tree_plugin.h 88 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010
  1. /*
  2. * Read-Copy Update mechanism for mutual exclusion (tree-based version)
  3. * Internal non-public definitions that provide either classic
  4. * or preemptible semantics.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, you can access it online at
  18. * http://www.gnu.org/licenses/gpl-2.0.html.
  19. *
  20. * Copyright Red Hat, 2009
  21. * Copyright IBM Corporation, 2009
  22. *
  23. * Author: Ingo Molnar <mingo@elte.hu>
  24. * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
  25. */
  26. #include <linux/delay.h>
  27. #include <linux/gfp.h>
  28. #include <linux/oom.h>
  29. #include <linux/smpboot.h>
  30. #include "../time/tick-internal.h"
  31. #ifdef CONFIG_RCU_BOOST
  32. #include "../locking/rtmutex_common.h"
  33. /*
  34. * Control variables for per-CPU and per-rcu_node kthreads. These
  35. * handle all flavors of RCU.
  36. */
  37. static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
  38. DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
  39. DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
  40. DEFINE_PER_CPU(char, rcu_cpu_has_work);
  41. #else /* #ifdef CONFIG_RCU_BOOST */
  42. /*
  43. * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
  44. * all uses are in dead code. Provide a definition to keep the compiler
  45. * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
  46. * This probably needs to be excluded from -rt builds.
  47. */
  48. #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
  49. #endif /* #else #ifdef CONFIG_RCU_BOOST */
  50. #ifdef CONFIG_RCU_NOCB_CPU
  51. static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
  52. static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */
  53. static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
  54. #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
  55. /*
  56. * Check the RCU kernel configuration parameters and print informative
  57. * messages about anything out of the ordinary. If you like #ifdef, you
  58. * will love this function.
  59. */
  60. static void __init rcu_bootup_announce_oddness(void)
  61. {
  62. if (IS_ENABLED(CONFIG_RCU_TRACE))
  63. pr_info("\tRCU debugfs-based tracing is enabled.\n");
  64. if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
  65. (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
  66. pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
  67. RCU_FANOUT);
  68. if (rcu_fanout_exact)
  69. pr_info("\tHierarchical RCU autobalancing is disabled.\n");
  70. if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
  71. pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
  72. if (IS_ENABLED(CONFIG_PROVE_RCU))
  73. pr_info("\tRCU lockdep checking is enabled.\n");
  74. if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST_RUNNABLE))
  75. pr_info("\tRCU torture testing starts during boot.\n");
  76. if (RCU_NUM_LVLS >= 4)
  77. pr_info("\tFour(or more)-level hierarchy is enabled.\n");
  78. if (RCU_FANOUT_LEAF != 16)
  79. pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
  80. RCU_FANOUT_LEAF);
  81. if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
  82. pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
  83. if (nr_cpu_ids != NR_CPUS)
  84. pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
  85. if (IS_ENABLED(CONFIG_RCU_BOOST))
  86. pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
  87. }
  88. #ifdef CONFIG_PREEMPT_RCU
  89. RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
  90. static struct rcu_state *const rcu_state_p = &rcu_preempt_state;
  91. static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data;
  92. static int rcu_preempted_readers_exp(struct rcu_node *rnp);
  93. static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
  94. bool wake);
  95. /*
  96. * Tell them what RCU they are running.
  97. */
  98. static void __init rcu_bootup_announce(void)
  99. {
  100. pr_info("Preemptible hierarchical RCU implementation.\n");
  101. rcu_bootup_announce_oddness();
  102. }
  103. /*
  104. * Record a preemptible-RCU quiescent state for the specified CPU. Note
  105. * that this just means that the task currently running on the CPU is
  106. * not in a quiescent state. There might be any number of tasks blocked
  107. * while in an RCU read-side critical section.
  108. *
  109. * As with the other rcu_*_qs() functions, callers to this function
  110. * must disable preemption.
  111. */
  112. static void rcu_preempt_qs(void)
  113. {
  114. if (!__this_cpu_read(rcu_data_p->passed_quiesce)) {
  115. trace_rcu_grace_period(TPS("rcu_preempt"),
  116. __this_cpu_read(rcu_data_p->gpnum),
  117. TPS("cpuqs"));
  118. __this_cpu_write(rcu_data_p->passed_quiesce, 1);
  119. barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
  120. current->rcu_read_unlock_special.b.need_qs = false;
  121. }
  122. }
  123. /*
  124. * We have entered the scheduler, and the current task might soon be
  125. * context-switched away from. If this task is in an RCU read-side
  126. * critical section, we will no longer be able to rely on the CPU to
  127. * record that fact, so we enqueue the task on the blkd_tasks list.
  128. * The task will dequeue itself when it exits the outermost enclosing
  129. * RCU read-side critical section. Therefore, the current grace period
  130. * cannot be permitted to complete until the blkd_tasks list entries
  131. * predating the current grace period drain, in other words, until
  132. * rnp->gp_tasks becomes NULL.
  133. *
  134. * Caller must disable preemption.
  135. */
  136. static void rcu_preempt_note_context_switch(void)
  137. {
  138. struct task_struct *t = current;
  139. unsigned long flags;
  140. struct rcu_data *rdp;
  141. struct rcu_node *rnp;
  142. if (t->rcu_read_lock_nesting > 0 &&
  143. !t->rcu_read_unlock_special.b.blocked) {
  144. /* Possibly blocking in an RCU read-side critical section. */
  145. rdp = this_cpu_ptr(rcu_state_p->rda);
  146. rnp = rdp->mynode;
  147. raw_spin_lock_irqsave(&rnp->lock, flags);
  148. smp_mb__after_unlock_lock();
  149. t->rcu_read_unlock_special.b.blocked = true;
  150. t->rcu_blocked_node = rnp;
  151. /*
  152. * If this CPU has already checked in, then this task
  153. * will hold up the next grace period rather than the
  154. * current grace period. Queue the task accordingly.
  155. * If the task is queued for the current grace period
  156. * (i.e., this CPU has not yet passed through a quiescent
  157. * state for the current grace period), then as long
  158. * as that task remains queued, the current grace period
  159. * cannot end. Note that there is some uncertainty as
  160. * to exactly when the current grace period started.
  161. * We take a conservative approach, which can result
  162. * in unnecessarily waiting on tasks that started very
  163. * slightly after the current grace period began. C'est
  164. * la vie!!!
  165. *
  166. * But first, note that the current CPU must still be
  167. * on line!
  168. */
  169. WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
  170. WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
  171. if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
  172. list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
  173. rnp->gp_tasks = &t->rcu_node_entry;
  174. if (IS_ENABLED(CONFIG_RCU_BOOST) &&
  175. rnp->boost_tasks != NULL)
  176. rnp->boost_tasks = rnp->gp_tasks;
  177. } else {
  178. list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
  179. if (rnp->qsmask & rdp->grpmask)
  180. rnp->gp_tasks = &t->rcu_node_entry;
  181. }
  182. trace_rcu_preempt_task(rdp->rsp->name,
  183. t->pid,
  184. (rnp->qsmask & rdp->grpmask)
  185. ? rnp->gpnum
  186. : rnp->gpnum + 1);
  187. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  188. } else if (t->rcu_read_lock_nesting < 0 &&
  189. t->rcu_read_unlock_special.s) {
  190. /*
  191. * Complete exit from RCU read-side critical section on
  192. * behalf of preempted instance of __rcu_read_unlock().
  193. */
  194. rcu_read_unlock_special(t);
  195. }
  196. /*
  197. * Either we were not in an RCU read-side critical section to
  198. * begin with, or we have now recorded that critical section
  199. * globally. Either way, we can now note a quiescent state
  200. * for this CPU. Again, if we were in an RCU read-side critical
  201. * section, and if that critical section was blocking the current
  202. * grace period, then the fact that the task has been enqueued
  203. * means that we continue to block the current grace period.
  204. */
  205. rcu_preempt_qs();
  206. }
  207. /*
  208. * Check for preempted RCU readers blocking the current grace period
  209. * for the specified rcu_node structure. If the caller needs a reliable
  210. * answer, it must hold the rcu_node's ->lock.
  211. */
  212. static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
  213. {
  214. return rnp->gp_tasks != NULL;
  215. }
  216. /*
  217. * Advance a ->blkd_tasks-list pointer to the next entry, instead
  218. * returning NULL if at the end of the list.
  219. */
  220. static struct list_head *rcu_next_node_entry(struct task_struct *t,
  221. struct rcu_node *rnp)
  222. {
  223. struct list_head *np;
  224. np = t->rcu_node_entry.next;
  225. if (np == &rnp->blkd_tasks)
  226. np = NULL;
  227. return np;
  228. }
  229. /*
  230. * Return true if the specified rcu_node structure has tasks that were
  231. * preempted within an RCU read-side critical section.
  232. */
  233. static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
  234. {
  235. return !list_empty(&rnp->blkd_tasks);
  236. }
  237. /*
  238. * Handle special cases during rcu_read_unlock(), such as needing to
  239. * notify RCU core processing or task having blocked during the RCU
  240. * read-side critical section.
  241. */
  242. void rcu_read_unlock_special(struct task_struct *t)
  243. {
  244. bool empty_exp;
  245. bool empty_norm;
  246. bool empty_exp_now;
  247. unsigned long flags;
  248. struct list_head *np;
  249. bool drop_boost_mutex = false;
  250. struct rcu_node *rnp;
  251. union rcu_special special;
  252. /* NMI handlers cannot block and cannot safely manipulate state. */
  253. if (in_nmi())
  254. return;
  255. local_irq_save(flags);
  256. /*
  257. * If RCU core is waiting for this CPU to exit critical section,
  258. * let it know that we have done so. Because irqs are disabled,
  259. * t->rcu_read_unlock_special cannot change.
  260. */
  261. special = t->rcu_read_unlock_special;
  262. if (special.b.need_qs) {
  263. rcu_preempt_qs();
  264. t->rcu_read_unlock_special.b.need_qs = false;
  265. if (!t->rcu_read_unlock_special.s) {
  266. local_irq_restore(flags);
  267. return;
  268. }
  269. }
  270. /* Hardware IRQ handlers cannot block, complain if they get here. */
  271. if (in_irq() || in_serving_softirq()) {
  272. lockdep_rcu_suspicious(__FILE__, __LINE__,
  273. "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
  274. pr_alert("->rcu_read_unlock_special: %#x (b: %d, nq: %d)\n",
  275. t->rcu_read_unlock_special.s,
  276. t->rcu_read_unlock_special.b.blocked,
  277. t->rcu_read_unlock_special.b.need_qs);
  278. local_irq_restore(flags);
  279. return;
  280. }
  281. /* Clean up if blocked during RCU read-side critical section. */
  282. if (special.b.blocked) {
  283. t->rcu_read_unlock_special.b.blocked = false;
  284. /*
  285. * Remove this task from the list it blocked on. The task
  286. * now remains queued on the rcu_node corresponding to
  287. * the CPU it first blocked on, so the first attempt to
  288. * acquire the task's rcu_node's ->lock will succeed.
  289. * Keep the loop and add a WARN_ON() out of sheer paranoia.
  290. */
  291. for (;;) {
  292. rnp = t->rcu_blocked_node;
  293. raw_spin_lock(&rnp->lock); /* irqs already disabled. */
  294. smp_mb__after_unlock_lock();
  295. if (rnp == t->rcu_blocked_node)
  296. break;
  297. WARN_ON_ONCE(1);
  298. raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
  299. }
  300. empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
  301. empty_exp = !rcu_preempted_readers_exp(rnp);
  302. smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
  303. np = rcu_next_node_entry(t, rnp);
  304. list_del_init(&t->rcu_node_entry);
  305. t->rcu_blocked_node = NULL;
  306. trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
  307. rnp->gpnum, t->pid);
  308. if (&t->rcu_node_entry == rnp->gp_tasks)
  309. rnp->gp_tasks = np;
  310. if (&t->rcu_node_entry == rnp->exp_tasks)
  311. rnp->exp_tasks = np;
  312. if (IS_ENABLED(CONFIG_RCU_BOOST)) {
  313. if (&t->rcu_node_entry == rnp->boost_tasks)
  314. rnp->boost_tasks = np;
  315. /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
  316. drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
  317. }
  318. /*
  319. * If this was the last task on the current list, and if
  320. * we aren't waiting on any CPUs, report the quiescent state.
  321. * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
  322. * so we must take a snapshot of the expedited state.
  323. */
  324. empty_exp_now = !rcu_preempted_readers_exp(rnp);
  325. if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
  326. trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
  327. rnp->gpnum,
  328. 0, rnp->qsmask,
  329. rnp->level,
  330. rnp->grplo,
  331. rnp->grphi,
  332. !!rnp->gp_tasks);
  333. rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags);
  334. } else {
  335. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  336. }
  337. /* Unboost if we were boosted. */
  338. if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
  339. rt_mutex_unlock(&rnp->boost_mtx);
  340. /*
  341. * If this was the last task on the expedited lists,
  342. * then we need to report up the rcu_node hierarchy.
