (rq->clock_skip_update & RQCF_ACT_SKIP)
  96. return;
  97. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  98. if (delta < 0)
  99. return;
  100. rq->clock += delta;
  101. update_rq_clock_task(rq, delta);
  102. }
  103. /*
  104. * Debugging: various feature bits
  105. */
  106. #define SCHED_FEAT(name, enabled) \
  107. (1UL << __SCHED_FEAT_##name) * enabled |
  108. const_debug unsigned int sysctl_sched_features =
  109. #include "features.h"
  110. 0;
  111. #undef SCHED_FEAT
  112. #ifdef CONFIG_SCHED_DEBUG
  113. #define SCHED_FEAT(name, enabled) \
  114. #name ,
  115. static const char * const sched_feat_names[] = {
  116. #include "features.h"
  117. };
  118. #undef SCHED_FEAT
  119. static int sched_feat_show(struct seq_file *m, void *v)
  120. {
  121. int i;
  122. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  123. if (!(sysctl_sched_features & (1UL << i)))
  124. seq_puts(m, "NO_");
  125. seq_printf(m, "%s ", sched_feat_names[i]);
  126. }
  127. seq_puts(m, "\n");
  128. return 0;
  129. }
  130. #ifdef HAVE_JUMP_LABEL
  131. #define jump_label_key__true STATIC_KEY_INIT_TRUE
  132. #define jump_label_key__false STATIC_KEY_INIT_FALSE
  133. #define SCHED_FEAT(name, enabled) \
  134. jump_label_key__##enabled ,
  135. struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
  136. #include "features.h"
  137. };
  138. #undef SCHED_FEAT
  139. static void sched_feat_disable(int i)
  140. {
  141. static_key_disable(&sched_feat_keys[i]);
  142. }
  143. static void sched_feat_enable(int i)
  144. {
  145. static_key_enable(&sched_feat_keys[i]);
  146. }
  147. #else
  148. static void sched_feat_disable(int i) { };
  149. static void sched_feat_enable(int i) { };
  150. #endif /* HAVE_JUMP_LABEL */
  151. static int sched_feat_set(char *cmp)
  152. {
  153. int i;
  154. int neg = 0;
  155. if (strncmp(cmp, "NO_", 3) == 0) {
  156. neg = 1;
  157. cmp += 3;
  158. }
  159. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  160. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  161. if (neg) {
  162. sysctl_sched_features &= ~(1UL << i);
  163. sched_feat_disable(i);
  164. } else {
  165. sysctl_sched_features |= (1UL << i);
  166. sched_feat_enable(i);
  167. }
  168. break;
  169. }
  170. }
  171. return i;
  172. }
  173. static ssize_t
  174. sched_feat_write(struct file *filp, const char __user *ubuf,
  175. size_t cnt, loff_t *ppos)
  176. {
  177. char buf[64];
  178. char *cmp;
  179. int i;
  180. struct inode *inode;
  181. if (cnt > 63)
  182. cnt = 63;
  183. if (copy_from_user(&buf, ubuf, cnt))
  184. return -EFAULT;
  185. buf[cnt] = 0;
  186. cmp = strstrip(buf);
  187. /* Ensure the static_key remains in a consistent state */
  188. inode = file_inode(filp);
  189. mutex_lock(&inode->i_mutex);
  190. i = sched_feat_set(cmp);
  191. mutex_unlock(&inode->i_mutex);
  192. if (i == __SCHED_FEAT_NR)
  193. return -EINVAL;
  194. *ppos += cnt;
  195. return cnt;
  196. }
  197. static int sched_feat_open(struct inode *inode, struct file *filp)
  198. {
  199. return single_open(filp, sched_feat_show, NULL);
  200. }
  201. static const struct file_operations sched_feat_fops = {
  202. .open = sched_feat_open,
  203. .write = sched_feat_write,
  204. .read = seq_read,
  205. .llseek = seq_lseek,
  206. .release = single_release,
  207. };
  208. static __init int sched_init_debug(void)
  209. {
  210. debugfs_create_file("sched_features", 0644, NULL, NULL,
  211. &sched_feat_fops);
  212. return 0;
  213. }
  214. late_initcall(sched_init_debug);
  215. #endif /* CONFIG_SCHED_DEBUG */
  216. /*
  217. * Number of tasks to iterate in a single balance run.
  218. * Limited because this is done with IRQs disabled.
  219. */
  220. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  221. /*
  222. * period over which we average the RT time consumption, measured
  223. * in ms.
  224. *
  225. * default: 1s
  226. */
  227. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  228. /*
  229. * period over which we measure -rt task cpu usage in us.
  230. * default: 1s
  231. */
  232. unsigned int sysctl_sched_rt_period = 1000000;
  233. __read_mostly int scheduler_running;
  234. /*
  235. * part of the period that we allow rt tasks to run in us.
  236. * default: 0.95s
  237. */
  238. int sysctl_sched_rt_runtime = 950000;
  239. /* cpus with isolated domains */
  240. cpumask_var_t cpu_isolated_map;
  241. /*
  242. * this_rq_lock - lock this runqueue and disable interrupts.
  243. */
  244. static struct rq *this_rq_lock(void)
  245. __acquires(rq->lock)
  246. {
  247. struct rq *rq;
  248. local_irq_disable();
  249. rq = this_rq();
  250. raw_spin_lock(&rq->lock);
  251. return rq;
  252. }
  253. #ifdef CONFIG_SCHED_HRTICK
  254. /*
  255. * Use HR-timers to deliver accurate preemption points.
  256. */
  257. static void hrtick_clear(struct rq *rq)
  258. {
  259. if (hrtimer_active(&rq->hrtick_timer))
  260. hrtimer_cancel(&rq->hrtick_timer);
  261. }
  262. /*
  263. * High-resolution timer tick.
  264. * Runs from hardirq context with interrupts disabled.
  265. */
  266. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  267. {
  268. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  269. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  270. raw_spin_lock(&rq->lock);
  271. update_rq_clock(rq);
  272. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  273. raw_spin_unlock(&rq->lock);
  274. return HRTIMER_NORESTART;
  275. }
  276. #ifdef CONFIG_SMP
  277. static void __hrtick_restart(struct rq *rq)
  278. {
  279. struct hrtimer *timer = &rq->hrtick_timer;
  280. hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
  281. }
  282. /*
  283. * called from hardirq (IPI) context
  284. */
  285. static void __hrtick_start(void *arg)
  286. {
  287. struct rq *rq = arg;
  288. raw_spin_lock(&rq->lock);
  289. __hrtick_restart(rq);
  290. rq->hrtick_csd_pending = 0;
  291. raw_spin_unlock(&rq->lock);
  292. }
  293. /*
  294. * Called to set the hrtick timer state.
  295. *
  296. * called with rq->lock held and irqs disabled
  297. */
  298. void hrtick_start(struct rq *rq, u64 delay)
  299. {
  300. struct hrtimer *timer = &rq->hrtick_timer;
  301. ktime_t time;
  302. s64 delta;
  303. /*
  304. * Don't schedule slices shorter than 10000ns, that just
  305. * doesn't make sense and can cause timer DoS.
  306. */
  307. delta = max_t(s64, delay, 10000LL);
  308. time = ktime_add_ns(timer->base->get_time(), delta);
  309. hrtimer_set_expires(timer, time);
  310. if (rq == this_rq()) {
  311. __hrtick_restart(rq);
  312. } else if (!rq->hrtick_csd_pending) {
  313. smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
  314. rq->hrtick_csd_pending = 1;
  315. }
  316. }
  317. static int
  318. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  319. {
  320. int cpu = (int)(long)hcpu;
  321. switch (action) {
  322. case CPU_UP_CANCELED:
  323. case CPU_UP_CANCELED_FROZEN:
  324. case CPU_DOWN_PREPARE:
  325. case CPU_DOWN_PREPARE_FROZEN:
  326. case CPU_DEAD:
  327. case CPU_DEAD_FROZEN:
  328. hrtick_clear(cpu_rq(cpu));
  329. return NOTIFY_OK;
  330. }
  331. return NOTIFY_DONE;
  332. }
  333. static __init void init_hrtick(void)
  334. {
  335. hotcpu_notifier(hotplug_hrtick, 0);
  336. }
  337. #else
  338. /*
  339. * Called to set the hrtick timer state.
  340. *
  341. * called with rq->lock held and irqs disabled
  342. */
  343. void hrtick_start(struct rq *rq, u64 delay)
  344. {
  345. /*
  346. * Don't schedule slices shorter than 10000ns, that just
  347. * doesn't make sense. Rely on vruntime for fairness.
  348. */
  349. delay = max_t(u64, delay, 10000LL);
  350. hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
  351. HRTIMER_MODE_REL_PINNED);
  352. }
  353. static inline void init_hrtick(void)
  354. {
  355. }
  356. #endif /* CONFIG_SMP */
  357. static void init_rq_hrtick(struct rq *rq)
  358. {
  359. #ifdef CONFIG_SMP
  360. rq->hrtick_csd_pending = 0;
  361. rq->hrtick_csd.flags = 0;
  362. rq->hrtick_csd.func = __hrtick_start;
  363. rq->hrtick_csd.info = rq;
  364. #endif
  365. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  366. rq->hrtick_timer.function = hrtick;
  367. }
  368. #else /* CONFIG_SCHED_HRTICK */
  369. static inline void hrtick_clear(struct rq *rq)
  370. {
  371. }
  372. static inline void init_rq_hrtick(struct rq *rq)
  373. {
  374. }
  375. static inline void init_hrtick(void)
  376. {
  377. }
  378. #endif /* CONFIG_SCHED_HRTICK */
  379. /*
  380. * cmpxchg based fetch_or, macro so it works for different integer types
  381. */
  382. #define fetch_or(ptr, val) \
  383. ({ typeof(*(ptr)) __old, __val = *(ptr); \
  384. for (;;) { \
  385. __old = cmpxchg((ptr), __val, __val | (val)); \
  386. if (__old == __val) \
  387. break; \
  388. __val = __old; \
  389. } \
  390. __old; \
  391. })
  392. #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
  393. /*
  394. * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
  395. * this avoids any races wrt polling state changes and thereby avoids
  396. * spurious IPIs.
  397. */
  398. static bool set_nr_and_not_polling(struct task_struct *p)
  399. {
  400. struct thread_info *ti = task_thread_info(p);
  401. return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
  402. }
  403. /*
  404. * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
  405. *
  406. * If this returns true, then the idle task promises to call
  407. * sched_ttwu_pending() and reschedule soon.
  408. */
  409. static bool set_nr_if_polling(struct task_struct *p)
  410. {
  411. struct thread_info *ti = task_thread_info(p);
  412. typeof(ti->flags) old, val = READ_ONCE(ti->flags);
  413. for (;;) {
  414. if (!(val & _TIF_POLLING_NRFLAG))
  415. return false;
  416. if (val & _TIF_NEED_RESCHED)
  417. return true;
  418. old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
  419. if (old == val)
  420. break;
  421. val = old;
  422. }
  423. return true;
  424. }
  425. #else
  426. static bool set_nr_and_not_polling(struct task_struct *p)
  427. {
  428. set_tsk_need_resched(p);
  429. return true;
  430. }
  431. #ifdef CONFIG_SMP
  432. static bool set_nr_if_polling(struct task_struct *p)
  433. {
  434. return false;
  435. }
  436. #endif
  437. #endif
  438. void wake_q_add(struct wake_q_head *head, struct task_struct *task)
  439. {
  440. struct wake_q_node *node = &task->wake_q;
  441. /*
  442. * Atomically grab the task, if ->wake_q is !nil already it means
  443. * its already queued (either by us or someone else) and will get the
  444. * wakeup due to that.
  445. *
  446. * This cmpxchg() implies a full barrier, which pairs with the write
  447. * barrier implied by the wakeup in wake_up_list().
  448. */
  449. if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
  450. return;
  451. get_task_struct(task);
  452. /*
  453. * The head is context local, there can be no concurrency.
  454. */
  455. *head->lastp = node;
  456. head->lastp = &node->next;
  457. }
  458. void wake_up_q(struct wake_q_head *head)
  459. {
  460. struct wake_q_node *node = head->first;
  461. while (node != WAKE_Q_TAIL) {
  462. struct task_struct *task;
  463. task = container_of(node, struct task_struct, wake_q);
  464. BUG_ON(!task);
  465. /* task can safely be re-inserted now */
  466. node = node->next;
  467. task->wake_q.next = NULL;
  468. /*
  469. * wake_up_process() implies a wmb() to pair with the queueing
  470. * in wake_q_add() so as not to miss wakeups.
  471. */
  472. wake_up_process(task);
  473. put_task_struct(task);
  474. }
  475. }
  476. /*
  477. * resched_curr - mark rq's current task 'to be rescheduled now'.
  478. *
  479. * On UP this means the setting of the need_resched flag, on SMP it
  480. * might also involve a cross-CPU call to trigger the scheduler on
  481. * the target CPU.
  482. */
  483. void resched_curr(struct rq *rq)
  484. {
  485. struct task_struct *curr = rq->curr;
  486. int cpu;
  487. lockdep_assert_held(&rq->lock);
  488. if (test_tsk_need_resched(curr))
  489. return;
  490. cpu = cpu_of(rq);
  491. if (cpu == smp_processor_id()) {
  492. set_tsk_need_resched(curr);
  493. set_preempt_need_resched();
  494. return;
  495. }
  496. if (set_nr_and_not_polling(curr))
  497. smp_send_reschedule(cpu);
  498. else
  499. trace_sched_wake_idle_without_ipi(cpu);
  500. }
  501. void resched_cpu(int cpu)
  502. {
  503. struct rq *rq = cpu_rq(cpu);
  504. unsigned long flags;
  505. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  506. return;
  507. resched_curr(rq);
  508. raw_spin_unlock_irqrestore(&rq->lock, flags);
  509. }
  510. #ifdef CONFIG_SMP
  511. #ifdef CONFIG_NO_HZ_COMMON
  512. /*
  513. * In the semi idle case, use the nearest busy cpu for migrating timers
  514. * from an idle cpu. This is good for power-savings.
  515. *
  516. * We don't do similar optimization for completely idle system, as
  517. * selecting an idle cpu will add more delays to the timers than intended
  518. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  519. */
  520. int get_nohz_timer_target(void)
  521. {
  522. int i, cpu = smp_processor_id();
  523. struct sched_domain *sd;
  524. if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
  525. return cpu;
  526. rcu_read_lock();
  527. for_each_domain(cpu, sd) {
  528. for_each_cpu(i, sched_domain_span(sd)) {
  529. if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
  530. cpu = i;
  531. goto unlock;
  532. }
  533. }
  534. }
  535. if (!is_housekeeping_cpu(cpu))
  536. cpu = housekeeping_any_cpu();
  537. unlock:
  538. rcu_read_unlock();
  539. return cpu;
  540. }
  541. /*
  542. * When add_timer_on() enqueues a timer into the timer wheel of an
  543. * idle CPU then this timer might expire before the next timer event
  544. * which is scheduled to wake up that CPU. In case of a completely
  545. * idle system the next event might even be infinite time into the
  546. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  547. * leaves the inner idle loop so the newly added timer is taken into
  548. * account when the CPU goes back to idle and evaluates the timer
  549. * wheel for the next timer event.
  550. */
  551. static void wake_up_idle_cpu(int cpu)
  552. {
  553. struct rq *rq = cpu_rq(cpu);
  554. if (cpu == smp_processor_id())
  555. return;
  556. if (set_nr_and_not_polling(rq->idle))
  557. smp_send_reschedule(cpu);
  558. else
  559. trace_sched_wake_idle_without_ipi(cpu);
  560. }
  561. static bool wake_up_full_nohz_cpu(int cpu)
  562. {
  563. /*
  564. * We just need the target to call irq_exit() and re-evaluate
  565. * the next tick. The nohz full kick at least implies that.
  566. * If needed we can still optimize that later with an
  567. * empty IRQ.
  568. */
  569. if (tick_nohz_full_cpu(cpu)) {
  570. if (cpu != smp_processor_id() ||
  571. tick_nohz_tick_stopped())
  572. tick_nohz_full_kick_cpu(cpu);
  573. return true;
  574. }
  575. return false;
  576. }
  577. void wake_up_nohz_cpu(int cpu)
  578. {
  579. if (!wake_up_full_nohz_cpu(cpu))
  580. wake_up_idle_cpu(cpu);
  581. }
  582. static inline bool got_nohz_idle_kick(void)
  583. {
  584. int cpu = smp_processor_id();
  585. if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
  586. return false;
  587. if (idle_cpu(cpu) && !need_resched())
  588. return true;
  589. /*
  590. * We can't run Idle Load Balance on this CPU for this time so we
  591. * cancel it and clear NOHZ_BALANCE_KICK
  592. */
  593. clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
  594. return false;
  595. }
  596. #else /* CONFIG_NO_HZ_COMMON */
  597. static inline bool got_nohz_idle_kick(void)
  598. {
  599. return false;
  600. }
  601. #endif /* CONFIG_NO_HZ_COMMON */
  602. #ifdef CONFIG_NO_HZ_FULL
  603. bool sched_can_stop_tick(void)
  604. {
  605. /*
  606. * FIFO realtime policy runs the highest priority task. Other runnable
  607. * tasks are of a lower priority. The scheduler tick does nothing.
  608. */
  609. if (current->policy == SCHED_FIFO)
  610. return true;
  611. /*
  612. * Round-robin realtime tasks time slice with other tasks at the same
  613. * realtime priority. Is this task the only one at this priority?
  614. */
  615. if (current->policy == SCHED_RR) {
  616. struct sched_rt_entity *rt_se = &current->rt;
  617. return rt_se->run_list.prev == rt_se->run_list.next;
  618. }
  619. /*
  620. * More than one running task need preemption.
  621. * nr_running update is assumed to be visible
  622. * after IPI is sent from wakers.
  623. */
  624. if (this_rq()->nr_running > 1)
  625. return false;
  626. return true;
  627. }
  628. #endif /* CONFIG_NO_HZ_FULL */
  629. void sched_avg_update(struct rq *rq)
  630. {
  631. s64 period = sched_avg_period();
  632. while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
  633. /*
  634. * Inline assembly required to prevent the compiler
  635. * optimising this loop into a divmod call.
  636. * See __iter_div_u64_rem() for another example of this.
  637. */
  638. asm("" : "+rm" (rq->age_stamp));
  639. rq->age_stamp += period;
  640. rq->rt_avg /= 2;
  641. }
  642. }
  643. #endif /* CONFIG_SMP */
  644. #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
  645. (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
  646. /*
  647. * Iterate task_group tree rooted at *from, calling @down when first entering a
  648. * node and @up when leaving it for the final time.
  649. *
  650. * Caller must hold rcu_lock or sufficient equivalent.
  651. */
  652. int walk_tg_tree_from(struct task_group *from,
  653. tg_visitor down, tg_visitor up, void *data)
  654. {
  655. struct task_group *parent, *child;
  656. int ret;
  657. parent = from;
  658. down:
  659. ret = (*down)(parent, data);
  660. if (ret)
  661. goto out;
  662. list_for_each_entry_rcu(child, &parent->children, siblings) {
  663. parent = child;
  664. goto down;
  665. up:
  666. continue;
  667. }
  668. ret = (*up)(parent, data);
  669. if (ret || parent == from)
  670. goto out;
  671. child = parent;
  672. parent = parent->parent;
  673. if (parent)
  674. goto up;
  675. out:
  676. return ret;
  677. }
  678. int tg_nop(struct task_group *tg, void *data)
  679. {
  680. return 0;
  681. }
  682. #endif
  683. static void set_load_weight(struct task_struct *p)
  684. {
  685. int prio = p->static_prio - MAX_RT_PRIO;
  686. struct load_weight *load = &p->se.load;
  687. /*
  688. * SCHED_IDLE tasks get minimal weight:
  689. */
  690. if (p->policy == SCHED_IDLE) {
  691. load->weight = scale_load(WEIGHT_IDLEPRIO);
  692. load->inv_weight = WMULT_IDLEPRIO;
  693. return;
  694. }
  695. load->weight = scale_load(prio_to_weight[prio]);
  696. load->inv_weight = prio_to_wmult[prio];
  697. }
  698. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  699. {
  700. update_rq_clock(rq);
  701. sched_info_queued(rq, p);
  702. p->sched_class->enqueue_task(rq, p, flags);
  703. }
  704. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  705. {
  706. update_rq_clock(rq);
  707. sched_info_dequeued(rq, p);
  708. p->sched_class->dequeue_task(rq, p, flags);
  709. }
  710. void activate_task(struct rq *rq, struct task_struct *p, int flags)
  711. {
  712. if (task_contributes_to_load(p))
  713. rq->nr_uninterruptible--;
  714. enqueue_task(rq, p, flags);
  715. }
  716. void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  717. {
  718. if (task_contributes_to_load(p))
  719. rq->nr_uninterruptible++;
  720. dequeue_task(rq, p, flags);
  721. }
  722. static void update_rq_clock_task(struct rq *rq, s64 delta)
  723. {
  724. /*
  725. * In theory, the compile should just see 0 here, and optimize out the call
  726. * to sched_rt_avg_update. But I don't trust it...
  727. */
  728. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  729. s64 steal = 0, irq_delta = 0;
  730. #endif
  731. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  732. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  733. /*
  734. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  735. * this case when a previous update_rq_clock() happened inside a
  736. * {soft,}irq region.
  737. *
  738. * When this happens, we stop ->clock_task and only update the
  739. * prev_irq_time stamp to account for the part that fit, so that a next
  740. * update will consume the rest. This ensures ->clock_task is
  741. * monotonic.
  742. *
  743. * It does however cause some slight miss-attribution of {soft,}irq
  744. * time, a more accurate solution would be to update the irq_time using
  745. * the current rq->clock timestamp, except that would require using
  746. * atomic ops.
  747. */
  748. if (irq_delta > delta)
  749. irq_delta = delta;
  750. rq->prev_irq_time += irq_delta;
  751. delta -= irq_delta;
  752. #endif
  753. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  754. if (static_key_false((&paravirt_steal_rq_enabled))) {
  755. steal = paravirt_steal_clock(cpu_of(rq));
  756. steal -= rq->prev_steal_time_rq;
  757. if (unlikely(steal > delta))
  758. steal = delta;
  759. rq->prev_steal_time_rq += steal;
  760. delta -= steal;
  761. }
  762. #endif
  763. rq->clock_task += delta;
  764. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  765. if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
  766. sched_rt_avg_update(rq, irq_delta + steal);
  767. #endif
  768. }
  769. void sched_set_stop_task(int cpu, struct task_struct *stop)
  770. {
  771. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  772. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  773. if (stop) {
  774. /*
  775. * Make it appear like a SCHED_FIFO task, its something
  776. * userspace knows about and won't get confused about.
  777. *
  778. * Also, it will make PI more or less work without too
  779. * much confusion -- but then, stop work should not
  780. * rely on PI working anyway.
  781. */
  782. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  783. stop->sched_class = &stop_sched_class;
  784. }
  785. cpu_rq(cpu)->stop = stop;
  786. if (old_stop) {
  787. /*
  788. * Reset it back to a normal scheduling class so that
  789. * it can die in pieces.
  790. */
  791. old_stop->sched_class = &rt_sched_class;
  792. }
  793. }
  794. /*
  795. * __normal_prio - return the priority that is based on the static prio
  796. */
  797. static inline int __normal_prio(struct task_struct *p)
  798. {
  799. return p->static_prio;
  800. }
  801. /*
  802. * Calculate the expected normal priority: i.e. priority
  803. * without taking RT-inheritance into account. Might be
  804. * boosted by interactivity modifiers. Changes upon fork,
  805. * setprio syscalls, and whenever the interactivity
  806. * estimator recalculates.
  807. */
  808. static inline int normal_prio(struct task_struct *p)
  809. {
  810. int prio;
  811. if (task_has_dl_policy(p))
  812. prio = MAX_DL_PRIO-1;
  813. else if (task_has_rt_policy(p))
  814. prio = MAX_RT_PRIO-1 - p->rt_priority;
  815. else
  816. prio = __normal_prio(p);
  817. return prio;
  818. }
  819. /*
  820. * Calculate the current priority, i.e. the priority
  821. * taken into account by the scheduler. This value might
  822. * be boosted by RT tasks, or might be boosted by
  823. * interactivity modifiers. Will be RT if the task got
  824. * RT-boosted. If not then it returns p->normal_prio.
  825. */
  826. static int effective_prio(struct task_struct *p)
  827. {
  828. p->normal_prio = normal_prio(p);
  829. /*
  830. * If we are RT tasks or we were boosted to RT priority,
  831. * keep the priority unchanged. Otherwise, update priority
  832. * to the normal priority:
  833. */
  834. if (!rt_prio(p->prio))
  835. return p->normal_prio;
  836. return p->prio;
  837. }
  838. /**
  839. * task_curr - is this task currently executing on a CPU?
  840. * @p: the task in question.
  841. *
  842. * Return: 1 if the task is currently executing. 0 otherwise.
  843. */
  844. inline int task_curr(const struct task_struct *p)
  845. {
  846. return cpu_curr(task_cpu(p)) == p;
  847. }
  848. /*
  849. * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
  850. * use the balance_callback list if you want balancing.
  851. *
  852. * this means any call to check_class_changed() must be followed by a call to
  853. * balance_callback().
  854. */
  855. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  856. const struct sched_class *prev_class,
  857. int oldprio)
  858. {
  859. if (prev_class != p->sched_class) {
  860. if (prev_class->switched_from)
  861. prev_class->switched_from(rq, p);
  862. p->sched_class->switched_to(rq, p);
  863. } else if (oldprio != p->prio || dl_task(p))
  864. p->sched_class->prio_changed(rq, p, oldprio);
  865. }
  866. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  867. {
  868. const struct sched_class *class;
  869. if (p->sched_class == rq->curr->sched_class) {
  870. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  871. } else {
  872. for_each_class(class) {
  873. if (class == rq->curr->sched_class)
  874. break;
  875. if (class == p->sched_class) {
  876. resched_curr(rq);
  877. break;
  878. }
  879. }
  880. }
  881. /*
  882. * A queue event has occurred, and we're going to schedule. In
  883. * this case, we can save a useless back to back clock update.
  884. */
  885. if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
  886. rq_clock_skip_update(rq, true);
  887. }
  888. #ifdef CONFIG_SMP
  889. /*
  890. * This is how migration works:
  891. *
  892. * 1) we invoke migration_cpu_stop() on the target CPU using
  893. * stop_one_cpu().
  894. * 2) stopper starts to run (implicitly forcing the migrated thread
  895. * off the CPU)
  896. * 3) it checks whether the migrated task is still in the wrong runqueue.
  897. * 4) if it's in the wrong runqueue then the migration thread removes
  898. * it and puts it into the right queue.
  899. * 5) stopper completes and stop_one_cpu() returns and the migration
  900. * is done.
  901. */
  902. /*
  903. * move_queued_task - move a queued task to new rq.
  904. *
  905. * Returns (locked) new rq. Old rq's lock is released.
  906. */
  907. static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
  908. {
  909. lockdep_assert_held(&rq->lock);
  910. dequeue_task(rq, p, 0);
  911. p->on_rq = TASK_ON_RQ_MIGRATING;
  912. set_task_cpu(p, new_cpu);
  913. raw_spin_unlock(&rq->lock);
  914. rq = cpu_rq(new_cpu);
  915. raw_spin_lock(&rq->lock);
  916. BUG_ON(task_cpu(p) != new_cpu);
  917. p->on_rq = TASK_ON_RQ_QUEUED;
  918. enqueue_task(rq, p, 0);
  919. check_preempt_curr(rq, p, 0);
  920. return rq;
  921. }
  922. struct migration_arg {
  923. struct task_struct *task;
  924. int dest_cpu;
  925. };
  926. /*
  927. * Move (not current) task off this cpu, onto dest cpu. We're doing
  928. * this because either it can't run here any more (set_cpus_allowed()
  929. * away from this CPU, or CPU going down), or because we're
  930. * attempting to rebalance this task on exec (sched_exec).
  931. *
  932. * So we race with normal scheduler movements, but that's OK, as long
  933. * as the task is no longer on this CPU.
  934. */
  935. static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
  936. {
  937. if (unlikely(!cpu_active(dest_cpu)))
  938. return rq;
  939. /* Affinity changed (again). */
  940. if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  941. return rq;
  942. rq = move_queued_task(rq, p, dest_cpu);
  943. return rq;
  944. }
  945. /*
  946. * migration_cpu_stop - this will be executed by a highprio stopper thread
  947. * and performs thread migration by bumping thread off CPU then
  948. * 'pushing' onto another runqueue.
  949. */
  950. static int migration_cpu_stop(void *data)
  951. {
  952. struct migration_arg *arg = data;
  953. struct task_struct *p = arg->task;
  954. struct rq *rq = this_rq();
  955. /*
  956. * The original target cpu might have gone down and we might
  957. * be on another cpu but it doesn't matter.
  958. */
  959. local_irq_disable();
  960. /*
  961. * We need to explicitly wake pending tasks before running
  962. * __migrate_task() such that we will not miss enforcing cpus_allowed
  963. * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
  964. */
  965. sched_ttwu_pending();
  966. raw_spin_lock(&p->pi_lock);
  967. raw_spin_lock(&rq->lock);
  968. /*
  969. * If task_rq(p) != rq, it cannot be migrated here, because we're
  970. * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
  971. * we're holding p->pi_lock.
  972. */
  973. if (task_rq(p) == rq && task_on_rq_queued(p))
  974. rq = __migrate_task(rq, p, arg->dest_cpu);
  975. raw_spin_unlock(&rq->lock);
  976. raw_spin_unlock(&p->pi_lock);
  977. local_irq_enable();
  978. return 0;
  979. }
  980. /*
  981. * sched_class::set_cpus_allowed must do the below, but is not required to
  982. * actually call this function.
  983. */
  984. void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
  985. {
  986. cpumask_copy(&p->cpus_allowed, new_mask);
  987. p->nr_cpus_allowed = cpumask_weight(new_mask);
  988. }
  989. void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
  990. {
  991. struct rq *rq = task_rq(p);
  992. bool queued, running;
  993. lockdep_assert_held(&p->pi_lock);
  994. queued = task_on_rq_queued(p);
  995. running = task_current(rq, p);
  996. if (queued) {
  997. /*
  998. * Because __kthread_bind() calls this on blocked tasks without
  999. * holding rq->lock.
  1000. */
  1001. lockdep_assert_held(&rq->lock);
  1002. dequeue_task(rq, p, 0);
  1003. }
  1004. if (running)
  1005. put_prev_task(rq, p);
  1006. p->sched_class->set_cpus_allowed(p, new_mask);
  1007. if (running)
  1008. p->sched_class->set_curr_task(rq);
  1009. if (queued)
  1010. enqueue_task(rq, p, 0);
  1011. }
  1012. /*
  1013. * Change a given task's CPU affinity. Migrate the thread to a
  1014. * proper CPU and schedule it away if the CPU it's executing on
  1015. * is removed from the allowed bitmask.
  1016. *
  1017. * NOTE: the caller must have a valid reference to the task, the
  1018. * task must not exit() & deallocate itself prematurely. The
  1019. * call is not atomic; no spinlocks may be held.
  1020. */
  1021. static int __set_cpus_allowed_ptr(struct task_struct *p,
  1022. const struct cpumask *new_mask, bool check)
  1023. {
  1024. unsigned long flags;
  1025. struct rq *rq;
  1026. unsigned int dest_cpu;
  1027. int ret = 0;
  1028. rq = task_rq_lock(p, &flags);
  1029. /*
  1030. * Must re-check here, to close a race against __kthread_bind(),
  1031. * sched_setaffinity() is not guaranteed to observe the flag.
  1032. */
  1033. if (check && (p->flags & PF_NO_SETAFFINITY)) {
  1034. ret = -EINVAL;
  1035. goto out;
  1036. }
  1037. if (cpumask_equal(&p->cpus_allowed, new_mask))
  1038. goto out;
  1039. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  1040. ret = -EINVAL;
  1041. goto out;
  1042. }
  1043. do_set_cpus_allowed(p, new_mask);
  1044. /* Can the task run on the task's current CPU? If so, we're done */
  1045. if (cpumask_test_cpu(task_cpu(p), new_mask))
  1046. goto out;
  1047. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  1048. if (task_running(rq, p) || p->state == TASK_WAKING) {
  1049. struct migration_arg arg = { p, dest_cpu };
  1050. /* Need help from migration thread: drop lock and wait. */
  1051. task_rq_unlock(rq, p, &flags);
  1052. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  1053. tlb_migrate_finish(p->mm);
  1054. return 0;
  1055. } else if (task_on_rq_queued(p)) {
  1056. /*
  1057. * OK, since we're going to drop the lock immediately
  1058. * afterwards anyway.
