mutex.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972
  1. /*
  2. * kernel/locking/mutex.c
  3. *
  4. * Mutexes: blocking mutual exclusion locks
  5. *
  6. * Started by Ingo Molnar:
  7. *
  8. * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  9. *
  10. * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
  11. * David Howells for suggestions and improvements.
  12. *
  13. * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
  14. * from the -rt tree, where it was originally implemented for rtmutexes
  15. * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
  16. * and Sven Dietrich.
  17. *
  18. * Also see Documentation/locking/mutex-design.txt.
  19. */
  20. #include <linux/mutex.h>
  21. #include <linux/ww_mutex.h>
  22. #include <linux/sched.h>
  23. #include <linux/sched/rt.h>
  24. #include <linux/export.h>
  25. #include <linux/spinlock.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/debug_locks.h>
  28. #include <linux/osq_lock.h>
  29. /*
  30. * In the DEBUG case we are using the "NULL fastpath" for mutexes,
  31. * which forces all calls into the slowpath:
  32. */
  33. #ifdef CONFIG_DEBUG_MUTEXES
  34. # include "mutex-debug.h"
  35. # include <asm-generic/mutex-null.h>
  36. /*
  37. * Must be 0 for the debug case so we do not do the unlock outside of the
  38. * wait_lock region. debug_mutex_unlock() will do the actual unlock in this
  39. * case.
  40. */
  41. # undef __mutex_slowpath_needs_to_unlock
  42. # define __mutex_slowpath_needs_to_unlock() 0
  43. #else
  44. # include "mutex.h"
  45. # include <asm/mutex.h>
  46. #endif
  47. void
  48. __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
  49. {
  50. atomic_set(&lock->count, 1);
  51. spin_lock_init(&lock->wait_lock);
  52. INIT_LIST_HEAD(&lock->wait_list);
  53. mutex_clear_owner(lock);
  54. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  55. osq_lock_init(&lock->osq);
  56. #endif
  57. debug_mutex_init(lock, name, key);
  58. }
  59. EXPORT_SYMBOL(__mutex_init);
  60. #ifndef CONFIG_DEBUG_LOCK_ALLOC
  61. /*
  62. * We split the mutex lock/unlock logic into separate fastpath and
  63. * slowpath functions, to reduce the register pressure on the fastpath.
  64. * We also put the fastpath first in the kernel image, to make sure the
  65. * branch is predicted by the CPU as default-untaken.
  66. */
  67. __visible void __sched __mutex_lock_slowpath(atomic_t *lock_count);
  68. /**
  69. * mutex_lock - acquire the mutex
  70. * @lock: the mutex to be acquired
  71. *
  72. * Lock the mutex exclusively for this task. If the mutex is not
  73. * available right now, it will sleep until it can get it.
  74. *
  75. * The mutex must later on be released by the same task that
  76. * acquired it. Recursive locking is not allowed. The task
  77. * may not exit without first unlocking the mutex. Also, kernel
  78. * memory where the mutex resides must not be freed with
  79. * the mutex still locked. The mutex must first be initialized
  80. * (or statically defined) before it can be locked. memset()-ing
  81. * the mutex to 0 is not allowed.
  82. *
  83. * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
  84. * checks that will enforce the restrictions and will also do
  85. * deadlock debugging. )
  86. *
  87. * This function is similar to (but not equivalent to) down().
  88. */
  89. void __sched mutex_lock(struct mutex *lock)
  90. {
  91. might_sleep();
  92. /*
  93. * The locking fastpath is the 1->0 transition from
  94. * 'unlocked' into 'locked' state.
  95. */
  96. __mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath);
  97. mutex_set_owner(lock);
  98. }
  99. EXPORT_SYMBOL(mutex_lock);
  100. #endif
  101. static __always_inline void ww_mutex_lock_acquired(struct ww_mutex *ww,
  102. struct ww_acquire_ctx *ww_ctx)
  103. {
  104. #ifdef CONFIG_DEBUG_MUTEXES
  105. /*
  106. * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
  107. * but released with a normal mutex_unlock in this call.