  343. */
  344. if (!empty_exp && empty_exp_now)
  345. rcu_report_exp_rnp(rcu_state_p, rnp, true);
  346. } else {
  347. local_irq_restore(flags);
  348. }
  349. }
  350. /*
  351. * Dump detailed information for all tasks blocking the current RCU
  352. * grace period on the specified rcu_node structure.
  353. */
  354. static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
  355. {
  356. unsigned long flags;
  357. struct task_struct *t;
  358. raw_spin_lock_irqsave(&rnp->lock, flags);
  359. if (!rcu_preempt_blocked_readers_cgp(rnp)) {
  360. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  361. return;
  362. }
  363. t = list_entry(rnp->gp_tasks->prev,
  364. struct task_struct, rcu_node_entry);
  365. list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
  366. sched_show_task(t);
  367. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  368. }
  369. /*
  370. * Dump detailed information for all tasks blocking the current RCU
  371. * grace period.
  372. */
  373. static void rcu_print_detail_task_stall(struct rcu_state *rsp)
  374. {
  375. struct rcu_node *rnp = rcu_get_root(rsp);
  376. rcu_print_detail_task_stall_rnp(rnp);
  377. rcu_for_each_leaf_node(rsp, rnp)
  378. rcu_print_detail_task_stall_rnp(rnp);
  379. }
  380. static void rcu_print_task_stall_begin(struct rcu_node *rnp)
  381. {
  382. pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
  383. rnp->level, rnp->grplo, rnp->grphi);
  384. }
  385. static void rcu_print_task_stall_end(void)
  386. {
  387. pr_cont("\n");
  388. }
  389. /*
  390. * Scan the current list of tasks blocked within RCU read-side critical
  391. * sections, printing out the tid of each.
  392. */
  393. static int rcu_print_task_stall(struct rcu_node *rnp)
  394. {
  395. struct task_struct *t;
  396. int ndetected = 0;
  397. if (!rcu_preempt_blocked_readers_cgp(rnp))
  398. return 0;
  399. rcu_print_task_stall_begin(rnp);
  400. t = list_entry(rnp->gp_tasks->prev,
  401. struct task_struct, rcu_node_entry);
  402. list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
  403. pr_cont(" P%d", t->pid);
  404. ndetected++;
  405. }
  406. rcu_print_task_stall_end();
  407. return ndetected;
  408. }
  409. /*
  410. * Check that the list of blocked tasks for the newly completed grace
  411. * period is in fact empty. It is a serious bug to complete a grace
  412. * period that still has RCU readers blocked! This function must be
  413. * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
  414. * must be held by the caller.
  415. *
  416. * Also, if there are blocked tasks on the list, they automatically
  417. * block the newly created grace period, so set up ->gp_tasks accordingly.
  418. */
  419. static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
  420. {
  421. WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
  422. if (rcu_preempt_has_tasks(rnp))
  423. rnp->gp_tasks = rnp->blkd_tasks.next;
  424. WARN_ON_ONCE(rnp->qsmask);
  425. }
  426. /*
  427. * Check for a quiescent state from the current CPU. When a task blocks,
  428. * the task is recorded in the corresponding CPU's rcu_node structure,
  429. * which is checked elsewhere.
  430. *
  431. * Caller must disable hard irqs.
  432. */
  433. static void rcu_preempt_check_callbacks(void)
  434. {
  435. struct task_struct *t = current;
  436. if (t->rcu_read_lock_nesting == 0) {
  437. rcu_preempt_qs();
  438. return;
  439. }
  440. if (t->rcu_read_lock_nesting > 0 &&
  441. __this_cpu_read(rcu_data_p->qs_pending) &&
  442. !__this_cpu_read(rcu_data_p->passed_quiesce))
  443. t->rcu_read_unlock_special.b.need_qs = true;
  444. }
  445. #ifdef CONFIG_RCU_BOOST
  446. static void rcu_preempt_do_callbacks(void)
  447. {
  448. rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p));
  449. }
  450. #endif /* #ifdef CONFIG_RCU_BOOST */
  451. /*
  452. * Queue a preemptible-RCU callback for invocation after a grace period.
  453. */
  454. void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
  455. {
  456. __call_rcu(head, func, rcu_state_p, -1, 0);
  457. }
  458. EXPORT_SYMBOL_GPL(call_rcu);
  459. /**
  460. * synchronize_rcu - wait until a grace period has elapsed.
  461. *
  462. * Control will return to the caller some time after a full grace
  463. * period has elapsed, in other words after all currently executing RCU
  464. * read-side critical sections have completed. Note, however, that
  465. * upon return from synchronize_rcu(), the caller might well be executing
  466. * concurrently with new RCU read-side critical sections that began while
  467. * synchronize_rcu() was waiting. RCU read-side critical sections are
  468. * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
  469. *
  470. * See the description of synchronize_sched() for more detailed information
  471. * on memory ordering guarantees.
  472. */
  473. void synchronize_rcu(void)
  474. {
  475. RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
  476. lock_is_held(&rcu_lock_map) ||
  477. lock_is_held(&rcu_sched_lock_map),
  478. "Illegal synchronize_rcu() in RCU read-side critical section");
  479. if (!rcu_scheduler_active)
  480. return;
  481. if (rcu_gp_is_expedited())
  482. synchronize_rcu_expedited();
  483. else
  484. wait_rcu_gp(call_rcu);
  485. }
  486. EXPORT_SYMBOL_GPL(synchronize_rcu);
  487. static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
  488. /*
  489. * Return non-zero if there are any tasks in RCU read-side critical
  490. * sections blocking the current preemptible-RCU expedited grace period.
  491. * If there is no preemptible-RCU expedited grace period currently in
  492. * progress, returns zero unconditionally.
  493. */
  494. static int rcu_preempted_readers_exp(struct rcu_node *rnp)
  495. {
  496. return rnp->exp_tasks != NULL;
  497. }
  498. /*
  499. * return non-zero if there is no RCU expedited grace period in progress
  500. * for the specified rcu_node structure, in other words, if all CPUs and
  501. * tasks covered by the specified rcu_node structure have done their bit
  502. * for the current expedited grace period. Works only for preemptible
  503. * RCU -- other RCU implementation use other means.
  504. *
  505. * Caller must hold the root rcu_node's exp_funnel_mutex.
  506. */
  507. static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
  508. {
  509. return !rcu_preempted_readers_exp(rnp) &&
  510. READ_ONCE(rnp->expmask) == 0;
  511. }
  512. /*
  513. * Report the exit from RCU read-side critical section for the last task
  514. * that queued itself during or before the current expedited preemptible-RCU
  515. * grace period. This event is reported either to the rcu_node structure on
  516. * which the task was queued or to one of that rcu_node structure's ancestors,
  517. * recursively up the tree. (Calm down, calm down, we do the recursion
  518. * iteratively!)
  519. *
  520. * Caller must hold the root rcu_node's exp_funnel_mutex.
  521. */
  522. static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
  523. bool wake)
  524. {
  525. unsigned long flags;
  526. unsigned long mask;
  527. raw_spin_lock_irqsave(&rnp->lock, flags);
  528. smp_mb__after_unlock_lock();
  529. for (;;) {
  530. if (!sync_rcu_preempt_exp_done(rnp)) {
  531. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  532. break;
  533. }
  534. if (rnp->parent == NULL) {
  535. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  536. if (wake) {
  537. smp_mb(); /* EGP done before wake_up(). */
  538. wake_up(&sync_rcu_preempt_exp_wq);
  539. }
  540. break;
  541. }
  542. mask = rnp->grpmask;
  543. raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
  544. rnp = rnp->parent;
  545. raw_spin_lock(&rnp->lock); /* irqs already disabled */
  546. smp_mb__after_unlock_lock();
  547. rnp->expmask &= ~mask;
  548. }
  549. }
  550. /*
  551. * Snapshot the tasks blocking the newly started preemptible-RCU expedited
  552. * grace period for the specified rcu_node structure, phase 1. If there
  553. * are such tasks, set the ->expmask bits up the rcu_node tree and also
  554. * set the ->expmask bits on the leaf rcu_node structures to tell phase 2
  555. * that work is needed here.
  556. *
  557. * Caller must hold the root rcu_node's exp_funnel_mutex.
  558. */
  559. static void
  560. sync_rcu_preempt_exp_init1(struct rcu_state *rsp, struct rcu_node *rnp)
  561. {
  562. unsigned long flags;
  563. unsigned long mask;
  564. struct rcu_node *rnp_up;
  565. raw_spin_lock_irqsave(&rnp->lock, flags);
  566. smp_mb__after_unlock_lock();
  567. WARN_ON_ONCE(rnp->expmask);
  568. WARN_ON_ONCE(rnp->exp_tasks);
  569. if (!rcu_preempt_has_tasks(rnp)) {
  570. /* No blocked tasks, nothing to do. */
  571. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  572. return;
  573. }
  574. /* Call for Phase 2 and propagate ->expmask bits up the tree. */
  575. rnp->expmask = 1;
  576. rnp_up = rnp;
  577. while (rnp_up->parent) {
  578. mask = rnp_up->grpmask;
  579. rnp_up = rnp_up->parent;
  580. if (rnp_up->expmask & mask)
  581. break;
  582. raw_spin_lock(&rnp_up->lock); /* irqs already off */
  583. smp_mb__after_unlock_lock();
  584. rnp_up->expmask |= mask;
  585. raw_spin_unlock(&rnp_up->lock); /* irqs still off */
  586. }
  587. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  588. }
  589. /*
  590. * Snapshot the tasks blocking the newly started preemptible-RCU expedited
  591. * grace period for the specified rcu_node structure, phase 2. If the
  592. * leaf rcu_node structure has its ->expmask field set, check for tasks.
  593. * If there are some, clear ->expmask and set ->exp_tasks accordingly,
  594. * then initiate RCU priority boosting. Otherwise, clear ->expmask and
  595. * invoke rcu_report_exp_rnp() to clear out the upper-level ->expmask bits,
  596. * enabling rcu_read_unlock_special() to do the bit-clearing.
  597. *
  598. * Caller must hold the root rcu_node's exp_funnel_mutex.
  599. */
  600. static void
  601. sync_rcu_preempt_exp_init2(struct rcu_state *rsp, struct rcu_node *rnp)
  602. {
  603. unsigned long flags;
  604. raw_spin_lock_irqsave(&rnp->lock, flags);
  605. smp_mb__after_unlock_lock();
  606. if (!rnp->expmask) {
  607. /* Phase 1 didn't do anything, so Phase 2 doesn't either. */
  608. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  609. return;
  610. }
  611. /* Phase 1 is over. */
  612. rnp->expmask = 0;
  613. /*
  614. * If there are still blocked tasks, set up ->exp_tasks so that
  615. * rcu_read_unlock_special() will wake us and then boost them.
  616. */
  617. if (rcu_preempt_has_tasks(rnp)) {
  618. rnp->exp_tasks = rnp->blkd_tasks.next;
  619. rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
  620. return;
  621. }
  622. /* No longer any blocked tasks, so undo bit setting. */
  623. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  624. rcu_report_exp_rnp(rsp, rnp, false);
  625. }
  626. /**
  627. * synchronize_rcu_expedited - Brute-force RCU grace period
  628. *
  629. * Wait for an RCU-preempt grace period, but expedite it. The basic
  630. * idea is to invoke synchronize_sched_expedited() to push all the tasks to
  631. * the ->blkd_tasks lists and wait for this list to drain. This consumes
  632. * significant time on all CPUs and is unfriendly to real-time workloads,
  633. * so is thus not recommended for any sort of common-case code.
  634. * In fact, if you are using synchronize_rcu_expedited() in a loop,
  635. * please restructure your code to batch your updates, and then Use a
  636. * single synchronize_rcu() instead.
  637. */
  638. void synchronize_rcu_expedited(void)
  639. {
  640. struct rcu_node *rnp;
  641. struct rcu_node *rnp_unlock;
  642. struct rcu_state *rsp = rcu_state_p;
  643. unsigned long s;
  644. s = rcu_exp_gp_seq_snap(rsp);
  645. rnp_unlock = exp_funnel_lock(rsp, s);
  646. if (rnp_unlock == NULL)
  647. return; /* Someone else did our work for us. */
  648. rcu_exp_gp_seq_start(rsp);
  649. /* force all RCU readers onto ->blkd_tasks lists. */
  650. synchronize_sched_expedited();
  651. /*
  652. * Snapshot current state of ->blkd_tasks lists into ->expmask.
  653. * Phase 1 sets bits and phase 2 permits rcu_read_unlock_special()
  654. * to start clearing them. Doing this in one phase leads to
  655. * strange races between setting and clearing bits, so just say "no"!