  1059. */
  1060. lockdep_unpin_lock(&rq->lock);
  1061. rq = move_queued_task(rq, p, dest_cpu);
  1062. lockdep_pin_lock(&rq->lock);
  1063. }
  1064. out:
  1065. task_rq_unlock(rq, p, &flags);
  1066. return ret;
  1067. }
  1068. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  1069. {
  1070. return __set_cpus_allowed_ptr(p, new_mask, false);
  1071. }
  1072. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  1073. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1074. {
  1075. #ifdef CONFIG_SCHED_DEBUG
  1076. /*
  1077. * We should never call set_task_cpu() on a blocked task,
  1078. * ttwu() will sort out the placement.
  1079. */
  1080. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  1081. !p->on_rq);
  1082. #ifdef CONFIG_LOCKDEP
  1083. /*
  1084. * The caller should hold either p->pi_lock or rq->lock, when changing
  1085. * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
  1086. *
  1087. * sched_move_task() holds both and thus holding either pins the cgroup,
  1088. * see task_group().
  1089. *
  1090. * Furthermore, all task_rq users should acquire both locks, see
  1091. * task_rq_lock().
  1092. */
  1093. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  1094. lockdep_is_held(&task_rq(p)->lock)));
  1095. #endif
  1096. #endif
  1097. trace_sched_migrate_task(p, new_cpu);
  1098. if (task_cpu(p) != new_cpu) {
  1099. if (p->sched_class->migrate_task_rq)
  1100. p->sched_class->migrate_task_rq(p, new_cpu);
  1101. p->se.nr_migrations++;
  1102. perf_event_task_migrate(p);
  1103. }
  1104. __set_task_cpu(p, new_cpu);
  1105. }
  1106. static void __migrate_swap_task(struct task_struct *p, int cpu)
  1107. {
  1108. if (task_on_rq_queued(p)) {
  1109. struct rq *src_rq, *dst_rq;
  1110. src_rq = task_rq(p);
  1111. dst_rq = cpu_rq(cpu);
  1112. deactivate_task(src_rq, p, 0);
  1113. set_task_cpu(p, cpu);
  1114. activate_task(dst_rq, p, 0);
  1115. check_preempt_curr(dst_rq, p, 0);
  1116. } else {
  1117. /*
  1118. * Task isn't running anymore; make it appear like we migrated
  1119. * it before it went to sleep. This means on wakeup we make the
  1120. * previous cpu our targer instead of where it really is.
  1121. */
  1122. p->wake_cpu = cpu;
  1123. }
  1124. }
  1125. struct migration_swap_arg {
  1126. struct task_struct *src_task, *dst_task;
  1127. int src_cpu, dst_cpu;
  1128. };
  1129. static int migrate_swap_stop(void *data)
  1130. {
  1131. struct migration_swap_arg *arg = data;
  1132. struct rq *src_rq, *dst_rq;
  1133. int ret = -EAGAIN;
  1134. src_rq = cpu_rq(arg->src_cpu);
  1135. dst_rq = cpu_rq(arg->dst_cpu);
  1136. double_raw_lock(&arg->src_task->pi_lock,
  1137. &arg->dst_task->pi_lock);
  1138. double_rq_lock(src_rq, dst_rq);
  1139. if (task_cpu(arg->dst_task) != arg->dst_cpu)
  1140. goto unlock;
  1141. if (task_cpu(arg->src_task) != arg->src_cpu)
  1142. goto unlock;
  1143. if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
  1144. goto unlock;
  1145. if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
  1146. goto unlock;
  1147. __migrate_swap_task(arg->src_task, arg->dst_cpu);
  1148. __migrate_swap_task(arg->dst_task, arg->src_cpu);
  1149. ret = 0;
  1150. unlock:
  1151. double_rq_unlock(src_rq, dst_rq);
  1152. raw_spin_unlock(&arg->dst_task->pi_lock);
  1153. raw_spin_unlock(&arg->src_task->pi_lock);
  1154. return ret;
  1155. }
  1156. /*
  1157. * Cross migrate two tasks
  1158. */
  1159. int migrate_swap(struct task_struct *cur, struct task_struct *p)
  1160. {
  1161. struct migration_swap_arg arg;
  1162. int ret = -EINVAL;
  1163. arg = (struct migration_swap_arg){
  1164. .src_task = cur,
  1165. .src_cpu = task_cpu(cur),
  1166. .dst_task = p,
  1167. .dst_cpu = task_cpu(p),
  1168. };
  1169. if (arg.src_cpu == arg.dst_cpu)
  1170. goto out;
  1171. /*
  1172. * These three tests are all lockless; this is OK since all of them
  1173. * will be re-checked with proper locks held further down the line.
  1174. */
  1175. if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
  1176. goto out;
  1177. if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
  1178. goto out;
  1179. if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
  1180. goto out;
  1181. trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
  1182. ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
  1183. out:
  1184. return ret;
  1185. }
  1186. /*
  1187. * wait_task_inactive - wait for a thread to unschedule.
  1188. *
  1189. * If @match_state is nonzero, it's the @p->state value just checked and
  1190. * not expected to change. If it changes, i.e. @p might have woken up,
  1191. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1192. * we return a positive number (its total switch count). If a second call
  1193. * a short while later returns the same number, the caller can be sure that
  1194. * @p has remained unscheduled the whole time.
  1195. *
  1196. * The caller must ensure that the task *will* unschedule sometime soon,
  1197. * else this function might spin for a *long* time. This function can't
  1198. * be called with interrupts off, or it may introduce deadlock with
  1199. * smp_call_function() if an IPI is sent by the same process we are
  1200. * waiting to become inactive.
  1201. */
  1202. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1203. {
  1204. unsigned long flags;
  1205. int running, queued;
  1206. unsigned long ncsw;
  1207. struct rq *rq;
  1208. for (;;) {
  1209. /*
  1210. * We do the initial early heuristics without holding
  1211. * any task-queue locks at all. We'll only try to get
  1212. * the runqueue lock when things look like they will
  1213. * work out!
  1214. */
  1215. rq = task_rq(p);
  1216. /*
  1217. * If the task is actively running on another CPU
  1218. * still, just relax and busy-wait without holding
  1219. * any locks.
  1220. *
  1221. * NOTE! Since we don't hold any locks, it's not
  1222. * even sure that "rq" stays as the right runqueue!
  1223. * But we don't care, since "task_running()" will
  1224. * return false if the runqueue has changed and p
  1225. * is actually now running somewhere else!
  1226. */
  1227. while (task_running(rq, p)) {
  1228. if (match_state && unlikely(p->state != match_state))
  1229. return 0;
  1230. cpu_relax();
  1231. }
  1232. /*
  1233. * Ok, time to look more closely! We need the rq
  1234. * lock now, to be *sure*. If we're wrong, we'll
  1235. * just go back and repeat.
  1236. */
  1237. rq = task_rq_lock(p, &flags);
  1238. trace_sched_wait_task(p);
  1239. running = task_running(rq, p);
  1240. queued = task_on_rq_queued(p);
  1241. ncsw = 0;
  1242. if (!match_state || p->state == match_state)
  1243. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1244. task_rq_unlock(rq, p, &flags);
  1245. /*
  1246. * If it changed from the expected state, bail out now.
  1247. */
  1248. if (unlikely(!ncsw))
  1249. break;
  1250. /*
  1251. * Was it really running after all now that we
  1252. * checked with the proper locks actually held?
  1253. *
  1254. * Oops. Go back and try again..
  1255. */
  1256. if (unlikely(running)) {
  1257. cpu_relax();
  1258. continue;
  1259. }
  1260. /*
  1261. * It's not enough that it's not actively running,
  1262. * it must be off the runqueue _entirely_, and not
  1263. * preempted!
  1264. *
  1265. * So if it was still runnable (but just not actively
  1266. * running right now), it's preempted, and we should
  1267. * yield - it could be a while.
  1268. */
  1269. if (unlikely(queued)) {
  1270. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  1271. set_current_state(TASK_UNINTERRUPTIBLE);
  1272. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  1273. continue;
  1274. }
  1275. /*
  1276. * Ahh, all good. It wasn't running, and it wasn't
  1277. * runnable, which means that it will never become
  1278. * running in the future either. We're all done!
  1279. */
  1280. break;
  1281. }
  1282. return ncsw;
  1283. }
  1284. /***
  1285. * kick_process - kick a running thread to enter/exit the kernel
  1286. * @p: the to-be-kicked thread
  1287. *
  1288. * Cause a process which is running on another CPU to enter
  1289. * kernel-mode, without any delay. (to get signals handled.)
  1290. *
  1291. * NOTE: this function doesn't have to take the runqueue lock,
  1292. * because all it wants to ensure is that the remote task enters
  1293. * the kernel. If the IPI races and the task has been migrated
  1294. * to another CPU then no harm is done and the purpose has been
  1295. * achieved as well.
  1296. */
  1297. void kick_process(struct task_struct *p)
  1298. {
  1299. int cpu;
  1300. preempt_disable();
  1301. cpu = task_cpu(p);
  1302. if ((cpu != smp_processor_id()) && task_curr(p))
  1303. smp_send_reschedule(cpu);
  1304. preempt_enable();
  1305. }
  1306. EXPORT_SYMBOL_GPL(kick_process);
  1307. /*
  1308. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  1309. */
  1310. static int select_fallback_rq(int cpu, struct task_struct *p)
  1311. {
  1312. int nid = cpu_to_node(cpu);
  1313. const struct cpumask *nodemask = NULL;
  1314. enum { cpuset, possible, fail } state = cpuset;
  1315. int dest_cpu;
  1316. /*
  1317. * If the node that the cpu is on has been offlined, cpu_to_node()
  1318. * will return -1. There is no cpu on the node, and we should
  1319. * select the cpu on the other node.
  1320. */
  1321. if (nid != -1) {
  1322. nodemask = cpumask_of_node(nid);
  1323. /* Look for allowed, online CPU in same node. */
  1324. for_each_cpu(dest_cpu, nodemask) {
  1325. if (!cpu_online(dest_cpu))
  1326. continue;
  1327. if (!cpu_active(dest_cpu))
  1328. continue;
  1329. if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  1330. return dest_cpu;
  1331. }
  1332. }
  1333. for (;;) {
  1334. /* Any allowed, online CPU? */
  1335. for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
  1336. if (!cpu_online(dest_cpu))
  1337. continue;
  1338. if (!cpu_active(dest_cpu))
  1339. continue;
  1340. goto out;
  1341. }
  1342. switch (state) {
  1343. case cpuset:
  1344. /* No more Mr. Nice Guy. */
  1345. cpuset_cpus_allowed_fallback(p);
  1346. state = possible;
  1347. break;
  1348. case possible:
  1349. do_set_cpus_allowed(p, cpu_possible_mask);
  1350. state = fail;
  1351. break;
  1352. case fail:
  1353. BUG();
  1354. break;
  1355. }
  1356. }
  1357. out:
  1358. if (state != cpuset) {
  1359. /*
  1360. * Don't tell them about moving exiting tasks or
  1361. * kernel threads (both mm NULL), since they never
  1362. * leave kernel.
  1363. */
  1364. if (p->mm && printk_ratelimit()) {
  1365. printk_deferred("process %d (%s) no longer affine to cpu%d\n",
  1366. task_pid_nr(p), p->comm, cpu);
  1367. }
  1368. }
  1369. return dest_cpu;
  1370. }
  1371. /*
  1372. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  1373. */
  1374. static inline
  1375. int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
  1376. {
  1377. lockdep_assert_held(&p->pi_lock);
  1378. if (p->nr_cpus_allowed > 1)
  1379. cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
  1380. /*
  1381. * In order not to call set_task_cpu() on a blocking task we need
  1382. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1383. * cpu.
  1384. *
  1385. * Since this is common to all placement strategies, this lives here.
  1386. *
  1387. * [ this allows ->select_task() to simply return task_cpu(p) and
  1388. * not worry about this generic constraint ]
  1389. */
  1390. if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
  1391. !cpu_online(cpu)))
  1392. cpu = select_fallback_rq(task_cpu(p), p);
  1393. return cpu;
  1394. }
  1395. static void update_avg(u64 *avg, u64 sample)
  1396. {
  1397. s64 diff = sample - *avg;
  1398. *avg += diff >> 3;
  1399. }
  1400. #else
  1401. static inline int __set_cpus_allowed_ptr(struct task_struct *p,
  1402. const struct cpumask *new_mask, bool check)
  1403. {
  1404. return set_cpus_allowed_ptr(p, new_mask);
  1405. }
  1406. #endif /* CONFIG_SMP */
  1407. static void
  1408. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  1409. {
  1410. #ifdef CONFIG_SCHEDSTATS
  1411. struct rq *rq = this_rq();
  1412. #ifdef CONFIG_SMP
  1413. int this_cpu = smp_processor_id();
  1414. if (cpu == this_cpu) {
  1415. schedstat_inc(rq, ttwu_local);
  1416. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1417. } else {
  1418. struct sched_domain *sd;
  1419. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1420. rcu_read_lock();
  1421. for_each_domain(this_cpu, sd) {
  1422. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1423. schedstat_inc(sd, ttwu_wake_remote);
  1424. break;
  1425. }
  1426. }
  1427. rcu_read_unlock();
  1428. }
  1429. if (wake_flags & WF_MIGRATED)
  1430. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1431. #endif /* CONFIG_SMP */
  1432. schedstat_inc(rq, ttwu_count);
  1433. schedstat_inc(p, se.statistics.nr_wakeups);
  1434. if (wake_flags & WF_SYNC)
  1435. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1436. #endif /* CONFIG_SCHEDSTATS */
  1437. }
  1438. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  1439. {
  1440. activate_task(rq, p, en_flags);
  1441. p->on_rq = TASK_ON_RQ_QUEUED;
  1442. /* if a worker is waking up, notify workqueue */
  1443. if (p->flags & PF_WQ_WORKER)
  1444. wq_worker_waking_up(p, cpu_of(rq));
  1445. }
  1446. /*
  1447. * Mark the task runnable and perform wakeup-preemption.
  1448. */
  1449. static void
  1450. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1451. {
  1452. check_preempt_curr(rq, p, wake_flags);
  1453. p->state = TASK_RUNNING;
  1454. trace_sched_wakeup(p);
  1455. #ifdef CONFIG_SMP
  1456. if (p->sched_class->task_woken) {
  1457. /*
  1458. * Our task @p is fully woken up and running; so its safe to
  1459. * drop the rq->lock, hereafter rq is only used for statistics.
  1460. */
  1461. lockdep_unpin_lock(&rq->lock);
  1462. p->sched_class->task_woken(rq, p);
  1463. lockdep_pin_lock(&rq->lock);
  1464. }
  1465. if (rq->idle_stamp) {
  1466. u64 delta = rq_clock(rq) - rq->idle_stamp;
  1467. u64 max = 2*rq->max_idle_balance_cost;
  1468. update_avg(&rq->avg_idle, delta);
  1469. if (rq->avg_idle > max)
  1470. rq->avg_idle = max;
  1471. rq->idle_stamp = 0;
  1472. }
  1473. #endif
  1474. }
  1475. static void
  1476. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
  1477. {
  1478. lockdep_assert_held(&rq->lock);
  1479. #ifdef CONFIG_SMP
  1480. if (p->sched_contributes_to_load)
  1481. rq->nr_uninterruptible--;
  1482. #endif
  1483. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  1484. ttwu_do_wakeup(rq, p, wake_flags);
  1485. }
  1486. /*
  1487. * Called in case the task @p isn't fully descheduled from its runqueue,
  1488. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  1489. * since all we need to do is flip p->state to TASK_RUNNING, since
  1490. * the task is still ->on_rq.
  1491. */
  1492. static int ttwu_remote(struct task_struct *p, int wake_flags)
  1493. {
  1494. struct rq *rq;
  1495. int ret = 0;
  1496. rq = __task_rq_lock(p);
  1497. if (task_on_rq_queued(p)) {
  1498. /* check_preempt_curr() may use rq clock */
  1499. update_rq_clock(rq);
  1500. ttwu_do_wakeup(rq, p, wake_flags);
  1501. ret = 1;
  1502. }
  1503. __task_rq_unlock(rq);
  1504. return ret;
  1505. }
  1506. #ifdef CONFIG_SMP
  1507. void sched_ttwu_pending(void)
  1508. {
  1509. struct rq *rq = this_rq();
  1510. struct llist_node *llist = llist_del_all(&rq->wake_list);
  1511. struct task_struct *p;
  1512. unsigned long flags;
  1513. if (!llist)
  1514. return;
  1515. raw_spin_lock_irqsave(&rq->lock, flags);
  1516. lockdep_pin_lock(&rq->lock);
  1517. while (llist) {
  1518. p = llist_entry(llist, struct task_struct, wake_entry);
  1519. llist = llist_next(llist);
  1520. ttwu_do_activate(rq, p, 0);
  1521. }
  1522. lockdep_unpin_lock(&rq->lock);
  1523. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1524. }
  1525. void scheduler_ipi(void)
  1526. {
  1527. /*
  1528. * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
  1529. * TIF_NEED_RESCHED remotely (for the first time) will also send
  1530. * this IPI.
  1531. */
  1532. preempt_fold_need_resched();
  1533. if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
  1534. return;
  1535. /*
  1536. * Not all reschedule IPI handlers call irq_enter/irq_exit, since
  1537. * traditionally all their work was done from the interrupt return
  1538. * path. Now that we actually do some work, we need to make sure
  1539. * we do call them.
  1540. *
  1541. * Some archs already do call them, luckily irq_enter/exit nest
  1542. * properly.
  1543. *
  1544. * Arguably we should visit all archs and update all handlers,
  1545. * however a fair share of IPIs are still resched only so this would
  1546. * somewhat pessimize the simple resched case.
  1547. */
  1548. irq_enter();
  1549. sched_ttwu_pending();
  1550. /*
  1551. * Check if someone kicked us for doing the nohz idle load balance.
  1552. */
  1553. if (unlikely(got_nohz_idle_kick())) {
  1554. this_rq()->idle_balance = 1;
  1555. raise_softirq_irqoff(SCHED_SOFTIRQ);
  1556. }
  1557. irq_exit();
  1558. }
  1559. static void ttwu_queue_remote(struct task_struct *p, int cpu)
  1560. {
  1561. struct rq *rq = cpu_rq(cpu);
  1562. if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
  1563. if (!set_nr_if_polling(rq->idle))
  1564. smp_send_reschedule(cpu);
  1565. else
  1566. trace_sched_wake_idle_without_ipi(cpu);
  1567. }
  1568. }
  1569. void wake_up_if_idle(int cpu)
  1570. {
  1571. struct rq *rq = cpu_rq(cpu);
  1572. unsigned long flags;
  1573. rcu_read_lock();
  1574. if (!is_idle_task(rcu_dereference(rq->curr)))
  1575. goto out;
  1576. if (set_nr_if_polling(rq->idle)) {
  1577. trace_sched_wake_idle_without_ipi(cpu);
  1578. } else {
  1579. raw_spin_lock_irqsave(&rq->lock, flags);
  1580. if (is_idle_task(rq->curr))
  1581. smp_send_reschedule(cpu);
  1582. /* Else cpu is not in idle, do nothing here */
  1583. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1584. }
  1585. out:
  1586. rcu_read_unlock();
  1587. }
  1588. bool cpus_share_cache(int this_cpu, int that_cpu)
  1589. {
  1590. return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
  1591. }
  1592. #endif /* CONFIG_SMP */
  1593. static void ttwu_queue(struct task_struct *p, int cpu)
  1594. {
  1595. struct rq *rq = cpu_rq(cpu);
  1596. #if defined(CONFIG_SMP)
  1597. if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
  1598. sched_clock_cpu(cpu); /* sync clocks x-cpu */
  1599. ttwu_queue_remote(p, cpu);
  1600. return;
  1601. }
  1602. #endif
  1603. raw_spin_lock(&rq->lock);
  1604. lockdep_pin_lock(&rq->lock);
  1605. ttwu_do_activate(rq, p, 0);
  1606. lockdep_unpin_lock(&rq->lock);
  1607. raw_spin_unlock(&rq->lock);
  1608. }
  1609. /**
  1610. * try_to_wake_up - wake up a thread
  1611. * @p: the thread to be awakened
  1612. * @state: the mask of task states that can be woken
  1613. * @wake_flags: wake modifier flags (WF_*)
  1614. *
  1615. * Put it on the run-queue if it's not already there. The "current"
  1616. * thread is always on the run-queue (except when the actual
  1617. * re-schedule is in progress), and as such you're allowed to do
  1618. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1619. * runnable without the overhead of this.
  1620. *
  1621. * Return: %true if @p was woken up, %false if it was already running.
  1622. * or @state didn't match @p's state.
  1623. */
  1624. static int
  1625. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  1626. {
  1627. unsigned long flags;
  1628. int cpu, success = 0;
  1629. /*
  1630. * If we are going to wake up a thread waiting for CONDITION we
  1631. * need to ensure that CONDITION=1 done by the caller can not be
  1632. * reordered with p->state check below. This pairs with mb() in
  1633. * set_current_state() the waiting thread does.
  1634. */
  1635. smp_mb__before_spinlock();
  1636. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1637. if (!(p->state & state))
  1638. goto out;
  1639. trace_sched_waking(p);
  1640. success = 1; /* we're going to change ->state */
  1641. cpu = task_cpu(p);
  1642. if (p->on_rq && ttwu_remote(p, wake_flags))
  1643. goto stat;
  1644. #ifdef CONFIG_SMP
  1645. /*
  1646. * If the owning (remote) cpu is still in the middle of schedule() with
  1647. * this task as prev, wait until its done referencing the task.
  1648. */
  1649. while (p->on_cpu)
  1650. cpu_relax();
  1651. /*
  1652. * Pairs with the smp_wmb() in finish_lock_switch().
  1653. */
  1654. smp_rmb();
  1655. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  1656. p->state = TASK_WAKING;
  1657. if (p->sched_class->task_waking)
  1658. p->sched_class->task_waking(p);
  1659. cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
  1660. if (task_cpu(p) != cpu) {
  1661. wake_flags |= WF_MIGRATED;
  1662. set_task_cpu(p, cpu);
  1663. }
  1664. #endif /* CONFIG_SMP */
  1665. ttwu_queue(p, cpu);
  1666. stat:
  1667. ttwu_stat(p, cpu, wake_flags);
  1668. out:
  1669. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1670. return success;
  1671. }
  1672. /**
  1673. * try_to_wake_up_local - try to wake up a local task with rq lock held
  1674. * @p: the thread to be awakened
  1675. *
  1676. * Put @p on the run-queue if it's not already there. The caller must
  1677. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  1678. * the current task.
  1679. */
  1680. static void try_to_wake_up_local(struct task_struct *p)
  1681. {
  1682. struct rq *rq = task_rq(p);
  1683. if (WARN_ON_ONCE(rq != this_rq()) ||
  1684. WARN_ON_ONCE(p == current))
  1685. return;
  1686. lockdep_assert_held(&rq->lock);
  1687. if (!raw_spin_trylock(&p->pi_lock)) {
  1688. /*
  1689. * This is OK, because current is on_cpu, which avoids it being
  1690. * picked for load-balance and preemption/IRQs are still
  1691. * disabled avoiding further scheduler activity on it and we've
  1692. * not yet picked a replacement task.
  1693. */
  1694. lockdep_unpin_lock(&rq->lock);
  1695. raw_spin_unlock(&rq->lock);
  1696. raw_spin_lock(&p->pi_lock);
  1697. raw_spin_lock(&rq->lock);
  1698. lockdep_pin_lock(&rq->lock);
  1699. }
  1700. if (!(p->state & TASK_NORMAL))
  1701. goto out;
  1702. trace_sched_waking(p);
  1703. if (!task_on_rq_queued(p))
  1704. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  1705. ttwu_do_wakeup(rq, p, 0);
  1706. ttwu_stat(p, smp_processor_id(), 0);
  1707. out:
  1708. raw_spin_unlock(&p->pi_lock);
  1709. }
  1710. /**
  1711. * wake_up_process - Wake up a specific process
  1712. * @p: The process to be woken up.
  1713. *
  1714. * Attempt to wake up the nominated process and move it to the set of runnable
  1715. * processes.
  1716. *
  1717. * Return: 1 if the process was woken up, 0 if it was already running.
  1718. *
  1719. * It may be assumed that this function implies a write memory barrier before
  1720. * changing the task state if and only if any tasks are woken up.
  1721. */
  1722. int wake_up_process(struct task_struct *p)
  1723. {
  1724. WARN_ON(task_is_stopped_or_traced(p));
  1725. return try_to_wake_up(p, TASK_NORMAL, 0);
  1726. }
  1727. EXPORT_SYMBOL(wake_up_process);
  1728. int wake_up_state(struct task_struct *p, unsigned int state)
  1729. {
  1730. return try_to_wake_up(p, state, 0);
  1731. }
  1732. /*
  1733. * This function clears the sched_dl_entity static params.
  1734. */
  1735. void __dl_clear_params(struct task_struct *p)
  1736. {
  1737. struct sched_dl_entity *dl_se = &p->dl;
  1738. dl_se->dl_runtime = 0;
  1739. dl_se->dl_deadline = 0;
  1740. dl_se->dl_period = 0;
  1741. dl_se->flags = 0;
  1742. dl_se->dl_bw = 0;
  1743. dl_se->dl_throttled = 0;
  1744. dl_se->dl_new = 1;
  1745. dl_se->dl_yielded = 0;
  1746. }
  1747. /*
  1748. * Perform scheduler related setup for a newly forked process p.
  1749. * p is forked by current.
  1750. *
  1751. * __sched_fork() is basic setup used by init_idle() too:
  1752. */
  1753. static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
  1754. {
  1755. p->on_rq = 0;
  1756. p->se.on_rq = 0;
  1757. p->se.exec_start = 0;
  1758. p->se.sum_exec_runtime = 0;
  1759. p->se.prev_sum_exec_runtime = 0;
  1760. p->se.nr_migrations = 0;
  1761. p->se.vruntime = 0;
  1762. INIT_LIST_HEAD(&p->se.group_node);
  1763. #ifdef CONFIG_SCHEDSTATS
  1764. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  1765. #endif
  1766. RB_CLEAR_NODE(&p->dl.rb_node);
  1767. init_dl_task_timer(&p->dl);
  1768. __dl_clear_params(p);
  1769. INIT_LIST_HEAD(&p->rt.run_list);
  1770. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1771. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1772. #endif
  1773. #ifdef CONFIG_NUMA_BALANCING
  1774. if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
  1775. p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
  1776. p->mm->numa_scan_seq = 0;
  1777. }
  1778. if (clone_flags & CLONE_VM)
  1779. p->numa_preferred_nid = current->numa_preferred_nid;
  1780. else
  1781. p->numa_preferred_nid = -1;
  1782. p->node_stamp = 0ULL;
  1783. p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
  1784. p->numa_scan_period = sysctl_numa_balancing_scan_delay;
  1785. p->numa_work.next = &p->numa_work;
  1786. p->numa_faults = NULL;
  1787. p->last_task_numa_placement = 0;
  1788. p->last_sum_exec_runtime = 0;
  1789. p->numa_group = NULL;
  1790. #endif /* CONFIG_NUMA_BALANCING */
  1791. }
  1792. #ifdef CONFIG_NUMA_BALANCING
  1793. #ifdef CONFIG_SCHED_DEBUG
  1794. void set_numabalancing_state(bool enabled)
  1795. {
  1796. if (enabled)
  1797. sched_feat_set("NUMA");
  1798. else
  1799. sched_feat_set("NO_NUMA");
  1800. }
  1801. #else
  1802. __read_mostly bool numabalancing_enabled;
  1803. void set_numabalancing_state(bool enabled)
  1804. {
  1805. numabalancing_enabled = enabled;
  1806. }
  1807. #endif /* CONFIG_SCHED_DEBUG */
  1808. #ifdef CONFIG_PROC_SYSCTL
  1809. int sysctl_numa_balancing(struct ctl_table *table, int write,
  1810. void __user *buffer, size_t *lenp, loff_t *ppos)
  1811. {
  1812. struct ctl_table t;
  1813. int err;
  1814. int state = numabalancing_enabled;
  1815. if (write && !capable(CAP_SYS_ADMIN))
  1816. return -EPERM;
  1817. t = *table;
  1818. t.data = &state;
  1819. err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
  1820. if (err < 0)
  1821. return err;
  1822. if (write)
  1823. set_numabalancing_state(state);
  1824. return err;
  1825. }
  1826. #endif
  1827. #endif
  1828. /*
  1829. * fork()/clone()-time setup:
  1830. */
  1831. int sched_fork(unsigned long clone_flags, struct task_struct *p)
  1832. {
  1833. unsigned long flags;
  1834. int cpu = get_cpu();
  1835. __sched_fork(clone_flags, p);
  1836. /*
  1837. * We mark the process as running here. This guarantees that
  1838. * nobody will actually run it, and a signal or other external
  1839. * event cannot wake it up and insert it on the runqueue either.
  1840. */
  1841. p->state = TASK_RUNNING;
  1842. /*
  1843. * Make sure we do not leak PI boosting priority to the child.
  1844. */
  1845. p->prio = current->normal_prio;
  1846. /*
  1847. * Revert to default priority/policy on fork if requested.
  1848. */
  1849. if (unlikely(p->sched_reset_on_fork)) {
  1850. if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
  1851. p->policy = SCHED_NORMAL;
  1852. p->static_prio = NICE_TO_PRIO(0);
  1853. p->rt_priority = 0;
  1854. } else if (PRIO_TO_NICE(p->static_prio) < 0)
  1855. p->static_prio = NICE_TO_PRIO(0);
  1856. p->prio = p->normal_prio = __normal_prio(p);
  1857. set_load_weight(p);
  1858. /*
  1859. * We don't need the reset flag anymore after the fork. It has
  1860. * fulfilled its duty:
  1861. */
  1862. p->sched_reset_on_fork = 0;
  1863. }
  1864. if (dl_prio(p->prio)) {
  1865. put_cpu();
  1866. return -EAGAIN;
  1867. } else if (rt_prio(p->prio)) {
  1868. p->sched_class = &rt_sched_class;
  1869. } else {
  1870. p->sched_class = &fair_sched_class;
  1871. }
  1872. if (p->sched_class->task_fork)
  1873. p->sched_class->task_fork(p);
  1874. /*
  1875. * The child is not yet in the pid-hash so no cgroup attach races,
  1876. * and the cgroup is pinned to this child due to cgroup_fork()
  1877. * is ran before sched_fork().
  1878. *
  1879. * Silence PROVE_RCU.
  1880. */
  1881. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1882. set_task_cpu(p, cpu);
  1883. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1884. #ifdef CONFIG_SCHED_INFO
  1885. if (likely(sched_info_on()))
  1886. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1887. #endif
  1888. #if defined(CONFIG_SMP)
  1889. p->on_cpu = 0;
  1890. #endif
  1891. init_task_preempt_count(p);
  1892. #ifdef CONFIG_SMP
  1893. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  1894. RB_CLEAR_NODE(&p->pushable_dl_tasks);
  1895. #endif
  1896. put_cpu();
  1897. return 0;
  1898. }
  1899. unsigned long to_ratio(u64 period, u64 runtime)
  1900. {
  1901. if (runtime == RUNTIME_INF)
  1902. return 1ULL << 20;
  1903. /*
  1904. * Doing this here saves a lot of checks in all
  1905. * the calling paths, and returning zero seems
  1906. * safe for them anyway.
  1907. */
  1908. if (period == 0)
  1909. return 0;
  1910. return div64_u64(runtime << 20, period);
  1911. }
  1912. #ifdef CONFIG_SMP
  1913. inline struct dl_bw *dl_bw_of(int i)
  1914. {
  1915. RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
  1916. "sched RCU must be held");
  1917. return &cpu_rq(i)->rd->dl_bw;
  1918. }
  1919. static inline int dl_bw_cpus(int i)
  1920. {
  1921. struct root_domain *rd = cpu_rq(i)->rd;
  1922. int cpus = 0;
  1923. RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
  1924. "sched RCU must be held");
  1925. for_each_cpu_and(i, rd->span, cpu_active_mask)
  1926. cpus++;
  1927. return cpus;
  1928. }
  1929. #else
  1930. inline struct dl_bw *dl_bw_of(int i)
  1931. {
  1932. return &cpu_rq(i)->dl.dl_bw;
  1933. }
  1934. static inline int dl_bw_cpus(int i)
  1935. {
  1936. return 1;
  1937. }
  1938. #endif
  1939. /*
  1940. * We must be sure that accepting a new task (or allowing changing the
  1941. * parameters of an existing one) is consistent with the bandwidth
  1942. * constraints. If yes, this function also accordingly updates the currently
  1943. * allocated bandwidth to reflect the new situation.