  108. *
  109. * This should never happen, always use ww_mutex_unlock.
  110. */
  111. DEBUG_LOCKS_WARN_ON(ww->ctx);
  112. /*
  113. * Not quite done after calling ww_acquire_done() ?
  114. */
  115. DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);
  116. if (ww_ctx->contending_lock) {
  117. /*
  118. * After -EDEADLK you tried to
  119. * acquire a different ww_mutex? Bad!
  120. */
  121. DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);
  122. /*
  123. * You called ww_mutex_lock after receiving -EDEADLK,
  124. * but 'forgot' to unlock everything else first?
  125. */
  126. DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
  127. ww_ctx->contending_lock = NULL;
  128. }
  129. /*
  130. * Naughty, using a different class will lead to undefined behavior!
  131. */
  132. DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
  133. #endif
  134. ww_ctx->acquired++;
  135. }
  136. /*
  137. * After acquiring lock with fastpath or when we lost out in contested
  138. * slowpath, set ctx and wake up any waiters so they can recheck.
  139. *
  140. * This function is never called when CONFIG_DEBUG_LOCK_ALLOC is set,
  141. * as the fastpath and opportunistic spinning are disabled in that case.
  142. */
  143. static __always_inline void
  144. ww_mutex_set_context_fastpath(struct ww_mutex *lock,
  145. struct ww_acquire_ctx *ctx)
  146. {
  147. unsigned long flags;
  148. struct mutex_waiter *cur;
  149. ww_mutex_lock_acquired(lock, ctx);
  150. lock->ctx = ctx;
  151. /*
  152. * The lock->ctx update should be visible on all cores before
  153. * the atomic read is done, otherwise contended waiters might be
  154. * missed. The contended waiters will either see ww_ctx == NULL
  155. * and keep spinning, or it will acquire wait_lock, add itself
  156. * to waiter list and sleep.
  157. */
  158. smp_mb(); /* ^^^ */
  159. /*
  160. * Check if lock is contended, if not there is nobody to wake up
  161. */
  162. if (likely(atomic_read(&lock->base.count) == 0))
  163. return;
  164. /*
  165. * Uh oh, we raced in fastpath, wake up everyone in this case,
  166. * so they can see the new lock->ctx.
  167. */
  168. spin_lock_mutex(&lock->base.wait_lock, flags);
  169. list_for_each_entry(cur, &lock->base.wait_list, list) {
  170. debug_mutex_wake_waiter(&lock->base, cur);
  171. wake_up_process(cur->task);
  172. }
  173. spin_unlock_mutex(&lock->base.wait_lock, flags);
  174. }
  175. /*
  176. * After acquiring lock in the slowpath set ctx and wake up any
  177. * waiters so they can recheck.
  178. *
  179. * Callers must hold the mutex wait_lock.
  180. */
  181. static __always_inline void
  182. ww_mutex_set_context_slowpath(struct ww_mutex *lock,
  183. struct ww_acquire_ctx *ctx)
  184. {
  185. struct mutex_waiter *cur;
  186. ww_mutex_lock_acquired(lock, ctx);
  187. lock->ctx = ctx;
  188. /*
  189. * Give any possible sleeping processes the chance to wake up,
  190. * so they can recheck if they have to back off.
  191. */
  192. list_for_each_entry(cur, &lock->base.wait_list, list) {
  193. debug_mutex_wake_waiter(&lock->base, cur);
  194. wake_up_process(cur->task);
  195. }
  196. }
  197. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  198. /*
  199. * Look out! "owner" is an entirely speculative pointer
  200. * access and not reliable.
  201. */
  202. static noinline
  203. bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
  204. {
  205. bool ret = true;
  206. rcu_read_lock();
  207. while (lock->owner == owner) {
  208. /*
  209. * Ensure we emit the owner->on_cpu, dereference _after_
  210. * checking lock->owner still matches owner. If that fails,
  211. * owner might point to freed memory. If it still matches,
  212. * the rcu_read_lock() ensures the memory stays valid.