  656. */
  657. rcu_for_each_leaf_node(rsp, rnp)
  658. sync_rcu_preempt_exp_init1(rsp, rnp);
  659. rcu_for_each_leaf_node(rsp, rnp)
  660. sync_rcu_preempt_exp_init2(rsp, rnp);
  661. /* Wait for snapshotted ->blkd_tasks lists to drain. */
  662. rnp = rcu_get_root(rsp);
  663. wait_event(sync_rcu_preempt_exp_wq,
  664. sync_rcu_preempt_exp_done(rnp));
  665. /* Clean up and exit. */
  666. rcu_exp_gp_seq_end(rsp);
  667. mutex_unlock(&rnp_unlock->exp_funnel_mutex);
  668. }
  669. EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
  670. /**
  671. * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
  672. *
  673. * Note that this primitive does not necessarily wait for an RCU grace period
  674. * to complete. For example, if there are no RCU callbacks queued anywhere
  675. * in the system, then rcu_barrier() is within its rights to return
  676. * immediately, without waiting for anything, much less an RCU grace period.
  677. */
  678. void rcu_barrier(void)
  679. {
  680. _rcu_barrier(rcu_state_p);
  681. }
  682. EXPORT_SYMBOL_GPL(rcu_barrier);
  683. /*
  684. * Initialize preemptible RCU's state structures.
  685. */
  686. static void __init __rcu_init_preempt(void)
  687. {
  688. rcu_init_one(rcu_state_p, rcu_data_p);
  689. }
  690. /*
  691. * Check for a task exiting while in a preemptible-RCU read-side
  692. * critical section, clean up if so. No need to issue warnings,
  693. * as debug_check_no_locks_held() already does this if lockdep
  694. * is enabled.
  695. */
  696. void exit_rcu(void)
  697. {
  698. struct task_struct *t = current;
  699. if (likely(list_empty(&current->rcu_node_entry)))
  700. return;
  701. t->rcu_read_lock_nesting = 1;
  702. barrier();
  703. t->rcu_read_unlock_special.b.blocked = true;
  704. __rcu_read_unlock();
  705. }
  706. #else /* #ifdef CONFIG_PREEMPT_RCU */
  707. static struct rcu_state *const rcu_state_p = &rcu_sched_state;
  708. static struct rcu_data __percpu *const rcu_data_p = &rcu_sched_data;
  709. /*
  710. * Tell them what RCU they are running.
  711. */
  712. static void __init rcu_bootup_announce(void)
  713. {
  714. pr_info("Hierarchical RCU implementation.\n");
  715. rcu_bootup_announce_oddness();
  716. }
  717. /*
  718. * Because preemptible RCU does not exist, we never have to check for
  719. * CPUs being in quiescent states.
  720. */
  721. static void rcu_preempt_note_context_switch(void)
  722. {
  723. }
  724. /*
  725. * Because preemptible RCU does not exist, there are never any preempted
  726. * RCU readers.
  727. */
  728. static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
  729. {
  730. return 0;
  731. }
  732. /*
  733. * Because there is no preemptible RCU, there can be no readers blocked.
  734. */
  735. static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
  736. {
  737. return false;
  738. }
  739. /*
  740. * Because preemptible RCU does not exist, we never have to check for
  741. * tasks blocked within RCU read-side critical sections.
  742. */
  743. static void rcu_print_detail_task_stall(struct rcu_state *rsp)
  744. {
  745. }
  746. /*
  747. * Because preemptible RCU does not exist, we never have to check for
  748. * tasks blocked within RCU read-side critical sections.
  749. */
  750. static int rcu_print_task_stall(struct rcu_node *rnp)
  751. {
  752. return 0;
  753. }
  754. /*
  755. * Because there is no preemptible RCU, there can be no readers blocked,
  756. * so there is no need to check for blocked tasks. So check only for
  757. * bogus qsmask values.
  758. */
  759. static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
  760. {
  761. WARN_ON_ONCE(rnp->qsmask);
  762. }
  763. /*
  764. * Because preemptible RCU does not exist, it never has any callbacks
  765. * to check.
  766. */
  767. static void rcu_preempt_check_callbacks(void)
  768. {
  769. }
  770. /*
  771. * Wait for an rcu-preempt grace period, but make it happen quickly.
  772. * But because preemptible RCU does not exist, map to rcu-sched.
  773. */
  774. void synchronize_rcu_expedited(void)
  775. {
  776. synchronize_sched_expedited();
  777. }
  778. EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
  779. /*
  780. * Because preemptible RCU does not exist, rcu_barrier() is just
  781. * another name for rcu_barrier_sched().
  782. */
  783. void rcu_barrier(void)
  784. {
  785. rcu_barrier_sched();
  786. }
  787. EXPORT_SYMBOL_GPL(rcu_barrier);
  788. /*
  789. * Because preemptible RCU does not exist, it need not be initialized.
  790. */
  791. static void __init __rcu_init_preempt(void)
  792. {
  793. }
  794. /*
  795. * Because preemptible RCU does not exist, tasks cannot possibly exit
  796. * while in preemptible RCU read-side critical sections.
  797. */
  798. void exit_rcu(void)
  799. {
  800. }
  801. #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
  802. #ifdef CONFIG_RCU_BOOST
  803. #include "../locking/rtmutex_common.h"
  804. #ifdef CONFIG_RCU_TRACE
  805. static void rcu_initiate_boost_trace(struct rcu_node *rnp)
  806. {
  807. if (!rcu_preempt_has_tasks(rnp))
  808. rnp->n_balk_blkd_tasks++;
  809. else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
  810. rnp->n_balk_exp_gp_tasks++;
  811. else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
  812. rnp->n_balk_boost_tasks++;
  813. else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
  814. rnp->n_balk_notblocked++;
  815. else if (rnp->gp_tasks != NULL &&
  816. ULONG_CMP_LT(jiffies, rnp->boost_time))
  817. rnp->n_balk_notyet++;
  818. else
  819. rnp->n_balk_nos++;
  820. }
  821. #else /* #ifdef CONFIG_RCU_TRACE */
  822. static void rcu_initiate_boost_trace(struct rcu_node *rnp)
  823. {
  824. }
  825. #endif /* #else #ifdef CONFIG_RCU_TRACE */
  826. static void rcu_wake_cond(struct task_struct *t, int status)
  827. {
  828. /*
  829. * If the thread is yielding, only wake it when this
  830. * is invoked from idle
  831. */
  832. if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
  833. wake_up_process(t);
  834. }
  835. /*
  836. * Carry out RCU priority boosting on the task indicated by ->exp_tasks
  837. * or ->boost_tasks, advancing the pointer to the next task in the
  838. * ->blkd_tasks list.
  839. *
  840. * Note that irqs must be enabled: boosting the task can block.
  841. * Returns 1 if there are more tasks needing to be boosted.
  842. */
  843. static int rcu_boost(struct rcu_node *rnp)
  844. {
  845. unsigned long flags;
  846. struct task_struct *t;
  847. struct list_head *tb;
  848. if (READ_ONCE(rnp->exp_tasks) == NULL &&
  849. READ_ONCE(rnp->boost_tasks) == NULL)
  850. return 0; /* Nothing left to boost. */
  851. raw_spin_lock_irqsave(&rnp->lock, flags);
  852. smp_mb__after_unlock_lock();
  853. /*
  854. * Recheck under the lock: all tasks in need of boosting
  855. * might exit their RCU read-side critical sections on their own.
  856. */
  857. if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
  858. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  859. return 0;
  860. }
  861. /*
  862. * Preferentially boost tasks blocking expedited grace periods.
  863. * This cannot starve the normal grace periods because a second
  864. * expedited grace period must boost all blocked tasks, including
  865. * those blocking the pre-existing normal grace period.
  866. */
  867. if (rnp->exp_tasks != NULL) {
  868. tb = rnp->exp_tasks;
  869. rnp->n_exp_boosts++;
  870. } else {
  871. tb = rnp->boost_tasks;
  872. rnp->n_normal_boosts++;
  873. }
  874. rnp->n_tasks_boosted++;
  875. /*
  876. * We boost task t by manufacturing an rt_mutex that appears to
  877. * be held by task t. We leave a pointer to that rt_mutex where
  878. * task t can find it, and task t will release the mutex when it
  879. * exits its outermost RCU read-side critical section. Then
  880. * simply acquiring this artificial rt_mutex will boost task
  881. * t's priority. (Thanks to tglx for suggesting this approach!)
  882. *
  883. * Note that task t must acquire rnp->lock to remove itself from
  884. * the ->blkd_tasks list, which it will do from exit() if from
  885. * nowhere else. We therefore are guaranteed that task t will
  886. * stay around at least until we drop rnp->lock. Note that
  887. * rnp->lock also resolves races between our priority boosting
  888. * and task t's exiting its outermost RCU read-side critical
  889. * section.
  890. */
  891. t = container_of(tb, struct task_struct, rcu_node_entry);
  892. rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
  893. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  894. /* Lock only for side effect: boosts task t's priority. */
  895. rt_mutex_lock(&rnp->boost_mtx);
  896. rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
  897. return READ_ONCE(rnp->exp_tasks) != NULL ||
  898. READ_ONCE(rnp->boost_tasks) != NULL;
  899. }
  900. /*
  901. * Priority-boosting kthread, one per leaf rcu_node.
  902. */
  903. static int rcu_boost_kthread(void *arg)
  904. {
  905. struct rcu_node *rnp = (struct rcu_node *)arg;
  906. int spincnt = 0;
  907. int more2boost;
  908. trace_rcu_utilization(TPS("Start boost kthread@init"));
  909. for (;;) {
  910. rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
  911. trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
  912. rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
  913. trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
  914. rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
  915. more2boost = rcu_boost(rnp);
  916. if (more2boost)
  917. spincnt++;
  918. else
  919. spincnt = 0;
  920. if (spincnt > 10) {
  921. rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
  922. trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
  923. schedule_timeout_interruptible(2);
  924. trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
  925. spincnt = 0;
  926. }
  927. }
  928. /* NOTREACHED */
  929. trace_rcu_utilization(TPS("End boost kthread@notreached"));
  930. return 0;
  931. }
  932. /*
  933. * Check to see if it is time to start boosting RCU readers that are
  934. * blocking the current grace period, and, if so, tell the per-rcu_node
  935. * kthread to start boosting them. If there is an expedited grace
  936. * period in progress, it is always time to boost.
  937. *
  938. * The caller must hold rnp->lock, which this function releases.
  939. * The ->boost_kthread_task is immortal, so we don't need to worry
  940. * about it going away.
  941. */
  942. static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
  943. __releases(rnp->lock)
  944. {
  945. struct task_struct *t;
  946. if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
  947. rnp->n_balk_exp_gp_tasks++;
  948. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  949. return;
  950. }
  951. if (rnp->exp_tasks != NULL ||
  952. (rnp->gp_tasks != NULL &&
  953. rnp->boost_tasks == NULL &&
  954. rnp->qsmask == 0 &&
  955. ULONG_CMP_GE(jiffies, rnp->boost_time))) {
  956. if (rnp->exp_tasks == NULL)
  957. rnp->boost_tasks = rnp->gp_tasks;
  958. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  959. t = rnp->boost_kthread_task;
  960. if (t)
  961. rcu_wake_cond(t, rnp->boost_kthread_status);
  962. } else {
  963. rcu_initiate_boost_trace(rnp);
  964. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  965. }
  966. }
  967. /*
  968. * Wake up the per-CPU kthread to invoke RCU callbacks.
  969. */
  970. static void invoke_rcu_callbacks_kthread(void)
  971. {
  972. unsigned long flags;
  973. local_irq_save(flags);
  974. __this_cpu_write(rcu_cpu_has_work, 1);
  975. if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
  976. current != __this_cpu_read(rcu_cpu_kthread_task)) {
  977. rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
  978. __this_cpu_read(rcu_cpu_kthread_status));
  979. }
  980. local_irq_restore(flags);
  981. }
  982. /*
  983. * Is the current CPU running the RCU-callbacks kthread?
  984. * Caller must have preemption disabled.
  985. */
  986. static bool rcu_is_callbacks_kthread(void)
  987. {
  988. return __this_cpu_read(rcu_cpu_kthread_task) == current;
  989. }
  990. #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
  991. /*
  992. * Do priority-boost accounting for the start of a new grace period.
  993. */
  994. static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
  995. {
  996. rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
  997. }
  998. /*
  999. * Create an RCU-boost kthread for the specified node if one does not
  1000. * already exist. We only create this kthread for preemptible RCU.
  1001. * Returns zero if all is well, a negated errno otherwise.