  1944. *
  1945. * This function is called while holding p's rq->lock.
  1946. *
  1947. * XXX we should delay bw change until the task's 0-lag point, see
  1948. * __setparam_dl().
  1949. */
  1950. static int dl_overflow(struct task_struct *p, int policy,
  1951. const struct sched_attr *attr)
  1952. {
  1953. struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
  1954. u64 period = attr->sched_period ?: attr->sched_deadline;
  1955. u64 runtime = attr->sched_runtime;
  1956. u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
  1957. int cpus, err = -1;
  1958. if (new_bw == p->dl.dl_bw)
  1959. return 0;
  1960. /*
  1961. * Either if a task, enters, leave, or stays -deadline but changes
  1962. * its parameters, we may need to update accordingly the total
  1963. * allocated bandwidth of the container.
  1964. */
  1965. raw_spin_lock(&dl_b->lock);
  1966. cpus = dl_bw_cpus(task_cpu(p));
  1967. if (dl_policy(policy) && !task_has_dl_policy(p) &&
  1968. !__dl_overflow(dl_b, cpus, 0, new_bw)) {
  1969. __dl_add(dl_b, new_bw);
  1970. err = 0;
  1971. } else if (dl_policy(policy) && task_has_dl_policy(p) &&
  1972. !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
  1973. __dl_clear(dl_b, p->dl.dl_bw);
  1974. __dl_add(dl_b, new_bw);
  1975. err = 0;
  1976. } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
  1977. __dl_clear(dl_b, p->dl.dl_bw);
  1978. err = 0;
  1979. }
  1980. raw_spin_unlock(&dl_b->lock);
  1981. return err;
  1982. }
  1983. extern void init_dl_bw(struct dl_bw *dl_b);
  1984. /*
  1985. * wake_up_new_task - wake up a newly created task for the first time.
  1986. *
  1987. * This function will do some initial scheduler statistics housekeeping
  1988. * that must be done for every newly created context, then puts the task
  1989. * on the runqueue and wakes it.
  1990. */
  1991. void wake_up_new_task(struct task_struct *p)
  1992. {
  1993. unsigned long flags;
  1994. struct rq *rq;
  1995. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1996. #ifdef CONFIG_SMP
  1997. /*
  1998. * Fork balancing, do it here and not earlier because:
  1999. * - cpus_allowed can change in the fork path
  2000. * - any previously selected cpu might disappear through hotplug
  2001. */
  2002. set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
  2003. #endif
  2004. /* Initialize new task's runnable average */
  2005. init_entity_runnable_average(&p->se);
  2006. rq = __task_rq_lock(p);
  2007. activate_task(rq, p, 0);
  2008. p->on_rq = TASK_ON_RQ_QUEUED;
  2009. trace_sched_wakeup_new(p);
  2010. check_preempt_curr(rq, p, WF_FORK);
  2011. #ifdef CONFIG_SMP
  2012. if (p->sched_class->task_woken)
  2013. p->sched_class->task_woken(rq, p);
  2014. #endif
  2015. task_rq_unlock(rq, p, &flags);
  2016. }
  2017. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2018. static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
  2019. void preempt_notifier_inc(void)
  2020. {
  2021. static_key_slow_inc(&preempt_notifier_key);
  2022. }
  2023. EXPORT_SYMBOL_GPL(preempt_notifier_inc);
  2024. void preempt_notifier_dec(void)
  2025. {
  2026. static_key_slow_dec(&preempt_notifier_key);
  2027. }
  2028. EXPORT_SYMBOL_GPL(preempt_notifier_dec);
  2029. /**
  2030. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2031. * @notifier: notifier struct to register
  2032. */
  2033. void preempt_notifier_register(struct preempt_notifier *notifier)
  2034. {
  2035. if (!static_key_false(&preempt_notifier_key))
  2036. WARN(1, "registering preempt_notifier while notifiers disabled\n");
  2037. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2038. }
  2039. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2040. /**
  2041. * preempt_notifier_unregister - no longer interested in preemption notifications
  2042. * @notifier: notifier struct to unregister
  2043. *
  2044. * This is *not* safe to call from within a preemption notifier.
  2045. */
  2046. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2047. {
  2048. hlist_del(&notifier->link);
  2049. }
  2050. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2051. static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2052. {
  2053. struct preempt_notifier *notifier;
  2054. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  2055. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2056. }
  2057. static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2058. {
  2059. if (static_key_false(&preempt_notifier_key))
  2060. __fire_sched_in_preempt_notifiers(curr);
  2061. }
  2062. static void
  2063. __fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2064. struct task_struct *next)
  2065. {
  2066. struct preempt_notifier *notifier;
  2067. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  2068. notifier->ops->sched_out(notifier, next);
  2069. }
  2070. static __always_inline void
  2071. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2072. struct task_struct *next)
  2073. {
  2074. if (static_key_false(&preempt_notifier_key))
  2075. __fire_sched_out_preempt_notifiers(curr, next);
  2076. }
  2077. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2078. static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2079. {
  2080. }
  2081. static inline void
  2082. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2083. struct task_struct *next)
  2084. {
  2085. }
  2086. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2087. /**
  2088. * prepare_task_switch - prepare to switch tasks
  2089. * @rq: the runqueue preparing to switch
  2090. * @prev: the current task that is being switched out
  2091. * @next: the task we are going to switch to.
  2092. *
  2093. * This is called with the rq lock held and interrupts off. It must
  2094. * be paired with a subsequent finish_task_switch after the context
  2095. * switch.
  2096. *
  2097. * prepare_task_switch sets up locking and calls architecture specific
  2098. * hooks.
  2099. */
  2100. static inline void
  2101. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2102. struct task_struct *next)
  2103. {
  2104. trace_sched_switch(prev, next);
  2105. sched_info_switch(rq, prev, next);
  2106. perf_event_task_sched_out(prev, next);
  2107. fire_sched_out_preempt_notifiers(prev, next);
  2108. prepare_lock_switch(rq, next);
  2109. prepare_arch_switch(next);
  2110. }
  2111. /**
  2112. * finish_task_switch - clean up after a task-switch
  2113. * @prev: the thread we just switched away from.
  2114. *
  2115. * finish_task_switch must be called after the context switch, paired
  2116. * with a prepare_task_switch call before the context switch.
  2117. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2118. * and do any other architecture-specific cleanup actions.
  2119. *
  2120. * Note that we may have delayed dropping an mm in context_switch(). If
  2121. * so, we finish that here outside of the runqueue lock. (Doing it
  2122. * with the lock held can cause deadlocks; see schedule() for
  2123. * details.)
  2124. *
  2125. * The context switch have flipped the stack from under us and restored the
  2126. * local variables which were saved when this task called schedule() in the
  2127. * past. prev == current is still correct but we need to recalculate this_rq
  2128. * because prev may have moved to another CPU.
  2129. */
  2130. static struct rq *finish_task_switch(struct task_struct *prev)
  2131. __releases(rq->lock)
  2132. {
  2133. struct rq *rq = this_rq();
  2134. struct mm_struct *mm = rq->prev_mm;
  2135. long prev_state;
  2136. rq->prev_mm = NULL;
  2137. /*
  2138. * A task struct has one reference for the use as "current".
  2139. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2140. * schedule one last time. The schedule call will never return, and
  2141. * the scheduled task must drop that reference.
  2142. * The test for TASK_DEAD must occur while the runqueue locks are
  2143. * still held, otherwise prev could be scheduled on another cpu, die
  2144. * there before we look at prev->state, and then the reference would
  2145. * be dropped twice.
  2146. * Manfred Spraul <manfred@colorfullife.com>
  2147. */
  2148. prev_state = prev->state;
  2149. vtime_task_switch(prev);
  2150. perf_event_task_sched_in(prev, current);
  2151. finish_lock_switch(rq, prev);
  2152. finish_arch_post_lock_switch();
  2153. fire_sched_in_preempt_notifiers(current);
  2154. if (mm)
  2155. mmdrop(mm);
  2156. if (unlikely(prev_state == TASK_DEAD)) {
  2157. if (prev->sched_class->task_dead)
  2158. prev->sched_class->task_dead(prev);
  2159. /*
  2160. * Remove function-return probe instances associated with this
  2161. * task and put them back on the free list.
  2162. */
  2163. kprobe_flush_task(prev);
  2164. put_task_struct(prev);
  2165. }
  2166. tick_nohz_task_switch();
  2167. return rq;
  2168. }
  2169. #ifdef CONFIG_SMP
  2170. /* rq->lock is NOT held, but preemption is disabled */
  2171. static void __balance_callback(struct rq *rq)
  2172. {
  2173. struct callback_head *head, *next;
  2174. void (*func)(struct rq *rq);
  2175. unsigned long flags;
  2176. raw_spin_lock_irqsave(&rq->lock, flags);
  2177. head = rq->balance_callback;
  2178. rq->balance_callback = NULL;
  2179. while (head) {
  2180. func = (void (*)(struct rq *))head->func;
  2181. next = head->next;
  2182. head->next = NULL;
  2183. head = next;
  2184. func(rq);
  2185. }
  2186. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2187. }
  2188. static inline void balance_callback(struct rq *rq)
  2189. {
  2190. if (unlikely(rq->balance_callback))
  2191. __balance_callback(rq);
  2192. }
  2193. #else
  2194. static inline void balance_callback(struct rq *rq)
  2195. {
  2196. }
  2197. #endif
  2198. /**
  2199. * schedule_tail - first thing a freshly forked thread must call.
  2200. * @prev: the thread we just switched away from.
  2201. */
  2202. asmlinkage __visible void schedule_tail(struct task_struct *prev)
  2203. __releases(rq->lock)
  2204. {
  2205. struct rq *rq;
  2206. /* finish_task_switch() drops rq->lock and enables preemtion */
  2207. preempt_disable();
  2208. rq = finish_task_switch(prev);
  2209. balance_callback(rq);
  2210. preempt_enable();
  2211. if (current->set_child_tid)
  2212. put_user(task_pid_vnr(current), current->set_child_tid);
  2213. }
  2214. /*
  2215. * context_switch - switch to the new MM and the new thread's register state.
  2216. */
  2217. static inline struct rq *
  2218. context_switch(struct rq *rq, struct task_struct *prev,
  2219. struct task_struct *next)
  2220. {
  2221. struct mm_struct *mm, *oldmm;
  2222. prepare_task_switch(rq, prev, next);
  2223. mm = next->mm;
  2224. oldmm = prev->active_mm;
  2225. /*
  2226. * For paravirt, this is coupled with an exit in switch_to to
  2227. * combine the page table reload and the switch backend into
  2228. * one hypercall.
  2229. */
  2230. arch_start_context_switch(prev);
  2231. if (!mm) {
  2232. next->active_mm = oldmm;
  2233. atomic_inc(&oldmm->mm_count);
  2234. enter_lazy_tlb(oldmm, next);
  2235. } else
  2236. switch_mm(oldmm, mm, next);
  2237. if (!prev->mm) {
  2238. prev->active_mm = NULL;
  2239. rq->prev_mm = oldmm;
  2240. }
  2241. /*
  2242. * Since the runqueue lock will be released by the next
  2243. * task (which is an invalid locking op but in the case
  2244. * of the scheduler it's an obvious special-case), so we
  2245. * do an early lockdep release here:
  2246. */
  2247. lockdep_unpin_lock(&rq->lock);
  2248. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2249. /* Here we just switch the register state and the stack. */
  2250. switch_to(prev, next, prev);
  2251. barrier();
  2252. return finish_task_switch(prev);
  2253. }
  2254. /*
  2255. * nr_running and nr_context_switches:
  2256. *
  2257. * externally visible scheduler statistics: current number of runnable
  2258. * threads, total number of context switches performed since bootup.
  2259. */
  2260. unsigned long nr_running(void)
  2261. {
  2262. unsigned long i, sum = 0;
  2263. for_each_online_cpu(i)
  2264. sum += cpu_rq(i)->nr_running;
  2265. return sum;
  2266. }
  2267. /*
  2268. * Check if only the current task is running on the cpu.
  2269. *
  2270. * Caution: this function does not check that the caller has disabled
  2271. * preemption, thus the result might have a time-of-check-to-time-of-use
  2272. * race. The caller is responsible to use it correctly, for example:
  2273. *
  2274. * - from a non-preemptable section (of course)
  2275. *
  2276. * - from a thread that is bound to a single CPU
  2277. *
  2278. * - in a loop with very short iterations (e.g. a polling loop)
  2279. */
  2280. bool single_task_running(void)
  2281. {
  2282. return raw_rq()->nr_running == 1;
  2283. }
  2284. EXPORT_SYMBOL(single_task_running);
  2285. unsigned long long nr_context_switches(void)
  2286. {
  2287. int i;
  2288. unsigned long long sum = 0;
  2289. for_each_possible_cpu(i)
  2290. sum += cpu_rq(i)->nr_switches;
  2291. return sum;
  2292. }
  2293. unsigned long nr_iowait(void)
  2294. {
  2295. unsigned long i, sum = 0;
  2296. for_each_possible_cpu(i)
  2297. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2298. return sum;
  2299. }
  2300. unsigned long nr_iowait_cpu(int cpu)
  2301. {
  2302. struct rq *this = cpu_rq(cpu);
  2303. return atomic_read(&this->nr_iowait);
  2304. }
  2305. void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
  2306. {
  2307. struct rq *rq = this_rq();
  2308. *nr_waiters = atomic_read(&rq->nr_iowait);
  2309. *load = rq->load.weight;
  2310. }
  2311. #ifdef CONFIG_SMP
  2312. /*
  2313. * sched_exec - execve() is a valuable balancing opportunity, because at
  2314. * this point the task has the smallest effective memory and cache footprint.
  2315. */
  2316. void sched_exec(void)
  2317. {
  2318. struct task_struct *p = current;
  2319. unsigned long flags;
  2320. int dest_cpu;
  2321. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2322. dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
  2323. if (dest_cpu == smp_processor_id())
  2324. goto unlock;
  2325. if (likely(cpu_active(dest_cpu))) {
  2326. struct migration_arg arg = { p, dest_cpu };
  2327. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2328. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  2329. return;
  2330. }
  2331. unlock:
  2332. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2333. }
  2334. #endif
  2335. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2336. DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
  2337. EXPORT_PER_CPU_SYMBOL(kstat);
  2338. EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
  2339. /*
  2340. * Return accounted runtime for the task.
  2341. * In case the task is currently running, return the runtime plus current's
  2342. * pending runtime that have not been accounted yet.
  2343. */
  2344. unsigned long long task_sched_runtime(struct task_struct *p)
  2345. {
  2346. unsigned long flags;
  2347. struct rq *rq;
  2348. u64 ns;
  2349. #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
  2350. /*
  2351. * 64-bit doesn't need locks to atomically read a 64bit value.
  2352. * So we have a optimization chance when the task's delta_exec is 0.
  2353. * Reading ->on_cpu is racy, but this is ok.
  2354. *
  2355. * If we race with it leaving cpu, we'll take a lock. So we're correct.
  2356. * If we race with it entering cpu, unaccounted time is 0. This is
  2357. * indistinguishable from the read occurring a few cycles earlier.
  2358. * If we see ->on_cpu without ->on_rq, the task is leaving, and has
  2359. * been accounted, so we're correct here as well.
  2360. */
  2361. if (!p->on_cpu || !task_on_rq_queued(p))
  2362. return p->se.sum_exec_runtime;
  2363. #endif
  2364. rq = task_rq_lock(p, &flags);
  2365. /*
  2366. * Must be ->curr _and_ ->on_rq. If dequeued, we would
  2367. * project cycles that may never be accounted to this
  2368. * thread, breaking clock_gettime().
  2369. */
  2370. if (task_current(rq, p) && task_on_rq_queued(p)) {
  2371. update_rq_clock(rq);
  2372. p->sched_class->update_curr(rq);
  2373. }
  2374. ns = p->se.sum_exec_runtime;
  2375. task_rq_unlock(rq, p, &flags);
  2376. return ns;
  2377. }
  2378. /*
  2379. * This function gets called by the timer code, with HZ frequency.
  2380. * We call it with interrupts disabled.
  2381. */
  2382. void scheduler_tick(void)
  2383. {
  2384. int cpu = smp_processor_id();
  2385. struct rq *rq = cpu_rq(cpu);
  2386. struct task_struct *curr = rq->curr;
  2387. sched_clock_tick();
  2388. raw_spin_lock(&rq->lock);
  2389. update_rq_clock(rq);
  2390. curr->sched_class->task_tick(rq, curr, 0);
  2391. update_cpu_load_active(rq);
  2392. calc_global_load_tick(rq);
  2393. raw_spin_unlock(&rq->lock);
  2394. perf_event_task_tick();
  2395. #ifdef CONFIG_SMP
  2396. rq->idle_balance = idle_cpu(cpu);
  2397. trigger_load_balance(rq);
  2398. #endif
  2399. rq_last_tick_reset(rq);
  2400. }
  2401. #ifdef CONFIG_NO_HZ_FULL
  2402. /**
  2403. * scheduler_tick_max_deferment
  2404. *
  2405. * Keep at least one tick per second when a single
  2406. * active task is running because the scheduler doesn't
  2407. * yet completely support full dynticks environment.
  2408. *
  2409. * This makes sure that uptime, CFS vruntime, load
  2410. * balancing, etc... continue to move forward, even
  2411. * with a very low granularity.
  2412. *
  2413. * Return: Maximum deferment in nanoseconds.
  2414. */
  2415. u64 scheduler_tick_max_deferment(void)
  2416. {
  2417. struct rq *rq = this_rq();
  2418. unsigned long next, now = READ_ONCE(jiffies);
  2419. next = rq->last_sched_tick + HZ;
  2420. if (time_before_eq(next, now))
  2421. return 0;
  2422. return jiffies_to_nsecs(next - now);
  2423. }
  2424. #endif
  2425. notrace unsigned long get_parent_ip(unsigned long addr)
  2426. {
  2427. if (in_lock_functions(addr)) {
  2428. addr = CALLER_ADDR2;
  2429. if (in_lock_functions(addr))
  2430. addr = CALLER_ADDR3;
  2431. }
  2432. return addr;
  2433. }
  2434. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  2435. defined(CONFIG_PREEMPT_TRACER))
  2436. void preempt_count_add(int val)
  2437. {
  2438. #ifdef CONFIG_DEBUG_PREEMPT
  2439. /*
  2440. * Underflow?
  2441. */
  2442. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2443. return;
  2444. #endif
  2445. __preempt_count_add(val);
  2446. #ifdef CONFIG_DEBUG_PREEMPT
  2447. /*
  2448. * Spinlock count overflowing soon?
  2449. */
  2450. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2451. PREEMPT_MASK - 10);
  2452. #endif
  2453. if (preempt_count() == val) {
  2454. unsigned long ip = get_parent_ip(CALLER_ADDR1);
  2455. #ifdef CONFIG_DEBUG_PREEMPT
  2456. current->preempt_disable_ip = ip;
  2457. #endif
  2458. trace_preempt_off(CALLER_ADDR0, ip);
  2459. }
  2460. }
  2461. EXPORT_SYMBOL(preempt_count_add);
  2462. NOKPROBE_SYMBOL(preempt_count_add);
  2463. void preempt_count_sub(int val)
  2464. {
  2465. #ifdef CONFIG_DEBUG_PREEMPT
  2466. /*
  2467. * Underflow?
  2468. */
  2469. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2470. return;
  2471. /*
  2472. * Is the spinlock portion underflowing?
  2473. */
  2474. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2475. !(preempt_count() & PREEMPT_MASK)))
  2476. return;
  2477. #endif
  2478. if (preempt_count() == val)
  2479. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2480. __preempt_count_sub(val);
  2481. }
  2482. EXPORT_SYMBOL(preempt_count_sub);
  2483. NOKPROBE_SYMBOL(preempt_count_sub);
  2484. #endif
  2485. /*
  2486. * Print scheduling while atomic bug:
  2487. */
  2488. static noinline void __schedule_bug(struct task_struct *prev)
  2489. {
  2490. if (oops_in_progress)
  2491. return;
  2492. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  2493. prev->comm, prev->pid, preempt_count());
  2494. debug_show_held_locks(prev);
  2495. print_modules();
  2496. if (irqs_disabled())
  2497. print_irqtrace_events(prev);
  2498. #ifdef CONFIG_DEBUG_PREEMPT
  2499. if (in_atomic_preempt_off()) {
  2500. pr_err("Preemption disabled at:");
  2501. print_ip_sym(current->preempt_disable_ip);
  2502. pr_cont("\n");
  2503. }
  2504. #endif
  2505. dump_stack();
  2506. add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
  2507. }
  2508. /*
  2509. * Various schedule()-time debugging checks and statistics:
  2510. */
  2511. static inline void schedule_debug(struct task_struct *prev)
  2512. {
  2513. #ifdef CONFIG_SCHED_STACK_END_CHECK
  2514. BUG_ON(unlikely(task_stack_end_corrupted(prev)));
  2515. #endif
  2516. /*
  2517. * Test if we are atomic. Since do_exit() needs to call into
  2518. * schedule() atomically, we ignore that path. Otherwise whine
  2519. * if we are scheduling when we should not.
  2520. */
  2521. if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
  2522. __schedule_bug(prev);
  2523. rcu_sleep_check();
  2524. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2525. schedstat_inc(this_rq(), sched_count);
  2526. }
  2527. /*
  2528. * Pick up the highest-prio task:
  2529. */
  2530. static inline struct task_struct *
  2531. pick_next_task(struct rq *rq, struct task_struct *prev)
  2532. {
  2533. const struct sched_class *class = &fair_sched_class;
  2534. struct task_struct *p;
  2535. /*
  2536. * Optimization: we know that if all tasks are in
  2537. * the fair class we can call that function directly:
  2538. */
  2539. if (likely(prev->sched_class == class &&
  2540. rq->nr_running == rq->cfs.h_nr_running)) {
  2541. p = fair_sched_class.pick_next_task(rq, prev);
  2542. if (unlikely(p == RETRY_TASK))
  2543. goto again;
  2544. /* assumes fair_sched_class->next == idle_sched_class */
  2545. if (unlikely(!p))
  2546. p = idle_sched_class.pick_next_task(rq, prev);
  2547. return p;
  2548. }
  2549. again:
  2550. for_each_class(class) {
  2551. p = class->pick_next_task(rq, prev);
  2552. if (p) {
  2553. if (unlikely(p == RETRY_TASK))
  2554. goto again;
  2555. return p;
  2556. }
  2557. }
  2558. BUG(); /* the idle class will always have a runnable task */
  2559. }
  2560. /*
  2561. * __schedule() is the main scheduler function.
  2562. *
  2563. * The main means of driving the scheduler and thus entering this function are:
  2564. *
  2565. * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
  2566. *
  2567. * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
  2568. * paths. For example, see arch/x86/entry_64.S.
  2569. *
  2570. * To drive preemption between tasks, the scheduler sets the flag in timer
  2571. * interrupt handler scheduler_tick().
  2572. *
  2573. * 3. Wakeups don't really cause entry into schedule(). They add a
  2574. * task to the run-queue and that's it.
  2575. *
  2576. * Now, if the new task added to the run-queue preempts the current
  2577. * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
  2578. * called on the nearest possible occasion:
  2579. *
  2580. * - If the kernel is preemptible (CONFIG_PREEMPT=y):
  2581. *
  2582. * - in syscall or exception context, at the next outmost
  2583. * preempt_enable(). (this might be as soon as the wake_up()'s
  2584. * spin_unlock()!)
  2585. *
  2586. * - in IRQ context, return from interrupt-handler to
  2587. * preemptible context
  2588. *
  2589. * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
  2590. * then at the next:
  2591. *
  2592. * - cond_resched() call
  2593. * - explicit schedule() call
  2594. * - return from syscall or exception to user-space
  2595. * - return from interrupt-handler to user-space
  2596. *
  2597. * WARNING: must be called with preemption disabled!
  2598. */
  2599. static void __sched __schedule(void)
  2600. {
  2601. struct task_struct *prev, *next;
  2602. unsigned long *switch_count;
  2603. struct rq *rq;
  2604. int cpu;
  2605. cpu = smp_processor_id();
  2606. rq = cpu_rq(cpu);
  2607. rcu_note_context_switch();
  2608. prev = rq->curr;
  2609. schedule_debug(prev);
  2610. if (sched_feat(HRTICK))
  2611. hrtick_clear(rq);
  2612. /*
  2613. * Make sure that signal_pending_state()->signal_pending() below
  2614. * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
  2615. * done by the caller to avoid the race with signal_wake_up().
  2616. */
  2617. smp_mb__before_spinlock();
  2618. raw_spin_lock_irq(&rq->lock);
  2619. lockdep_pin_lock(&rq->lock);
  2620. rq->clock_skip_update <<= 1; /* promote REQ to ACT */
  2621. switch_count = &prev->nivcsw;
  2622. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2623. if (unlikely(signal_pending_state(prev->state, prev))) {
  2624. prev->state = TASK_RUNNING;
  2625. } else {
  2626. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  2627. prev->on_rq = 0;
  2628. /*
  2629. * If a worker went to sleep, notify and ask workqueue
  2630. * whether it wants to wake up a task to maintain
  2631. * concurrency.
  2632. */
  2633. if (prev->flags & PF_WQ_WORKER) {
  2634. struct task_struct *to_wakeup;
  2635. to_wakeup = wq_worker_sleeping(prev, cpu);
  2636. if (to_wakeup)
  2637. try_to_wake_up_local(to_wakeup);
  2638. }
  2639. }
  2640. switch_count = &prev->nvcsw;
  2641. }
  2642. if (task_on_rq_queued(prev))
  2643. update_rq_clock(rq);
  2644. next = pick_next_task(rq, prev);
  2645. clear_tsk_need_resched(prev);
  2646. clear_preempt_need_resched();
  2647. rq->clock_skip_update = 0;
  2648. if (likely(prev != next)) {
  2649. rq->nr_switches++;
  2650. rq->curr = next;
  2651. ++*switch_count;
  2652. rq = context_switch(rq, prev, next); /* unlocks the rq */
  2653. cpu = cpu_of(rq);
  2654. } else {
  2655. lockdep_unpin_lock(&rq->lock);
  2656. raw_spin_unlock_irq(&rq->lock);
  2657. }
  2658. balance_callback(rq);
  2659. }
  2660. static inline void sched_submit_work(struct task_struct *tsk)
  2661. {
  2662. if (!tsk->state || tsk_is_pi_blocked(tsk))
  2663. return;
  2664. /*
  2665. * If we are going to sleep and we have plugged IO queued,
  2666. * make sure to submit it to avoid deadlocks.
  2667. */
  2668. if (blk_needs_flush_plug(tsk))
  2669. blk_schedule_flush_plug(tsk);
  2670. }
  2671. asmlinkage __visible void __sched schedule(void)
  2672. {
  2673. struct task_struct *tsk = current;
  2674. sched_submit_work(tsk);
  2675. do {
  2676. preempt_disable();
  2677. __schedule();
  2678. sched_preempt_enable_no_resched();
  2679. } while (need_resched());
  2680. }
  2681. EXPORT_SYMBOL(schedule);
  2682. #ifdef CONFIG_CONTEXT_TRACKING
  2683. asmlinkage __visible void __sched schedule_user(void)
  2684. {
  2685. /*
  2686. * If we come here after a random call to set_need_resched(),
  2687. * or we have been woken up remotely but the IPI has not yet arrived,
  2688. * we haven't yet exited the RCU idle mode. Do it here manually until
  2689. * we find a better solution.
  2690. *
  2691. * NB: There are buggy callers of this function. Ideally we
  2692. * should warn if prev_state != CONTEXT_USER, but that will trigger
  2693. * too frequently to make sense yet.
  2694. */
  2695. enum ctx_state prev_state = exception_enter();
  2696. schedule();
  2697. exception_exit(prev_state);
  2698. }
  2699. #endif
  2700. /**
  2701. * schedule_preempt_disabled - called with preemption disabled
  2702. *
  2703. * Returns with preemption disabled. Note: preempt_count must be 1
  2704. */
  2705. void __sched schedule_preempt_disabled(void)
  2706. {
  2707. sched_preempt_enable_no_resched();
  2708. schedule();
  2709. preempt_disable();
  2710. }
  2711. static void __sched notrace preempt_schedule_common(void)
  2712. {
  2713. do {
  2714. preempt_active_enter();
  2715. __schedule();
  2716. preempt_active_exit();
  2717. /*
  2718. * Check again in case we missed a preemption opportunity
  2719. * between schedule and now.
  2720. */
  2721. } while (need_resched());
  2722. }
  2723. #ifdef CONFIG_PREEMPT
  2724. /*
  2725. * this is the entry point to schedule() from in-kernel preemption
  2726. * off of preempt_enable. Kernel preemptions off return from interrupt
  2727. * occur there and call schedule directly.
  2728. */
  2729. asmlinkage __visible void __sched notrace preempt_schedule(void)
  2730. {
  2731. /*
  2732. * If there is a non-zero preempt_count or interrupts are disabled,
  2733. * we do not want to preempt the current task. Just return..
  2734. */
  2735. if (likely(!preemptible()))
  2736. return;
  2737. preempt_schedule_common();
  2738. }
  2739. NOKPROBE_SYMBOL(preempt_schedule);
  2740. EXPORT_SYMBOL(preempt_schedule);
  2741. /**
  2742. * preempt_schedule_notrace - preempt_schedule called by tracing
  2743. *
  2744. * The tracing infrastructure uses preempt_enable_notrace to prevent
  2745. * recursion and tracing preempt enabling caused by the tracing
  2746. * infrastructure itself. But as tracing can happen in areas coming
  2747. * from userspace or just about to enter userspace, a preempt enable
  2748. * can occur before user_exit() is called. This will cause the scheduler
  2749. * to be called when the system is still in usermode.
  2750. *
  2751. * To prevent this, the preempt_enable_notrace will use this function
  2752. * instead of preempt_schedule() to exit user context if needed before
  2753. * calling the scheduler.
  2754. */
  2755. asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
  2756. {
  2757. enum ctx_state prev_ctx;
  2758. if (likely(!preemptible()))
  2759. return;
  2760. do {
  2761. /*
  2762. * Use raw __prempt_count() ops that don't call function.
  2763. * We can't call functions before disabling preemption which
  2764. * disarm preemption tracing recursions.
  2765. */
  2766. __preempt_count_add(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
  2767. barrier();
  2768. /*
  2769. * Needs preempt disabled in case user_exit() is traced
  2770. * and the tracer calls preempt_enable_notrace() causing
  2771. * an infinite recursion.
  2772. */
  2773. prev_ctx = exception_enter();
  2774. __schedule();
  2775. exception_exit(prev_ctx);
  2776. barrier();
  2777. __preempt_count_sub(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
  2778. } while (need_resched());
  2779. }
  2780. EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
  2781. #endif /* CONFIG_PREEMPT */
  2782. /*
  2783. * this is the entry point to schedule() from kernel preemption
  2784. * off of irq context.
  2785. * Note, that this is called and return with irqs disabled. This will
  2786. * protect us against recursive calling from irq.
  2787. */
  2788. asmlinkage __visible void __sched preempt_schedule_irq(void)
  2789. {
  2790. enum ctx_state prev_state;
  2791. /* Catch callers which need to be fixed */
  2792. BUG_ON(preempt_count() || !irqs_disabled());
  2793. prev_state = exception_enter();
  2794. do {
  2795. preempt_active_enter();
  2796. local_irq_enable();
  2797. __schedule();
  2798. local_irq_disable();
  2799. preempt_active_exit();
  2800. } while (need_resched());
  2801. exception_exit(prev_state);
  2802. }
  2803. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  2804. void *key)
  2805. {
  2806. return try_to_wake_up(curr->private, mode, wake_flags);
  2807. }
  2808. EXPORT_SYMBOL(default_wake_function);
  2809. #ifdef CONFIG_RT_MUTEXES
  2810. /*
  2811. * rt_mutex_setprio - set the current priority of a task
  2812. * @p: task
  2813. * @prio: prio value (kernel-internal form)
  2814. *
  2815. * This function changes the 'effective' priority of a task. It does
  2816. * not touch ->normal_prio like __setscheduler().