  213. */
  214. barrier();
  215. if (!owner->on_cpu || need_resched()) {
  216. ret = false;
  217. break;
  218. }
  219. cpu_relax_lowlatency();
  220. }
  221. rcu_read_unlock();
  222. return ret;
  223. }
  224. /*
  225. * Initial check for entering the mutex spinning loop
  226. */
  227. static inline int mutex_can_spin_on_owner(struct mutex *lock)
  228. {
  229. struct task_struct *owner;
  230. int retval = 1;
  231. if (need_resched())
  232. return 0;
  233. rcu_read_lock();
  234. owner = READ_ONCE(lock->owner);
  235. if (owner)
  236. retval = owner->on_cpu;
  237. rcu_read_unlock();
  238. /*
  239. * if lock->owner is not set, the mutex owner may have just acquired
  240. * it and not set the owner yet or the mutex has been released.
  241. */
  242. return retval;
  243. }
  244. /*
  245. * Atomically try to take the lock when it is available
  246. */
  247. static inline bool mutex_try_to_acquire(struct mutex *lock)
  248. {
  249. return !mutex_is_locked(lock) &&
  250. (atomic_cmpxchg(&lock->count, 1, 0) == 1);
  251. }
  252. /*
  253. * Optimistic spinning.
  254. *
  255. * We try to spin for acquisition when we find that the lock owner
  256. * is currently running on a (different) CPU and while we don't
  257. * need to reschedule. The rationale is that if the lock owner is
  258. * running, it is likely to release the lock soon.
  259. *
  260. * Since this needs the lock owner, and this mutex implementation
  261. * doesn't track the owner atomically in the lock field, we need to
  262. * track it non-atomically.
  263. *
  264. * We can't do this for DEBUG_MUTEXES because that relies on wait_lock
  265. * to serialize everything.
  266. *
  267. * The mutex spinners are queued up using MCS lock so that only one
  268. * spinner can compete for the mutex. However, if mutex spinning isn't
  269. * going to happen, there is no point in going through the lock/unlock
  270. * overhead.
  271. *
  272. * Returns true when the lock was taken, otherwise false, indicating
  273. * that we need to jump to the slowpath and sleep.
  274. */
  275. static bool mutex_optimistic_spin(struct mutex *lock,
  276. struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
  277. {
  278. struct task_struct *task = current;
  279. if (!mutex_can_spin_on_owner(lock))
  280. goto done;
  281. /*
  282. * In order to avoid a stampede of mutex spinners trying to
  283. * acquire the mutex all at once, the spinners need to take a
  284. * MCS (queued) lock first before spinning on the owner field.
  285. */
  286. if (!osq_lock(&lock->osq))
  287. goto done;
  288. while (true) {
  289. struct task_struct *owner;
  290. if (use_ww_ctx && ww_ctx->acquired > 0) {
  291. struct ww_mutex *ww;
  292. ww = container_of(lock, struct ww_mutex, base);
  293. /*
  294. * If ww->ctx is set the contents are undefined, only
  295. * by acquiring wait_lock there is a guarantee that
  296. * they are not invalid when reading.
  297. *
  298. * As such, when deadlock detection needs to be
  299. * performed the optimistic spinning cannot be done.
  300. */
  301. if (READ_ONCE(ww->ctx))
  302. break;
  303. }
  304. /*
  305. * If there's an owner, wait for it to either
  306. * release the lock or go to sleep.