  1002. */
  1003. static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
  1004. struct rcu_node *rnp)
  1005. {
  1006. int rnp_index = rnp - &rsp->node[0];
  1007. unsigned long flags;
  1008. struct sched_param sp;
  1009. struct task_struct *t;
  1010. if (rcu_state_p != rsp)
  1011. return 0;
  1012. if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
  1013. return 0;
  1014. rsp->boost = 1;
  1015. if (rnp->boost_kthread_task != NULL)
  1016. return 0;
  1017. t = kthread_create(rcu_boost_kthread, (void *)rnp,
  1018. "rcub/%d", rnp_index);
  1019. if (IS_ERR(t))
  1020. return PTR_ERR(t);
  1021. raw_spin_lock_irqsave(&rnp->lock, flags);
  1022. smp_mb__after_unlock_lock();
  1023. rnp->boost_kthread_task = t;
  1024. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1025. sp.sched_priority = kthread_prio;
  1026. sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
  1027. wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
  1028. return 0;
  1029. }
  1030. static void rcu_kthread_do_work(void)
  1031. {
  1032. rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
  1033. rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
  1034. rcu_preempt_do_callbacks();
  1035. }
  1036. static void rcu_cpu_kthread_setup(unsigned int cpu)
  1037. {
  1038. struct sched_param sp;
  1039. sp.sched_priority = kthread_prio;
  1040. sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
  1041. }
  1042. static void rcu_cpu_kthread_park(unsigned int cpu)
  1043. {
  1044. per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
  1045. }
  1046. static int rcu_cpu_kthread_should_run(unsigned int cpu)
  1047. {
  1048. return __this_cpu_read(rcu_cpu_has_work);
  1049. }
  1050. /*
  1051. * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
  1052. * RCU softirq used in flavors and configurations of RCU that do not
  1053. * support RCU priority boosting.
  1054. */
  1055. static void rcu_cpu_kthread(unsigned int cpu)
  1056. {
  1057. unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
  1058. char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
  1059. int spincnt;
  1060. for (spincnt = 0; spincnt < 10; spincnt++) {
  1061. trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
  1062. local_bh_disable();
  1063. *statusp = RCU_KTHREAD_RUNNING;
  1064. this_cpu_inc(rcu_cpu_kthread_loops);
  1065. local_irq_disable();
  1066. work = *workp;
  1067. *workp = 0;
  1068. local_irq_enable();
  1069. if (work)
  1070. rcu_kthread_do_work();
  1071. local_bh_enable();
  1072. if (*workp == 0) {
  1073. trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
  1074. *statusp = RCU_KTHREAD_WAITING;
  1075. return;
  1076. }
  1077. }
  1078. *statusp = RCU_KTHREAD_YIELDING;
  1079. trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
  1080. schedule_timeout_interruptible(2);
  1081. trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
  1082. *statusp = RCU_KTHREAD_WAITING;
  1083. }
  1084. /*
  1085. * Set the per-rcu_node kthread's affinity to cover all CPUs that are
  1086. * served by the rcu_node in question. The CPU hotplug lock is still
  1087. * held, so the value of rnp->qsmaskinit will be stable.
  1088. *
  1089. * We don't include outgoingcpu in the affinity set, use -1 if there is
  1090. * no outgoing CPU. If there are no CPUs left in the affinity set,
  1091. * this function allows the kthread to execute on any CPU.
  1092. */
  1093. static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
  1094. {
  1095. struct task_struct *t = rnp->boost_kthread_task;
  1096. unsigned long mask = rcu_rnp_online_cpus(rnp);
  1097. cpumask_var_t cm;
  1098. int cpu;
  1099. if (!t)
  1100. return;
  1101. if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
  1102. return;
  1103. for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
  1104. if ((mask & 0x1) && cpu != outgoingcpu)
  1105. cpumask_set_cpu(cpu, cm);
  1106. if (cpumask_weight(cm) == 0)
  1107. cpumask_setall(cm);
  1108. set_cpus_allowed_ptr(t, cm);
  1109. free_cpumask_var(cm);
  1110. }
  1111. static struct smp_hotplug_thread rcu_cpu_thread_spec = {
  1112. .store = &rcu_cpu_kthread_task,
  1113. .thread_should_run = rcu_cpu_kthread_should_run,
  1114. .thread_fn = rcu_cpu_kthread,
  1115. .thread_comm = "rcuc/%u",
  1116. .setup = rcu_cpu_kthread_setup,
  1117. .park = rcu_cpu_kthread_park,
  1118. };
  1119. /*
  1120. * Spawn boost kthreads -- called as soon as the scheduler is running.
  1121. */
  1122. static void __init rcu_spawn_boost_kthreads(void)
  1123. {
  1124. struct rcu_node *rnp;
  1125. int cpu;
  1126. for_each_possible_cpu(cpu)
  1127. per_cpu(rcu_cpu_has_work, cpu) = 0;
  1128. BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
  1129. rcu_for_each_leaf_node(rcu_state_p, rnp)
  1130. (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
  1131. }
  1132. static void rcu_prepare_kthreads(int cpu)
  1133. {
  1134. struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
  1135. struct rcu_node *rnp = rdp->mynode;
  1136. /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
  1137. if (rcu_scheduler_fully_active)
  1138. (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
  1139. }
  1140. #else /* #ifdef CONFIG_RCU_BOOST */
  1141. static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
  1142. __releases(rnp->lock)
  1143. {
  1144. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1145. }
  1146. static void invoke_rcu_callbacks_kthread(void)
  1147. {
  1148. WARN_ON_ONCE(1);
  1149. }
  1150. static bool rcu_is_callbacks_kthread(void)
  1151. {
  1152. return false;
  1153. }
  1154. static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
  1155. {
  1156. }
  1157. static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
  1158. {
  1159. }
  1160. static void __init rcu_spawn_boost_kthreads(void)
  1161. {
  1162. }
  1163. static void rcu_prepare_kthreads(int cpu)
  1164. {
  1165. }
  1166. #endif /* #else #ifdef CONFIG_RCU_BOOST */
  1167. #if !defined(CONFIG_RCU_FAST_NO_HZ)
  1168. /*
  1169. * Check to see if any future RCU-related work will need to be done
  1170. * by the current CPU, even if none need be done immediately, returning
  1171. * 1 if so. This function is part of the RCU implementation; it is -not-
  1172. * an exported member of the RCU API.
  1173. *
  1174. * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
  1175. * any flavor of RCU.
  1176. */
  1177. int rcu_needs_cpu(u64 basemono, u64 *nextevt)
  1178. {
  1179. *nextevt = KTIME_MAX;
  1180. return IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)
  1181. ? 0 : rcu_cpu_has_callbacks(NULL);
  1182. }
  1183. /*
  1184. * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
  1185. * after it.
  1186. */
  1187. static void rcu_cleanup_after_idle(void)
  1188. {
  1189. }
  1190. /*
  1191. * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
  1192. * is nothing.
  1193. */
  1194. static void rcu_prepare_for_idle(void)
  1195. {
  1196. }
  1197. /*
  1198. * Don't bother keeping a running count of the number of RCU callbacks
  1199. * posted because CONFIG_RCU_FAST_NO_HZ=n.
  1200. */
  1201. static void rcu_idle_count_callbacks_posted(void)
  1202. {
  1203. }
  1204. #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
  1205. /*
  1206. * This code is invoked when a CPU goes idle, at which point we want
  1207. * to have the CPU do everything required for RCU so that it can enter
  1208. * the energy-efficient dyntick-idle mode. This is handled by a
  1209. * state machine implemented by rcu_prepare_for_idle() below.
  1210. *
  1211. * The following three proprocessor symbols control this state machine:
  1212. *
  1213. * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
  1214. * to sleep in dyntick-idle mode with RCU callbacks pending. This
  1215. * is sized to be roughly one RCU grace period. Those energy-efficiency
  1216. * benchmarkers who might otherwise be tempted to set this to a large
  1217. * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
  1218. * system. And if you are -that- concerned about energy efficiency,
  1219. * just power the system down and be done with it!
  1220. * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
  1221. * permitted to sleep in dyntick-idle mode with only lazy RCU
  1222. * callbacks pending. Setting this too high can OOM your system.
  1223. *
  1224. * The values below work well in practice. If future workloads require
  1225. * adjustment, they can be converted into kernel config parameters, though
  1226. * making the state machine smarter might be a better option.
  1227. */
  1228. #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
  1229. #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
  1230. static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
  1231. module_param(rcu_idle_gp_delay, int, 0644);
  1232. static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
  1233. module_param(rcu_idle_lazy_gp_delay, int, 0644);
  1234. /*
  1235. * Try to advance callbacks for all flavors of RCU on the current CPU, but
  1236. * only if it has been awhile since the last time we did so. Afterwards,
  1237. * if there are any callbacks ready for immediate invocation, return true.
  1238. */
  1239. static bool __maybe_unused rcu_try_advance_all_cbs(void)
  1240. {
  1241. bool cbs_ready = false;
  1242. struct rcu_data *rdp;
  1243. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  1244. struct rcu_node *rnp;
  1245. struct rcu_state *rsp;
  1246. /* Exit early if we advanced recently. */
  1247. if (jiffies == rdtp->last_advance_all)
  1248. return false;
  1249. rdtp->last_advance_all = jiffies;
  1250. for_each_rcu_flavor(rsp) {
  1251. rdp = this_cpu_ptr(rsp->rda);
  1252. rnp = rdp->mynode;
  1253. /*
  1254. * Don't bother checking unless a grace period has
  1255. * completed since we last checked and there are
  1256. * callbacks not yet ready to invoke.
  1257. */
  1258. if ((rdp->completed != rnp->completed ||
  1259. unlikely(READ_ONCE(rdp->gpwrap))) &&
  1260. rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
  1261. note_gp_changes(rsp, rdp);
  1262. if (cpu_has_callbacks_ready_to_invoke(rdp))
  1263. cbs_ready = true;
  1264. }
  1265. return cbs_ready;
  1266. }
  1267. /*
  1268. * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
  1269. * to invoke. If the CPU has callbacks, try to advance them. Tell the
  1270. * caller to set the timeout based on whether or not there are non-lazy
  1271. * callbacks.
  1272. *
  1273. * The caller must have disabled interrupts.
  1274. */
  1275. int rcu_needs_cpu(u64 basemono, u64 *nextevt)
  1276. {
  1277. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  1278. unsigned long dj;
  1279. if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL)) {
  1280. *nextevt = KTIME_MAX;
  1281. return 0;
  1282. }
  1283. /* Snapshot to detect later posting of non-lazy callback. */
  1284. rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
  1285. /* If no callbacks, RCU doesn't need the CPU. */
  1286. if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
  1287. *nextevt = KTIME_MAX;
  1288. return 0;
  1289. }
  1290. /* Attempt to advance callbacks. */
  1291. if (rcu_try_advance_all_cbs()) {
  1292. /* Some ready to invoke, so initiate later invocation. */
  1293. invoke_rcu_core();
  1294. return 1;
  1295. }
  1296. rdtp->last_accelerate = jiffies;
  1297. /* Request timer delay depending on laziness, and round. */
  1298. if (!rdtp->all_lazy) {
  1299. dj = round_up(rcu_idle_gp_delay + jiffies,
  1300. rcu_idle_gp_delay) - jiffies;
  1301. } else {
  1302. dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
  1303. }
  1304. *nextevt = basemono + dj * TICK_NSEC;
  1305. return 0;
  1306. }
  1307. /*
  1308. * Prepare a CPU for idle from an RCU perspective. The first major task
  1309. * is to sense whether nohz mode has been enabled or disabled via sysfs.
  1310. * The second major task is to check to see if a non-lazy callback has
  1311. * arrived at a CPU that previously had only lazy callbacks. The third
  1312. * major task is to accelerate (that is, assign grace-period numbers to)
  1313. * any recently arrived callbacks.
  1314. *
  1315. * The caller must have disabled interrupts.
  1316. */
  1317. static void rcu_prepare_for_idle(void)
  1318. {
  1319. bool needwake;
  1320. struct rcu_data *rdp;
  1321. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  1322. struct rcu_node *rnp;
  1323. struct rcu_state *rsp;
  1324. int tne;
  1325. if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL))
  1326. return;
  1327. /* Handle nohz enablement switches conservatively. */
  1328. tne = READ_ONCE(tick_nohz_active);
  1329. if (tne != rdtp->tick_nohz_enabled_snap) {
  1330. if (rcu_cpu_has_callbacks(NULL))
  1331. invoke_rcu_core(); /* force nohz to see update. */
  1332. rdtp->tick_nohz_enabled_snap = tne;
  1333. return;
  1334. }
  1335. if (!tne)
  1336. return;
  1337. /* If this is a no-CBs CPU, no callbacks, just return. */
  1338. if (rcu_is_nocb_cpu(smp_processor_id()))
  1339. return;
  1340. /*
  1341. * If a non-lazy callback arrived at a CPU having only lazy
  1342. * callbacks, invoke RCU core for the side-effect of recalculating
  1343. * idle duration on re-entry to idle.
  1344. */
  1345. if (rdtp->all_lazy &&
  1346. rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
  1347. rdtp->all_lazy = false;
  1348. rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
  1349. invoke_rcu_core();
  1350. return;
  1351. }
  1352. /*
  1353. * If we have not yet accelerated this jiffy, accelerate all
  1354. * callbacks on this CPU.