  2817. *
  2818. * Used by the rt_mutex code to implement priority inheritance
  2819. * logic. Call site only calls if the priority of the task changed.
  2820. */
  2821. void rt_mutex_setprio(struct task_struct *p, int prio)
  2822. {
  2823. int oldprio, queued, running, enqueue_flag = 0;
  2824. struct rq *rq;
  2825. const struct sched_class *prev_class;
  2826. BUG_ON(prio > MAX_PRIO);
  2827. rq = __task_rq_lock(p);
  2828. /*
  2829. * Idle task boosting is a nono in general. There is one
  2830. * exception, when PREEMPT_RT and NOHZ is active:
  2831. *
  2832. * The idle task calls get_next_timer_interrupt() and holds
  2833. * the timer wheel base->lock on the CPU and another CPU wants
  2834. * to access the timer (probably to cancel it). We can safely
  2835. * ignore the boosting request, as the idle CPU runs this code
  2836. * with interrupts disabled and will complete the lock
  2837. * protected section without being interrupted. So there is no
  2838. * real need to boost.
  2839. */
  2840. if (unlikely(p == rq->idle)) {
  2841. WARN_ON(p != rq->curr);
  2842. WARN_ON(p->pi_blocked_on);
  2843. goto out_unlock;
  2844. }
  2845. trace_sched_pi_setprio(p, prio);
  2846. oldprio = p->prio;
  2847. prev_class = p->sched_class;
  2848. queued = task_on_rq_queued(p);
  2849. running = task_current(rq, p);
  2850. if (queued)
  2851. dequeue_task(rq, p, 0);
  2852. if (running)
  2853. put_prev_task(rq, p);
  2854. /*
  2855. * Boosting condition are:
  2856. * 1. -rt task is running and holds mutex A
  2857. * --> -dl task blocks on mutex A
  2858. *
  2859. * 2. -dl task is running and holds mutex A
  2860. * --> -dl task blocks on mutex A and could preempt the
  2861. * running task
  2862. */
  2863. if (dl_prio(prio)) {
  2864. struct task_struct *pi_task = rt_mutex_get_top_task(p);
  2865. if (!dl_prio(p->normal_prio) ||
  2866. (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
  2867. p->dl.dl_boosted = 1;
  2868. enqueue_flag = ENQUEUE_REPLENISH;
  2869. } else
  2870. p->dl.dl_boosted = 0;
  2871. p->sched_class = &dl_sched_class;
  2872. } else if (rt_prio(prio)) {
  2873. if (dl_prio(oldprio))
  2874. p->dl.dl_boosted = 0;
  2875. if (oldprio < prio)
  2876. enqueue_flag = ENQUEUE_HEAD;
  2877. p->sched_class = &rt_sched_class;
  2878. } else {
  2879. if (dl_prio(oldprio))
  2880. p->dl.dl_boosted = 0;
  2881. if (rt_prio(oldprio))
  2882. p->rt.timeout = 0;
  2883. p->sched_class = &fair_sched_class;
  2884. }
  2885. p->prio = prio;
  2886. if (running)
  2887. p->sched_class->set_curr_task(rq);
  2888. if (queued)
  2889. enqueue_task(rq, p, enqueue_flag);
  2890. check_class_changed(rq, p, prev_class, oldprio);
  2891. out_unlock:
  2892. preempt_disable(); /* avoid rq from going away on us */
  2893. __task_rq_unlock(rq);
  2894. balance_callback(rq);
  2895. preempt_enable();
  2896. }
  2897. #endif
  2898. void set_user_nice(struct task_struct *p, long nice)
  2899. {
  2900. int old_prio, delta, queued;
  2901. unsigned long flags;
  2902. struct rq *rq;
  2903. if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
  2904. return;
  2905. /*
  2906. * We have to be careful, if called from sys_setpriority(),
  2907. * the task might be in the middle of scheduling on another CPU.
  2908. */
  2909. rq = task_rq_lock(p, &flags);
  2910. /*
  2911. * The RT priorities are set via sched_setscheduler(), but we still
  2912. * allow the 'normal' nice value to be set - but as expected
  2913. * it wont have any effect on scheduling until the task is
  2914. * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
  2915. */
  2916. if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
  2917. p->static_prio = NICE_TO_PRIO(nice);
  2918. goto out_unlock;
  2919. }
  2920. queued = task_on_rq_queued(p);
  2921. if (queued)
  2922. dequeue_task(rq, p, 0);
  2923. p->static_prio = NICE_TO_PRIO(nice);
  2924. set_load_weight(p);
  2925. old_prio = p->prio;
  2926. p->prio = effective_prio(p);
  2927. delta = p->prio - old_prio;
  2928. if (queued) {
  2929. enqueue_task(rq, p, 0);
  2930. /*
  2931. * If the task increased its priority or is running and
  2932. * lowered its priority, then reschedule its CPU:
  2933. */
  2934. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  2935. resched_curr(rq);
  2936. }
  2937. out_unlock:
  2938. task_rq_unlock(rq, p, &flags);
  2939. }
  2940. EXPORT_SYMBOL(set_user_nice);
  2941. /*
  2942. * can_nice - check if a task can reduce its nice value
  2943. * @p: task
  2944. * @nice: nice value
  2945. */
  2946. int can_nice(const struct task_struct *p, const int nice)
  2947. {
  2948. /* convert nice value [19,-20] to rlimit style value [1,40] */
  2949. int nice_rlim = nice_to_rlimit(nice);
  2950. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  2951. capable(CAP_SYS_NICE));
  2952. }
  2953. #ifdef __ARCH_WANT_SYS_NICE
  2954. /*
  2955. * sys_nice - change the priority of the current process.
  2956. * @increment: priority increment
  2957. *
  2958. * sys_setpriority is a more generic, but much slower function that
  2959. * does similar things.
  2960. */
  2961. SYSCALL_DEFINE1(nice, int, increment)
  2962. {
  2963. long nice, retval;
  2964. /*
  2965. * Setpriority might change our priority at the same moment.
  2966. * We don't have to worry. Conceptually one call occurs first
  2967. * and we have a single winner.
  2968. */
  2969. increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
  2970. nice = task_nice(current) + increment;
  2971. nice = clamp_val(nice, MIN_NICE, MAX_NICE);
  2972. if (increment < 0 && !can_nice(current, nice))
  2973. return -EPERM;
  2974. retval = security_task_setnice(current, nice);
  2975. if (retval)
  2976. return retval;
  2977. set_user_nice(current, nice);
  2978. return 0;
  2979. }
  2980. #endif
  2981. /**
  2982. * task_prio - return the priority value of a given task.
  2983. * @p: the task in question.
  2984. *
  2985. * Return: The priority value as seen by users in /proc.
  2986. * RT tasks are offset by -200. Normal tasks are centered
  2987. * around 0, value goes from -16 to +15.
  2988. */
  2989. int task_prio(const struct task_struct *p)
  2990. {
  2991. return p->prio - MAX_RT_PRIO;
  2992. }
  2993. /**
  2994. * idle_cpu - is a given cpu idle currently?
  2995. * @cpu: the processor in question.
  2996. *
  2997. * Return: 1 if the CPU is currently idle. 0 otherwise.
  2998. */
  2999. int idle_cpu(int cpu)
  3000. {
  3001. struct rq *rq = cpu_rq(cpu);
  3002. if (rq->curr != rq->idle)
  3003. return 0;
  3004. if (rq->nr_running)
  3005. return 0;
  3006. #ifdef CONFIG_SMP
  3007. if (!llist_empty(&rq->wake_list))
  3008. return 0;
  3009. #endif
  3010. return 1;
  3011. }
  3012. /**
  3013. * idle_task - return the idle task for a given cpu.
  3014. * @cpu: the processor in question.
  3015. *
  3016. * Return: The idle task for the cpu @cpu.
  3017. */
  3018. struct task_struct *idle_task(int cpu)
  3019. {
  3020. return cpu_rq(cpu)->idle;
  3021. }
  3022. /**
  3023. * find_process_by_pid - find a process with a matching PID value.
  3024. * @pid: the pid in question.
  3025. *
  3026. * The task of @pid, if found. %NULL otherwise.
  3027. */
  3028. static struct task_struct *find_process_by_pid(pid_t pid)
  3029. {
  3030. return pid ? find_task_by_vpid(pid) : current;
  3031. }
  3032. /*
  3033. * This function initializes the sched_dl_entity of a newly becoming
  3034. * SCHED_DEADLINE task.
  3035. *
  3036. * Only the static values are considered here, the actual runtime and the
  3037. * absolute deadline will be properly calculated when the task is enqueued
  3038. * for the first time with its new policy.
  3039. */
  3040. static void
  3041. __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
  3042. {
  3043. struct sched_dl_entity *dl_se = &p->dl;
  3044. dl_se->dl_runtime = attr->sched_runtime;
  3045. dl_se->dl_deadline = attr->sched_deadline;
  3046. dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
  3047. dl_se->flags = attr->sched_flags;
  3048. dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
  3049. /*
  3050. * Changing the parameters of a task is 'tricky' and we're not doing
  3051. * the correct thing -- also see task_dead_dl() and switched_from_dl().
  3052. *
  3053. * What we SHOULD do is delay the bandwidth release until the 0-lag
  3054. * point. This would include retaining the task_struct until that time
  3055. * and change dl_overflow() to not immediately decrement the current
  3056. * amount.
  3057. *
  3058. * Instead we retain the current runtime/deadline and let the new
  3059. * parameters take effect after the current reservation period lapses.
  3060. * This is safe (albeit pessimistic) because the 0-lag point is always
  3061. * before the current scheduling deadline.
  3062. *
  3063. * We can still have temporary overloads because we do not delay the
  3064. * change in bandwidth until that time; so admission control is
  3065. * not on the safe side. It does however guarantee tasks will never
  3066. * consume more than promised.
  3067. */
  3068. }
  3069. /*
  3070. * sched_setparam() passes in -1 for its policy, to let the functions
  3071. * it calls know not to change it.
  3072. */
  3073. #define SETPARAM_POLICY -1
  3074. static void __setscheduler_params(struct task_struct *p,
  3075. const struct sched_attr *attr)
  3076. {
  3077. int policy = attr->sched_policy;
  3078. if (policy == SETPARAM_POLICY)
  3079. policy = p->policy;
  3080. p->policy = policy;
  3081. if (dl_policy(policy))
  3082. __setparam_dl(p, attr);
  3083. else if (fair_policy(policy))
  3084. p->static_prio = NICE_TO_PRIO(attr->sched_nice);
  3085. /*
  3086. * __sched_setscheduler() ensures attr->sched_priority == 0 when
  3087. * !rt_policy. Always setting this ensures that things like
  3088. * getparam()/getattr() don't report silly values for !rt tasks.
  3089. */
  3090. p->rt_priority = attr->sched_priority;
  3091. p->normal_prio = normal_prio(p);
  3092. set_load_weight(p);
  3093. }
  3094. /* Actually do priority change: must hold pi & rq lock. */
  3095. static void __setscheduler(struct rq *rq, struct task_struct *p,
  3096. const struct sched_attr *attr, bool keep_boost)
  3097. {
  3098. __setscheduler_params(p, attr);
  3099. /*
  3100. * Keep a potential priority boosting if called from
  3101. * sched_setscheduler().
  3102. */
  3103. if (keep_boost)
  3104. p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
  3105. else
  3106. p->prio = normal_prio(p);
  3107. if (dl_prio(p->prio))
  3108. p->sched_class = &dl_sched_class;
  3109. else if (rt_prio(p->prio))
  3110. p->sched_class = &rt_sched_class;
  3111. else
  3112. p->sched_class = &fair_sched_class;
  3113. }
  3114. static void
  3115. __getparam_dl(struct task_struct *p, struct sched_attr *attr)
  3116. {
  3117. struct sched_dl_entity *dl_se = &p->dl;
  3118. attr->sched_priority = p->rt_priority;
  3119. attr->sched_runtime = dl_se->dl_runtime;
  3120. attr->sched_deadline = dl_se->dl_deadline;
  3121. attr->sched_period = dl_se->dl_period;
  3122. attr->sched_flags = dl_se->flags;
  3123. }
  3124. /*
  3125. * This function validates the new parameters of a -deadline task.
  3126. * We ask for the deadline not being zero, and greater or equal
  3127. * than the runtime, as well as the period of being zero or
  3128. * greater than deadline. Furthermore, we have to be sure that
  3129. * user parameters are above the internal resolution of 1us (we
  3130. * check sched_runtime only since it is always the smaller one) and
  3131. * below 2^63 ns (we have to check both sched_deadline and
  3132. * sched_period, as the latter can be zero).
  3133. */
  3134. static bool
  3135. __checkparam_dl(const struct sched_attr *attr)
  3136. {
  3137. /* deadline != 0 */
  3138. if (attr->sched_deadline == 0)
  3139. return false;
  3140. /*
  3141. * Since we truncate DL_SCALE bits, make sure we're at least
  3142. * that big.
  3143. */
  3144. if (attr->sched_runtime < (1ULL << DL_SCALE))
  3145. return false;
  3146. /*
  3147. * Since we use the MSB for wrap-around and sign issues, make
  3148. * sure it's not set (mind that period can be equal to zero).
  3149. */
  3150. if (attr->sched_deadline & (1ULL << 63) ||
  3151. attr->sched_period & (1ULL << 63))
  3152. return false;
  3153. /* runtime <= deadline <= period (if period != 0) */
  3154. if ((attr->sched_period != 0 &&
  3155. attr->sched_period < attr->sched_deadline) ||
  3156. attr->sched_deadline < attr->sched_runtime)
  3157. return false;
  3158. return true;
  3159. }
  3160. /*
  3161. * check the target process has a UID that matches the current process's
  3162. */
  3163. static bool check_same_owner(struct task_struct *p)
  3164. {
  3165. const struct cred *cred = current_cred(), *pcred;
  3166. bool match;
  3167. rcu_read_lock();
  3168. pcred = __task_cred(p);
  3169. match = (uid_eq(cred->euid, pcred->euid) ||
  3170. uid_eq(cred->euid, pcred->uid));
  3171. rcu_read_unlock();
  3172. return match;
  3173. }
  3174. static bool dl_param_changed(struct task_struct *p,
  3175. const struct sched_attr *attr)
  3176. {
  3177. struct sched_dl_entity *dl_se = &p->dl;
  3178. if (dl_se->dl_runtime != attr->sched_runtime ||
  3179. dl_se->dl_deadline != attr->sched_deadline ||
  3180. dl_se->dl_period != attr->sched_period ||
  3181. dl_se->flags != attr->sched_flags)
  3182. return true;
  3183. return false;
  3184. }
  3185. static int __sched_setscheduler(struct task_struct *p,
  3186. const struct sched_attr *attr,
  3187. bool user, bool pi)
  3188. {
  3189. int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
  3190. MAX_RT_PRIO - 1 - attr->sched_priority;
  3191. int retval, oldprio, oldpolicy = -1, queued, running;
  3192. int new_effective_prio, policy = attr->sched_policy;
  3193. unsigned long flags;
  3194. const struct sched_class *prev_class;
  3195. struct rq *rq;
  3196. int reset_on_fork;
  3197. /* may grab non-irq protected spin_locks */
  3198. BUG_ON(in_interrupt());
  3199. recheck:
  3200. /* double check policy once rq lock held */
  3201. if (policy < 0) {
  3202. reset_on_fork = p->sched_reset_on_fork;
  3203. policy = oldpolicy = p->policy;
  3204. } else {
  3205. reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
  3206. if (policy != SCHED_DEADLINE &&
  3207. policy != SCHED_FIFO && policy != SCHED_RR &&
  3208. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3209. policy != SCHED_IDLE)
  3210. return -EINVAL;
  3211. }
  3212. if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
  3213. return -EINVAL;
  3214. /*
  3215. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3216. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3217. * SCHED_BATCH and SCHED_IDLE is 0.
  3218. */
  3219. if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
  3220. (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
  3221. return -EINVAL;
  3222. if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
  3223. (rt_policy(policy) != (attr->sched_priority != 0)))
  3224. return -EINVAL;
  3225. /*
  3226. * Allow unprivileged RT tasks to decrease priority:
  3227. */
  3228. if (user && !capable(CAP_SYS_NICE)) {
  3229. if (fair_policy(policy)) {
  3230. if (attr->sched_nice < task_nice(p) &&
  3231. !can_nice(p, attr->sched_nice))
  3232. return -EPERM;
  3233. }
  3234. if (rt_policy(policy)) {
  3235. unsigned long rlim_rtprio =
  3236. task_rlimit(p, RLIMIT_RTPRIO);
  3237. /* can't set/change the rt policy */
  3238. if (policy != p->policy && !rlim_rtprio)
  3239. return -EPERM;
  3240. /* can't increase priority */
  3241. if (attr->sched_priority > p->rt_priority &&
  3242. attr->sched_priority > rlim_rtprio)
  3243. return -EPERM;
  3244. }
  3245. /*
  3246. * Can't set/change SCHED_DEADLINE policy at all for now
  3247. * (safest behavior); in the future we would like to allow
  3248. * unprivileged DL tasks to increase their relative deadline
  3249. * or reduce their runtime (both ways reducing utilization)
  3250. */
  3251. if (dl_policy(policy))
  3252. return -EPERM;
  3253. /*
  3254. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  3255. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  3256. */
  3257. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  3258. if (!can_nice(p, task_nice(p)))
  3259. return -EPERM;
  3260. }
  3261. /* can't change other user's priorities */
  3262. if (!check_same_owner(p))
  3263. return -EPERM;
  3264. /* Normal users shall not reset the sched_reset_on_fork flag */
  3265. if (p->sched_reset_on_fork && !reset_on_fork)
  3266. return -EPERM;
  3267. }
  3268. if (user) {
  3269. retval = security_task_setscheduler(p);
  3270. if (retval)
  3271. return retval;
  3272. }
  3273. /*
  3274. * make sure no PI-waiters arrive (or leave) while we are
  3275. * changing the priority of the task:
  3276. *
  3277. * To be able to change p->policy safely, the appropriate
  3278. * runqueue lock must be held.
  3279. */
  3280. rq = task_rq_lock(p, &flags);
  3281. /*
  3282. * Changing the policy of the stop threads its a very bad idea
  3283. */
  3284. if (p == rq->stop) {
  3285. task_rq_unlock(rq, p, &flags);
  3286. return -EINVAL;
  3287. }
  3288. /*
  3289. * If not changing anything there's no need to proceed further,
  3290. * but store a possible modification of reset_on_fork.
  3291. */
  3292. if (unlikely(policy == p->policy)) {
  3293. if (fair_policy(policy) && attr->sched_nice != task_nice(p))
  3294. goto change;
  3295. if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
  3296. goto change;
  3297. if (dl_policy(policy) && dl_param_changed(p, attr))
  3298. goto change;
  3299. p->sched_reset_on_fork = reset_on_fork;
  3300. task_rq_unlock(rq, p, &flags);
  3301. return 0;
  3302. }
  3303. change:
  3304. if (user) {
  3305. #ifdef CONFIG_RT_GROUP_SCHED
  3306. /*
  3307. * Do not allow realtime tasks into groups that have no runtime
  3308. * assigned.
  3309. */
  3310. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  3311. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  3312. !task_group_is_autogroup(task_group(p))) {
  3313. task_rq_unlock(rq, p, &flags);
  3314. return -EPERM;
  3315. }
  3316. #endif
  3317. #ifdef CONFIG_SMP
  3318. if (dl_bandwidth_enabled() && dl_policy(policy)) {
  3319. cpumask_t *span = rq->rd->span;
  3320. /*
  3321. * Don't allow tasks with an affinity mask smaller than
  3322. * the entire root_domain to become SCHED_DEADLINE. We
  3323. * will also fail if there's no bandwidth available.
  3324. */
  3325. if (!cpumask_subset(span, &p->cpus_allowed) ||
  3326. rq->rd->dl_bw.bw == 0) {
  3327. task_rq_unlock(rq, p, &flags);
  3328. return -EPERM;
  3329. }
  3330. }
  3331. #endif
  3332. }
  3333. /* recheck policy now with rq lock held */
  3334. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3335. policy = oldpolicy = -1;
  3336. task_rq_unlock(rq, p, &flags);
  3337. goto recheck;
  3338. }
  3339. /*
  3340. * If setscheduling to SCHED_DEADLINE (or changing the parameters
  3341. * of a SCHED_DEADLINE task) we need to check if enough bandwidth
  3342. * is available.
  3343. */
  3344. if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
  3345. task_rq_unlock(rq, p, &flags);
  3346. return -EBUSY;
  3347. }
  3348. p->sched_reset_on_fork = reset_on_fork;
  3349. oldprio = p->prio;
  3350. if (pi) {
  3351. /*
  3352. * Take priority boosted tasks into account. If the new
  3353. * effective priority is unchanged, we just store the new
  3354. * normal parameters and do not touch the scheduler class and
  3355. * the runqueue. This will be done when the task deboost
  3356. * itself.
  3357. */
  3358. new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
  3359. if (new_effective_prio == oldprio) {
  3360. __setscheduler_params(p, attr);
  3361. task_rq_unlock(rq, p, &flags);
  3362. return 0;
  3363. }
  3364. }
  3365. queued = task_on_rq_queued(p);
  3366. running = task_current(rq, p);
  3367. if (queued)
  3368. dequeue_task(rq, p, 0);
  3369. if (running)
  3370. put_prev_task(rq, p);
  3371. prev_class = p->sched_class;
  3372. __setscheduler(rq, p, attr, pi);
  3373. if (running)
  3374. p->sched_class->set_curr_task(rq);
  3375. if (queued) {
  3376. /*
  3377. * We enqueue to tail when the priority of a task is
  3378. * increased (user space view).
  3379. */
  3380. enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
  3381. }
  3382. check_class_changed(rq, p, prev_class, oldprio);
  3383. preempt_disable(); /* avoid rq from going away on us */
  3384. task_rq_unlock(rq, p, &flags);
  3385. if (pi)
  3386. rt_mutex_adjust_pi(p);
  3387. /*
  3388. * Run balance callbacks after we've adjusted the PI chain.
  3389. */
  3390. balance_callback(rq);
  3391. preempt_enable();
  3392. return 0;
  3393. }
  3394. static int _sched_setscheduler(struct task_struct *p, int policy,
  3395. const struct sched_param *param, bool check)
  3396. {
  3397. struct sched_attr attr = {
  3398. .sched_policy = policy,
  3399. .sched_priority = param->sched_priority,
  3400. .sched_nice = PRIO_TO_NICE(p->static_prio),
  3401. };
  3402. /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
  3403. if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
  3404. attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
  3405. policy &= ~SCHED_RESET_ON_FORK;
  3406. attr.sched_policy = policy;
  3407. }
  3408. return __sched_setscheduler(p, &attr, check, true);
  3409. }
  3410. /**
  3411. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3412. * @p: the task in question.
  3413. * @policy: new policy.
  3414. * @param: structure containing the new RT priority.
  3415. *
  3416. * Return: 0 on success. An error code otherwise.
  3417. *
  3418. * NOTE that the task may be already dead.
  3419. */
  3420. int sched_setscheduler(struct task_struct *p, int policy,
  3421. const struct sched_param *param)
  3422. {
  3423. return _sched_setscheduler(p, policy, param, true);
  3424. }
  3425. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3426. int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
  3427. {
  3428. return __sched_setscheduler(p, attr, true, true);
  3429. }
  3430. EXPORT_SYMBOL_GPL(sched_setattr);
  3431. /**
  3432. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  3433. * @p: the task in question.
  3434. * @policy: new policy.
  3435. * @param: structure containing the new RT priority.
  3436. *
  3437. * Just like sched_setscheduler, only don't bother checking if the
  3438. * current context has permission. For example, this is needed in
  3439. * stop_machine(): we create temporary high priority worker threads,
  3440. * but our caller might not have that capability.
  3441. *
  3442. * Return: 0 on success. An error code otherwise.
  3443. */
  3444. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  3445. const struct sched_param *param)
  3446. {
  3447. return _sched_setscheduler(p, policy, param, false);
  3448. }
  3449. static int
  3450. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3451. {
  3452. struct sched_param lparam;
  3453. struct task_struct *p;
  3454. int retval;
  3455. if (!param || pid < 0)
  3456. return -EINVAL;
  3457. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3458. return -EFAULT;
  3459. rcu_read_lock();
  3460. retval = -ESRCH;
  3461. p = find_process_by_pid(pid);
  3462. if (p != NULL)
  3463. retval = sched_setscheduler(p, policy, &lparam);
  3464. rcu_read_unlock();
  3465. return retval;
  3466. }
  3467. /*
  3468. * Mimics kernel/events/core.c perf_copy_attr().
  3469. */
  3470. static int sched_copy_attr(struct sched_attr __user *uattr,
  3471. struct sched_attr *attr)
  3472. {
  3473. u32 size;
  3474. int ret;
  3475. if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
  3476. return -EFAULT;
  3477. /*
  3478. * zero the full structure, so that a short copy will be nice.
  3479. */
  3480. memset(attr, 0, sizeof(*attr));
  3481. ret = get_user(size, &uattr->size);
  3482. if (ret)
  3483. return ret;
  3484. if (size > PAGE_SIZE) /* silly large */
  3485. goto err_size;
  3486. if (!size) /* abi compat */
  3487. size = SCHED_ATTR_SIZE_VER0;
  3488. if (size < SCHED_ATTR_SIZE_VER0)
  3489. goto err_size;
  3490. /*
  3491. * If we're handed a bigger struct than we know of,
  3492. * ensure all the unknown bits are 0 - i.e. new
  3493. * user-space does not rely on any kernel feature
  3494. * extensions we dont know about yet.
  3495. */
  3496. if (size > sizeof(*attr)) {
  3497. unsigned char __user *addr;
  3498. unsigned char __user *end;
  3499. unsigned char val;
  3500. addr = (void __user *)uattr + sizeof(*attr);
  3501. end = (void __user *)uattr + size;
  3502. for (; addr < end; addr++) {
  3503. ret = get_user(val, addr);
  3504. if (ret)
  3505. return ret;
  3506. if (val)
  3507. goto err_size;
  3508. }
  3509. size = sizeof(*attr);
  3510. }
  3511. ret = copy_from_user(attr, uattr, size);
  3512. if (ret)
  3513. return -EFAULT;
  3514. /*
  3515. * XXX: do we want to be lenient like existing syscalls; or do we want
  3516. * to be strict and return an error on out-of-bounds values?
  3517. */
  3518. attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
  3519. return 0;
  3520. err_size:
  3521. put_user(sizeof(*attr), &uattr->size);
  3522. return -E2BIG;
  3523. }
  3524. /**
  3525. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3526. * @pid: the pid in question.
  3527. * @policy: new policy.
  3528. * @param: structure containing the new RT priority.
  3529. *
  3530. * Return: 0 on success. An error code otherwise.
  3531. */
  3532. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  3533. struct sched_param __user *, param)
  3534. {
  3535. /* negative values for policy are not valid */
  3536. if (policy < 0)
  3537. return -EINVAL;
  3538. return do_sched_setscheduler(pid, policy, param);
  3539. }
  3540. /**
  3541. * sys_sched_setparam - set/change the RT priority of a thread
  3542. * @pid: the pid in question.
  3543. * @param: structure containing the new RT priority.
  3544. *
  3545. * Return: 0 on success. An error code otherwise.
  3546. */
  3547. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  3548. {
  3549. return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
  3550. }
  3551. /**
  3552. * sys_sched_setattr - same as above, but with extended sched_attr
  3553. * @pid: the pid in question.
  3554. * @uattr: structure containing the extended parameters.
  3555. * @flags: for future extension.
  3556. */
  3557. SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
  3558. unsigned int, flags)
  3559. {
  3560. struct sched_attr attr;
  3561. struct task_struct *p;
  3562. int retval;
  3563. if (!uattr || pid < 0 || flags)
  3564. return -EINVAL;
  3565. retval = sched_copy_attr(uattr, &attr);
  3566. if (retval)
  3567. return retval;
  3568. if ((int)attr.sched_policy < 0)
  3569. return -EINVAL;
  3570. rcu_read_lock();
  3571. retval = -ESRCH;
  3572. p = find_process_by_pid(pid);
  3573. if (p != NULL)
  3574. retval = sched_setattr(p, &attr);
  3575. rcu_read_unlock();
  3576. return retval;
  3577. }
  3578. /**
  3579. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3580. * @pid: the pid in question.
  3581. *
  3582. * Return: On success, the policy of the thread. Otherwise, a negative error
  3583. * code.
  3584. */
  3585. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  3586. {
  3587. struct task_struct *p;
  3588. int retval;
  3589. if (pid < 0)
  3590. return -EINVAL;
  3591. retval = -ESRCH;
  3592. rcu_read_lock();
  3593. p = find_process_by_pid(pid);
  3594. if (p) {
  3595. retval = security_task_getscheduler(p);
  3596. if (!retval)
  3597. retval = p->policy
  3598. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  3599. }
  3600. rcu_read_unlock();
  3601. return retval;
  3602. }
  3603. /**
  3604. * sys_sched_getparam - get the RT priority of a thread
  3605. * @pid: the pid in question.
  3606. * @param: structure containing the RT priority.
  3607. *
  3608. * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
  3609. * code.
  3610. */
  3611. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  3612. {
  3613. struct sched_param lp = { .sched_priority = 0 };
  3614. struct task_struct *p;
  3615. int retval;
  3616. if (!param || pid < 0)
  3617. return -EINVAL;
  3618. rcu_read_lock();
  3619. p = find_process_by_pid(pid);
  3620. retval = -ESRCH;
  3621. if (!p)
  3622. goto out_unlock;
  3623. retval = security_task_getscheduler(p);
  3624. if (retval)
  3625. goto out_unlock;
  3626. if (task_has_rt_policy(p))
  3627. lp.sched_priority = p->rt_priority;
  3628. rcu_read_unlock();
  3629. /*
  3630. * This one might sleep, we cannot do it with a spinlock held ...
  3631. */
  3632. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3633. return retval;
  3634. out_unlock:
  3635. rcu_read_unlock();
  3636. return retval;
  3637. }
  3638. static int sched_read_attr(struct sched_attr __user *uattr,
  3639. struct sched_attr *attr,
  3640. unsigned int usize)
  3641. {
  3642. int ret;
  3643. if (!access_ok(VERIFY_WRITE, uattr, usize))
  3644. return -EFAULT;
  3645. /*
  3646. * If we're handed a smaller struct than we know of,
  3647. * ensure all the unknown bits are 0 - i.e. old
  3648. * user-space does not get uncomplete information.
  3649. */
  3650. if (usize < sizeof(*attr)) {
  3651. unsigned char *addr;
  3652. unsigned char *end;
  3653. addr = (void *)attr + usize;
  3654. end = (void *)attr + sizeof(*attr);
  3655. for (; addr < end; addr++) {
  3656. if (*addr)
  3657. return -EFBIG;
  3658. }
  3659. attr->size = usize;
  3660. }
  3661. ret = copy_to_user(uattr, attr, attr->size);
  3662. if (ret)
  3663. return -EFAULT;
  3664. return 0;
  3665. }
  3666. /**
  3667. * sys_sched_getattr - similar to sched_getparam, but with sched_attr
  3668. * @pid: the pid in question.
  3669. * @uattr: structure containing the extended parameters.
  3670. * @size: sizeof(attr) for fwd/bwd comp.
  3671. * @flags: for future extension.