  307. */
  308. owner = READ_ONCE(lock->owner);
  309. if (owner && !mutex_spin_on_owner(lock, owner))
  310. break;
  311. /* Try to acquire the mutex if it is unlocked. */
  312. if (mutex_try_to_acquire(lock)) {
  313. lock_acquired(&lock->dep_map, ip);
  314. if (use_ww_ctx) {
  315. struct ww_mutex *ww;
  316. ww = container_of(lock, struct ww_mutex, base);
  317. ww_mutex_set_context_fastpath(ww, ww_ctx);
  318. }
  319. mutex_set_owner(lock);
  320. osq_unlock(&lock->osq);
  321. return true;
  322. }
  323. /*
  324. * When there's no owner, we might have preempted between the
  325. * owner acquiring the lock and setting the owner field. If
  326. * we're an RT task that will live-lock because we won't let
  327. * the owner complete.
  328. */
  329. if (!owner && (need_resched() || rt_task(task)))
  330. break;
  331. /*
  332. * The cpu_relax() call is a compiler barrier which forces
  333. * everything in this loop to be re-loaded. We don't need
  334. * memory barriers as we'll eventually observe the right
  335. * values at the cost of a few extra spins.
  336. */
  337. cpu_relax_lowlatency();
  338. }
  339. osq_unlock(&lock->osq);
  340. done:
  341. /*
  342. * If we fell out of the spin path because of need_resched(),
  343. * reschedule now, before we try-lock the mutex. This avoids getting
  344. * scheduled out right after we obtained the mutex.
  345. */
  346. if (need_resched()) {
  347. /*
  348. * We _should_ have TASK_RUNNING here, but just in case
  349. * we do not, make it so, otherwise we might get stuck.
  350. */
  351. __set_current_state(TASK_RUNNING);
  352. schedule_preempt_disabled();
  353. }
  354. return false;
  355. }
  356. #else
  357. static bool mutex_optimistic_spin(struct mutex *lock,
  358. struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
  359. {
  360. return false;
  361. }
  362. #endif
  363. __visible __used noinline
  364. void __sched __mutex_unlock_slowpath(atomic_t *lock_count);
  365. /**
  366. * mutex_unlock - release the mutex
  367. * @lock: the mutex to be released
  368. *
  369. * Unlock a mutex that has been locked by this task previously.
  370. *
  371. * This function must not be used in interrupt context. Unlocking
  372. * of a not locked mutex is not allowed.
  373. *
  374. * This function is similar to (but not equivalent to) up().
  375. */
  376. void __sched mutex_unlock(struct mutex *lock)
  377. {
  378. /*
  379. * The unlocking fastpath is the 0->1 transition from 'locked'
  380. * into 'unlocked' state:
  381. */
  382. #ifndef CONFIG_DEBUG_MUTEXES
  383. /*
  384. * When debugging is enabled we must not clear the owner before time,
  385. * the slow path will always be taken, and that clears the owner field
  386. * after verifying that it was indeed current.
  387. */
  388. mutex_clear_owner(lock);
  389. #endif
  390. __mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath);
  391. }
  392. EXPORT_SYMBOL(mutex_unlock);
  393. /**
  394. * ww_mutex_unlock - release the w/w mutex
  395. * @lock: the mutex to be released
  396. *
  397. * Unlock a mutex that has been locked by this task previously with any of the
  398. * ww_mutex_lock* functions (with or without an acquire context). It is
  399. * forbidden to release the locks after releasing the acquire context.
  400. *
  401. * This function must not be used in interrupt context. Unlocking
  402. * of a unlocked mutex is not allowed.
  403. */
  404. void __sched ww_mutex_unlock(struct ww_mutex *lock)
  405. {
  406. /*
  407. * The unlocking fastpath is the 0->1 transition from 'locked'
  408. * into 'unlocked' state:
  409. */
  410. if (lock->ctx) {
  411. #ifdef CONFIG_DEBUG_MUTEXES
  412. DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
  413. #endif
  414. if (lock->ctx->acquired > 0)
  415. lock->ctx->acquired--;
  416. lock->ctx = NULL;
  417. }
  418. #ifndef CONFIG_DEBUG_MUTEXES
  419. /*
  420. * When debugging is enabled we must not clear the owner before time,
  421. * the slow path will always be taken, and that clears the owner field
  422. * after verifying that it was indeed current.