  1355. */
  1356. if (rdtp->last_accelerate == jiffies)
  1357. return;
  1358. rdtp->last_accelerate = jiffies;
  1359. for_each_rcu_flavor(rsp) {
  1360. rdp = this_cpu_ptr(rsp->rda);
  1361. if (!*rdp->nxttail[RCU_DONE_TAIL])
  1362. continue;
  1363. rnp = rdp->mynode;
  1364. raw_spin_lock(&rnp->lock); /* irqs already disabled. */
  1365. smp_mb__after_unlock_lock();
  1366. needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
  1367. raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
  1368. if (needwake)
  1369. rcu_gp_kthread_wake(rsp);
  1370. }
  1371. }
  1372. /*
  1373. * Clean up for exit from idle. Attempt to advance callbacks based on
  1374. * any grace periods that elapsed while the CPU was idle, and if any
  1375. * callbacks are now ready to invoke, initiate invocation.
  1376. */
  1377. static void rcu_cleanup_after_idle(void)
  1378. {
  1379. if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_ALL) ||
  1380. rcu_is_nocb_cpu(smp_processor_id()))
  1381. return;
  1382. if (rcu_try_advance_all_cbs())
  1383. invoke_rcu_core();
  1384. }
  1385. /*
  1386. * Keep a running count of the number of non-lazy callbacks posted
  1387. * on this CPU. This running counter (which is never decremented) allows
  1388. * rcu_prepare_for_idle() to detect when something out of the idle loop
  1389. * posts a callback, even if an equal number of callbacks are invoked.
  1390. * Of course, callbacks should only be posted from within a trace event
  1391. * designed to be called from idle or from within RCU_NONIDLE().
  1392. */
  1393. static void rcu_idle_count_callbacks_posted(void)
  1394. {
  1395. __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
  1396. }
  1397. /*
  1398. * Data for flushing lazy RCU callbacks at OOM time.
  1399. */
  1400. static atomic_t oom_callback_count;
  1401. static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
  1402. /*
  1403. * RCU OOM callback -- decrement the outstanding count and deliver the
  1404. * wake-up if we are the last one.
  1405. */
  1406. static void rcu_oom_callback(struct rcu_head *rhp)
  1407. {
  1408. if (atomic_dec_and_test(&oom_callback_count))
  1409. wake_up(&oom_callback_wq);
  1410. }
  1411. /*
  1412. * Post an rcu_oom_notify callback on the current CPU if it has at
  1413. * least one lazy callback. This will unnecessarily post callbacks
  1414. * to CPUs that already have a non-lazy callback at the end of their
  1415. * callback list, but this is an infrequent operation, so accept some
  1416. * extra overhead to keep things simple.
  1417. */
  1418. static void rcu_oom_notify_cpu(void *unused)
  1419. {
  1420. struct rcu_state *rsp;
  1421. struct rcu_data *rdp;
  1422. for_each_rcu_flavor(rsp) {
  1423. rdp = raw_cpu_ptr(rsp->rda);
  1424. if (rdp->qlen_lazy != 0) {
  1425. atomic_inc(&oom_callback_count);
  1426. rsp->call(&rdp->oom_head, rcu_oom_callback);
  1427. }
  1428. }
  1429. }
  1430. /*
  1431. * If low on memory, ensure that each CPU has a non-lazy callback.
  1432. * This will wake up CPUs that have only lazy callbacks, in turn
  1433. * ensuring that they free up the corresponding memory in a timely manner.
  1434. * Because an uncertain amount of memory will be freed in some uncertain
  1435. * timeframe, we do not claim to have freed anything.
  1436. */
  1437. static int rcu_oom_notify(struct notifier_block *self,
  1438. unsigned long notused, void *nfreed)
  1439. {
  1440. int cpu;
  1441. /* Wait for callbacks from earlier instance to complete. */
  1442. wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
  1443. smp_mb(); /* Ensure callback reuse happens after callback invocation. */
  1444. /*
  1445. * Prevent premature wakeup: ensure that all increments happen
  1446. * before there is a chance of the counter reaching zero.
  1447. */
  1448. atomic_set(&oom_callback_count, 1);
  1449. for_each_online_cpu(cpu) {
  1450. smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
  1451. cond_resched_rcu_qs();
  1452. }
  1453. /* Unconditionally decrement: no need to wake ourselves up. */
  1454. atomic_dec(&oom_callback_count);
  1455. return NOTIFY_OK;
  1456. }
  1457. static struct notifier_block rcu_oom_nb = {
  1458. .notifier_call = rcu_oom_notify
  1459. };
  1460. static int __init rcu_register_oom_notifier(void)
  1461. {
  1462. register_oom_notifier(&rcu_oom_nb);
  1463. return 0;
  1464. }
  1465. early_initcall(rcu_register_oom_notifier);
  1466. #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
  1467. #ifdef CONFIG_RCU_FAST_NO_HZ
  1468. static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
  1469. {
  1470. struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
  1471. unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
  1472. sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
  1473. rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
  1474. ulong2long(nlpd),
  1475. rdtp->all_lazy ? 'L' : '.',
  1476. rdtp->tick_nohz_enabled_snap ? '.' : 'D');
  1477. }
  1478. #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
  1479. static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
  1480. {
  1481. *cp = '\0';
  1482. }
  1483. #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
  1484. /* Initiate the stall-info list. */
  1485. static void print_cpu_stall_info_begin(void)
  1486. {
  1487. pr_cont("\n");
  1488. }
  1489. /*
  1490. * Print out diagnostic information for the specified stalled CPU.
  1491. *
  1492. * If the specified CPU is aware of the current RCU grace period
  1493. * (flavor specified by rsp), then print the number of scheduling
  1494. * clock interrupts the CPU has taken during the time that it has
  1495. * been aware. Otherwise, print the number of RCU grace periods
  1496. * that this CPU is ignorant of, for example, "1" if the CPU was
  1497. * aware of the previous grace period.
  1498. *
  1499. * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
  1500. */
  1501. static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
  1502. {
  1503. char fast_no_hz[72];
  1504. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  1505. struct rcu_dynticks *rdtp = rdp->dynticks;
  1506. char *ticks_title;
  1507. unsigned long ticks_value;
  1508. if (rsp->gpnum == rdp->gpnum) {
  1509. ticks_title = "ticks this GP";
  1510. ticks_value = rdp->ticks_this_gp;
  1511. } else {
  1512. ticks_title = "GPs behind";
  1513. ticks_value = rsp->gpnum - rdp->gpnum;
  1514. }
  1515. print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
  1516. pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
  1517. cpu, ticks_value, ticks_title,
  1518. atomic_read(&rdtp->dynticks) & 0xfff,
  1519. rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
  1520. rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
  1521. READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
  1522. fast_no_hz);
  1523. }
  1524. /* Terminate the stall-info list. */
  1525. static void print_cpu_stall_info_end(void)
  1526. {
  1527. pr_err("\t");
  1528. }
  1529. /* Zero ->ticks_this_gp for all flavors of RCU. */
  1530. static void zero_cpu_stall_ticks(struct rcu_data *rdp)
  1531. {
  1532. rdp->ticks_this_gp = 0;
  1533. rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
  1534. }
  1535. /* Increment ->ticks_this_gp for all flavors of RCU. */
  1536. static void increment_cpu_stall_ticks(void)
  1537. {
  1538. struct rcu_state *rsp;
  1539. for_each_rcu_flavor(rsp)
  1540. raw_cpu_inc(rsp->rda->ticks_this_gp);
  1541. }
  1542. #ifdef CONFIG_RCU_NOCB_CPU
  1543. /*
  1544. * Offload callback processing from the boot-time-specified set of CPUs
  1545. * specified by rcu_nocb_mask. For each CPU in the set, there is a
  1546. * kthread created that pulls the callbacks from the corresponding CPU,
  1547. * waits for a grace period to elapse, and invokes the callbacks.
  1548. * The no-CBs CPUs do a wake_up() on their kthread when they insert
  1549. * a callback into any empty list, unless the rcu_nocb_poll boot parameter
  1550. * has been specified, in which case each kthread actively polls its
  1551. * CPU. (Which isn't so great for energy efficiency, but which does
  1552. * reduce RCU's overhead on that CPU.)
  1553. *
  1554. * This is intended to be used in conjunction with Frederic Weisbecker's
  1555. * adaptive-idle work, which would seriously reduce OS jitter on CPUs
  1556. * running CPU-bound user-mode computations.
  1557. *
  1558. * Offloading of callback processing could also in theory be used as
  1559. * an energy-efficiency measure because CPUs with no RCU callbacks
  1560. * queued are more aggressive about entering dyntick-idle mode.
  1561. */
  1562. /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
  1563. static int __init rcu_nocb_setup(char *str)
  1564. {
  1565. alloc_bootmem_cpumask_var(&rcu_nocb_mask);
  1566. have_rcu_nocb_mask = true;
  1567. cpulist_parse(str, rcu_nocb_mask);
  1568. return 1;
  1569. }
  1570. __setup("rcu_nocbs=", rcu_nocb_setup);
  1571. static int __init parse_rcu_nocb_poll(char *arg)
  1572. {
  1573. rcu_nocb_poll = 1;
  1574. return 0;
  1575. }
  1576. early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
  1577. /*
  1578. * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
  1579. * grace period.
  1580. */
  1581. static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
  1582. {
  1583. wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
  1584. }
  1585. /*
  1586. * Set the root rcu_node structure's ->need_future_gp field
  1587. * based on the sum of those of all rcu_node structures. This does
  1588. * double-count the root rcu_node structure's requests, but this
  1589. * is necessary to handle the possibility of a rcu_nocb_kthread()
  1590. * having awakened during the time that the rcu_node structures
  1591. * were being updated for the end of the previous grace period.
  1592. */
  1593. static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
  1594. {
  1595. rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
  1596. }
  1597. static void rcu_init_one_nocb(struct rcu_node *rnp)
  1598. {
  1599. init_waitqueue_head(&rnp->nocb_gp_wq[0]);
  1600. init_waitqueue_head(&rnp->nocb_gp_wq[1]);
  1601. }
  1602. #ifndef CONFIG_RCU_NOCB_CPU_ALL
  1603. /* Is the specified CPU a no-CBs CPU? */
  1604. bool rcu_is_nocb_cpu(int cpu)
  1605. {
  1606. if (have_rcu_nocb_mask)
  1607. return cpumask_test_cpu(cpu, rcu_nocb_mask);
  1608. return false;
  1609. }
  1610. #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
  1611. /*
  1612. * Kick the leader kthread for this NOCB group.
  1613. */
  1614. static void wake_nocb_leader(struct rcu_data *rdp, bool force)
  1615. {
  1616. struct rcu_data *rdp_leader = rdp->nocb_leader;
  1617. if (!READ_ONCE(rdp_leader->nocb_kthread))
  1618. return;
  1619. if (READ_ONCE(rdp_leader->nocb_leader_sleep) || force) {
  1620. /* Prior smp_mb__after_atomic() orders against prior enqueue. */
  1621. WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
  1622. wake_up(&rdp_leader->nocb_wq);
  1623. }
  1624. }
  1625. /*
  1626. * Does the specified CPU need an RCU callback for the specified flavor
  1627. * of rcu_barrier()?
  1628. */
  1629. static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
  1630. {
  1631. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  1632. unsigned long ret;
  1633. #ifdef CONFIG_PROVE_RCU
  1634. struct rcu_head *rhp;
  1635. #endif /* #ifdef CONFIG_PROVE_RCU */
  1636. /*
  1637. * Check count of all no-CBs callbacks awaiting invocation.
  1638. * There needs to be a barrier before this function is called,
  1639. * but associated with a prior determination that no more
  1640. * callbacks would be posted. In the worst case, the first
  1641. * barrier in _rcu_barrier() suffices (but the caller cannot
  1642. * necessarily rely on this, not a substitute for the caller
  1643. * getting the concurrency design right!). There must also be
  1644. * a barrier between the following load an posting of a callback
  1645. * (if a callback is in fact needed). This is associated with an
  1646. * atomic_inc() in the caller.
  1647. */
  1648. ret = atomic_long_read(&rdp->nocb_q_count);
  1649. #ifdef CONFIG_PROVE_RCU
  1650. rhp = READ_ONCE(rdp->nocb_head);
  1651. if (!rhp)
  1652. rhp = READ_ONCE(rdp->nocb_gp_head);
  1653. if (!rhp)
  1654. rhp = READ_ONCE(rdp->nocb_follower_head);
  1655. /* Having no rcuo kthread but CBs after scheduler starts is bad! */
  1656. if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
  1657. rcu_scheduler_fully_active) {
  1658. /* RCU callback enqueued before CPU first came online??? */
  1659. pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
  1660. cpu, rhp->func);
  1661. WARN_ON_ONCE(1);
  1662. }
  1663. #endif /* #ifdef CONFIG_PROVE_RCU */
  1664. return !!ret;
  1665. }
  1666. /*
  1667. * Enqueue the specified string of rcu_head structures onto the specified
  1668. * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
  1669. * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
  1670. * counts are supplied by rhcount and rhcount_lazy.
  1671. *
  1672. * If warranted, also wake up the kthread servicing this CPUs queues.