  3672. */
  3673. SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
  3674. unsigned int, size, unsigned int, flags)
  3675. {
  3676. struct sched_attr attr = {
  3677. .size = sizeof(struct sched_attr),
  3678. };
  3679. struct task_struct *p;
  3680. int retval;
  3681. if (!uattr || pid < 0 || size > PAGE_SIZE ||
  3682. size < SCHED_ATTR_SIZE_VER0 || flags)
  3683. return -EINVAL;
  3684. rcu_read_lock();
  3685. p = find_process_by_pid(pid);
  3686. retval = -ESRCH;
  3687. if (!p)
  3688. goto out_unlock;
  3689. retval = security_task_getscheduler(p);
  3690. if (retval)
  3691. goto out_unlock;
  3692. attr.sched_policy = p->policy;
  3693. if (p->sched_reset_on_fork)
  3694. attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
  3695. if (task_has_dl_policy(p))
  3696. __getparam_dl(p, &attr);
  3697. else if (task_has_rt_policy(p))
  3698. attr.sched_priority = p->rt_priority;
  3699. else
  3700. attr.sched_nice = task_nice(p);
  3701. rcu_read_unlock();
  3702. retval = sched_read_attr(uattr, &attr, size);
  3703. return retval;
  3704. out_unlock:
  3705. rcu_read_unlock();
  3706. return retval;
  3707. }
  3708. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  3709. {
  3710. cpumask_var_t cpus_allowed, new_mask;
  3711. struct task_struct *p;
  3712. int retval;
  3713. rcu_read_lock();
  3714. p = find_process_by_pid(pid);
  3715. if (!p) {
  3716. rcu_read_unlock();
  3717. return -ESRCH;
  3718. }
  3719. /* Prevent p going away */
  3720. get_task_struct(p);
  3721. rcu_read_unlock();
  3722. if (p->flags & PF_NO_SETAFFINITY) {
  3723. retval = -EINVAL;
  3724. goto out_put_task;
  3725. }
  3726. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  3727. retval = -ENOMEM;
  3728. goto out_put_task;
  3729. }
  3730. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  3731. retval = -ENOMEM;
  3732. goto out_free_cpus_allowed;
  3733. }
  3734. retval = -EPERM;
  3735. if (!check_same_owner(p)) {
  3736. rcu_read_lock();
  3737. if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
  3738. rcu_read_unlock();
  3739. goto out_free_new_mask;
  3740. }
  3741. rcu_read_unlock();
  3742. }
  3743. retval = security_task_setscheduler(p);
  3744. if (retval)
  3745. goto out_free_new_mask;
  3746. cpuset_cpus_allowed(p, cpus_allowed);
  3747. cpumask_and(new_mask, in_mask, cpus_allowed);
  3748. /*
  3749. * Since bandwidth control happens on root_domain basis,
  3750. * if admission test is enabled, we only admit -deadline
  3751. * tasks allowed to run on all the CPUs in the task's
  3752. * root_domain.
  3753. */
  3754. #ifdef CONFIG_SMP
  3755. if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
  3756. rcu_read_lock();
  3757. if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
  3758. retval = -EBUSY;
  3759. rcu_read_unlock();
  3760. goto out_free_new_mask;
  3761. }
  3762. rcu_read_unlock();
  3763. }
  3764. #endif
  3765. again:
  3766. retval = __set_cpus_allowed_ptr(p, new_mask, true);
  3767. if (!retval) {
  3768. cpuset_cpus_allowed(p, cpus_allowed);
  3769. if (!cpumask_subset(new_mask, cpus_allowed)) {
  3770. /*
  3771. * We must have raced with a concurrent cpuset
  3772. * update. Just reset the cpus_allowed to the
  3773. * cpuset's cpus_allowed
  3774. */
  3775. cpumask_copy(new_mask, cpus_allowed);
  3776. goto again;
  3777. }
  3778. }
  3779. out_free_new_mask:
  3780. free_cpumask_var(new_mask);
  3781. out_free_cpus_allowed:
  3782. free_cpumask_var(cpus_allowed);
  3783. out_put_task:
  3784. put_task_struct(p);
  3785. return retval;
  3786. }
  3787. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3788. struct cpumask *new_mask)
  3789. {
  3790. if (len < cpumask_size())
  3791. cpumask_clear(new_mask);
  3792. else if (len > cpumask_size())
  3793. len = cpumask_size();
  3794. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3795. }
  3796. /**
  3797. * sys_sched_setaffinity - set the cpu affinity of a process
  3798. * @pid: pid of the process
  3799. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3800. * @user_mask_ptr: user-space pointer to the new cpu mask
  3801. *
  3802. * Return: 0 on success. An error code otherwise.
  3803. */
  3804. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  3805. unsigned long __user *, user_mask_ptr)
  3806. {
  3807. cpumask_var_t new_mask;
  3808. int retval;
  3809. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  3810. return -ENOMEM;
  3811. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  3812. if (retval == 0)
  3813. retval = sched_setaffinity(pid, new_mask);
  3814. free_cpumask_var(new_mask);
  3815. return retval;
  3816. }
  3817. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  3818. {
  3819. struct task_struct *p;
  3820. unsigned long flags;
  3821. int retval;
  3822. rcu_read_lock();
  3823. retval = -ESRCH;
  3824. p = find_process_by_pid(pid);
  3825. if (!p)
  3826. goto out_unlock;
  3827. retval = security_task_getscheduler(p);
  3828. if (retval)
  3829. goto out_unlock;
  3830. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3831. cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
  3832. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3833. out_unlock:
  3834. rcu_read_unlock();
  3835. return retval;
  3836. }
  3837. /**
  3838. * sys_sched_getaffinity - get the cpu affinity of a process
  3839. * @pid: pid of the process
  3840. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3841. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3842. *
  3843. * Return: 0 on success. An error code otherwise.
  3844. */
  3845. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  3846. unsigned long __user *, user_mask_ptr)
  3847. {
  3848. int ret;
  3849. cpumask_var_t mask;
  3850. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  3851. return -EINVAL;
  3852. if (len & (sizeof(unsigned long)-1))
  3853. return -EINVAL;
  3854. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  3855. return -ENOMEM;
  3856. ret = sched_getaffinity(pid, mask);
  3857. if (ret == 0) {
  3858. size_t retlen = min_t(size_t, len, cpumask_size());
  3859. if (copy_to_user(user_mask_ptr, mask, retlen))
  3860. ret = -EFAULT;
  3861. else
  3862. ret = retlen;
  3863. }
  3864. free_cpumask_var(mask);
  3865. return ret;
  3866. }
  3867. /**
  3868. * sys_sched_yield - yield the current processor to other threads.
  3869. *
  3870. * This function yields the current CPU to other tasks. If there are no
  3871. * other threads running on this CPU then this function will return.
  3872. *
  3873. * Return: 0.
  3874. */
  3875. SYSCALL_DEFINE0(sched_yield)
  3876. {
  3877. struct rq *rq = this_rq_lock();
  3878. schedstat_inc(rq, yld_count);
  3879. current->sched_class->yield_task(rq);
  3880. /*
  3881. * Since we are going to call schedule() anyway, there's
  3882. * no need to preempt or enable interrupts:
  3883. */
  3884. __release(rq->lock);
  3885. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3886. do_raw_spin_unlock(&rq->lock);
  3887. sched_preempt_enable_no_resched();
  3888. schedule();
  3889. return 0;
  3890. }
  3891. int __sched _cond_resched(void)
  3892. {
  3893. if (should_resched(0)) {
  3894. preempt_schedule_common();
  3895. return 1;
  3896. }
  3897. return 0;
  3898. }
  3899. EXPORT_SYMBOL(_cond_resched);
  3900. /*
  3901. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3902. * call schedule, and on return reacquire the lock.
  3903. *
  3904. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3905. * operations here to prevent schedule() from being called twice (once via
  3906. * spin_unlock(), once by hand).
  3907. */
  3908. int __cond_resched_lock(spinlock_t *lock)
  3909. {
  3910. int resched = should_resched(PREEMPT_LOCK_OFFSET);
  3911. int ret = 0;
  3912. lockdep_assert_held(lock);
  3913. if (spin_needbreak(lock) || resched) {
  3914. spin_unlock(lock);
  3915. if (resched)
  3916. preempt_schedule_common();
  3917. else
  3918. cpu_relax();
  3919. ret = 1;
  3920. spin_lock(lock);
  3921. }
  3922. return ret;
  3923. }
  3924. EXPORT_SYMBOL(__cond_resched_lock);
  3925. int __sched __cond_resched_softirq(void)
  3926. {
  3927. BUG_ON(!in_softirq());
  3928. if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
  3929. local_bh_enable();
  3930. preempt_schedule_common();
  3931. local_bh_disable();
  3932. return 1;
  3933. }
  3934. return 0;
  3935. }
  3936. EXPORT_SYMBOL(__cond_resched_softirq);
  3937. /**
  3938. * yield - yield the current processor to other threads.
  3939. *
  3940. * Do not ever use this function, there's a 99% chance you're doing it wrong.
  3941. *
  3942. * The scheduler is at all times free to pick the calling task as the most
  3943. * eligible task to run, if removing the yield() call from your code breaks
  3944. * it, its already broken.
  3945. *
  3946. * Typical broken usage is:
  3947. *
  3948. * while (!event)
  3949. * yield();
  3950. *
  3951. * where one assumes that yield() will let 'the other' process run that will
  3952. * make event true. If the current task is a SCHED_FIFO task that will never
  3953. * happen. Never use yield() as a progress guarantee!!
  3954. *
  3955. * If you want to use yield() to wait for something, use wait_event().
  3956. * If you want to use yield() to be 'nice' for others, use cond_resched().
  3957. * If you still want to use yield(), do not!
  3958. */
  3959. void __sched yield(void)
  3960. {
  3961. set_current_state(TASK_RUNNING);
  3962. sys_sched_yield();
  3963. }
  3964. EXPORT_SYMBOL(yield);
  3965. /**
  3966. * yield_to - yield the current processor to another thread in
  3967. * your thread group, or accelerate that thread toward the
  3968. * processor it's on.
  3969. * @p: target task
  3970. * @preempt: whether task preemption is allowed or not
  3971. *
  3972. * It's the caller's job to ensure that the target task struct
  3973. * can't go away on us before we can do any checks.
  3974. *
  3975. * Return:
  3976. * true (>0) if we indeed boosted the target task.
  3977. * false (0) if we failed to boost the target.
  3978. * -ESRCH if there's no task to yield to.
  3979. */
  3980. int __sched yield_to(struct task_struct *p, bool preempt)
  3981. {
  3982. struct task_struct *curr = current;
  3983. struct rq *rq, *p_rq;
  3984. unsigned long flags;
  3985. int yielded = 0;
  3986. local_irq_save(flags);
  3987. rq = this_rq();
  3988. again:
  3989. p_rq = task_rq(p);
  3990. /*
  3991. * If we're the only runnable task on the rq and target rq also
  3992. * has only one task, there's absolutely no point in yielding.
  3993. */
  3994. if (rq->nr_running == 1 && p_rq->nr_running == 1) {
  3995. yielded = -ESRCH;
  3996. goto out_irq;
  3997. }
  3998. double_rq_lock(rq, p_rq);
  3999. if (task_rq(p) != p_rq) {
  4000. double_rq_unlock(rq, p_rq);
  4001. goto again;
  4002. }
  4003. if (!curr->sched_class->yield_to_task)
  4004. goto out_unlock;
  4005. if (curr->sched_class != p->sched_class)
  4006. goto out_unlock;
  4007. if (task_running(p_rq, p) || p->state)
  4008. goto out_unlock;
  4009. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  4010. if (yielded) {
  4011. schedstat_inc(rq, yld_count);
  4012. /*
  4013. * Make p's CPU reschedule; pick_next_entity takes care of
  4014. * fairness.
  4015. */
  4016. if (preempt && rq != p_rq)
  4017. resched_curr(p_rq);
  4018. }
  4019. out_unlock:
  4020. double_rq_unlock(rq, p_rq);
  4021. out_irq:
  4022. local_irq_restore(flags);
  4023. if (yielded > 0)
  4024. schedule();
  4025. return yielded;
  4026. }
  4027. EXPORT_SYMBOL_GPL(yield_to);
  4028. /*
  4029. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4030. * that process accounting knows that this is a task in IO wait state.
  4031. */
  4032. long __sched io_schedule_timeout(long timeout)
  4033. {
  4034. int old_iowait = current->in_iowait;
  4035. struct rq *rq;
  4036. long ret;
  4037. current->in_iowait = 1;
  4038. blk_schedule_flush_plug(current);
  4039. delayacct_blkio_start();
  4040. rq = raw_rq();
  4041. atomic_inc(&rq->nr_iowait);
  4042. ret = schedule_timeout(timeout);
  4043. current->in_iowait = old_iowait;
  4044. atomic_dec(&rq->nr_iowait);
  4045. delayacct_blkio_end();
  4046. return ret;
  4047. }
  4048. EXPORT_SYMBOL(io_schedule_timeout);
  4049. /**
  4050. * sys_sched_get_priority_max - return maximum RT priority.
  4051. * @policy: scheduling class.
  4052. *
  4053. * Return: On success, this syscall returns the maximum
  4054. * rt_priority that can be used by a given scheduling class.
  4055. * On failure, a negative error code is returned.
  4056. */
  4057. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4058. {
  4059. int ret = -EINVAL;
  4060. switch (policy) {
  4061. case SCHED_FIFO:
  4062. case SCHED_RR:
  4063. ret = MAX_USER_RT_PRIO-1;
  4064. break;
  4065. case SCHED_DEADLINE:
  4066. case SCHED_NORMAL:
  4067. case SCHED_BATCH:
  4068. case SCHED_IDLE:
  4069. ret = 0;
  4070. break;
  4071. }
  4072. return ret;
  4073. }
  4074. /**
  4075. * sys_sched_get_priority_min - return minimum RT priority.
  4076. * @policy: scheduling class.
  4077. *
  4078. * Return: On success, this syscall returns the minimum
  4079. * rt_priority that can be used by a given scheduling class.
  4080. * On failure, a negative error code is returned.
  4081. */
  4082. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4083. {
  4084. int ret = -EINVAL;
  4085. switch (policy) {
  4086. case SCHED_FIFO:
  4087. case SCHED_RR:
  4088. ret = 1;
  4089. break;
  4090. case SCHED_DEADLINE:
  4091. case SCHED_NORMAL:
  4092. case SCHED_BATCH:
  4093. case SCHED_IDLE:
  4094. ret = 0;
  4095. }
  4096. return ret;
  4097. }
  4098. /**
  4099. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4100. * @pid: pid of the process.
  4101. * @interval: userspace pointer to the timeslice value.
  4102. *
  4103. * this syscall writes the default timeslice value of a given process
  4104. * into the user-space timespec buffer. A value of '0' means infinity.
  4105. *
  4106. * Return: On success, 0 and the timeslice is in @interval. Otherwise,
  4107. * an error code.
  4108. */
  4109. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4110. struct timespec __user *, interval)
  4111. {
  4112. struct task_struct *p;
  4113. unsigned int time_slice;
  4114. unsigned long flags;
  4115. struct rq *rq;
  4116. int retval;
  4117. struct timespec t;
  4118. if (pid < 0)
  4119. return -EINVAL;
  4120. retval = -ESRCH;
  4121. rcu_read_lock();
  4122. p = find_process_by_pid(pid);
  4123. if (!p)
  4124. goto out_unlock;
  4125. retval = security_task_getscheduler(p);
  4126. if (retval)
  4127. goto out_unlock;
  4128. rq = task_rq_lock(p, &flags);
  4129. time_slice = 0;
  4130. if (p->sched_class->get_rr_interval)
  4131. time_slice = p->sched_class->get_rr_interval(rq, p);
  4132. task_rq_unlock(rq, p, &flags);
  4133. rcu_read_unlock();
  4134. jiffies_to_timespec(time_slice, &t);
  4135. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4136. return retval;
  4137. out_unlock:
  4138. rcu_read_unlock();
  4139. return retval;
  4140. }
  4141. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4142. void sched_show_task(struct task_struct *p)
  4143. {
  4144. unsigned long free = 0;
  4145. int ppid;
  4146. unsigned long state = p->state;
  4147. if (state)
  4148. state = __ffs(state) + 1;
  4149. printk(KERN_INFO "%-15.15s %c", p->comm,
  4150. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4151. #if BITS_PER_LONG == 32
  4152. if (state == TASK_RUNNING)
  4153. printk(KERN_CONT " running ");
  4154. else
  4155. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4156. #else
  4157. if (state == TASK_RUNNING)
  4158. printk(KERN_CONT " running task ");
  4159. else
  4160. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4161. #endif
  4162. #ifdef CONFIG_DEBUG_STACK_USAGE
  4163. free = stack_not_used(p);
  4164. #endif
  4165. ppid = 0;
  4166. rcu_read_lock();
  4167. if (pid_alive(p))
  4168. ppid = task_pid_nr(rcu_dereference(p->real_parent));
  4169. rcu_read_unlock();
  4170. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4171. task_pid_nr(p), ppid,
  4172. (unsigned long)task_thread_info(p)->flags);
  4173. print_worker_info(KERN_INFO, p);
  4174. show_stack(p, NULL);
  4175. }
  4176. void show_state_filter(unsigned long state_filter)
  4177. {
  4178. struct task_struct *g, *p;
  4179. #if BITS_PER_LONG == 32
  4180. printk(KERN_INFO
  4181. " task PC stack pid father\n");
  4182. #else
  4183. printk(KERN_INFO
  4184. " task PC stack pid father\n");
  4185. #endif
  4186. rcu_read_lock();
  4187. for_each_process_thread(g, p) {
  4188. /*
  4189. * reset the NMI-timeout, listing all files on a slow
  4190. * console might take a lot of time:
  4191. */
  4192. touch_nmi_watchdog();
  4193. if (!state_filter || (p->state & state_filter))
  4194. sched_show_task(p);
  4195. }
  4196. touch_all_softlockup_watchdogs();
  4197. #ifdef CONFIG_SCHED_DEBUG
  4198. sysrq_sched_debug_show();
  4199. #endif
  4200. rcu_read_unlock();
  4201. /*
  4202. * Only show locks if all tasks are dumped:
  4203. */
  4204. if (!state_filter)
  4205. debug_show_all_locks();
  4206. }
  4207. void init_idle_bootup_task(struct task_struct *idle)
  4208. {
  4209. idle->sched_class = &idle_sched_class;
  4210. }
  4211. /**
  4212. * init_idle - set up an idle thread for a given CPU
  4213. * @idle: task in question
  4214. * @cpu: cpu the idle task belongs to
  4215. *
  4216. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4217. * flag, to make booting more robust.
  4218. */
  4219. void init_idle(struct task_struct *idle, int cpu)
  4220. {
  4221. struct rq *rq = cpu_rq(cpu);
  4222. unsigned long flags;
  4223. raw_spin_lock_irqsave(&idle->pi_lock, flags);
  4224. raw_spin_lock(&rq->lock);
  4225. __sched_fork(0, idle);
  4226. idle->state = TASK_RUNNING;
  4227. idle->se.exec_start = sched_clock();
  4228. #ifdef CONFIG_SMP
  4229. /*
  4230. * Its possible that init_idle() gets called multiple times on a task,
  4231. * in that case do_set_cpus_allowed() will not do the right thing.
  4232. *
  4233. * And since this is boot we can forgo the serialization.
  4234. */
  4235. set_cpus_allowed_common(idle, cpumask_of(cpu));
  4236. #endif
  4237. /*
  4238. * We're having a chicken and egg problem, even though we are
  4239. * holding rq->lock, the cpu isn't yet set to this cpu so the
  4240. * lockdep check in task_group() will fail.
  4241. *
  4242. * Similar case to sched_fork(). / Alternatively we could
  4243. * use task_rq_lock() here and obtain the other rq->lock.
  4244. *
  4245. * Silence PROVE_RCU
  4246. */
  4247. rcu_read_lock();
  4248. __set_task_cpu(idle, cpu);
  4249. rcu_read_unlock();
  4250. rq->curr = rq->idle = idle;
  4251. idle->on_rq = TASK_ON_RQ_QUEUED;
  4252. #ifdef CONFIG_SMP
  4253. idle->on_cpu = 1;
  4254. #endif
  4255. raw_spin_unlock(&rq->lock);
  4256. raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
  4257. /* Set the preempt count _outside_ the spinlocks! */
  4258. init_idle_preempt_count(idle, cpu);
  4259. /*
  4260. * The idle tasks have their own, simple scheduling class:
  4261. */
  4262. idle->sched_class = &idle_sched_class;
  4263. ftrace_graph_init_idle_task(idle, cpu);
  4264. vtime_init_idle(idle, cpu);
  4265. #ifdef CONFIG_SMP
  4266. sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
  4267. #endif
  4268. }
  4269. int cpuset_cpumask_can_shrink(const struct cpumask *cur,
  4270. const struct cpumask *trial)
  4271. {
  4272. int ret = 1, trial_cpus;
  4273. struct dl_bw *cur_dl_b;
  4274. unsigned long flags;
  4275. if (!cpumask_weight(cur))
  4276. return ret;
  4277. rcu_read_lock_sched();
  4278. cur_dl_b = dl_bw_of(cpumask_any(cur));
  4279. trial_cpus = cpumask_weight(trial);
  4280. raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
  4281. if (cur_dl_b->bw != -1 &&
  4282. cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
  4283. ret = 0;
  4284. raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
  4285. rcu_read_unlock_sched();
  4286. return ret;
  4287. }
  4288. int task_can_attach(struct task_struct *p,
  4289. const struct cpumask *cs_cpus_allowed)
  4290. {
  4291. int ret = 0;
  4292. /*
  4293. * Kthreads which disallow setaffinity shouldn't be moved
  4294. * to a new cpuset; we don't want to change their cpu
  4295. * affinity and isolating such threads by their set of
  4296. * allowed nodes is unnecessary. Thus, cpusets are not
  4297. * applicable for such threads. This prevents checking for
  4298. * success of set_cpus_allowed_ptr() on all attached tasks
  4299. * before cpus_allowed may be changed.
  4300. */
  4301. if (p->flags & PF_NO_SETAFFINITY) {
  4302. ret = -EINVAL;
  4303. goto out;
  4304. }
  4305. #ifdef CONFIG_SMP
  4306. if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
  4307. cs_cpus_allowed)) {
  4308. unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
  4309. cs_cpus_allowed);
  4310. struct dl_bw *dl_b;
  4311. bool overflow;
  4312. int cpus;
  4313. unsigned long flags;
  4314. rcu_read_lock_sched();
  4315. dl_b = dl_bw_of(dest_cpu);
  4316. raw_spin_lock_irqsave(&dl_b->lock, flags);
  4317. cpus = dl_bw_cpus(dest_cpu);
  4318. overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
  4319. if (overflow)
  4320. ret = -EBUSY;
  4321. else {
  4322. /*
  4323. * We reserve space for this task in the destination
  4324. * root_domain, as we can't fail after this point.
  4325. * We will free resources in the source root_domain
  4326. * later on (see set_cpus_allowed_dl()).
  4327. */
  4328. __dl_add(dl_b, p->dl.dl_bw);
  4329. }
  4330. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  4331. rcu_read_unlock_sched();
  4332. }
  4333. #endif
  4334. out:
  4335. return ret;
  4336. }
  4337. #ifdef CONFIG_SMP
  4338. #ifdef CONFIG_NUMA_BALANCING
  4339. /* Migrate current task p to target_cpu */
  4340. int migrate_task_to(struct task_struct *p, int target_cpu)
  4341. {
  4342. struct migration_arg arg = { p, target_cpu };
  4343. int curr_cpu = task_cpu(p);
  4344. if (curr_cpu == target_cpu)
  4345. return 0;
  4346. if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
  4347. return -EINVAL;
  4348. /* TODO: This is not properly updating schedstats */
  4349. trace_sched_move_numa(p, curr_cpu, target_cpu);
  4350. return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
  4351. }
  4352. /*
  4353. * Requeue a task on a given node and accurately track the number of NUMA
  4354. * tasks on the runqueues
  4355. */
  4356. void sched_setnuma(struct task_struct *p, int nid)
  4357. {
  4358. struct rq *rq;
  4359. unsigned long flags;
  4360. bool queued, running;
  4361. rq = task_rq_lock(p, &flags);
  4362. queued = task_on_rq_queued(p);
  4363. running = task_current(rq, p);
  4364. if (queued)
  4365. dequeue_task(rq, p, 0);
  4366. if (running)
  4367. put_prev_task(rq, p);
  4368. p->numa_preferred_nid = nid;
  4369. if (running)
  4370. p->sched_class->set_curr_task(rq);
  4371. if (queued)
  4372. enqueue_task(rq, p, 0);
  4373. task_rq_unlock(rq, p, &flags);
  4374. }
  4375. #endif /* CONFIG_NUMA_BALANCING */
  4376. #ifdef CONFIG_HOTPLUG_CPU
  4377. /*
  4378. * Ensures that the idle task is using init_mm right before its cpu goes
  4379. * offline.
  4380. */
  4381. void idle_task_exit(void)
  4382. {
  4383. struct mm_struct *mm = current->active_mm;
  4384. BUG_ON(cpu_online(smp_processor_id()));
  4385. if (mm != &init_mm) {
  4386. switch_mm(mm, &init_mm, current);
  4387. finish_arch_post_lock_switch();
  4388. }
  4389. mmdrop(mm);
  4390. }
  4391. /*
  4392. * Since this CPU is going 'away' for a while, fold any nr_active delta
  4393. * we might have. Assumes we're called after migrate_tasks() so that the
  4394. * nr_active count is stable.
  4395. *
  4396. * Also see the comment "Global load-average calculations".
  4397. */
  4398. static void calc_load_migrate(struct rq *rq)
  4399. {
  4400. long delta = calc_load_fold_active(rq);
  4401. if (delta)
  4402. atomic_long_add(delta, &calc_load_tasks);
  4403. }
  4404. static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
  4405. {
  4406. }
  4407. static const struct sched_class fake_sched_class = {
  4408. .put_prev_task = put_prev_task_fake,
  4409. };
  4410. static struct task_struct fake_task = {
  4411. /*
  4412. * Avoid pull_{rt,dl}_task()
  4413. */
  4414. .prio = MAX_PRIO + 1,
  4415. .sched_class = &fake_sched_class,
  4416. };
  4417. /*
  4418. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  4419. * try_to_wake_up()->select_task_rq().
  4420. *
  4421. * Called with rq->lock held even though we'er in stop_machine() and
  4422. * there's no concurrency possible, we hold the required locks anyway
  4423. * because of lock validation efforts.
  4424. */
  4425. static void migrate_tasks(struct rq *dead_rq)
  4426. {
  4427. struct rq *rq = dead_rq;
  4428. struct task_struct *next, *stop = rq->stop;
  4429. int dest_cpu;
  4430. /*
  4431. * Fudge the rq selection such that the below task selection loop
  4432. * doesn't get stuck on the currently eligible stop task.
  4433. *
  4434. * We're currently inside stop_machine() and the rq is either stuck
  4435. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  4436. * either way we should never end up calling schedule() until we're
  4437. * done here.
  4438. */
  4439. rq->stop = NULL;
  4440. /*
  4441. * put_prev_task() and pick_next_task() sched
  4442. * class method both need to have an up-to-date
  4443. * value of rq->clock[_task]
  4444. */
  4445. update_rq_clock(rq);
  4446. for (;;) {
  4447. /*
  4448. * There's this thread running, bail when that's the only
  4449. * remaining thread.
  4450. */
  4451. if (rq->nr_running == 1)
  4452. break;
  4453. /*
  4454. * pick_next_task assumes pinned rq->lock.
  4455. */
  4456. lockdep_pin_lock(&rq->lock);
  4457. next = pick_next_task(rq, &fake_task);
  4458. BUG_ON(!next);
  4459. next->sched_class->put_prev_task(rq, next);
  4460. /*
  4461. * Rules for changing task_struct::cpus_allowed are holding
  4462. * both pi_lock and rq->lock, such that holding either
  4463. * stabilizes the mask.
  4464. *
  4465. * Drop rq->lock is not quite as disastrous as it usually is
  4466. * because !cpu_active at this point, which means load-balance
  4467. * will not interfere. Also, stop-machine.
  4468. */
  4469. lockdep_unpin_lock(&rq->lock);
  4470. raw_spin_unlock(&rq->lock);
  4471. raw_spin_lock(&next->pi_lock);
  4472. raw_spin_lock(&rq->lock);
  4473. /*
  4474. * Since we're inside stop-machine, _nothing_ should have
  4475. * changed the task, WARN if weird stuff happened, because in
  4476. * that case the above rq->lock drop is a fail too.
  4477. */
  4478. if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
  4479. raw_spin_unlock(&next->pi_lock);
  4480. continue;
  4481. }
  4482. /* Find suitable destination for @next, with force if needed. */
  4483. dest_cpu = select_fallback_rq(dead_rq->cpu, next);
  4484. rq = __migrate_task(rq, next, dest_cpu);
  4485. if (rq != dead_rq) {
  4486. raw_spin_unlock(&rq->lock);
  4487. rq = dead_rq;
  4488. raw_spin_lock(&rq->lock);
  4489. }
  4490. raw_spin_unlock(&next->pi_lock);
  4491. }
  4492. rq->stop = stop;
  4493. }
  4494. #endif /* CONFIG_HOTPLUG_CPU */
  4495. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4496. static struct ctl_table sd_ctl_dir[] = {
  4497. {
  4498. .procname = "sched_domain",
  4499. .mode = 0555,
  4500. },
  4501. {}
  4502. };
  4503. static struct ctl_table sd_ctl_root[] = {
  4504. {
  4505. .procname = "kernel",
  4506. .mode = 0555,
  4507. .child = sd_ctl_dir,
  4508. },
  4509. {}
  4510. };
  4511. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4512. {
  4513. struct ctl_table *entry =
  4514. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4515. return entry;
  4516. }
  4517. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4518. {
  4519. struct ctl_table *entry;
  4520. /*
  4521. * In the intermediate directories, both the child directory and
  4522. * procname are dynamically allocated and could fail but the mode
  4523. * will always be set. In the lowest directory the names are
  4524. * static strings and all have proc handlers.
  4525. */
  4526. for (entry = *tablep; entry->mode; entry++) {
  4527. if (entry->child)
  4528. sd_free_ctl_entry(&entry->child);
  4529. if (entry->proc_handler == NULL)
  4530. kfree(entry->procname);
  4531. }
  4532. kfree(*tablep);
  4533. *tablep = NULL;
  4534. }
  4535. static int min_load_idx = 0;
  4536. static int max_load_idx = CPU_LOAD_IDX_MAX-1;
  4537. static void
  4538. set_table_entry(struct ctl_table *entry,
  4539. const char *procname, void *data, int maxlen,
  4540. umode_t mode, proc_handler *proc_handler,
  4541. bool load_idx)
  4542. {
  4543. entry->procname = procname;
  4544. entry->data = data;
  4545. entry->maxlen = maxlen;
  4546. entry->mode = mode;
  4547. entry->proc_handler = proc_handler;
  4548. if (load_idx) {
  4549. entry->extra1 = &min_load_idx;
  4550. entry->extra2 = &max_load_idx;
  4551. }
  4552. }
  4553. static struct ctl_table *
  4554. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4555. {
  4556. struct ctl_table *table = sd_alloc_ctl_entry(14);
  4557. if (table == NULL)
  4558. return NULL;
  4559. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4560. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4561. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4562. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4563. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4564. sizeof(int), 0644, proc_dointvec_minmax, true);
  4565. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4566. sizeof(int), 0644, proc_dointvec_minmax, true);
  4567. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4568. sizeof(int), 0644, proc_dointvec_minmax, true);
  4569. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4570. sizeof(int), 0644, proc_dointvec_minmax, true);
  4571. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4572. sizeof(int), 0644, proc_dointvec_minmax, true);
  4573. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4574. sizeof(int), 0644, proc_dointvec_minmax, false);
  4575. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4576. sizeof(int), 0644, proc_dointvec_minmax, false);
  4577. set_table_entry(&table[9], "cache_nice_tries",
  4578. &sd->cache_nice_tries,
  4579. sizeof(int), 0644, proc_dointvec_minmax, false);
  4580. set_table_entry(&table[10], "flags", &sd->flags,
  4581. sizeof(int), 0644, proc_dointvec_minmax, false);
  4582. set_table_entry(&table[11], "max_newidle_lb_cost",
  4583. &sd->max_newidle_lb_cost,
  4584. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4585. set_table_entry(&table[12], "name", sd->name,
  4586. CORENAME_MAX_SIZE, 0444, proc_dostring, false);
  4587. /* &table[13] is terminator */
  4588. return table;
  4589. }
  4590. static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4591. {
  4592. struct ctl_table *entry, *table;
  4593. struct sched_domain *sd;
  4594. int domain_num = 0, i;
  4595. char buf[32];
  4596. for_each_domain(cpu, sd)
  4597. domain_num++;
  4598. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4599. if (table == NULL)
  4600. return NULL;
  4601. i = 0;
  4602. for_each_domain(cpu, sd) {
  4603. snprintf(buf, 32, "domain%d", i);
  4604. entry->procname = kstrdup(buf, GFP_KERNEL);
  4605. entry->mode = 0555;
  4606. entry->child = sd_alloc_ctl_domain_table(sd);
  4607. entry++;
  4608. i++;
  4609. }
  4610. return table;
  4611. }
  4612. static struct ctl_table_header *sd_sysctl_header;
  4613. static void register_sched_domain_sysctl(void)
  4614. {
  4615. int i, cpu_num = num_possible_cpus();
  4616. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4617. char buf[32];
  4618. WARN_ON(sd_ctl_dir[0].child);
  4619. sd_ctl_dir[0].child = entry;
  4620. if (entry == NULL)
  4621. return;
  4622. for_each_possible_cpu(i) {
  4623. snprintf(buf, 32, "cpu%d", i);
  4624. entry->procname = kstrdup(buf, GFP_KERNEL);
  4625. entry->mode = 0555;
  4626. entry->child = sd_alloc_ctl_cpu_table(i);
  4627. entry++;
  4628. }
  4629. WARN_ON(sd_sysctl_header);
  4630. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4631. }
  4632. /* may be called multiple times per register */
  4633. static void unregister_sched_domain_sysctl(void)
  4634. {
  4635. unregister_sysctl_table(sd_sysctl_header);
  4636. sd_sysctl_header = NULL;
  4637. if (sd_ctl_dir[0].child)
  4638. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4639. }
  4640. #else
  4641. static void register_sched_domain_sysctl(void)
  4642. {
  4643. }
  4644. static void unregister_sched_domain_sysctl(void)
  4645. {
  4646. }
  4647. #endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */
  4648. static void set_rq_online(struct rq *rq)
  4649. {
  4650. if (!rq->online) {
  4651. const struct sched_class *class;
  4652. cpumask_set_cpu(rq->cpu, rq->rd->online);
  4653. rq->online = 1;
  4654. for_each_class(class) {
  4655. if (class->rq_online)
  4656. class->rq_online(rq);
  4657. }
  4658. }
  4659. }
  4660. static void set_rq_offline(struct rq *rq)
  4661. {
  4662. if (rq->online) {
  4663. const struct sched_class *class;
  4664. for_each_class(class) {
  4665. if (class->rq_offline)
  4666. class->rq_offline(rq);
  4667. }
  4668. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  4669. rq->online = 0;
  4670. }
  4671. }
  4672. /*
  4673. * migration_call - callback that gets triggered when a CPU is added.