  423. */
  424. mutex_clear_owner(&lock->base);
  425. #endif
  426. __mutex_fastpath_unlock(&lock->base.count, __mutex_unlock_slowpath);
  427. }
  428. EXPORT_SYMBOL(ww_mutex_unlock);
  429. static inline int __sched
  430. __ww_mutex_lock_check_stamp(struct mutex *lock, struct ww_acquire_ctx *ctx)
  431. {
  432. struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
  433. struct ww_acquire_ctx *hold_ctx = READ_ONCE(ww->ctx);
  434. if (!hold_ctx)
  435. return 0;
  436. if (unlikely(ctx == hold_ctx))
  437. return -EALREADY;
  438. if (ctx->stamp - hold_ctx->stamp <= LONG_MAX &&
  439. (ctx->stamp != hold_ctx->stamp || ctx > hold_ctx)) {
  440. #ifdef CONFIG_DEBUG_MUTEXES
  441. DEBUG_LOCKS_WARN_ON(ctx->contending_lock);
  442. ctx->contending_lock = ww;
  443. #endif
  444. return -EDEADLK;
  445. }
  446. return 0;
  447. }
  448. /*
  449. * Lock a mutex (possibly interruptible), slowpath:
  450. */
  451. static __always_inline int __sched
  452. __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
  453. struct lockdep_map *nest_lock, unsigned long ip,
  454. struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
  455. {
  456. struct task_struct *task = current;
  457. struct mutex_waiter waiter;
  458. unsigned long flags;
  459. int ret;
  460. preempt_disable();
  461. mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
  462. if (mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx)) {
  463. /* got the lock, yay! */
  464. preempt_enable();
  465. return 0;
  466. }
  467. spin_lock_mutex(&lock->wait_lock, flags);
  468. /*
  469. * Once more, try to acquire the lock. Only try-lock the mutex if
  470. * it is unlocked to reduce unnecessary xchg() operations.
  471. */
  472. if (!mutex_is_locked(lock) && (atomic_xchg(&lock->count, 0) == 1))
  473. goto skip_wait;
  474. debug_mutex_lock_common(lock, &waiter);
  475. debug_mutex_add_waiter(lock, &waiter, task_thread_info(task));
  476. /* add waiting tasks to the end of the waitqueue (FIFO): */
  477. list_add_tail(&waiter.list, &lock->wait_list);
  478. waiter.task = task;
  479. lock_contended(&lock->dep_map, ip);
  480. for (;;) {
  481. /*
  482. * Lets try to take the lock again - this is needed even if
  483. * we get here for the first time (shortly after failing to
  484. * acquire the lock), to make sure that we get a wakeup once
  485. * it's unlocked. Later on, if we sleep, this is the
  486. * operation that gives us the lock. We xchg it to -1, so
  487. * that when we release the lock, we properly wake up the
  488. * other waiters. We only attempt the xchg if the count is
  489. * non-negative in order to avoid unnecessary xchg operations:
  490. */
  491. if (atomic_read(&lock->count) >= 0 &&
  492. (atomic_xchg(&lock->count, -1) == 1))
  493. break;
  494. /*
  495. * got a signal? (This code gets eliminated in the
  496. * TASK_UNINTERRUPTIBLE case.)