  1673. */
  1674. static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
  1675. struct rcu_head *rhp,
  1676. struct rcu_head **rhtp,
  1677. int rhcount, int rhcount_lazy,
  1678. unsigned long flags)
  1679. {
  1680. int len;
  1681. struct rcu_head **old_rhpp;
  1682. struct task_struct *t;
  1683. /* Enqueue the callback on the nocb list and update counts. */
  1684. atomic_long_add(rhcount, &rdp->nocb_q_count);
  1685. /* rcu_barrier() relies on ->nocb_q_count add before xchg. */
  1686. old_rhpp = xchg(&rdp->nocb_tail, rhtp);
  1687. WRITE_ONCE(*old_rhpp, rhp);
  1688. atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
  1689. smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
  1690. /* If we are not being polled and there is a kthread, awaken it ... */
  1691. t = READ_ONCE(rdp->nocb_kthread);
  1692. if (rcu_nocb_poll || !t) {
  1693. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  1694. TPS("WakeNotPoll"));
  1695. return;
  1696. }
  1697. len = atomic_long_read(&rdp->nocb_q_count);
  1698. if (old_rhpp == &rdp->nocb_head) {
  1699. if (!irqs_disabled_flags(flags)) {
  1700. /* ... if queue was empty ... */
  1701. wake_nocb_leader(rdp, false);
  1702. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  1703. TPS("WakeEmpty"));
  1704. } else {
  1705. rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
  1706. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  1707. TPS("WakeEmptyIsDeferred"));
  1708. }
  1709. rdp->qlen_last_fqs_check = 0;
  1710. } else if (len > rdp->qlen_last_fqs_check + qhimark) {
  1711. /* ... or if many callbacks queued. */
  1712. if (!irqs_disabled_flags(flags)) {
  1713. wake_nocb_leader(rdp, true);
  1714. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  1715. TPS("WakeOvf"));
  1716. } else {
  1717. rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
  1718. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  1719. TPS("WakeOvfIsDeferred"));
  1720. }
  1721. rdp->qlen_last_fqs_check = LONG_MAX / 2;
  1722. } else {
  1723. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
  1724. }
  1725. return;
  1726. }
  1727. /*
  1728. * This is a helper for __call_rcu(), which invokes this when the normal
  1729. * callback queue is inoperable. If this is not a no-CBs CPU, this
  1730. * function returns failure back to __call_rcu(), which can complain
  1731. * appropriately.
  1732. *
  1733. * Otherwise, this function queues the callback where the corresponding
  1734. * "rcuo" kthread can find it.
  1735. */
  1736. static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
  1737. bool lazy, unsigned long flags)
  1738. {
  1739. if (!rcu_is_nocb_cpu(rdp->cpu))
  1740. return false;
  1741. __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
  1742. if (__is_kfree_rcu_offset((unsigned long)rhp->func))
  1743. trace_rcu_kfree_callback(rdp->rsp->name, rhp,
  1744. (unsigned long)rhp->func,
  1745. -atomic_long_read(&rdp->nocb_q_count_lazy),
  1746. -atomic_long_read(&rdp->nocb_q_count));
  1747. else
  1748. trace_rcu_callback(rdp->rsp->name, rhp,
  1749. -atomic_long_read(&rdp->nocb_q_count_lazy),
  1750. -atomic_long_read(&rdp->nocb_q_count));
  1751. /*
  1752. * If called from an extended quiescent state with interrupts
  1753. * disabled, invoke the RCU core in order to allow the idle-entry
  1754. * deferred-wakeup check to function.
  1755. */
  1756. if (irqs_disabled_flags(flags) &&
  1757. !rcu_is_watching() &&
  1758. cpu_online(smp_processor_id()))
  1759. invoke_rcu_core();
  1760. return true;
  1761. }
  1762. /*
  1763. * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
  1764. * not a no-CBs CPU.
  1765. */
  1766. static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
  1767. struct rcu_data *rdp,
  1768. unsigned long flags)
  1769. {
  1770. long ql = rsp->qlen;
  1771. long qll = rsp->qlen_lazy;
  1772. /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
  1773. if (!rcu_is_nocb_cpu(smp_processor_id()))
  1774. return false;
  1775. rsp->qlen = 0;
  1776. rsp->qlen_lazy = 0;
  1777. /* First, enqueue the donelist, if any. This preserves CB ordering. */
  1778. if (rsp->orphan_donelist != NULL) {
  1779. __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
  1780. rsp->orphan_donetail, ql, qll, flags);
  1781. ql = qll = 0;
  1782. rsp->orphan_donelist = NULL;
  1783. rsp->orphan_donetail = &rsp->orphan_donelist;
  1784. }
  1785. if (rsp->orphan_nxtlist != NULL) {
  1786. __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
  1787. rsp->orphan_nxttail, ql, qll, flags);
  1788. ql = qll = 0;
  1789. rsp->orphan_nxtlist = NULL;
  1790. rsp->orphan_nxttail = &rsp->orphan_nxtlist;
  1791. }
  1792. return true;
  1793. }
  1794. /*
  1795. * If necessary, kick off a new grace period, and either way wait
  1796. * for a subsequent grace period to complete.
  1797. */
  1798. static void rcu_nocb_wait_gp(struct rcu_data *rdp)
  1799. {
  1800. unsigned long c;
  1801. bool d;
  1802. unsigned long flags;
  1803. bool needwake;
  1804. struct rcu_node *rnp = rdp->mynode;
  1805. raw_spin_lock_irqsave(&rnp->lock, flags);
  1806. smp_mb__after_unlock_lock();
  1807. needwake = rcu_start_future_gp(rnp, rdp, &c);
  1808. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1809. if (needwake)
  1810. rcu_gp_kthread_wake(rdp->rsp);
  1811. /*
  1812. * Wait for the grace period. Do so interruptibly to avoid messing
  1813. * up the load average.
  1814. */
  1815. trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
  1816. for (;;) {
  1817. wait_event_interruptible(
  1818. rnp->nocb_gp_wq[c & 0x1],
  1819. (d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c)));
  1820. if (likely(d))
  1821. break;
  1822. WARN_ON(signal_pending(current));
  1823. trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
  1824. }
  1825. trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
  1826. smp_mb(); /* Ensure that CB invocation happens after GP end. */
  1827. }
  1828. /*
  1829. * Leaders come here to wait for additional callbacks to show up.
  1830. * This function does not return until callbacks appear.
  1831. */
  1832. static void nocb_leader_wait(struct rcu_data *my_rdp)
  1833. {
  1834. bool firsttime = true;
  1835. bool gotcbs;
  1836. struct rcu_data *rdp;
  1837. struct rcu_head **tail;
  1838. wait_again:
  1839. /* Wait for callbacks to appear. */
  1840. if (!rcu_nocb_poll) {
  1841. trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
  1842. wait_event_interruptible(my_rdp->nocb_wq,
  1843. !READ_ONCE(my_rdp->nocb_leader_sleep));
  1844. /* Memory barrier handled by smp_mb() calls below and repoll. */
  1845. } else if (firsttime) {
  1846. firsttime = false; /* Don't drown trace log with "Poll"! */
  1847. trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
  1848. }
  1849. /*
  1850. * Each pass through the following loop checks a follower for CBs.
  1851. * We are our own first follower. Any CBs found are moved to
  1852. * nocb_gp_head, where they await a grace period.
  1853. */
  1854. gotcbs = false;
  1855. for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
  1856. rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
  1857. if (!rdp->nocb_gp_head)
  1858. continue; /* No CBs here, try next follower. */
  1859. /* Move callbacks to wait-for-GP list, which is empty. */
  1860. WRITE_ONCE(rdp->nocb_head, NULL);
  1861. rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
  1862. gotcbs = true;
  1863. }
  1864. /*
  1865. * If there were no callbacks, sleep a bit, rescan after a
  1866. * memory barrier, and go retry.
  1867. */
  1868. if (unlikely(!gotcbs)) {
  1869. if (!rcu_nocb_poll)
  1870. trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
  1871. "WokeEmpty");
  1872. WARN_ON(signal_pending(current));
  1873. schedule_timeout_interruptible(1);
  1874. /* Rescan in case we were a victim of memory ordering. */
  1875. my_rdp->nocb_leader_sleep = true;
  1876. smp_mb(); /* Ensure _sleep true before scan. */
  1877. for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
  1878. if (READ_ONCE(rdp->nocb_head)) {
  1879. /* Found CB, so short-circuit next wait. */
  1880. my_rdp->nocb_leader_sleep = false;
  1881. break;
  1882. }
  1883. goto wait_again;
  1884. }
  1885. /* Wait for one grace period. */
  1886. rcu_nocb_wait_gp(my_rdp);
  1887. /*
  1888. * We left ->nocb_leader_sleep unset to reduce cache thrashing.
  1889. * We set it now, but recheck for new callbacks while
  1890. * traversing our follower list.
  1891. */
  1892. my_rdp->nocb_leader_sleep = true;
  1893. smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
  1894. /* Each pass through the following loop wakes a follower, if needed. */
  1895. for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
  1896. if (READ_ONCE(rdp->nocb_head))
  1897. my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
  1898. if (!rdp->nocb_gp_head)
  1899. continue; /* No CBs, so no need to wake follower. */
  1900. /* Append callbacks to follower's "done" list. */
  1901. tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
  1902. *tail = rdp->nocb_gp_head;
  1903. smp_mb__after_atomic(); /* Store *tail before wakeup. */
  1904. if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
  1905. /*
  1906. * List was empty, wake up the follower.
  1907. * Memory barriers supplied by atomic_long_add().
  1908. */
  1909. wake_up(&rdp->nocb_wq);
  1910. }
  1911. }
  1912. /* If we (the leader) don't have CBs, go wait some more. */
  1913. if (!my_rdp->nocb_follower_head)
  1914. goto wait_again;
  1915. }
  1916. /*
  1917. * Followers come here to wait for additional callbacks to show up.
  1918. * This function does not return until callbacks appear.
  1919. */
  1920. static void nocb_follower_wait(struct rcu_data *rdp)
  1921. {
  1922. bool firsttime = true;
  1923. for (;;) {
  1924. if (!rcu_nocb_poll) {
  1925. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  1926. "FollowerSleep");
  1927. wait_event_interruptible(rdp->nocb_wq,
  1928. READ_ONCE(rdp->nocb_follower_head));
  1929. } else if (firsttime) {
  1930. /* Don't drown trace log with "Poll"! */
  1931. firsttime = false;
  1932. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
  1933. }
  1934. if (smp_load_acquire(&rdp->nocb_follower_head)) {
  1935. /* ^^^ Ensure CB invocation follows _head test. */
  1936. return;
  1937. }
  1938. if (!rcu_nocb_poll)
  1939. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  1940. "WokeEmpty");
  1941. WARN_ON(signal_pending(current));
  1942. schedule_timeout_interruptible(1);
  1943. }
  1944. }
  1945. /*
  1946. * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
  1947. * callbacks queued by the corresponding no-CBs CPU, however, there is
  1948. * an optional leader-follower relationship so that the grace-period
  1949. * kthreads don't have to do quite so many wakeups.