  4674. * Here we can start up the necessary migration thread for the new CPU.
  4675. */
  4676. static int
  4677. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4678. {
  4679. int cpu = (long)hcpu;
  4680. unsigned long flags;
  4681. struct rq *rq = cpu_rq(cpu);
  4682. switch (action & ~CPU_TASKS_FROZEN) {
  4683. case CPU_UP_PREPARE:
  4684. rq->calc_load_update = calc_load_update;
  4685. break;
  4686. case CPU_ONLINE:
  4687. /* Update our root-domain */
  4688. raw_spin_lock_irqsave(&rq->lock, flags);
  4689. if (rq->rd) {
  4690. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4691. set_rq_online(rq);
  4692. }
  4693. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4694. break;
  4695. #ifdef CONFIG_HOTPLUG_CPU
  4696. case CPU_DYING:
  4697. sched_ttwu_pending();
  4698. /* Update our root-domain */
  4699. raw_spin_lock_irqsave(&rq->lock, flags);
  4700. if (rq->rd) {
  4701. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4702. set_rq_offline(rq);
  4703. }
  4704. migrate_tasks(rq);
  4705. BUG_ON(rq->nr_running != 1); /* the migration thread */
  4706. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4707. break;
  4708. case CPU_DEAD:
  4709. calc_load_migrate(rq);
  4710. break;
  4711. #endif
  4712. }
  4713. update_max_interval();
  4714. return NOTIFY_OK;
  4715. }
  4716. /*
  4717. * Register at high priority so that task migration (migrate_all_tasks)
  4718. * happens before everything else. This has to be lower priority than
  4719. * the notifier in the perf_event subsystem, though.
  4720. */
  4721. static struct notifier_block migration_notifier = {
  4722. .notifier_call = migration_call,
  4723. .priority = CPU_PRI_MIGRATION,
  4724. };
  4725. static void set_cpu_rq_start_time(void)
  4726. {
  4727. int cpu = smp_processor_id();
  4728. struct rq *rq = cpu_rq(cpu);
  4729. rq->age_stamp = sched_clock_cpu(cpu);
  4730. }
  4731. static int sched_cpu_active(struct notifier_block *nfb,
  4732. unsigned long action, void *hcpu)
  4733. {
  4734. switch (action & ~CPU_TASKS_FROZEN) {
  4735. case CPU_STARTING:
  4736. set_cpu_rq_start_time();
  4737. return NOTIFY_OK;
  4738. case CPU_ONLINE:
  4739. /*
  4740. * At this point a starting CPU has marked itself as online via
  4741. * set_cpu_online(). But it might not yet have marked itself
  4742. * as active, which is essential from here on.
  4743. *
  4744. * Thus, fall-through and help the starting CPU along.
  4745. */
  4746. case CPU_DOWN_FAILED:
  4747. set_cpu_active((long)hcpu, true);
  4748. return NOTIFY_OK;
  4749. default:
  4750. return NOTIFY_DONE;
  4751. }
  4752. }
  4753. static int sched_cpu_inactive(struct notifier_block *nfb,
  4754. unsigned long action, void *hcpu)
  4755. {
  4756. switch (action & ~CPU_TASKS_FROZEN) {
  4757. case CPU_DOWN_PREPARE:
  4758. set_cpu_active((long)hcpu, false);
  4759. return NOTIFY_OK;
  4760. default:
  4761. return NOTIFY_DONE;
  4762. }
  4763. }
  4764. static int __init migration_init(void)
  4765. {
  4766. void *cpu = (void *)(long)smp_processor_id();
  4767. int err;
  4768. /* Initialize migration for the boot CPU */
  4769. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4770. BUG_ON(err == NOTIFY_BAD);
  4771. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4772. register_cpu_notifier(&migration_notifier);
  4773. /* Register cpu active notifiers */
  4774. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  4775. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  4776. return 0;
  4777. }
  4778. early_initcall(migration_init);
  4779. static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
  4780. #ifdef CONFIG_SCHED_DEBUG
  4781. static __read_mostly int sched_debug_enabled;
  4782. static int __init sched_debug_setup(char *str)
  4783. {
  4784. sched_debug_enabled = 1;
  4785. return 0;
  4786. }
  4787. early_param("sched_debug", sched_debug_setup);
  4788. static inline bool sched_debug(void)
  4789. {
  4790. return sched_debug_enabled;
  4791. }
  4792. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  4793. struct cpumask *groupmask)
  4794. {
  4795. struct sched_group *group = sd->groups;
  4796. cpumask_clear(groupmask);
  4797. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4798. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4799. printk("does not load-balance\n");
  4800. if (sd->parent)
  4801. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4802. " has parent");
  4803. return -1;
  4804. }
  4805. printk(KERN_CONT "span %*pbl level %s\n",
  4806. cpumask_pr_args(sched_domain_span(sd)), sd->name);
  4807. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  4808. printk(KERN_ERR "ERROR: domain->span does not contain "
  4809. "CPU%d\n", cpu);
  4810. }
  4811. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  4812. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4813. " CPU%d\n", cpu);
  4814. }
  4815. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4816. do {
  4817. if (!group) {
  4818. printk("\n");
  4819. printk(KERN_ERR "ERROR: group is NULL\n");
  4820. break;
  4821. }
  4822. if (!cpumask_weight(sched_group_cpus(group))) {
  4823. printk(KERN_CONT "\n");
  4824. printk(KERN_ERR "ERROR: empty group\n");
  4825. break;
  4826. }
  4827. if (!(sd->flags & SD_OVERLAP) &&
  4828. cpumask_intersects(groupmask, sched_group_cpus(group))) {
  4829. printk(KERN_CONT "\n");
  4830. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4831. break;
  4832. }
  4833. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  4834. printk(KERN_CONT " %*pbl",
  4835. cpumask_pr_args(sched_group_cpus(group)));
  4836. if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
  4837. printk(KERN_CONT " (cpu_capacity = %d)",
  4838. group->sgc->capacity);
  4839. }
  4840. group = group->next;
  4841. } while (group != sd->groups);
  4842. printk(KERN_CONT "\n");
  4843. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  4844. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4845. if (sd->parent &&
  4846. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  4847. printk(KERN_ERR "ERROR: parent span is not a superset "
  4848. "of domain->span\n");
  4849. return 0;
  4850. }
  4851. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4852. {
  4853. int level = 0;
  4854. if (!sched_debug_enabled)
  4855. return;
  4856. if (!sd) {
  4857. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4858. return;
  4859. }
  4860. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4861. for (;;) {
  4862. if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
  4863. break;
  4864. level++;
  4865. sd = sd->parent;
  4866. if (!sd)
  4867. break;
  4868. }
  4869. }
  4870. #else /* !CONFIG_SCHED_DEBUG */
  4871. # define sched_domain_debug(sd, cpu) do { } while (0)
  4872. static inline bool sched_debug(void)
  4873. {
  4874. return false;
  4875. }
  4876. #endif /* CONFIG_SCHED_DEBUG */
  4877. static int sd_degenerate(struct sched_domain *sd)
  4878. {
  4879. if (cpumask_weight(sched_domain_span(sd)) == 1)
  4880. return 1;
  4881. /* Following flags need at least 2 groups */
  4882. if (sd->flags & (SD_LOAD_BALANCE |
  4883. SD_BALANCE_NEWIDLE |
  4884. SD_BALANCE_FORK |
  4885. SD_BALANCE_EXEC |
  4886. SD_SHARE_CPUCAPACITY |
  4887. SD_SHARE_PKG_RESOURCES |
  4888. SD_SHARE_POWERDOMAIN)) {
  4889. if (sd->groups != sd->groups->next)
  4890. return 0;
  4891. }
  4892. /* Following flags don't use groups */
  4893. if (sd->flags & (SD_WAKE_AFFINE))
  4894. return 0;
  4895. return 1;
  4896. }
  4897. static int
  4898. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4899. {
  4900. unsigned long cflags = sd->flags, pflags = parent->flags;
  4901. if (sd_degenerate(parent))
  4902. return 1;
  4903. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  4904. return 0;
  4905. /* Flags needing groups don't count if only 1 group in parent */
  4906. if (parent->groups == parent->groups->next) {
  4907. pflags &= ~(SD_LOAD_BALANCE |
  4908. SD_BALANCE_NEWIDLE |
  4909. SD_BALANCE_FORK |
  4910. SD_BALANCE_EXEC |
  4911. SD_SHARE_CPUCAPACITY |
  4912. SD_SHARE_PKG_RESOURCES |
  4913. SD_PREFER_SIBLING |
  4914. SD_SHARE_POWERDOMAIN);
  4915. if (nr_node_ids == 1)
  4916. pflags &= ~SD_SERIALIZE;
  4917. }
  4918. if (~cflags & pflags)
  4919. return 0;
  4920. return 1;
  4921. }
  4922. static void free_rootdomain(struct rcu_head *rcu)
  4923. {
  4924. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  4925. cpupri_cleanup(&rd->cpupri);
  4926. cpudl_cleanup(&rd->cpudl);
  4927. free_cpumask_var(rd->dlo_mask);
  4928. free_cpumask_var(rd->rto_mask);
  4929. free_cpumask_var(rd->online);
  4930. free_cpumask_var(rd->span);
  4931. kfree(rd);
  4932. }
  4933. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  4934. {
  4935. struct root_domain *old_rd = NULL;
  4936. unsigned long flags;
  4937. raw_spin_lock_irqsave(&rq->lock, flags);
  4938. if (rq->rd) {
  4939. old_rd = rq->rd;
  4940. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  4941. set_rq_offline(rq);
  4942. cpumask_clear_cpu(rq->cpu, old_rd->span);
  4943. /*
  4944. * If we dont want to free the old_rd yet then
  4945. * set old_rd to NULL to skip the freeing later
  4946. * in this function:
  4947. */
  4948. if (!atomic_dec_and_test(&old_rd->refcount))
  4949. old_rd = NULL;
  4950. }
  4951. atomic_inc(&rd->refcount);
  4952. rq->rd = rd;
  4953. cpumask_set_cpu(rq->cpu, rd->span);
  4954. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  4955. set_rq_online(rq);
  4956. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4957. if (old_rd)
  4958. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  4959. }
  4960. static int init_rootdomain(struct root_domain *rd)
  4961. {
  4962. memset(rd, 0, sizeof(*rd));
  4963. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  4964. goto out;
  4965. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  4966. goto free_span;
  4967. if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
  4968. goto free_online;
  4969. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  4970. goto free_dlo_mask;
  4971. init_dl_bw(&rd->dl_bw);
  4972. if (cpudl_init(&rd->cpudl) != 0)
  4973. goto free_dlo_mask;
  4974. if (cpupri_init(&rd->cpupri) != 0)
  4975. goto free_rto_mask;
  4976. return 0;
  4977. free_rto_mask:
  4978. free_cpumask_var(rd->rto_mask);
  4979. free_dlo_mask:
  4980. free_cpumask_var(rd->dlo_mask);
  4981. free_online:
  4982. free_cpumask_var(rd->online);
  4983. free_span:
  4984. free_cpumask_var(rd->span);
  4985. out:
  4986. return -ENOMEM;
  4987. }
  4988. /*
  4989. * By default the system creates a single root-domain with all cpus as
  4990. * members (mimicking the global state we have today).
  4991. */
  4992. struct root_domain def_root_domain;
  4993. static void init_defrootdomain(void)
  4994. {
  4995. init_rootdomain(&def_root_domain);
  4996. atomic_set(&def_root_domain.refcount, 1);
  4997. }
  4998. static struct root_domain *alloc_rootdomain(void)
  4999. {
  5000. struct root_domain *rd;
  5001. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5002. if (!rd)
  5003. return NULL;
  5004. if (init_rootdomain(rd) != 0) {
  5005. kfree(rd);
  5006. return NULL;
  5007. }
  5008. return rd;
  5009. }
  5010. static void free_sched_groups(struct sched_group *sg, int free_sgc)
  5011. {
  5012. struct sched_group *tmp, *first;
  5013. if (!sg)
  5014. return;
  5015. first = sg;
  5016. do {
  5017. tmp = sg->next;
  5018. if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
  5019. kfree(sg->sgc);
  5020. kfree(sg);
  5021. sg = tmp;
  5022. } while (sg != first);
  5023. }
  5024. static void free_sched_domain(struct rcu_head *rcu)
  5025. {
  5026. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  5027. /*
  5028. * If its an overlapping domain it has private groups, iterate and
  5029. * nuke them all.
  5030. */
  5031. if (sd->flags & SD_OVERLAP) {
  5032. free_sched_groups(sd->groups, 1);
  5033. } else if (atomic_dec_and_test(&sd->groups->ref)) {
  5034. kfree(sd->groups->sgc);
  5035. kfree(sd->groups);
  5036. }
  5037. kfree(sd);
  5038. }
  5039. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  5040. {
  5041. call_rcu(&sd->rcu, free_sched_domain);
  5042. }
  5043. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  5044. {
  5045. for (; sd; sd = sd->parent)
  5046. destroy_sched_domain(sd, cpu);
  5047. }
  5048. /*
  5049. * Keep a special pointer to the highest sched_domain that has
  5050. * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
  5051. * allows us to avoid some pointer chasing select_idle_sibling().
  5052. *
  5053. * Also keep a unique ID per domain (we use the first cpu number in
  5054. * the cpumask of the domain), this allows us to quickly tell if
  5055. * two cpus are in the same cache domain, see cpus_share_cache().
  5056. */
  5057. DEFINE_PER_CPU(struct sched_domain *, sd_llc);
  5058. DEFINE_PER_CPU(int, sd_llc_size);
  5059. DEFINE_PER_CPU(int, sd_llc_id);
  5060. DEFINE_PER_CPU(struct sched_domain *, sd_numa);
  5061. DEFINE_PER_CPU(struct sched_domain *, sd_busy);
  5062. DEFINE_PER_CPU(struct sched_domain *, sd_asym);
  5063. static void update_top_cache_domain(int cpu)
  5064. {
  5065. struct sched_domain *sd;
  5066. struct sched_domain *busy_sd = NULL;
  5067. int id = cpu;
  5068. int size = 1;
  5069. sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
  5070. if (sd) {
  5071. id = cpumask_first(sched_domain_span(sd));
  5072. size = cpumask_weight(sched_domain_span(sd));
  5073. busy_sd = sd->parent; /* sd_busy */
  5074. }
  5075. rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
  5076. rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
  5077. per_cpu(sd_llc_size, cpu) = size;
  5078. per_cpu(sd_llc_id, cpu) = id;
  5079. sd = lowest_flag_domain(cpu, SD_NUMA);
  5080. rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
  5081. sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
  5082. rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
  5083. }
  5084. /*
  5085. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5086. * hold the hotplug lock.
  5087. */
  5088. static void
  5089. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5090. {
  5091. struct rq *rq = cpu_rq(cpu);
  5092. struct sched_domain *tmp;
  5093. /* Remove the sched domains which do not contribute to scheduling. */
  5094. for (tmp = sd; tmp; ) {
  5095. struct sched_domain *parent = tmp->parent;
  5096. if (!parent)
  5097. break;
  5098. if (sd_parent_degenerate(tmp, parent)) {
  5099. tmp->parent = parent->parent;
  5100. if (parent->parent)
  5101. parent->parent->child = tmp;
  5102. /*
  5103. * Transfer SD_PREFER_SIBLING down in case of a
  5104. * degenerate parent; the spans match for this
  5105. * so the property transfers.
  5106. */
  5107. if (parent->flags & SD_PREFER_SIBLING)
  5108. tmp->flags |= SD_PREFER_SIBLING;
  5109. destroy_sched_domain(parent, cpu);
  5110. } else
  5111. tmp = tmp->parent;
  5112. }
  5113. if (sd && sd_degenerate(sd)) {
  5114. tmp = sd;
  5115. sd = sd->parent;
  5116. destroy_sched_domain(tmp, cpu);
  5117. if (sd)
  5118. sd->child = NULL;
  5119. }
  5120. sched_domain_debug(sd, cpu);
  5121. rq_attach_root(rq, rd);
  5122. tmp = rq->sd;
  5123. rcu_assign_pointer(rq->sd, sd);
  5124. destroy_sched_domains(tmp, cpu);
  5125. update_top_cache_domain(cpu);
  5126. }
  5127. /* Setup the mask of cpus configured for isolated domains */
  5128. static int __init isolated_cpu_setup(char *str)
  5129. {
  5130. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  5131. cpulist_parse(str, cpu_isolated_map);
  5132. return 1;
  5133. }
  5134. __setup("isolcpus=", isolated_cpu_setup);
  5135. struct s_data {
  5136. struct sched_domain ** __percpu sd;
  5137. struct root_domain *rd;
  5138. };
  5139. enum s_alloc {
  5140. sa_rootdomain,
  5141. sa_sd,
  5142. sa_sd_storage,
  5143. sa_none,
  5144. };
  5145. /*
  5146. * Build an iteration mask that can exclude certain CPUs from the upwards
  5147. * domain traversal.
  5148. *
  5149. * Asymmetric node setups can result in situations where the domain tree is of
  5150. * unequal depth, make sure to skip domains that already cover the entire
  5151. * range.
  5152. *
  5153. * In that case build_sched_domains() will have terminated the iteration early
  5154. * and our sibling sd spans will be empty. Domains should always include the
  5155. * cpu they're built on, so check that.
  5156. *
  5157. */
  5158. static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
  5159. {
  5160. const struct cpumask *span = sched_domain_span(sd);
  5161. struct sd_data *sdd = sd->private;
  5162. struct sched_domain *sibling;
  5163. int i;
  5164. for_each_cpu(i, span) {
  5165. sibling = *per_cpu_ptr(sdd->sd, i);
  5166. if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
  5167. continue;
  5168. cpumask_set_cpu(i, sched_group_mask(sg));
  5169. }
  5170. }
  5171. /*
  5172. * Return the canonical balance cpu for this group, this is the first cpu
  5173. * of this group that's also in the iteration mask.
  5174. */
  5175. int group_balance_cpu(struct sched_group *sg)
  5176. {
  5177. return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
  5178. }
  5179. static int
  5180. build_overlap_sched_groups(struct sched_domain *sd, int cpu)
  5181. {
  5182. struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
  5183. const struct cpumask *span = sched_domain_span(sd);
  5184. struct cpumask *covered = sched_domains_tmpmask;
  5185. struct sd_data *sdd = sd->private;
  5186. struct sched_domain *sibling;
  5187. int i;
  5188. cpumask_clear(covered);
  5189. for_each_cpu(i, span) {
  5190. struct cpumask *sg_span;
  5191. if (cpumask_test_cpu(i, covered))
  5192. continue;
  5193. sibling = *per_cpu_ptr(sdd->sd, i);
  5194. /* See the comment near build_group_mask(). */
  5195. if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
  5196. continue;
  5197. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5198. GFP_KERNEL, cpu_to_node(cpu));
  5199. if (!sg)
  5200. goto fail;
  5201. sg_span = sched_group_cpus(sg);
  5202. if (sibling->child)
  5203. cpumask_copy(sg_span, sched_domain_span(sibling->child));
  5204. else
  5205. cpumask_set_cpu(i, sg_span);
  5206. cpumask_or(covered, covered, sg_span);
  5207. sg->sgc = *per_cpu_ptr(sdd->sgc, i);
  5208. if (atomic_inc_return(&sg->sgc->ref) == 1)
  5209. build_group_mask(sd, sg);
  5210. /*
  5211. * Initialize sgc->capacity such that even if we mess up the
  5212. * domains and no possible iteration will get us here, we won't
  5213. * die on a /0 trap.
  5214. */
  5215. sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
  5216. /*
  5217. * Make sure the first group of this domain contains the
  5218. * canonical balance cpu. Otherwise the sched_domain iteration
  5219. * breaks. See update_sg_lb_stats().
  5220. */
  5221. if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
  5222. group_balance_cpu(sg) == cpu)
  5223. groups = sg;
  5224. if (!first)
  5225. first = sg;
  5226. if (last)
  5227. last->next = sg;
  5228. last = sg;
  5229. last->next = first;
  5230. }
  5231. sd->groups = groups;
  5232. return 0;
  5233. fail:
  5234. free_sched_groups(first, 0);
  5235. return -ENOMEM;
  5236. }
  5237. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  5238. {
  5239. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  5240. struct sched_domain *child = sd->child;
  5241. if (child)
  5242. cpu = cpumask_first(sched_domain_span(child));
  5243. if (sg) {
  5244. *sg = *per_cpu_ptr(sdd->sg, cpu);
  5245. (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
  5246. atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
  5247. }
  5248. return cpu;
  5249. }
  5250. /*
  5251. * build_sched_groups will build a circular linked list of the groups
  5252. * covered by the given span, and will set each group's ->cpumask correctly,
  5253. * and ->cpu_capacity to 0.
  5254. *
  5255. * Assumes the sched_domain tree is fully constructed
  5256. */
  5257. static int
  5258. build_sched_groups(struct sched_domain *sd, int cpu)
  5259. {
  5260. struct sched_group *first = NULL, *last = NULL;
  5261. struct sd_data *sdd = sd->private;
  5262. const struct cpumask *span = sched_domain_span(sd);
  5263. struct cpumask *covered;
  5264. int i;
  5265. get_group(cpu, sdd, &sd->groups);
  5266. atomic_inc(&sd->groups->ref);
  5267. if (cpu != cpumask_first(span))
  5268. return 0;
  5269. lockdep_assert_held(&sched_domains_mutex);
  5270. covered = sched_domains_tmpmask;
  5271. cpumask_clear(covered);
  5272. for_each_cpu(i, span) {
  5273. struct sched_group *sg;
  5274. int group, j;
  5275. if (cpumask_test_cpu(i, covered))
  5276. continue;
  5277. group = get_group(i, sdd, &sg);
  5278. cpumask_setall(sched_group_mask(sg));
  5279. for_each_cpu(j, span) {
  5280. if (get_group(j, sdd, NULL) != group)
  5281. continue;
  5282. cpumask_set_cpu(j, covered);
  5283. cpumask_set_cpu(j, sched_group_cpus(sg));
  5284. }
  5285. if (!first)
  5286. first = sg;
  5287. if (last)
  5288. last->next = sg;
  5289. last = sg;
  5290. }
  5291. last->next = first;
  5292. return 0;
  5293. }
  5294. /*
  5295. * Initialize sched groups cpu_capacity.
  5296. *
  5297. * cpu_capacity indicates the capacity of sched group, which is used while
  5298. * distributing the load between different sched groups in a sched domain.
  5299. * Typically cpu_capacity for all the groups in a sched domain will be same
  5300. * unless there are asymmetries in the topology. If there are asymmetries,
  5301. * group having more cpu_capacity will pickup more load compared to the
  5302. * group having less cpu_capacity.
  5303. */
  5304. static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
  5305. {
  5306. struct sched_group *sg = sd->groups;
  5307. WARN_ON(!sg);
  5308. do {
  5309. sg->group_weight = cpumask_weight(sched_group_cpus(sg));
  5310. sg = sg->next;
  5311. } while (sg != sd->groups);
  5312. if (cpu != group_balance_cpu(sg))
  5313. return;
  5314. update_group_capacity(sd, cpu);
  5315. atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
  5316. }
  5317. /*
  5318. * Initializers for schedule domains
  5319. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5320. */
  5321. static int default_relax_domain_level = -1;
  5322. int sched_domain_level_max;
  5323. static int __init setup_relax_domain_level(char *str)
  5324. {
  5325. if (kstrtoint(str, 0, &default_relax_domain_level))
  5326. pr_warn("Unable to set relax_domain_level\n");
  5327. return 1;
  5328. }
  5329. __setup("relax_domain_level=", setup_relax_domain_level);
  5330. static void set_domain_attribute(struct sched_domain *sd,
  5331. struct sched_domain_attr *attr)
  5332. {
  5333. int request;
  5334. if (!attr || attr->relax_domain_level < 0) {
  5335. if (default_relax_domain_level < 0)
  5336. return;
  5337. else
  5338. request = default_relax_domain_level;
  5339. } else
  5340. request = attr->relax_domain_level;
  5341. if (request < sd->level) {
  5342. /* turn off idle balance on this domain */
  5343. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5344. } else {
  5345. /* turn on idle balance on this domain */
  5346. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5347. }
  5348. }
  5349. static void __sdt_free(const struct cpumask *cpu_map);
  5350. static int __sdt_alloc(const struct cpumask *cpu_map);
  5351. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5352. const struct cpumask *cpu_map)
  5353. {
  5354. switch (what) {
  5355. case sa_rootdomain:
  5356. if (!atomic_read(&d->rd->refcount))
  5357. free_rootdomain(&d->rd->rcu); /* fall through */
  5358. case sa_sd:
  5359. free_percpu(d->sd); /* fall through */
  5360. case sa_sd_storage:
  5361. __sdt_free(cpu_map); /* fall through */
  5362. case sa_none:
  5363. break;
  5364. }
  5365. }
  5366. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5367. const struct cpumask *cpu_map)
  5368. {
  5369. memset(d, 0, sizeof(*d));
  5370. if (__sdt_alloc(cpu_map))
  5371. return sa_sd_storage;
  5372. d->sd = alloc_percpu(struct sched_domain *);
  5373. if (!d->sd)
  5374. return sa_sd_storage;
  5375. d->rd = alloc_rootdomain();
  5376. if (!d->rd)
  5377. return sa_sd;
  5378. return sa_rootdomain;
  5379. }
  5380. /*
  5381. * NULL the sd_data elements we've used to build the sched_domain and
  5382. * sched_group structure so that the subsequent __free_domain_allocs()
  5383. * will not free the data we're using.
  5384. */
  5385. static void claim_allocations(int cpu, struct sched_domain *sd)
  5386. {
  5387. struct sd_data *sdd = sd->private;
  5388. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  5389. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  5390. if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
  5391. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  5392. if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
  5393. *per_cpu_ptr(sdd->sgc, cpu) = NULL;
  5394. }
  5395. #ifdef CONFIG_NUMA
  5396. static int sched_domains_numa_levels;
  5397. enum numa_topology_type sched_numa_topology_type;
  5398. static int *sched_domains_numa_distance;
  5399. int sched_max_numa_distance;
  5400. static struct cpumask ***sched_domains_numa_masks;
  5401. static int sched_domains_curr_level;
  5402. #endif
  5403. /*
  5404. * SD_flags allowed in topology descriptions.
  5405. *
  5406. * SD_SHARE_CPUCAPACITY - describes SMT topologies
  5407. * SD_SHARE_PKG_RESOURCES - describes shared caches
  5408. * SD_NUMA - describes NUMA topologies
  5409. * SD_SHARE_POWERDOMAIN - describes shared power domain
  5410. *
  5411. * Odd one out:
  5412. * SD_ASYM_PACKING - describes SMT quirks
  5413. */
  5414. #define TOPOLOGY_SD_FLAGS \
  5415. (SD_SHARE_CPUCAPACITY | \
  5416. SD_SHARE_PKG_RESOURCES | \
  5417. SD_NUMA | \
  5418. SD_ASYM_PACKING | \
  5419. SD_SHARE_POWERDOMAIN)
  5420. static struct sched_domain *
  5421. sd_init(struct sched_domain_topology_level *tl, int cpu)
  5422. {
  5423. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
  5424. int sd_weight, sd_flags = 0;
  5425. #ifdef CONFIG_NUMA
  5426. /*
  5427. * Ugly hack to pass state to sd_numa_mask()...
  5428. */
  5429. sched_domains_curr_level = tl->numa_level;
  5430. #endif
  5431. sd_weight = cpumask_weight(tl->mask(cpu));
  5432. if (tl->sd_flags)
  5433. sd_flags = (*tl->sd_flags)();
  5434. if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
  5435. "wrong sd_flags in topology description\n"))
  5436. sd_flags &= ~TOPOLOGY_SD_FLAGS;
  5437. *sd = (struct sched_domain){
  5438. .min_interval = sd_weight,
  5439. .max_interval = 2*sd_weight,
  5440. .busy_factor = 32,
  5441. .imbalance_pct = 125,
  5442. .cache_nice_tries = 0,
  5443. .busy_idx = 0,
  5444. .idle_idx = 0,
  5445. .newidle_idx = 0,
  5446. .wake_idx = 0,
  5447. .forkexec_idx = 0,
  5448. .flags = 1*SD_LOAD_BALANCE
  5449. | 1*SD_BALANCE_NEWIDLE
  5450. | 1*SD_BALANCE_EXEC
  5451. | 1*SD_BALANCE_FORK
  5452. | 0*SD_BALANCE_WAKE
  5453. | 1*SD_WAKE_AFFINE
  5454. | 0*SD_SHARE_CPUCAPACITY
  5455. | 0*SD_SHARE_PKG_RESOURCES
  5456. | 0*SD_SERIALIZE
  5457. | 0*SD_PREFER_SIBLING
  5458. | 0*SD_NUMA
  5459. | sd_flags
  5460. ,
  5461. .last_balance = jiffies,
  5462. .balance_interval = sd_weight,
  5463. .smt_gain = 0,
  5464. .max_newidle_lb_cost = 0,
  5465. .next_decay_max_lb_cost = jiffies,
  5466. #ifdef CONFIG_SCHED_DEBUG
  5467. .name = tl->name,
  5468. #endif
  5469. };
  5470. /*
  5471. * Convert topological properties into behaviour.
  5472. */
  5473. if (sd->flags & SD_SHARE_CPUCAPACITY) {
  5474. sd->flags |= SD_PREFER_SIBLING;
  5475. sd->imbalance_pct = 110;
  5476. sd->smt_gain = 1178; /* ~15% */
  5477. } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
  5478. sd->imbalance_pct = 117;
  5479. sd->cache_nice_tries = 1;
  5480. sd->busy_idx = 2;
  5481. #ifdef CONFIG_NUMA
  5482. } else if (sd->flags & SD_NUMA) {
  5483. sd->cache_nice_tries = 2;
  5484. sd->busy_idx = 3;
  5485. sd->idle_idx = 2;
  5486. sd->flags |= SD_SERIALIZE;
  5487. if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
  5488. sd->flags &= ~(SD_BALANCE_EXEC |
  5489. SD_BALANCE_FORK |
  5490. SD_WAKE_AFFINE);
  5491. }
  5492. #endif
  5493. } else {
  5494. sd->flags |= SD_PREFER_SIBLING;
  5495. sd->cache_nice_tries = 1;
  5496. sd->busy_idx = 2;
  5497. sd->idle_idx = 1;
  5498. }
  5499. sd->private = &tl->data;
  5500. return sd;
  5501. }
  5502. /*
  5503. * Topology list, bottom-up.
  5504. */
  5505. static struct sched_domain_topology_level default_topology[] = {
  5506. #ifdef CONFIG_SCHED_SMT
  5507. { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
  5508. #endif
  5509. #ifdef CONFIG_SCHED_MC
  5510. { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
  5511. #endif
  5512. { cpu_cpu_mask, SD_INIT_NAME(DIE) },
  5513. { NULL, },
  5514. };
  5515. struct sched_domain_topology_level *sched_domain_topology = default_topology;
  5516. #define for_each_sd_topology(tl) \
  5517. for (tl = sched_domain_topology; tl->mask; tl++)
  5518. void set_sched_topology(struct sched_domain_topology_level *tl)
  5519. {
  5520. sched_domain_topology = tl;
  5521. }
  5522. #ifdef CONFIG_NUMA
  5523. static const struct cpumask *sd_numa_mask(int cpu)
  5524. {
  5525. return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
  5526. }
  5527. static void sched_numa_warn(const char *str)
  5528. {
  5529. static int done = false;
  5530. int i,j;
  5531. if (done)
  5532. return;
  5533. done = true;
  5534. printk(KERN_WARNING "ERROR: %s\n\n", str);
  5535. for (i = 0; i < nr_node_ids; i++) {
  5536. printk(KERN_WARNING " ");
  5537. for (j = 0; j < nr_node_ids; j++)
  5538. printk(KERN_CONT "%02d ", node_distance(i,j));
  5539. printk(KERN_CONT "\n");
  5540. }
  5541. printk(KERN_WARNING "\n");
  5542. }
  5543. bool find_numa_distance(int distance)
  5544. {
  5545. int i;
  5546. if (distance == node_distance(0, 0))
  5547. return true;
  5548. for (i = 0; i < sched_domains_numa_levels; i++) {
  5549. if (sched_domains_numa_distance[i] == distance)
  5550. return true;
  5551. }
  5552. return false;
  5553. }
  5554. /*
  5555. * A system can have three types of NUMA topology:
  5556. * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
  5557. * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
  5558. * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
  5559. *
  5560. * The difference between a glueless mesh topology and a backplane
  5561. * topology lies in whether communication between not directly
  5562. * connected nodes goes through intermediary nodes (where programs
  5563. * could run), or through backplane controllers. This affects
  5564. * placement of programs.
  5565. *
  5566. * The type of topology can be discerned with the following tests:
  5567. * - If the maximum distance between any nodes is 1 hop, the system
  5568. * is directly connected.
  5569. * - If for two nodes A and B, located N > 1 hops away from each other,
  5570. * there is an intermediary node C, which is < N hops away from both
  5571. * nodes A and B, the system is a glueless mesh.
  5572. */
  5573. static void init_numa_topology_type(void)
  5574. {
  5575. int a, b, c, n;
  5576. n = sched_max_numa_distance;
  5577. if (sched_domains_numa_levels <= 1) {
  5578. sched_numa_topology_type = NUMA_DIRECT;
  5579. return;
  5580. }
  5581. for_each_online_node(a) {
  5582. for_each_online_node(b) {
  5583. /* Find two nodes furthest removed from each other. */
  5584. if (node_distance(a, b) < n)
  5585. continue;
  5586. /* Is there an intermediary node between a and b? */
  5587. for_each_online_node(c) {
  5588. if (node_distance(a, c) < n &&
  5589. node_distance(b, c) < n) {
  5590. sched_numa_topology_type =
  5591. NUMA_GLUELESS_MESH;
  5592. return;
  5593. }
  5594. }
  5595. sched_numa_topology_type = NUMA_BACKPLANE;
  5596. return;
  5597. }
  5598. }
  5599. }
  5600. static void sched_init_numa(void)
  5601. {
  5602. int next_distance, curr_distance = node_distance(0, 0);
  5603. struct sched_domain_topology_level *tl;
  5604. int level = 0;
  5605. int i, j, k;
  5606. sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
  5607. if (!sched_domains_numa_distance)
  5608. return;
  5609. /*
  5610. * O(nr_nodes^2) deduplicating selection sort -- in order to find the
  5611. * unique distances in the node_distance() table.
  5612. *
  5613. * Assumes node_distance(0,j) includes all distances in
  5614. * node_distance(i,j) in order to avoid cubic time.
  5615. */
  5616. next_distance = curr_distance;
  5617. for (i = 0; i < nr_node_ids; i++) {
  5618. for (j = 0; j < nr_node_ids; j++) {
  5619. for (k = 0; k < nr_node_ids; k++) {
  5620. int distance = node_distance(i, k);
  5621. if (distance > curr_distance &&
  5622. (distance < next_distance ||
  5623. next_distance == curr_distance))
  5624. next_distance = distance;
  5625. /*
  5626. * While not a strong assumption it would be nice to know
  5627. * about cases where if node A is connected to B, B is not
  5628. * equally connected to A.
  5629. */
  5630. if (sched_debug() && node_distance(k, i) != distance)
  5631. sched_numa_warn("Node-distance not symmetric");
  5632. if (sched_debug() && i && !find_numa_distance(distance))
  5633. sched_numa_warn("Node-0 not representative");
  5634. }
  5635. if (next_distance != curr_distance) {
  5636. sched_domains_numa_distance[level++] = next_distance;
  5637. sched_domains_numa_levels = level;
  5638. curr_distance = next_distance;
  5639. } else break;
  5640. }
  5641. /*
  5642. * In case of sched_debug() we verify the above assumption.
  5643. */
  5644. if (!sched_debug())
  5645. break;
  5646. }
  5647. if (!level)
  5648. return;
  5649. /*
  5650. * 'level' contains the number of unique distances, excluding the
  5651. * identity distance node_distance(i,i).
  5652. *
  5653. * The sched_domains_numa_distance[] array includes the actual distance
  5654. * numbers.
  5655. */
  5656. /*
  5657. * Here, we should temporarily reset sched_domains_numa_levels to 0.
  5658. * If it fails to allocate memory for array sched_domains_numa_masks[][],
  5659. * the array will contain less then 'level' members. This could be
  5660. * dangerous when we use it to iterate array sched_domains_numa_masks[][]
  5661. * in other functions.
  5662. *
  5663. * We reset it to 'level' at the end of this function.
  5664. */
  5665. sched_domains_numa_levels = 0;
  5666. sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
  5667. if (!sched_domains_numa_masks)
  5668. return;
  5669. /*
  5670. * Now for each level, construct a mask per node which contains all
  5671. * cpus of nodes that are that many hops away from us.
  5672. */
  5673. for (i = 0; i < level; i++) {
  5674. sched_domains_numa_masks[i] =
  5675. kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
  5676. if (!sched_domains_numa_masks[i])
  5677. return;
  5678. for (j = 0; j < nr_node_ids; j++) {
  5679. struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
  5680. if (!mask)
  5681. return;
  5682. sched_domains_numa_masks[i][j] = mask;
  5683. for (k = 0; k < nr_node_ids; k++) {
  5684. if (node_distance(j, k) > sched_domains_numa_distance[i])
  5685. continue;
  5686. cpumask_or(mask, mask, cpumask_of_node(k));
  5687. }
  5688. }
  5689. }
  5690. /* Compute default topology size */
  5691. for (i = 0; sched_domain_topology[i].mask; i++);
  5692. tl = kzalloc((i + level + 1) *
  5693. sizeof(struct sched_domain_topology_level), GFP_KERNEL);
  5694. if (!tl)
  5695. return;
  5696. /*
  5697. * Copy the default topology bits..
  5698. */
  5699. for (i = 0; sched_domain_topology[i].mask; i++)
  5700. tl[i] = sched_domain_topology[i];
  5701. /*
  5702. * .. and append 'j' levels of NUMA goodness.
  5703. */
  5704. for (j = 0; j < level; i++, j++) {
  5705. tl[i] = (struct sched_domain_topology_level){
  5706. .mask = sd_numa_mask,
  5707. .sd_flags = cpu_numa_flags,
  5708. .flags = SDTL_OVERLAP,
  5709. .numa_level = j,
  5710. SD_INIT_NAME(NUMA)
  5711. };
  5712. }
  5713. sched_domain_topology = tl;
  5714. sched_domains_numa_levels = level;
  5715. sched_max_numa_distance = sched_domains_numa_distance[level - 1];
  5716. init_numa_topology_type();
  5717. }
  5718. static void sched_domains_numa_masks_set(int cpu)
  5719. {
  5720. int i, j;
  5721. int node = cpu_to_node(cpu);
  5722. for (i = 0; i < sched_domains_numa_levels; i++) {
  5723. for (j = 0; j < nr_node_ids; j++) {
  5724. if (node_distance(j, node) <= sched_domains_numa_distance[i])
  5725. cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
  5726. }
  5727. }
  5728. }
  5729. static void sched_domains_numa_masks_clear(int cpu)
  5730. {
  5731. int i, j;
  5732. for (i = 0; i < sched_domains_numa_levels; i++) {
  5733. for (j = 0; j < nr_node_ids; j++)
  5734. cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
  5735. }
  5736. }
  5737. /*
  5738. * Update sched_domains_numa_masks[level][node] array when new cpus
  5739. * are onlined.
  5740. */
  5741. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5742. unsigned long action,
  5743. void *hcpu)
  5744. {
  5745. int cpu = (long)hcpu;
  5746. switch (action & ~CPU_TASKS_FROZEN) {
  5747. case CPU_ONLINE:
  5748. sched_domains_numa_masks_set(cpu);
  5749. break;
  5750. case CPU_DEAD:
  5751. sched_domains_numa_masks_clear(cpu);
  5752. break;
  5753. default:
  5754. return NOTIFY_DONE;
  5755. }
  5756. return NOTIFY_OK;
  5757. }
  5758. #else
  5759. static inline void sched_init_numa(void)
  5760. {
  5761. }
  5762. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5763. unsigned long action,
  5764. void *hcpu)
  5765. {
  5766. return 0;
  5767. }
  5768. #endif /* CONFIG_NUMA */
  5769. static int __sdt_alloc(const struct cpumask *cpu_map)
  5770. {
  5771. struct sched_domain_topology_level *tl;
  5772. int j;
  5773. for_each_sd_topology(tl) {
  5774. struct sd_data *sdd = &tl->data;
  5775. sdd->sd = alloc_percpu(struct sched_domain *);
  5776. if (!sdd->sd)
  5777. return -ENOMEM;
  5778. sdd->sg = alloc_percpu(struct sched_group *);
  5779. if (!sdd->sg)
  5780. return -ENOMEM;
  5781. sdd->sgc = alloc_percpu(struct sched_group_capacity *);
  5782. if (!sdd->sgc)
  5783. return -ENOMEM;
  5784. for_each_cpu(j, cpu_map) {
  5785. struct sched_domain *sd;
  5786. struct sched_group *sg;
  5787. struct sched_group_capacity *sgc;
  5788. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  5789. GFP_KERNEL, cpu_to_node(j));
  5790. if (!sd)
  5791. return -ENOMEM;
  5792. *per_cpu_ptr(sdd->sd, j) = sd;
  5793. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5794. GFP_KERNEL, cpu_to_node(j));
  5795. if (!sg)
  5796. return -ENOMEM;
  5797. sg->next = sg;
  5798. *per_cpu_ptr(sdd->sg, j) = sg;
  5799. sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
  5800. GFP_KERNEL, cpu_to_node(j));
  5801. if (!sgc)
  5802. return -ENOMEM;
  5803. *per_cpu_ptr(sdd->sgc, j) = sgc;
  5804. }
  5805. }
  5806. return 0;
  5807. }
  5808. static void __sdt_free(const struct cpumask *cpu_map)
  5809. {
  5810. struct sched_domain_topology_level *tl;
  5811. int j;
  5812. for_each_sd_topology(tl) {
  5813. struct sd_data *sdd = &tl->data;
  5814. for_each_cpu(j, cpu_map) {
  5815. struct sched_domain *sd;
  5816. if (sdd->sd) {
  5817. sd = *per_cpu_ptr(sdd->sd, j);
  5818. if (sd && (sd->flags & SD_OVERLAP))
  5819. free_sched_groups(sd->groups, 0);
  5820. kfree(*per_cpu_ptr(sdd->sd, j));
  5821. }
  5822. if (sdd->sg)
  5823. kfree(*per_cpu_ptr(sdd->sg, j));
  5824. if (sdd->sgc)
  5825. kfree(*per_cpu_ptr(sdd->sgc, j));
  5826. }
  5827. free_percpu(sdd->sd);
  5828. sdd->sd = NULL;
  5829. free_percpu(sdd->sg);
  5830. sdd->sg = NULL;
  5831. free_percpu(sdd->sgc);
  5832. sdd->sgc = NULL;
  5833. }
  5834. }
  5835. struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
  5836. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5837. struct sched_domain *child, int cpu)
  5838. {
  5839. struct sched_domain *sd = sd_init(tl, cpu);
  5840. if (!sd)
  5841. return child;
  5842. cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
  5843. if (child) {
  5844. sd->level = child->level + 1;
  5845. sched_domain_level_max = max(sched_domain_level_max, sd->level);
  5846. child->parent = sd;
  5847. sd->child = child;
  5848. if (!cpumask_subset(sched_domain_span(child),
  5849. sched_domain_span(sd))) {
  5850. pr_err("BUG: arch topology borken\n");
  5851. #ifdef CONFIG_SCHED_DEBUG
  5852. pr_err(" the %s domain not a subset of the %s domain\n",
  5853. child->name, sd->name);
  5854. #endif
  5855. /* Fixup, ensure @sd has at least @child cpus. */
  5856. cpumask_or(sched_domain_span(sd),
  5857. sched_domain_span(sd),
  5858. sched_domain_span(child));
  5859. }
  5860. }
  5861. set_domain_attribute(sd, attr);
  5862. return sd;
  5863. }
  5864. /*
  5865. * Build sched domains for a given set of cpus and attach the sched domains
  5866. * to the individual cpus
  5867. */
  5868. static int build_sched_domains(const struct cpumask *cpu_map,
  5869. struct sched_domain_attr *attr)
  5870. {
  5871. enum s_alloc alloc_state;
  5872. struct sched_domain *sd;
  5873. struct s_data d;
  5874. int i, ret = -ENOMEM;
  5875. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  5876. if (alloc_state != sa_rootdomain)
  5877. goto error;
  5878. /* Set up domains for cpus specified by the cpu_map. */
  5879. for_each_cpu(i, cpu_map) {
  5880. struct sched_domain_topology_level *tl;
  5881. sd = NULL;
  5882. for_each_sd_topology(tl) {
  5883. sd = build_sched_domain(tl, cpu_map, attr, sd, i);
  5884. if (tl == sched_domain_topology)
  5885. *per_cpu_ptr(d.sd, i) = sd;
  5886. if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
  5887. sd->flags |= SD_OVERLAP;
  5888. if (cpumask_equal(cpu_map, sched_domain_span(sd)))
  5889. break;
  5890. }
  5891. }
  5892. /* Build the groups for the domains */
  5893. for_each_cpu(i, cpu_map) {
  5894. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5895. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  5896. if (sd->flags & SD_OVERLAP) {
  5897. if (build_overlap_sched_groups(sd, i))
  5898. goto error;
  5899. } else {
  5900. if (build_sched_groups(sd, i))
  5901. goto error;
  5902. }
  5903. }
  5904. }
  5905. /* Calculate CPU capacity for physical packages and nodes */
  5906. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  5907. if (!cpumask_test_cpu(i, cpu_map))
  5908. continue;
  5909. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5910. claim_allocations(i, sd);
  5911. init_sched_groups_capacity(i, sd);
  5912. }
  5913. }
  5914. /* Attach the domains */
  5915. rcu_read_lock();
  5916. for_each_cpu(i, cpu_map) {
  5917. sd = *per_cpu_ptr(d.sd, i);
  5918. cpu_attach_domain(sd, d.rd, i);
  5919. }
  5920. rcu_read_unlock();
  5921. ret = 0;
  5922. error:
  5923. __free_domain_allocs(&d, alloc_state, cpu_map);
  5924. return ret;
  5925. }
  5926. static cpumask_var_t *doms_cur; /* current sched domains */
  5927. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5928. static struct sched_domain_attr *dattr_cur;
  5929. /* attribues of custom domains in 'doms_cur' */
  5930. /*
  5931. * Special case: If a kmalloc of a doms_cur partition (array of
  5932. * cpumask) fails, then fallback to a single sched domain,
  5933. * as determined by the single cpumask fallback_doms.
  5934. */
  5935. static cpumask_var_t fallback_doms;
  5936. /*
  5937. * arch_update_cpu_topology lets virtualized architectures update the
  5938. * cpu core maps. It is supposed to return 1 if the topology changed
  5939. * or 0 if it stayed the same.
  5940. */
  5941. int __weak arch_update_cpu_topology(void)
  5942. {
  5943. return 0;
  5944. }
  5945. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  5946. {
  5947. int i;
  5948. cpumask_var_t *doms;
  5949. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  5950. if (!doms)
  5951. return NULL;
  5952. for (i = 0; i < ndoms; i++) {
  5953. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  5954. free_sched_domains(doms, i);
  5955. return NULL;
  5956. }
  5957. }
  5958. return doms;
  5959. }
  5960. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  5961. {
  5962. unsigned int i;
  5963. for (i = 0; i < ndoms; i++)
  5964. free_cpumask_var(doms[i]);
  5965. kfree(doms);
  5966. }
  5967. /*
  5968. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5969. * For now this just excludes isolated cpus, but could be used to
  5970. * exclude other special cases in the future.
  5971. */
  5972. static int init_sched_domains(const struct cpumask *cpu_map)
  5973. {
  5974. int err;
  5975. arch_update_cpu_topology();
  5976. ndoms_cur = 1;
  5977. doms_cur = alloc_sched_domains(ndoms_cur);
  5978. if (!doms_cur)
  5979. doms_cur = &fallback_doms;
  5980. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  5981. err = build_sched_domains(doms_cur[0], NULL);
  5982. register_sched_domain_sysctl();
  5983. return err;
  5984. }
  5985. /*
  5986. * Detach sched domains from a group of cpus specified in cpu_map
  5987. * These cpus will now be attached to the NULL domain
  5988. */
  5989. static void detach_destroy_domains(const struct cpumask *cpu_map)
  5990. {
  5991. int i;
  5992. rcu_read_lock();
  5993. for_each_cpu(i, cpu_map)
  5994. cpu_attach_domain(NULL, &def_root_domain, i);
  5995. rcu_read_unlock();
  5996. }
  5997. /* handle null as "default" */
  5998. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  5999. struct sched_domain_attr *new, int idx_new)
  6000. {
  6001. struct sched_domain_attr tmp;
  6002. /* fast path */
  6003. if (!new && !cur)
  6004. return 1;
  6005. tmp = SD_ATTR_INIT;
  6006. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6007. new ? (new + idx_new) : &tmp,
  6008. sizeof(struct sched_domain_attr));
  6009. }
  6010. /*
  6011. * Partition sched domains as specified by the 'ndoms_new'
  6012. * cpumasks in the array doms_new[] of cpumasks. This compares
  6013. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6014. * It destroys each deleted domain and builds each new domain.
  6015. *
  6016. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  6017. * The masks don't intersect (don't overlap.) We should setup one
  6018. * sched domain for each mask. CPUs not in any of the cpumasks will
  6019. * not be load balanced. If the same cpumask appears both in the
  6020. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6021. * it as it is.
  6022. *
  6023. * The passed in 'doms_new' should be allocated using
  6024. * alloc_sched_domains. This routine takes ownership of it and will
  6025. * free_sched_domains it when done with it. If the caller failed the
  6026. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  6027. * and partition_sched_domains() will fallback to the single partition
  6028. * 'fallback_doms', it also forces the domains to be rebuilt.
  6029. *
  6030. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6031. * ndoms_new == 0 is a special case for destroying existing domains,
  6032. * and it will not create the default domain.
  6033. *
  6034. * Call with hotplug lock held
  6035. */
  6036. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  6037. struct sched_domain_attr *dattr_new)
  6038. {
  6039. int i, j, n;
  6040. int new_topology;
  6041. mutex_lock(&sched_domains_mutex);
  6042. /* always unregister in case we don't destroy any domains */
  6043. unregister_sched_domain_sysctl();
  6044. /* Let architecture update cpu core mappings. */
  6045. new_topology = arch_update_cpu_topology();
  6046. n = doms_new ? ndoms_new : 0;
  6047. /* Destroy deleted domains */
  6048. for (i = 0; i < ndoms_cur; i++) {
  6049. for (j = 0; j < n && !new_topology; j++) {
  6050. if (cpumask_equal(doms_cur[i], doms_new[j])
  6051. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6052. goto match1;
  6053. }
  6054. /* no match - a current sched domain not in new doms_new[] */
  6055. detach_destroy_domains(doms_cur[i]);
  6056. match1:
  6057. ;
  6058. }
  6059. n = ndoms_cur;
  6060. if (doms_new == NULL) {
  6061. n = 0;
  6062. doms_new = &fallback_doms;
  6063. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  6064. WARN_ON_ONCE(dattr_new);
  6065. }
  6066. /* Build new domains */
  6067. for (i = 0; i < ndoms_new; i++) {
  6068. for (j = 0; j < n && !new_topology; j++) {
  6069. if (cpumask_equal(doms_new[i], doms_cur[j])
  6070. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6071. goto match2;
  6072. }
  6073. /* no match - add a new doms_new */
  6074. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  6075. match2:
  6076. ;
  6077. }
  6078. /* Remember the new sched domains */
  6079. if (doms_cur != &fallback_doms)
  6080. free_sched_domains(doms_cur, ndoms_cur);
  6081. kfree(dattr_cur); /* kfree(NULL) is safe */
  6082. doms_cur = doms_new;
  6083. dattr_cur = dattr_new;
  6084. ndoms_cur = ndoms_new;
  6085. register_sched_domain_sysctl();
  6086. mutex_unlock(&sched_domains_mutex);
  6087. }
  6088. static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
  6089. /*
  6090. * Update cpusets according to cpu_active mask. If cpusets are
  6091. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  6092. * around partition_sched_domains().
  6093. *
  6094. * If we come here as part of a suspend/resume, don't touch cpusets because we
  6095. * want to restore it back to its original state upon resume anyway.
  6096. */
  6097. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  6098. void *hcpu)
  6099. {
  6100. switch (action) {
  6101. case CPU_ONLINE_FROZEN:
  6102. case CPU_DOWN_FAILED_FROZEN:
  6103. /*
  6104. * num_cpus_frozen tracks how many CPUs are involved in suspend
  6105. * resume sequence. As long as this is not the last online
  6106. * operation in the resume sequence, just build a single sched
  6107. * domain, ignoring cpusets.
  6108. */
  6109. num_cpus_frozen--;
  6110. if (likely(num_cpus_frozen)) {
  6111. partition_sched_domains(1, NULL, NULL);
  6112. break;
  6113. }
  6114. /*
  6115. * This is the last CPU online operation. So fall through and
  6116. * restore the original sched domains by considering the
  6117. * cpuset configurations.
  6118. */
  6119. case CPU_ONLINE:
  6120. cpuset_update_active_cpus(true);
  6121. break;
  6122. default:
  6123. return NOTIFY_DONE;
  6124. }
  6125. return NOTIFY_OK;
  6126. }
  6127. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  6128. void *hcpu)
  6129. {
  6130. unsigned long flags;
  6131. long cpu = (long)hcpu;
  6132. struct dl_bw *dl_b;
  6133. bool overflow;
  6134. int cpus;
  6135. switch (action) {
  6136. case CPU_DOWN_PREPARE:
  6137. rcu_read_lock_sched();
  6138. dl_b = dl_bw_of(cpu);
  6139. raw_spin_lock_irqsave(&dl_b->lock, flags);
  6140. cpus = dl_bw_cpus(cpu);
  6141. overflow = __dl_overflow(dl_b, cpus, 0, 0);
  6142. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  6143. rcu_read_unlock_sched();
  6144. if (overflow)
  6145. return notifier_from_errno(-EBUSY);
  6146. cpuset_update_active_cpus(false);
  6147. break;
  6148. case CPU_DOWN_PREPARE_FROZEN:
  6149. num_cpus_frozen++;
  6150. partition_sched_domains(1, NULL, NULL);
  6151. break;
  6152. default:
  6153. return NOTIFY_DONE;
  6154. }
  6155. return NOTIFY_OK;
  6156. }
  6157. void __init sched_init_smp(void)
  6158. {
  6159. cpumask_var_t non_isolated_cpus;
  6160. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6161. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6162. /* nohz_full won't take effect without isolating the cpus. */
  6163. tick_nohz_full_add_cpus_to(cpu_isolated_map);
  6164. sched_init_numa();
  6165. /*
  6166. * There's no userspace yet to cause hotplug operations; hence all the
  6167. * cpu masks are stable and all blatant races in the below code cannot
  6168. * happen.
  6169. */
  6170. mutex_lock(&sched_domains_mutex);
  6171. init_sched_domains(cpu_active_mask);
  6172. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6173. if (cpumask_empty(non_isolated_cpus))
  6174. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6175. mutex_unlock(&sched_domains_mutex);
  6176. hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
  6177. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  6178. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  6179. init_hrtick();
  6180. /* Move init over to a non-isolated CPU */
  6181. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6182. BUG();
  6183. sched_init_granularity();
  6184. free_cpumask_var(non_isolated_cpus);
  6185. init_sched_rt_class();
  6186. init_sched_dl_class();
  6187. }
  6188. #else
  6189. void __init sched_init_smp(void)
  6190. {
  6191. sched_init_granularity();
  6192. }
  6193. #endif /* CONFIG_SMP */
  6194. int in_sched_functions(unsigned long addr)
  6195. {
  6196. return in_lock_functions(addr) ||
  6197. (addr >= (unsigned long)__sched_text_start
  6198. && addr < (unsigned long)__sched_text_end);
  6199. }
  6200. #ifdef CONFIG_CGROUP_SCHED
  6201. /*
  6202. * Default task group.
  6203. * Every task in system belongs to this group at bootup.
  6204. */
  6205. struct task_group root_task_group;
  6206. LIST_HEAD(task_groups);
  6207. #endif
  6208. DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
  6209. void __init sched_init(void)
  6210. {
  6211. int i, j;
  6212. unsigned long alloc_size = 0, ptr;
  6213. #ifdef CONFIG_FAIR_GROUP_SCHED
  6214. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6215. #endif
  6216. #ifdef CONFIG_RT_GROUP_SCHED
  6217. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6218. #endif
  6219. if (alloc_size) {
  6220. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6221. #ifdef CONFIG_FAIR_GROUP_SCHED
  6222. root_task_group.se = (struct sched_entity **)ptr;
  6223. ptr += nr_cpu_ids * sizeof(void **);
  6224. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6225. ptr += nr_cpu_ids * sizeof(void **);
  6226. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6227. #ifdef CONFIG_RT_GROUP_SCHED
  6228. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6229. ptr += nr_cpu_ids * sizeof(void **);
  6230. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6231. ptr += nr_cpu_ids * sizeof(void **);
  6232. #endif /* CONFIG_RT_GROUP_SCHED */
  6233. }
  6234. #ifdef CONFIG_CPUMASK_OFFSTACK
  6235. for_each_possible_cpu(i) {
  6236. per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
  6237. cpumask_size(), GFP_KERNEL, cpu_to_node(i));
  6238. }
  6239. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6240. init_rt_bandwidth(&def_rt_bandwidth,
  6241. global_rt_period(), global_rt_runtime());
  6242. init_dl_bandwidth(&def_dl_bandwidth,
  6243. global_rt_period(), global_rt_runtime());
  6244. #ifdef CONFIG_SMP
  6245. init_defrootdomain();
  6246. #endif
  6247. #ifdef CONFIG_RT_GROUP_SCHED
  6248. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6249. global_rt_period(), global_rt_runtime());
  6250. #endif /* CONFIG_RT_GROUP_SCHED */
  6251. #ifdef CONFIG_CGROUP_SCHED
  6252. list_add(&root_task_group.list, &task_groups);
  6253. INIT_LIST_HEAD(&root_task_group.children);
  6254. INIT_LIST_HEAD(&root_task_group.siblings);
  6255. autogroup_init(&init_task);
  6256. #endif /* CONFIG_CGROUP_SCHED */
  6257. for_each_possible_cpu(i) {
  6258. struct rq *rq;
  6259. rq = cpu_rq(i);
  6260. raw_spin_lock_init(&rq->lock);
  6261. rq->nr_running = 0;
  6262. rq->calc_load_active = 0;
  6263. rq->calc_load_update = jiffies + LOAD_FREQ;
  6264. init_cfs_rq(&rq->cfs);
  6265. init_rt_rq(&rq->rt);
  6266. init_dl_rq(&rq->dl);
  6267. #ifdef CONFIG_FAIR_GROUP_SCHED
  6268. root_task_group.shares = ROOT_TASK_GROUP_LOAD;
  6269. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6270. /*
  6271. * How much cpu bandwidth does root_task_group get?
  6272. *
  6273. * In case of task-groups formed thr' the cgroup filesystem, it
  6274. * gets 100% of the cpu resources in the system. This overall
  6275. * system cpu resource is divided among the tasks of
  6276. * root_task_group and its child task-groups in a fair manner,
  6277. * based on each entity's (task or task-group's) weight
  6278. * (se->load.weight).
  6279. *
  6280. * In other words, if root_task_group has 10 tasks of weight
  6281. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6282. * then A0's share of the cpu resource is:
  6283. *
  6284. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6285. *
  6286. * We achieve this by letting root_task_group's tasks sit
  6287. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  6288. */
  6289. init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
  6290. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  6291. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6292. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6293. #ifdef CONFIG_RT_GROUP_SCHED
  6294. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  6295. #endif
  6296. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6297. rq->cpu_load[j] = 0;
  6298. rq->last_load_update_tick = jiffies;
  6299. #ifdef CONFIG_SMP
  6300. rq->sd = NULL;
  6301. rq->rd = NULL;
  6302. rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
  6303. rq->balance_callback = NULL;
  6304. rq->active_balance = 0;
  6305. rq->next_balance = jiffies;
  6306. rq->push_cpu = 0;
  6307. rq->cpu = i;
  6308. rq->online = 0;
  6309. rq->idle_stamp = 0;
  6310. rq->avg_idle = 2*sysctl_sched_migration_cost;
  6311. rq->max_idle_balance_cost = sysctl_sched_migration_cost;
  6312. INIT_LIST_HEAD(&rq->cfs_tasks);
  6313. rq_attach_root(rq, &def_root_domain);
  6314. #ifdef CONFIG_NO_HZ_COMMON
  6315. rq->nohz_flags = 0;
  6316. #endif
  6317. #ifdef CONFIG_NO_HZ_FULL
  6318. rq->last_sched_tick = 0;
  6319. #endif
  6320. #endif
  6321. init_rq_hrtick(rq);
  6322. atomic_set(&rq->nr_iowait, 0);
  6323. }
  6324. set_load_weight(&init_task);
  6325. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6326. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6327. #endif
  6328. /*
  6329. * The boot idle thread does lazy MMU switching as well:
  6330. */
  6331. atomic_inc(&init_mm.mm_count);
  6332. enter_lazy_tlb(&init_mm, current);
  6333. /*
  6334. * During early bootup we pretend to be a normal task:
  6335. */
  6336. current->sched_class = &fair_sched_class;
  6337. /*
  6338. * Make us the idle thread. Technically, schedule() should not be
  6339. * called from this thread, however somewhere below it might be,
  6340. * but because we are the idle thread, we just pick up running again
  6341. * when this runqueue becomes "idle".
  6342. */
  6343. init_idle(current, smp_processor_id());
  6344. calc_load_update = jiffies + LOAD_FREQ;
  6345. #ifdef CONFIG_SMP
  6346. zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
  6347. /* May be allocated at isolcpus cmdline parse time */
  6348. if (cpu_isolated_map == NULL)
  6349. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  6350. idle_thread_set_boot_cpu();
  6351. set_cpu_rq_start_time();
  6352. #endif
  6353. init_sched_fair_class();
  6354. scheduler_running = 1;
  6355. }
  6356. #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
  6357. static inline int preempt_count_equals(int preempt_offset)
  6358. {
  6359. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  6360. return (nested == preempt_offset);
  6361. }
  6362. void __might_sleep(const char *file, int line, int preempt_offset)
  6363. {
  6364. /*
  6365. * Blocking primitives will set (and therefore destroy) current->state,
  6366. * since we will exit with TASK_RUNNING make sure we enter with it,
  6367. * otherwise we will destroy state.