  1950. */
  1951. static int rcu_nocb_kthread(void *arg)
  1952. {
  1953. int c, cl;
  1954. struct rcu_head *list;
  1955. struct rcu_head *next;
  1956. struct rcu_head **tail;
  1957. struct rcu_data *rdp = arg;
  1958. /* Each pass through this loop invokes one batch of callbacks */
  1959. for (;;) {
  1960. /* Wait for callbacks. */
  1961. if (rdp->nocb_leader == rdp)
  1962. nocb_leader_wait(rdp);
  1963. else
  1964. nocb_follower_wait(rdp);
  1965. /* Pull the ready-to-invoke callbacks onto local list. */
  1966. list = READ_ONCE(rdp->nocb_follower_head);
  1967. BUG_ON(!list);
  1968. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
  1969. WRITE_ONCE(rdp->nocb_follower_head, NULL);
  1970. tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
  1971. /* Each pass through the following loop invokes a callback. */
  1972. trace_rcu_batch_start(rdp->rsp->name,
  1973. atomic_long_read(&rdp->nocb_q_count_lazy),
  1974. atomic_long_read(&rdp->nocb_q_count), -1);
  1975. c = cl = 0;
  1976. while (list) {
  1977. next = list->next;
  1978. /* Wait for enqueuing to complete, if needed. */
  1979. while (next == NULL && &list->next != tail) {
  1980. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  1981. TPS("WaitQueue"));
  1982. schedule_timeout_interruptible(1);
  1983. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  1984. TPS("WokeQueue"));
  1985. next = list->next;
  1986. }
  1987. debug_rcu_head_unqueue(list);
  1988. local_bh_disable();
  1989. if (__rcu_reclaim(rdp->rsp->name, list))
  1990. cl++;
  1991. c++;
  1992. local_bh_enable();
  1993. list = next;
  1994. }
  1995. trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
  1996. smp_mb__before_atomic(); /* _add after CB invocation. */
  1997. atomic_long_add(-c, &rdp->nocb_q_count);
  1998. atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
  1999. rdp->n_nocbs_invoked += c;
  2000. }
  2001. return 0;
  2002. }
  2003. /* Is a deferred wakeup of rcu_nocb_kthread() required? */
  2004. static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
  2005. {
  2006. return READ_ONCE(rdp->nocb_defer_wakeup);
  2007. }
  2008. /* Do a deferred wakeup of rcu_nocb_kthread(). */
  2009. static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
  2010. {
  2011. int ndw;
  2012. if (!rcu_nocb_need_deferred_wakeup(rdp))
  2013. return;
  2014. ndw = READ_ONCE(rdp->nocb_defer_wakeup);
  2015. WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOGP_WAKE_NOT);
  2016. wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
  2017. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
  2018. }
  2019. void __init rcu_init_nohz(void)
  2020. {
  2021. int cpu;
  2022. bool need_rcu_nocb_mask = true;
  2023. struct rcu_state *rsp;
  2024. #ifdef CONFIG_RCU_NOCB_CPU_NONE
  2025. need_rcu_nocb_mask = false;
  2026. #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
  2027. #if defined(CONFIG_NO_HZ_FULL)
  2028. if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
  2029. need_rcu_nocb_mask = true;
  2030. #endif /* #if defined(CONFIG_NO_HZ_FULL) */
  2031. if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
  2032. if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
  2033. pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
  2034. return;
  2035. }
  2036. have_rcu_nocb_mask = true;
  2037. }
  2038. if (!have_rcu_nocb_mask)
  2039. return;
  2040. #ifdef CONFIG_RCU_NOCB_CPU_ZERO
  2041. pr_info("\tOffload RCU callbacks from CPU 0\n");
  2042. cpumask_set_cpu(0, rcu_nocb_mask);
  2043. #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
  2044. #ifdef CONFIG_RCU_NOCB_CPU_ALL
  2045. pr_info("\tOffload RCU callbacks from all CPUs\n");
  2046. cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
  2047. #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
  2048. #if defined(CONFIG_NO_HZ_FULL)
  2049. if (tick_nohz_full_running)
  2050. cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
  2051. #endif /* #if defined(CONFIG_NO_HZ_FULL) */
  2052. if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
  2053. pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
  2054. cpumask_and(rcu_nocb_mask, cpu_possible_mask,
  2055. rcu_nocb_mask);
  2056. }
  2057. pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
  2058. cpumask_pr_args(rcu_nocb_mask));
  2059. if (rcu_nocb_poll)
  2060. pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
  2061. for_each_rcu_flavor(rsp) {
  2062. for_each_cpu(cpu, rcu_nocb_mask)
  2063. init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
  2064. rcu_organize_nocb_kthreads(rsp);
  2065. }
  2066. }
  2067. /* Initialize per-rcu_data variables for no-CBs CPUs. */
  2068. static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
  2069. {
  2070. rdp->nocb_tail = &rdp->nocb_head;
  2071. init_waitqueue_head(&rdp->nocb_wq);
  2072. rdp->nocb_follower_tail = &rdp->nocb_follower_head;
  2073. }
  2074. /*
  2075. * If the specified CPU is a no-CBs CPU that does not already have its
  2076. * rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are
  2077. * brought online out of order, this can require re-organizing the
  2078. * leader-follower relationships.
  2079. */
  2080. static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
  2081. {
  2082. struct rcu_data *rdp;
  2083. struct rcu_data *rdp_last;
  2084. struct rcu_data *rdp_old_leader;
  2085. struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
  2086. struct task_struct *t;
  2087. /*
  2088. * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
  2089. * then nothing to do.
  2090. */
  2091. if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
  2092. return;
  2093. /* If we didn't spawn the leader first, reorganize! */
  2094. rdp_old_leader = rdp_spawn->nocb_leader;
  2095. if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
  2096. rdp_last = NULL;
  2097. rdp = rdp_old_leader;
  2098. do {
  2099. rdp->nocb_leader = rdp_spawn;
  2100. if (rdp_last && rdp != rdp_spawn)
  2101. rdp_last->nocb_next_follower = rdp;
  2102. if (rdp == rdp_spawn) {
  2103. rdp = rdp->nocb_next_follower;
  2104. } else {
  2105. rdp_last = rdp;
  2106. rdp = rdp->nocb_next_follower;
  2107. rdp_last->nocb_next_follower = NULL;
  2108. }
  2109. } while (rdp);
  2110. rdp_spawn->nocb_next_follower = rdp_old_leader;
  2111. }
  2112. /* Spawn the kthread for this CPU and RCU flavor. */
  2113. t = kthread_run(rcu_nocb_kthread, rdp_spawn,
  2114. "rcuo%c/%d", rsp->abbr, cpu);
  2115. BUG_ON(IS_ERR(t));
  2116. WRITE_ONCE(rdp_spawn->nocb_kthread, t);
  2117. }
  2118. /*
  2119. * If the specified CPU is a no-CBs CPU that does not already have its
  2120. * rcuo kthreads, spawn them.
  2121. */
  2122. static void rcu_spawn_all_nocb_kthreads(int cpu)
  2123. {
  2124. struct rcu_state *rsp;
  2125. if (rcu_scheduler_fully_active)
  2126. for_each_rcu_flavor(rsp)
  2127. rcu_spawn_one_nocb_kthread(rsp, cpu);
  2128. }
  2129. /*
  2130. * Once the scheduler is running, spawn rcuo kthreads for all online
  2131. * no-CBs CPUs. This assumes that the early_initcall()s happen before
  2132. * non-boot CPUs come online -- if this changes, we will need to add
  2133. * some mutual exclusion.
  2134. */
  2135. static void __init rcu_spawn_nocb_kthreads(void)
  2136. {
  2137. int cpu;
  2138. for_each_online_cpu(cpu)
  2139. rcu_spawn_all_nocb_kthreads(cpu);
  2140. }
  2141. /* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */
  2142. static int rcu_nocb_leader_stride = -1;
  2143. module_param(rcu_nocb_leader_stride, int, 0444);
  2144. /*
  2145. * Initialize leader-follower relationships for all no-CBs CPU.
  2146. */
  2147. static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
  2148. {
  2149. int cpu;
  2150. int ls = rcu_nocb_leader_stride;
  2151. int nl = 0; /* Next leader. */
  2152. struct rcu_data *rdp;
  2153. struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */
  2154. struct rcu_data *rdp_prev = NULL;
  2155. if (!have_rcu_nocb_mask)
  2156. return;
  2157. if (ls == -1) {
  2158. ls = int_sqrt(nr_cpu_ids);
  2159. rcu_nocb_leader_stride = ls;
  2160. }
  2161. /*
  2162. * Each pass through this loop sets up one rcu_data structure and
  2163. * spawns one rcu_nocb_kthread().
  2164. */
  2165. for_each_cpu(cpu, rcu_nocb_mask) {
  2166. rdp = per_cpu_ptr(rsp->rda, cpu);
  2167. if (rdp->cpu >= nl) {
  2168. /* New leader, set up for followers & next leader. */
  2169. nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
  2170. rdp->nocb_leader = rdp;
  2171. rdp_leader = rdp;
  2172. } else {
  2173. /* Another follower, link to previous leader. */
  2174. rdp->nocb_leader = rdp_leader;
  2175. rdp_prev->nocb_next_follower = rdp;
  2176. }
  2177. rdp_prev = rdp;
  2178. }
  2179. }
  2180. /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
  2181. static bool init_nocb_callback_list(struct rcu_data *rdp)
  2182. {
  2183. if (!rcu_is_nocb_cpu(rdp->cpu))
  2184. return false;
  2185. /* If there are early-boot callbacks, move them to nocb lists. */
  2186. if (rdp->nxtlist) {
  2187. rdp->nocb_head = rdp->nxtlist;
  2188. rdp->nocb_tail = rdp->nxttail[RCU_NEXT_TAIL];
  2189. atomic_long_set(&rdp->nocb_q_count, rdp->qlen);
  2190. atomic_long_set(&rdp->nocb_q_count_lazy, rdp->qlen_lazy);
  2191. rdp->nxtlist = NULL;
  2192. rdp->qlen = 0;
  2193. rdp->qlen_lazy = 0;
  2194. }
  2195. rdp->nxttail[RCU_NEXT_TAIL] = NULL;
  2196. return true;
  2197. }
  2198. #else /* #ifdef CONFIG_RCU_NOCB_CPU */
  2199. static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
  2200. {
  2201. WARN_ON_ONCE(1); /* Should be dead code. */
  2202. return false;
  2203. }
  2204. static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
  2205. {
  2206. }
  2207. static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
  2208. {
  2209. }
  2210. static void rcu_init_one_nocb(struct rcu_node *rnp)
  2211. {
  2212. }
  2213. static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
  2214. bool lazy, unsigned long flags)
  2215. {
  2216. return false;
  2217. }
  2218. static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
  2219. struct rcu_data *rdp,
  2220. unsigned long flags)
  2221. {
  2222. return false;
  2223. }
  2224. static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
  2225. {
  2226. }
  2227. static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
  2228. {
  2229. return false;
  2230. }
  2231. static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
  2232. {
  2233. }
  2234. static void rcu_spawn_all_nocb_kthreads(int cpu)
  2235. {
  2236. }
  2237. static void __init rcu_spawn_nocb_kthreads(void)
  2238. {
  2239. }
  2240. static bool init_nocb_callback_list(struct rcu_data *rdp)
  2241. {
  2242. return false;
  2243. }
  2244. #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
  2245. /*
  2246. * An adaptive-ticks CPU can potentially execute in kernel mode for an
  2247. * arbitrarily long period of time with the scheduling-clock tick turned
  2248. * off. RCU will be paying attention to this CPU because it is in the
  2249. * kernel, but the CPU cannot be guaranteed to be executing the RCU state
  2250. * machine because the scheduling-clock tick has been disabled. Therefore,
  2251. * if an adaptive-ticks CPU is failing to respond to the current grace
  2252. * period and has not be idle from an RCU perspective, kick it.
  2253. */
  2254. static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
  2255. {
  2256. #ifdef CONFIG_NO_HZ_FULL
  2257. if (tick_nohz_full_cpu(cpu))
  2258. smp_send_reschedule(cpu);
  2259. #endif /* #ifdef CONFIG_NO_HZ_FULL */
  2260. }
  2261. #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
  2262. static int full_sysidle_state; /* Current system-idle state. */
  2263. #define RCU_SYSIDLE_NOT 0 /* Some CPU is not idle. */
  2264. #define RCU_SYSIDLE_SHORT 1 /* All CPUs idle for brief period. */
  2265. #define RCU_SYSIDLE_LONG 2 /* All CPUs idle for long enough. */
  2266. #define RCU_SYSIDLE_FULL 3 /* All CPUs idle, ready for sysidle. */
  2267. #define RCU_SYSIDLE_FULL_NOTED 4 /* Actually entered sysidle state. */
  2268. /*
  2269. * Invoked to note exit from irq or task transition to idle. Note that
  2270. * usermode execution does -not- count as idle here! After all, we want
  2271. * to detect full-system idle states, not RCU quiescent states and grace
  2272. * periods. The caller must have disabled interrupts.
  2273. */
  2274. static void rcu_sysidle_enter(int irq)
  2275. {
  2276. unsigned long j;
  2277. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  2278. /* If there are no nohz_full= CPUs, no need to track this. */
  2279. if (!tick_nohz_full_enabled())
  2280. return;
  2281. /* Adjust nesting, check for fully idle. */
  2282. if (irq) {
  2283. rdtp->dynticks_idle_nesting--;
  2284. WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
  2285. if (rdtp->dynticks_idle_nesting != 0)
  2286. return; /* Still not fully idle. */
  2287. } else {
  2288. if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
  2289. DYNTICK_TASK_NEST_VALUE) {
  2290. rdtp->dynticks_idle_nesting = 0;
  2291. } else {
  2292. rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
  2293. WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
  2294. return; /* Still not fully idle. */
  2295. }
  2296. }
  2297. /* Record start of fully idle period. */
  2298. j = jiffies;
  2299. WRITE_ONCE(rdtp->dynticks_idle_jiffies, j);
  2300. smp_mb__before_atomic();
  2301. atomic_inc(&rdtp->dynticks_idle);
  2302. smp_mb__after_atomic();
  2303. WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
  2304. }
  2305. /*
  2306. * Unconditionally force exit from full system-idle state. This is
  2307. * invoked when a normal CPU exits idle, but must be called separately
  2308. * for the timekeeping CPU (tick_do_timer_cpu). The reason for this
  2309. * is that the timekeeping CPU is permitted to take scheduling-clock
  2310. * interrupts while the system is in system-idle state, and of course
  2311. * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
  2312. * interrupt from any other type of interrupt.
  2313. */
  2314. void rcu_sysidle_force_exit(void)
  2315. {
  2316. int oldstate = READ_ONCE(full_sysidle_state);
  2317. int newoldstate;
  2318. /*
  2319. * Each pass through the following loop attempts to exit full
  2320. * system-idle state. If contention proves to be a problem,
  2321. * a trylock-based contention tree could be used here.