  6368. */
  6369. WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
  6370. "do not call blocking ops when !TASK_RUNNING; "
  6371. "state=%lx set at [<%p>] %pS\n",
  6372. current->state,
  6373. (void *)current->task_state_change,
  6374. (void *)current->task_state_change);
  6375. ___might_sleep(file, line, preempt_offset);
  6376. }
  6377. EXPORT_SYMBOL(__might_sleep);
  6378. void ___might_sleep(const char *file, int line, int preempt_offset)
  6379. {
  6380. static unsigned long prev_jiffy; /* ratelimiting */
  6381. rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
  6382. if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
  6383. !is_idle_task(current)) ||
  6384. system_state != SYSTEM_RUNNING || oops_in_progress)
  6385. return;
  6386. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6387. return;
  6388. prev_jiffy = jiffies;
  6389. printk(KERN_ERR
  6390. "BUG: sleeping function called from invalid context at %s:%d\n",
  6391. file, line);
  6392. printk(KERN_ERR
  6393. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  6394. in_atomic(), irqs_disabled(),
  6395. current->pid, current->comm);
  6396. if (task_stack_end_corrupted(current))
  6397. printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
  6398. debug_show_held_locks(current);
  6399. if (irqs_disabled())
  6400. print_irqtrace_events(current);
  6401. #ifdef CONFIG_DEBUG_PREEMPT
  6402. if (!preempt_count_equals(preempt_offset)) {
  6403. pr_err("Preemption disabled at:");
  6404. print_ip_sym(current->preempt_disable_ip);
  6405. pr_cont("\n");
  6406. }
  6407. #endif
  6408. dump_stack();
  6409. }
  6410. EXPORT_SYMBOL(___might_sleep);
  6411. #endif
  6412. #ifdef CONFIG_MAGIC_SYSRQ
  6413. void normalize_rt_tasks(void)
  6414. {
  6415. struct task_struct *g, *p;
  6416. struct sched_attr attr = {
  6417. .sched_policy = SCHED_NORMAL,
  6418. };
  6419. read_lock(&tasklist_lock);
  6420. for_each_process_thread(g, p) {
  6421. /*
  6422. * Only normalize user tasks:
  6423. */
  6424. if (p->flags & PF_KTHREAD)
  6425. continue;
  6426. p->se.exec_start = 0;
  6427. #ifdef CONFIG_SCHEDSTATS
  6428. p->se.statistics.wait_start = 0;
  6429. p->se.statistics.sleep_start = 0;
  6430. p->se.statistics.block_start = 0;
  6431. #endif
  6432. if (!dl_task(p) && !rt_task(p)) {
  6433. /*
  6434. * Renice negative nice level userspace
  6435. * tasks back to 0:
  6436. */
  6437. if (task_nice(p) < 0)
  6438. set_user_nice(p, 0);
  6439. continue;
  6440. }
  6441. __sched_setscheduler(p, &attr, false, false);
  6442. }
  6443. read_unlock(&tasklist_lock);
  6444. }
  6445. #endif /* CONFIG_MAGIC_SYSRQ */
  6446. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  6447. /*
  6448. * These functions are only useful for the IA64 MCA handling, or kdb.
  6449. *
  6450. * They can only be called when the whole system has been
  6451. * stopped - every CPU needs to be quiescent, and no scheduling
  6452. * activity can take place. Using them for anything else would
  6453. * be a serious bug, and as a result, they aren't even visible
  6454. * under any other configuration.
  6455. */
  6456. /**
  6457. * curr_task - return the current task for a given cpu.
  6458. * @cpu: the processor in question.
  6459. *
  6460. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6461. *
  6462. * Return: The current task for @cpu.
  6463. */
  6464. struct task_struct *curr_task(int cpu)
  6465. {
  6466. return cpu_curr(cpu);
  6467. }
  6468. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6469. #ifdef CONFIG_IA64
  6470. /**
  6471. * set_curr_task - set the current task for a given cpu.
  6472. * @cpu: the processor in question.
  6473. * @p: the task pointer to set.
  6474. *
  6475. * Description: This function must only be used when non-maskable interrupts
  6476. * are serviced on a separate stack. It allows the architecture to switch the
  6477. * notion of the current task on a cpu in a non-blocking manner. This function
  6478. * must be called with all CPU's synchronized, and interrupts disabled, the
  6479. * and caller must save the original value of the current task (see
  6480. * curr_task() above) and restore that value before reenabling interrupts and
  6481. * re-starting the system.
  6482. *
  6483. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6484. */
  6485. void set_curr_task(int cpu, struct task_struct *p)
  6486. {
  6487. cpu_curr(cpu) = p;
  6488. }
  6489. #endif
  6490. #ifdef CONFIG_CGROUP_SCHED
  6491. /* task_group_lock serializes the addition/removal of task groups */
  6492. static DEFINE_SPINLOCK(task_group_lock);
  6493. static void free_sched_group(struct task_group *tg)
  6494. {
  6495. free_fair_sched_group(tg);
  6496. free_rt_sched_group(tg);
  6497. autogroup_free(tg);
  6498. kfree(tg);
  6499. }
  6500. /* allocate runqueue etc for a new task group */
  6501. struct task_group *sched_create_group(struct task_group *parent)
  6502. {
  6503. struct task_group *tg;
  6504. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6505. if (!tg)
  6506. return ERR_PTR(-ENOMEM);
  6507. if (!alloc_fair_sched_group(tg, parent))
  6508. goto err;
  6509. if (!alloc_rt_sched_group(tg, parent))
  6510. goto err;
  6511. return tg;
  6512. err:
  6513. free_sched_group(tg);
  6514. return ERR_PTR(-ENOMEM);
  6515. }
  6516. void sched_online_group(struct task_group *tg, struct task_group *parent)
  6517. {
  6518. unsigned long flags;
  6519. spin_lock_irqsave(&task_group_lock, flags);
  6520. list_add_rcu(&tg->list, &task_groups);
  6521. WARN_ON(!parent); /* root should already exist */
  6522. tg->parent = parent;
  6523. INIT_LIST_HEAD(&tg->children);
  6524. list_add_rcu(&tg->siblings, &parent->children);
  6525. spin_unlock_irqrestore(&task_group_lock, flags);
  6526. }
  6527. /* rcu callback to free various structures associated with a task group */
  6528. static void free_sched_group_rcu(struct rcu_head *rhp)
  6529. {
  6530. /* now it should be safe to free those cfs_rqs */
  6531. free_sched_group(container_of(rhp, struct task_group, rcu));
  6532. }
  6533. /* Destroy runqueue etc associated with a task group */
  6534. void sched_destroy_group(struct task_group *tg)
  6535. {
  6536. /* wait for possible concurrent references to cfs_rqs complete */
  6537. call_rcu(&tg->rcu, free_sched_group_rcu);
  6538. }
  6539. void sched_offline_group(struct task_group *tg)
  6540. {
  6541. unsigned long flags;
  6542. int i;
  6543. /* end participation in shares distribution */
  6544. for_each_possible_cpu(i)
  6545. unregister_fair_sched_group(tg, i);
  6546. spin_lock_irqsave(&task_group_lock, flags);
  6547. list_del_rcu(&tg->list);
  6548. list_del_rcu(&tg->siblings);
  6549. spin_unlock_irqrestore(&task_group_lock, flags);
  6550. }
  6551. /* change task's runqueue when it moves between groups.
  6552. * The caller of this function should have put the task in its new group
  6553. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6554. * reflect its new group.
  6555. */
  6556. void sched_move_task(struct task_struct *tsk)
  6557. {
  6558. struct task_group *tg;
  6559. int queued, running;
  6560. unsigned long flags;
  6561. struct rq *rq;
  6562. rq = task_rq_lock(tsk, &flags);
  6563. running = task_current(rq, tsk);
  6564. queued = task_on_rq_queued(tsk);
  6565. if (queued)
  6566. dequeue_task(rq, tsk, 0);
  6567. if (unlikely(running))
  6568. put_prev_task(rq, tsk);
  6569. /*
  6570. * All callers are synchronized by task_rq_lock(); we do not use RCU
  6571. * which is pointless here. Thus, we pass "true" to task_css_check()
  6572. * to prevent lockdep warnings.
  6573. */
  6574. tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
  6575. struct task_group, css);
  6576. tg = autogroup_task_group(tsk, tg);
  6577. tsk->sched_task_group = tg;
  6578. #ifdef CONFIG_FAIR_GROUP_SCHED
  6579. if (tsk->sched_class->task_move_group)
  6580. tsk->sched_class->task_move_group(tsk, queued);
  6581. else
  6582. #endif
  6583. set_task_rq(tsk, task_cpu(tsk));
  6584. if (unlikely(running))
  6585. tsk->sched_class->set_curr_task(rq);
  6586. if (queued)
  6587. enqueue_task(rq, tsk, 0);
  6588. task_rq_unlock(rq, tsk, &flags);
  6589. }
  6590. #endif /* CONFIG_CGROUP_SCHED */
  6591. #ifdef CONFIG_RT_GROUP_SCHED
  6592. /*
  6593. * Ensure that the real time constraints are schedulable.
  6594. */
  6595. static DEFINE_MUTEX(rt_constraints_mutex);
  6596. /* Must be called with tasklist_lock held */
  6597. static inline int tg_has_rt_tasks(struct task_group *tg)
  6598. {
  6599. struct task_struct *g, *p;
  6600. /*
  6601. * Autogroups do not have RT tasks; see autogroup_create().
  6602. */
  6603. if (task_group_is_autogroup(tg))
  6604. return 0;
  6605. for_each_process_thread(g, p) {
  6606. if (rt_task(p) && task_group(p) == tg)
  6607. return 1;
  6608. }
  6609. return 0;
  6610. }
  6611. struct rt_schedulable_data {
  6612. struct task_group *tg;
  6613. u64 rt_period;
  6614. u64 rt_runtime;
  6615. };
  6616. static int tg_rt_schedulable(struct task_group *tg, void *data)
  6617. {
  6618. struct rt_schedulable_data *d = data;
  6619. struct task_group *child;
  6620. unsigned long total, sum = 0;
  6621. u64 period, runtime;
  6622. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6623. runtime = tg->rt_bandwidth.rt_runtime;
  6624. if (tg == d->tg) {
  6625. period = d->rt_period;
  6626. runtime = d->rt_runtime;
  6627. }
  6628. /*
  6629. * Cannot have more runtime than the period.
  6630. */
  6631. if (runtime > period && runtime != RUNTIME_INF)
  6632. return -EINVAL;
  6633. /*
  6634. * Ensure we don't starve existing RT tasks.
  6635. */
  6636. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  6637. return -EBUSY;
  6638. total = to_ratio(period, runtime);
  6639. /*
  6640. * Nobody can have more than the global setting allows.
  6641. */
  6642. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  6643. return -EINVAL;
  6644. /*
  6645. * The sum of our children's runtime should not exceed our own.
  6646. */
  6647. list_for_each_entry_rcu(child, &tg->children, siblings) {
  6648. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  6649. runtime = child->rt_bandwidth.rt_runtime;
  6650. if (child == d->tg) {
  6651. period = d->rt_period;
  6652. runtime = d->rt_runtime;
  6653. }
  6654. sum += to_ratio(period, runtime);
  6655. }
  6656. if (sum > total)
  6657. return -EINVAL;
  6658. return 0;
  6659. }
  6660. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  6661. {
  6662. int ret;
  6663. struct rt_schedulable_data data = {
  6664. .tg = tg,
  6665. .rt_period = period,
  6666. .rt_runtime = runtime,
  6667. };
  6668. rcu_read_lock();
  6669. ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
  6670. rcu_read_unlock();
  6671. return ret;
  6672. }
  6673. static int tg_set_rt_bandwidth(struct task_group *tg,
  6674. u64 rt_period, u64 rt_runtime)
  6675. {
  6676. int i, err = 0;
  6677. /*
  6678. * Disallowing the root group RT runtime is BAD, it would disallow the
  6679. * kernel creating (and or operating) RT threads.
  6680. */
  6681. if (tg == &root_task_group && rt_runtime == 0)
  6682. return -EINVAL;
  6683. /* No period doesn't make any sense. */
  6684. if (rt_period == 0)
  6685. return -EINVAL;
  6686. mutex_lock(&rt_constraints_mutex);
  6687. read_lock(&tasklist_lock);
  6688. err = __rt_schedulable(tg, rt_period, rt_runtime);
  6689. if (err)
  6690. goto unlock;
  6691. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6692. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  6693. tg->rt_bandwidth.rt_runtime = rt_runtime;
  6694. for_each_possible_cpu(i) {
  6695. struct rt_rq *rt_rq = tg->rt_rq[i];
  6696. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6697. rt_rq->rt_runtime = rt_runtime;
  6698. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6699. }
  6700. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6701. unlock:
  6702. read_unlock(&tasklist_lock);
  6703. mutex_unlock(&rt_constraints_mutex);
  6704. return err;
  6705. }
  6706. static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  6707. {
  6708. u64 rt_runtime, rt_period;
  6709. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6710. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  6711. if (rt_runtime_us < 0)
  6712. rt_runtime = RUNTIME_INF;
  6713. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6714. }
  6715. static long sched_group_rt_runtime(struct task_group *tg)
  6716. {
  6717. u64 rt_runtime_us;
  6718. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  6719. return -1;
  6720. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  6721. do_div(rt_runtime_us, NSEC_PER_USEC);
  6722. return rt_runtime_us;
  6723. }
  6724. static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
  6725. {
  6726. u64 rt_runtime, rt_period;
  6727. rt_period = rt_period_us * NSEC_PER_USEC;
  6728. rt_runtime = tg->rt_bandwidth.rt_runtime;
  6729. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6730. }
  6731. static long sched_group_rt_period(struct task_group *tg)
  6732. {
  6733. u64 rt_period_us;
  6734. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6735. do_div(rt_period_us, NSEC_PER_USEC);
  6736. return rt_period_us;
  6737. }
  6738. #endif /* CONFIG_RT_GROUP_SCHED */
  6739. #ifdef CONFIG_RT_GROUP_SCHED
  6740. static int sched_rt_global_constraints(void)
  6741. {
  6742. int ret = 0;
  6743. mutex_lock(&rt_constraints_mutex);
  6744. read_lock(&tasklist_lock);
  6745. ret = __rt_schedulable(NULL, 0, 0);
  6746. read_unlock(&tasklist_lock);
  6747. mutex_unlock(&rt_constraints_mutex);
  6748. return ret;
  6749. }
  6750. static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  6751. {
  6752. /* Don't accept realtime tasks when there is no way for them to run */
  6753. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  6754. return 0;
  6755. return 1;
  6756. }
  6757. #else /* !CONFIG_RT_GROUP_SCHED */
  6758. static int sched_rt_global_constraints(void)
  6759. {
  6760. unsigned long flags;
  6761. int i, ret = 0;
  6762. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  6763. for_each_possible_cpu(i) {
  6764. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  6765. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6766. rt_rq->rt_runtime = global_rt_runtime();
  6767. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6768. }
  6769. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  6770. return ret;
  6771. }
  6772. #endif /* CONFIG_RT_GROUP_SCHED */
  6773. static int sched_dl_global_validate(void)
  6774. {
  6775. u64 runtime = global_rt_runtime();
  6776. u64 period = global_rt_period();
  6777. u64 new_bw = to_ratio(period, runtime);
  6778. struct dl_bw *dl_b;
  6779. int cpu, ret = 0;
  6780. unsigned long flags;
  6781. /*
  6782. * Here we want to check the bandwidth not being set to some
  6783. * value smaller than the currently allocated bandwidth in
  6784. * any of the root_domains.
  6785. *
  6786. * FIXME: Cycling on all the CPUs is overdoing, but simpler than
  6787. * cycling on root_domains... Discussion on different/better
  6788. * solutions is welcome!
  6789. */
  6790. for_each_possible_cpu(cpu) {
  6791. rcu_read_lock_sched();
  6792. dl_b = dl_bw_of(cpu);
  6793. raw_spin_lock_irqsave(&dl_b->lock, flags);
  6794. if (new_bw < dl_b->total_bw)
  6795. ret = -EBUSY;
  6796. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  6797. rcu_read_unlock_sched();
  6798. if (ret)
  6799. break;
  6800. }
  6801. return ret;
  6802. }
  6803. static void sched_dl_do_global(void)
  6804. {
  6805. u64 new_bw = -1;
  6806. struct dl_bw *dl_b;
  6807. int cpu;
  6808. unsigned long flags;
  6809. def_dl_bandwidth.dl_period = global_rt_period();
  6810. def_dl_bandwidth.dl_runtime = global_rt_runtime();
  6811. if (global_rt_runtime() != RUNTIME_INF)
  6812. new_bw = to_ratio(global_rt_period(), global_rt_runtime());
  6813. /*
  6814. * FIXME: As above...
  6815. */
  6816. for_each_possible_cpu(cpu) {
  6817. rcu_read_lock_sched();
  6818. dl_b = dl_bw_of(cpu);
  6819. raw_spin_lock_irqsave(&dl_b->lock, flags);
  6820. dl_b->bw = new_bw;
  6821. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  6822. rcu_read_unlock_sched();
  6823. }
  6824. }
  6825. static int sched_rt_global_validate(void)
  6826. {
  6827. if (sysctl_sched_rt_period <= 0)
  6828. return -EINVAL;
  6829. if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
  6830. (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
  6831. return -EINVAL;
  6832. return 0;
  6833. }
  6834. static void sched_rt_do_global(void)
  6835. {
  6836. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  6837. def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
  6838. }
  6839. int sched_rt_handler(struct ctl_table *table, int write,
  6840. void __user *buffer, size_t *lenp,
  6841. loff_t *ppos)
  6842. {
  6843. int old_period, old_runtime;
  6844. static DEFINE_MUTEX(mutex);
  6845. int ret;
  6846. mutex_lock(&mutex);
  6847. old_period = sysctl_sched_rt_period;
  6848. old_runtime = sysctl_sched_rt_runtime;
  6849. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6850. if (!ret && write) {
  6851. ret = sched_rt_global_validate();
  6852. if (ret)
  6853. goto undo;
  6854. ret = sched_dl_global_validate();
  6855. if (ret)
  6856. goto undo;
  6857. ret = sched_rt_global_constraints();
  6858. if (ret)
  6859. goto undo;
  6860. sched_rt_do_global();
  6861. sched_dl_do_global();
  6862. }
  6863. if (0) {
  6864. undo:
  6865. sysctl_sched_rt_period = old_period;
  6866. sysctl_sched_rt_runtime = old_runtime;
  6867. }
  6868. mutex_unlock(&mutex);
  6869. return ret;
  6870. }
  6871. int sched_rr_handler(struct ctl_table *table, int write,
  6872. void __user *buffer, size_t *lenp,
  6873. loff_t *ppos)
  6874. {
  6875. int ret;
  6876. static DEFINE_MUTEX(mutex);
  6877. mutex_lock(&mutex);
  6878. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6879. /* make sure that internally we keep jiffies */
  6880. /* also, writing zero resets timeslice to default */
  6881. if (!ret && write) {
  6882. sched_rr_timeslice = sched_rr_timeslice <= 0 ?
  6883. RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
  6884. }
  6885. mutex_unlock(&mutex);
  6886. return ret;
  6887. }
  6888. #ifdef CONFIG_CGROUP_SCHED
  6889. static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
  6890. {
  6891. return css ? container_of(css, struct task_group, css) : NULL;
  6892. }
  6893. static struct cgroup_subsys_state *
  6894. cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
  6895. {
  6896. struct task_group *parent = css_tg(parent_css);
  6897. struct task_group *tg;
  6898. if (!parent) {
  6899. /* This is early initialization for the top cgroup */
  6900. return &root_task_group.css;
  6901. }
  6902. tg = sched_create_group(parent);
  6903. if (IS_ERR(tg))
  6904. return ERR_PTR(-ENOMEM);
  6905. return &tg->css;
  6906. }
  6907. static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
  6908. {
  6909. struct task_group *tg = css_tg(css);
  6910. struct task_group *parent = css_tg(css->parent);
  6911. if (parent)
  6912. sched_online_group(tg, parent);
  6913. return 0;
  6914. }
  6915. static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
  6916. {
  6917. struct task_group *tg = css_tg(css);
  6918. sched_destroy_group(tg);
  6919. }
  6920. static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
  6921. {
  6922. struct task_group *tg = css_tg(css);
  6923. sched_offline_group(tg);
  6924. }
  6925. static void cpu_cgroup_fork(struct task_struct *task, void *private)
  6926. {
  6927. sched_move_task(task);
  6928. }
  6929. static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
  6930. struct cgroup_taskset *tset)
  6931. {
  6932. struct task_struct *task;
  6933. cgroup_taskset_for_each(task, tset) {
  6934. #ifdef CONFIG_RT_GROUP_SCHED
  6935. if (!sched_rt_can_attach(css_tg(css), task))
  6936. return -EINVAL;
  6937. #else
  6938. /* We don't support RT-tasks being in separate groups */
  6939. if (task->sched_class != &fair_sched_class)
  6940. return -EINVAL;
  6941. #endif
  6942. }
  6943. return 0;
  6944. }
  6945. static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
  6946. struct cgroup_taskset *tset)
  6947. {
  6948. struct task_struct *task;
  6949. cgroup_taskset_for_each(task, tset)
  6950. sched_move_task(task);
  6951. }
  6952. static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
  6953. struct cgroup_subsys_state *old_css,
  6954. struct task_struct *task)
  6955. {
  6956. /*
  6957. * cgroup_exit() is called in the copy_process() failure path.
  6958. * Ignore this case since the task hasn't ran yet, this avoids
  6959. * trying to poke a half freed task state from generic code.
  6960. */
  6961. if (!(task->flags & PF_EXITING))
  6962. return;
  6963. sched_move_task(task);
  6964. }
  6965. #ifdef CONFIG_FAIR_GROUP_SCHED
  6966. static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
  6967. struct cftype *cftype, u64 shareval)
  6968. {
  6969. return sched_group_set_shares(css_tg(css), scale_load(shareval));
  6970. }
  6971. static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
  6972. struct cftype *cft)
  6973. {
  6974. struct task_group *tg = css_tg(css);
  6975. return (u64) scale_load_down(tg->shares);
  6976. }
  6977. #ifdef CONFIG_CFS_BANDWIDTH
  6978. static DEFINE_MUTEX(cfs_constraints_mutex);
  6979. const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
  6980. const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
  6981. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
  6982. static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
  6983. {
  6984. int i, ret = 0, runtime_enabled, runtime_was_enabled;
  6985. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6986. if (tg == &root_task_group)
  6987. return -EINVAL;
  6988. /*
  6989. * Ensure we have at some amount of bandwidth every period. This is
  6990. * to prevent reaching a state of large arrears when throttled via
  6991. * entity_tick() resulting in prolonged exit starvation.
  6992. */
  6993. if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
  6994. return -EINVAL;
  6995. /*
  6996. * Likewise, bound things on the otherside by preventing insane quota
  6997. * periods. This also allows us to normalize in computing quota
  6998. * feasibility.
  6999. */
  7000. if (period > max_cfs_quota_period)
  7001. return -EINVAL;
  7002. /*
  7003. * Prevent race between setting of cfs_rq->runtime_enabled and
  7004. * unthrottle_offline_cfs_rqs().
  7005. */
  7006. get_online_cpus();
  7007. mutex_lock(&cfs_constraints_mutex);
  7008. ret = __cfs_schedulable(tg, period, quota);
  7009. if (ret)
  7010. goto out_unlock;
  7011. runtime_enabled = quota != RUNTIME_INF;
  7012. runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
  7013. /*
  7014. * If we need to toggle cfs_bandwidth_used, off->on must occur
  7015. * before making related changes, and on->off must occur afterwards
  7016. */
  7017. if (runtime_enabled && !runtime_was_enabled)
  7018. cfs_bandwidth_usage_inc();
  7019. raw_spin_lock_irq(&cfs_b->lock);
  7020. cfs_b->period = ns_to_ktime(period);
  7021. cfs_b->quota = quota;
  7022. __refill_cfs_bandwidth_runtime(cfs_b);
  7023. /* restart the period timer (if active) to handle new period expiry */
  7024. if (runtime_enabled)
  7025. start_cfs_bandwidth(cfs_b);
  7026. raw_spin_unlock_irq(&cfs_b->lock);
  7027. for_each_online_cpu(i) {
  7028. struct cfs_rq *cfs_rq = tg->cfs_rq[i];
  7029. struct rq *rq = cfs_rq->rq;
  7030. raw_spin_lock_irq(&rq->lock);
  7031. cfs_rq->runtime_enabled = runtime_enabled;
  7032. cfs_rq->runtime_remaining = 0;
  7033. if (cfs_rq->throttled)
  7034. unthrottle_cfs_rq(cfs_rq);
  7035. raw_spin_unlock_irq(&rq->lock);
  7036. }
  7037. if (runtime_was_enabled && !runtime_enabled)
  7038. cfs_bandwidth_usage_dec();
  7039. out_unlock:
  7040. mutex_unlock(&cfs_constraints_mutex);
  7041. put_online_cpus();
  7042. return ret;
  7043. }
  7044. int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
  7045. {
  7046. u64 quota, period;
  7047. period = ktime_to_ns(tg->cfs_bandwidth.period);
  7048. if (cfs_quota_us < 0)
  7049. quota = RUNTIME_INF;
  7050. else
  7051. quota = (u64)cfs_quota_us * NSEC_PER_USEC;
  7052. return tg_set_cfs_bandwidth(tg, period, quota);
  7053. }
  7054. long tg_get_cfs_quota(struct task_group *tg)
  7055. {
  7056. u64 quota_us;
  7057. if (tg->cfs_bandwidth.quota == RUNTIME_INF)
  7058. return -1;
  7059. quota_us = tg->cfs_bandwidth.quota;
  7060. do_div(quota_us, NSEC_PER_USEC);
  7061. return quota_us;
  7062. }
  7063. int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
  7064. {
  7065. u64 quota, period;
  7066. period = (u64)cfs_period_us * NSEC_PER_USEC;
  7067. quota = tg->cfs_bandwidth.quota;
  7068. return tg_set_cfs_bandwidth(tg, period, quota);
  7069. }
  7070. long tg_get_cfs_period(struct task_group *tg)
  7071. {
  7072. u64 cfs_period_us;
  7073. cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
  7074. do_div(cfs_period_us, NSEC_PER_USEC);
  7075. return cfs_period_us;
  7076. }
  7077. static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
  7078. struct cftype *cft)
  7079. {
  7080. return tg_get_cfs_quota(css_tg(css));
  7081. }
  7082. static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
  7083. struct cftype *cftype, s64 cfs_quota_us)
  7084. {
  7085. return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
  7086. }
  7087. static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
  7088. struct cftype *cft)
  7089. {
  7090. return tg_get_cfs_period(css_tg(css));
  7091. }
  7092. static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
  7093. struct cftype *cftype, u64 cfs_period_us)
  7094. {
  7095. return tg_set_cfs_period(css_tg(css), cfs_period_us);
  7096. }
  7097. struct cfs_schedulable_data {
  7098. struct task_group *tg;
  7099. u64 period, quota;
  7100. };
  7101. /*
  7102. * normalize group quota/period to be quota/max_period
  7103. * note: units are usecs
  7104. */
  7105. static u64 normalize_cfs_quota(struct task_group *tg,
  7106. struct cfs_schedulable_data *d)
  7107. {
  7108. u64 quota, period;
  7109. if (tg == d->tg) {
  7110. period = d->period;
  7111. quota = d->quota;
  7112. } else {
  7113. period = tg_get_cfs_period(tg);
  7114. quota = tg_get_cfs_quota(tg);
  7115. }
  7116. /* note: these should typically be equivalent */
  7117. if (quota == RUNTIME_INF || quota == -1)
  7118. return RUNTIME_INF;
  7119. return to_ratio(period, quota);
  7120. }
  7121. static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
  7122. {
  7123. struct cfs_schedulable_data *d = data;
  7124. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  7125. s64 quota = 0, parent_quota = -1;
  7126. if (!tg->parent) {
  7127. quota = RUNTIME_INF;
  7128. } else {
  7129. struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
  7130. quota = normalize_cfs_quota(tg, d);
  7131. parent_quota = parent_b->hierarchical_quota;
  7132. /*
  7133. * ensure max(child_quota) <= parent_quota, inherit when no
  7134. * limit is set
  7135. */
  7136. if (quota == RUNTIME_INF)
  7137. quota = parent_quota;
  7138. else if (parent_quota != RUNTIME_INF && quota > parent_quota)
  7139. return -EINVAL;
  7140. }
  7141. cfs_b->hierarchical_quota = quota;
  7142. return 0;
  7143. }
  7144. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
  7145. {
  7146. int ret;
  7147. struct cfs_schedulable_data data = {
  7148. .tg = tg,
  7149. .period = period,
  7150. .quota = quota,
  7151. };
  7152. if (quota != RUNTIME_INF) {
  7153. do_div(data.period, NSEC_PER_USEC);
  7154. do_div(data.quota, NSEC_PER_USEC);
  7155. }
  7156. rcu_read_lock();
  7157. ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
  7158. rcu_read_unlock();
  7159. return ret;
  7160. }
  7161. static int cpu_stats_show(struct seq_file *sf, void *v)
  7162. {
  7163. struct task_group *tg = css_tg(seq_css(sf));
  7164. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  7165. seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
  7166. seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
  7167. seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
  7168. return 0;
  7169. }
  7170. #endif /* CONFIG_CFS_BANDWIDTH */
  7171. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7172. #ifdef CONFIG_RT_GROUP_SCHED
  7173. static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
  7174. struct cftype *cft, s64 val)
  7175. {
  7176. return sched_group_set_rt_runtime(css_tg(css), val);
  7177. }
  7178. static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
  7179. struct cftype *cft)
  7180. {
  7181. return sched_group_rt_runtime(css_tg(css));
  7182. }
  7183. static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
  7184. struct cftype *cftype, u64 rt_period_us)
  7185. {
  7186. return sched_group_set_rt_period(css_tg(css), rt_period_us);
  7187. }
  7188. static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
  7189. struct cftype *cft)
  7190. {
  7191. return sched_group_rt_period(css_tg(css));
  7192. }
  7193. #endif /* CONFIG_RT_GROUP_SCHED */
  7194. static struct cftype cpu_files[] = {
  7195. #ifdef CONFIG_FAIR_GROUP_SCHED
  7196. {
  7197. .name = "shares",
  7198. .read_u64 = cpu_shares_read_u64,
  7199. .write_u64 = cpu_shares_write_u64,
  7200. },
  7201. #endif
  7202. #ifdef CONFIG_CFS_BANDWIDTH
  7203. {
  7204. .name = "cfs_quota_us",
  7205. .read_s64 = cpu_cfs_quota_read_s64,
  7206. .write_s64 = cpu_cfs_quota_write_s64,
  7207. },
  7208. {
  7209. .name = "cfs_period_us",
  7210. .read_u64 = cpu_cfs_period_read_u64,
  7211. .write_u64 = cpu_cfs_period_write_u64,
  7212. },
  7213. {
  7214. .name = "stat",
  7215. .seq_show = cpu_stats_show,
  7216. },
  7217. #endif
  7218. #ifdef CONFIG_RT_GROUP_SCHED
  7219. {
  7220. .name = "rt_runtime_us",
  7221. .read_s64 = cpu_rt_runtime_read,
  7222. .write_s64 = cpu_rt_runtime_write,
  7223. },
  7224. {
  7225. .name = "rt_period_us",
  7226. .read_u64 = cpu_rt_period_read_uint,
  7227. .write_u64 = cpu_rt_period_write_uint,
  7228. },
  7229. #endif
  7230. { } /* terminate */
  7231. };
  7232. struct cgroup_subsys cpu_cgrp_subsys = {
  7233. .css_alloc = cpu_cgroup_css_alloc,
  7234. .css_free = cpu_cgroup_css_free,
  7235. .css_online = cpu_cgroup_css_online,
  7236. .css_offline = cpu_cgroup_css_offline,
  7237. .fork = cpu_cgroup_fork,
  7238. .can_attach = cpu_cgroup_can_attach,
  7239. .attach = cpu_cgroup_attach,
  7240. .exit = cpu_cgroup_exit,
  7241. .legacy_cftypes = cpu_files,
  7242. .early_init = 1,
  7243. };
  7244. #endif /* CONFIG_CGROUP_SCHED */
  7245. void dump_cpu_task(int cpu)
  7246. {
  7247. pr_info("Task dump for CPU %d:\n", cpu);
  7248. sched_show_task(cpu_curr(cpu));
  7249. }