  2322. */
  2323. while (oldstate > RCU_SYSIDLE_SHORT) {
  2324. newoldstate = cmpxchg(&full_sysidle_state,
  2325. oldstate, RCU_SYSIDLE_NOT);
  2326. if (oldstate == newoldstate &&
  2327. oldstate == RCU_SYSIDLE_FULL_NOTED) {
  2328. rcu_kick_nohz_cpu(tick_do_timer_cpu);
  2329. return; /* We cleared it, done! */
  2330. }
  2331. oldstate = newoldstate;
  2332. }
  2333. smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
  2334. }
  2335. /*
  2336. * Invoked to note entry to irq or task transition from idle. Note that
  2337. * usermode execution does -not- count as idle here! The caller must
  2338. * have disabled interrupts.
  2339. */
  2340. static void rcu_sysidle_exit(int irq)
  2341. {
  2342. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  2343. /* If there are no nohz_full= CPUs, no need to track this. */
  2344. if (!tick_nohz_full_enabled())
  2345. return;
  2346. /* Adjust nesting, check for already non-idle. */
  2347. if (irq) {
  2348. rdtp->dynticks_idle_nesting++;
  2349. WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
  2350. if (rdtp->dynticks_idle_nesting != 1)
  2351. return; /* Already non-idle. */
  2352. } else {
  2353. /*
  2354. * Allow for irq misnesting. Yes, it really is possible
  2355. * to enter an irq handler then never leave it, and maybe
  2356. * also vice versa. Handle both possibilities.
  2357. */
  2358. if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
  2359. rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
  2360. WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
  2361. return; /* Already non-idle. */
  2362. } else {
  2363. rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
  2364. }
  2365. }
  2366. /* Record end of idle period. */
  2367. smp_mb__before_atomic();
  2368. atomic_inc(&rdtp->dynticks_idle);
  2369. smp_mb__after_atomic();
  2370. WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
  2371. /*
  2372. * If we are the timekeeping CPU, we are permitted to be non-idle
  2373. * during a system-idle state. This must be the case, because
  2374. * the timekeeping CPU has to take scheduling-clock interrupts
  2375. * during the time that the system is transitioning to full
  2376. * system-idle state. This means that the timekeeping CPU must
  2377. * invoke rcu_sysidle_force_exit() directly if it does anything
  2378. * more than take a scheduling-clock interrupt.
  2379. */
  2380. if (smp_processor_id() == tick_do_timer_cpu)
  2381. return;
  2382. /* Update system-idle state: We are clearly no longer fully idle! */
  2383. rcu_sysidle_force_exit();
  2384. }
  2385. /*
  2386. * Check to see if the current CPU is idle. Note that usermode execution
  2387. * does not count as idle. The caller must have disabled interrupts,
  2388. * and must be running on tick_do_timer_cpu.
  2389. */
  2390. static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
  2391. unsigned long *maxj)
  2392. {
  2393. int cur;
  2394. unsigned long j;
  2395. struct rcu_dynticks *rdtp = rdp->dynticks;
  2396. /* If there are no nohz_full= CPUs, don't check system-wide idleness. */
  2397. if (!tick_nohz_full_enabled())
  2398. return;
  2399. /*
  2400. * If some other CPU has already reported non-idle, if this is
  2401. * not the flavor of RCU that tracks sysidle state, or if this
  2402. * is an offline or the timekeeping CPU, nothing to do.
  2403. */
  2404. if (!*isidle || rdp->rsp != rcu_state_p ||
  2405. cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
  2406. return;
  2407. /* Verify affinity of current kthread. */
  2408. WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
  2409. /* Pick up current idle and NMI-nesting counter and check. */
  2410. cur = atomic_read(&rdtp->dynticks_idle);
  2411. if (cur & 0x1) {
  2412. *isidle = false; /* We are not idle! */
  2413. return;
  2414. }
  2415. smp_mb(); /* Read counters before timestamps. */
  2416. /* Pick up timestamps. */
  2417. j = READ_ONCE(rdtp->dynticks_idle_jiffies);
  2418. /* If this CPU entered idle more recently, update maxj timestamp. */
  2419. if (ULONG_CMP_LT(*maxj, j))
  2420. *maxj = j;
  2421. }
  2422. /*
  2423. * Is this the flavor of RCU that is handling full-system idle?
  2424. */
  2425. static bool is_sysidle_rcu_state(struct rcu_state *rsp)
  2426. {
  2427. return rsp == rcu_state_p;
  2428. }
  2429. /*
  2430. * Return a delay in jiffies based on the number of CPUs, rcu_node
  2431. * leaf fanout, and jiffies tick rate. The idea is to allow larger
  2432. * systems more time to transition to full-idle state in order to
  2433. * avoid the cache thrashing that otherwise occur on the state variable.
  2434. * Really small systems (less than a couple of tens of CPUs) should
  2435. * instead use a single global atomically incremented counter, and later
  2436. * versions of this will automatically reconfigure themselves accordingly.
  2437. */
  2438. static unsigned long rcu_sysidle_delay(void)
  2439. {
  2440. if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
  2441. return 0;
  2442. return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
  2443. }
  2444. /*
  2445. * Advance the full-system-idle state. This is invoked when all of
  2446. * the non-timekeeping CPUs are idle.
  2447. */
  2448. static void rcu_sysidle(unsigned long j)
  2449. {
  2450. /* Check the current state. */
  2451. switch (READ_ONCE(full_sysidle_state)) {
  2452. case RCU_SYSIDLE_NOT:
  2453. /* First time all are idle, so note a short idle period. */
  2454. WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_SHORT);
  2455. break;
  2456. case RCU_SYSIDLE_SHORT:
  2457. /*
  2458. * Idle for a bit, time to advance to next state?
  2459. * cmpxchg failure means race with non-idle, let them win.
  2460. */
  2461. if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
  2462. (void)cmpxchg(&full_sysidle_state,
  2463. RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
  2464. break;
  2465. case RCU_SYSIDLE_LONG:
  2466. /*
  2467. * Do an additional check pass before advancing to full.
  2468. * cmpxchg failure means race with non-idle, let them win.
  2469. */
  2470. if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
  2471. (void)cmpxchg(&full_sysidle_state,
  2472. RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
  2473. break;
  2474. default:
  2475. break;
  2476. }
  2477. }
  2478. /*
  2479. * Found a non-idle non-timekeeping CPU, so kick the system-idle state
  2480. * back to the beginning.
  2481. */
  2482. static void rcu_sysidle_cancel(void)
  2483. {
  2484. smp_mb();
  2485. if (full_sysidle_state > RCU_SYSIDLE_SHORT)
  2486. WRITE_ONCE(full_sysidle_state, RCU_SYSIDLE_NOT);
  2487. }
  2488. /*
  2489. * Update the sysidle state based on the results of a force-quiescent-state
  2490. * scan of the CPUs' dyntick-idle state.
  2491. */
  2492. static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
  2493. unsigned long maxj, bool gpkt)
  2494. {
  2495. if (rsp != rcu_state_p)
  2496. return; /* Wrong flavor, ignore. */
  2497. if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
  2498. return; /* Running state machine from timekeeping CPU. */
  2499. if (isidle)
  2500. rcu_sysidle(maxj); /* More idle! */
  2501. else
  2502. rcu_sysidle_cancel(); /* Idle is over. */
  2503. }
  2504. /*
  2505. * Wrapper for rcu_sysidle_report() when called from the grace-period
  2506. * kthread's context.
  2507. */
  2508. static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
  2509. unsigned long maxj)
  2510. {
  2511. /* If there are no nohz_full= CPUs, no need to track this. */
  2512. if (!tick_nohz_full_enabled())
  2513. return;
  2514. rcu_sysidle_report(rsp, isidle, maxj, true);
  2515. }
  2516. /* Callback and function for forcing an RCU grace period. */
  2517. struct rcu_sysidle_head {
  2518. struct rcu_head rh;
  2519. int inuse;
  2520. };
  2521. static void rcu_sysidle_cb(struct rcu_head *rhp)
  2522. {
  2523. struct rcu_sysidle_head *rshp;
  2524. /*
  2525. * The following memory barrier is needed to replace the
  2526. * memory barriers that would normally be in the memory
  2527. * allocator.
  2528. */
  2529. smp_mb(); /* grace period precedes setting inuse. */
  2530. rshp = container_of(rhp, struct rcu_sysidle_head, rh);
  2531. WRITE_ONCE(rshp->inuse, 0);
  2532. }
  2533. /*
  2534. * Check to see if the system is fully idle, other than the timekeeping CPU.
  2535. * The caller must have disabled interrupts. This is not intended to be
  2536. * called unless tick_nohz_full_enabled().
  2537. */
  2538. bool rcu_sys_is_idle(void)
  2539. {
  2540. static struct rcu_sysidle_head rsh;
  2541. int rss = READ_ONCE(full_sysidle_state);
  2542. if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
  2543. return false;
  2544. /* Handle small-system case by doing a full scan of CPUs. */
  2545. if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
  2546. int oldrss = rss - 1;
  2547. /*
  2548. * One pass to advance to each state up to _FULL.
  2549. * Give up if any pass fails to advance the state.
  2550. */
  2551. while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
  2552. int cpu;
  2553. bool isidle = true;
  2554. unsigned long maxj = jiffies - ULONG_MAX / 4;
  2555. struct rcu_data *rdp;
  2556. /* Scan all the CPUs looking for nonidle CPUs. */
  2557. for_each_possible_cpu(cpu) {
  2558. rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
  2559. rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
  2560. if (!isidle)
  2561. break;
  2562. }
  2563. rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
  2564. oldrss = rss;
  2565. rss = READ_ONCE(full_sysidle_state);
  2566. }
  2567. }
  2568. /* If this is the first observation of an idle period, record it. */
  2569. if (rss == RCU_SYSIDLE_FULL) {
  2570. rss = cmpxchg(&full_sysidle_state,
  2571. RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
  2572. return rss == RCU_SYSIDLE_FULL;
  2573. }
  2574. smp_mb(); /* ensure rss load happens before later caller actions. */
  2575. /* If already fully idle, tell the caller (in case of races). */
  2576. if (rss == RCU_SYSIDLE_FULL_NOTED)
  2577. return true;
  2578. /*
  2579. * If we aren't there yet, and a grace period is not in flight,
  2580. * initiate a grace period. Either way, tell the caller that
  2581. * we are not there yet. We use an xchg() rather than an assignment
  2582. * to make up for the memory barriers that would otherwise be
  2583. * provided by the memory allocator.
  2584. */
  2585. if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
  2586. !rcu_gp_in_progress(rcu_state_p) &&
  2587. !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
  2588. call_rcu(&rsh.rh, rcu_sysidle_cb);
  2589. return false;
  2590. }
  2591. /*
  2592. * Initialize dynticks sysidle state for CPUs coming online.
  2593. */
  2594. static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
  2595. {
  2596. rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
  2597. }
  2598. #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
  2599. static void rcu_sysidle_enter(int irq)
  2600. {
  2601. }
  2602. static void rcu_sysidle_exit(int irq)
  2603. {
  2604. }
  2605. static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
  2606. unsigned long *maxj)
  2607. {
  2608. }
  2609. static bool is_sysidle_rcu_state(struct rcu_state *rsp)
  2610. {
  2611. return false;
  2612. }
  2613. static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
  2614. unsigned long maxj)
  2615. {
  2616. }
  2617. static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
  2618. {
  2619. }
  2620. #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
  2621. /*
  2622. * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
  2623. * grace-period kthread will do force_quiescent_state() processing?
  2624. * The idea is to avoid waking up RCU core processing on such a
  2625. * CPU unless the grace period has extended for too long.
  2626. *
  2627. * This code relies on the fact that all NO_HZ_FULL CPUs are also
  2628. * CONFIG_RCU_NOCB_CPU CPUs.
  2629. */
  2630. static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
  2631. {
  2632. #ifdef CONFIG_NO_HZ_FULL
  2633. if (tick_nohz_full_cpu(smp_processor_id()) &&
  2634. (!rcu_gp_in_progress(rsp) ||
  2635. ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
  2636. return true;
  2637. #endif /* #ifdef CONFIG_NO_HZ_FULL */
  2638. return false;
  2639. }
  2640. /*
  2641. * Bind the grace-period kthread for the sysidle flavor of RCU to the
  2642. * timekeeping CPU.
  2643. */
  2644. static void rcu_bind_gp_kthread(void)
  2645. {
  2646. int __maybe_unused cpu;
  2647. if (!tick_nohz_full_enabled())
  2648. return;
  2649. #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
  2650. cpu = tick_do_timer_cpu;
  2651. if (cpu >= 0 && cpu < nr_cpu_ids)
  2652. set_cpus_allowed_ptr(current, cpumask_of(cpu));
  2653. #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
  2654. housekeeping_affine(current);
  2655. #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
  2656. }
  2657. /* Record the current task on dyntick-idle entry. */
  2658. static void rcu_dynticks_task_enter(void)
  2659. {
  2660. #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
  2661. WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
  2662. #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
  2663. }
  2664. /* Record no current task on dyntick-idle exit. */
  2665. static void rcu_dynticks_task_exit(void)
  2666. {
  2667. #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
  2668. WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
  2669. #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
  2670. }