  497. */
  498. if (unlikely(signal_pending_state(state, task))) {
  499. ret = -EINTR;
  500. goto err;
  501. }
  502. if (use_ww_ctx && ww_ctx->acquired > 0) {
  503. ret = __ww_mutex_lock_check_stamp(lock, ww_ctx);
  504. if (ret)
  505. goto err;
  506. }
  507. __set_task_state(task, state);
  508. /* didn't get the lock, go to sleep: */
  509. spin_unlock_mutex(&lock->wait_lock, flags);
  510. schedule_preempt_disabled();
  511. spin_lock_mutex(&lock->wait_lock, flags);
  512. }
  513. __set_task_state(task, TASK_RUNNING);
  514. mutex_remove_waiter(lock, &waiter, current_thread_info());
  515. /* set it to 0 if there are no waiters left: */
  516. if (likely(list_empty(&lock->wait_list)))
  517. atomic_set(&lock->count, 0);
  518. debug_mutex_free_waiter(&waiter);
  519. skip_wait:
  520. /* got the lock - cleanup and rejoice! */
  521. lock_acquired(&lock->dep_map, ip);
  522. mutex_set_owner(lock);
  523. if (use_ww_ctx) {
  524. struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
  525. ww_mutex_set_context_slowpath(ww, ww_ctx);
  526. }
  527. spin_unlock_mutex(&lock->wait_lock, flags);
  528. preempt_enable();
  529. return 0;
  530. err:
  531. mutex_remove_waiter(lock, &waiter, task_thread_info(task));
  532. spin_unlock_mutex(&lock->wait_lock, flags);
  533. debug_mutex_free_waiter(&waiter);
  534. mutex_release(&lock->dep_map, 1, ip);
  535. preempt_enable();
  536. return ret;
  537. }
  538. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  539. void __sched
  540. mutex_lock_nested(struct mutex *lock, unsigned int subclass)
  541. {
  542. might_sleep();
  543. __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
  544. subclass, NULL, _RET_IP_, NULL, 0);
  545. }
  546. EXPORT_SYMBOL_GPL(mutex_lock_nested);
  547. void __sched
  548. _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
  549. {
  550. might_sleep();
  551. __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
  552. 0, nest, _RET_IP_, NULL, 0);
  553. }
  554. EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
  555. int __sched
  556. mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
  557. {
  558. might_sleep();
  559. return __mutex_lock_common(lock, TASK_KILLABLE,
  560. subclass, NULL, _RET_IP_, NULL, 0);
  561. }
  562. EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
  563. int __sched
  564. mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
  565. {
  566. might_sleep();
  567. return __mutex_lock_common(lock, TASK_INTERRUPTIBLE,
  568. subclass, NULL, _RET_IP_, NULL, 0);
  569. }
  570. EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
  571. static inline int
  572. ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
  573. {
  574. #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
  575. unsigned tmp;
  576. if (ctx->deadlock_inject_countdown-- == 0) {
  577. tmp = ctx->deadlock_inject_interval;
  578. if (tmp > UINT_MAX/4)
  579. tmp = UINT_MAX;
  580. else
  581. tmp = tmp*2 + tmp + tmp/2;
  582. ctx->deadlock_inject_interval = tmp;
  583. ctx->deadlock_inject_countdown = tmp;
  584. ctx->contending_lock = lock;
  585. ww_mutex_unlock(lock);
  586. return -EDEADLK;
  587. }
  588. #endif
  589. return 0;
  590. }
  591. int __sched
  592. __ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
  593. {
  594. int ret;
  595. might_sleep();
  596. ret = __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE,
  597. 0, &ctx->dep_map, _RET_IP_, ctx, 1);
  598. if (!ret && ctx->acquired > 1)
  599. return ww_mutex_deadlock_injection(lock, ctx);
  600. return ret;
  601. }
  602. EXPORT_SYMBOL_GPL(__ww_mutex_lock);
  603. int __sched
  604. __ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
  605. {
  606. int ret;
  607. might_sleep();
  608. ret = __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE,
  609. 0, &ctx->dep_map, _RET_IP_, ctx, 1);
  610. if (!ret && ctx->acquired > 1)
  611. return ww_mutex_deadlock_injection(lock, ctx);
  612. return ret;
  613. }
  614. EXPORT_SYMBOL_GPL(__ww_mutex_lock_interruptible);
  615. #endif
  616. /*
  617. * Release the lock, slowpath:
  618. */
  619. static inline void
  620. __mutex_unlock_common_slowpath(struct mutex *lock, int nested)
  621. {
  622. unsigned long flags;
  623. /*
  624. * As a performance measurement, release the lock before doing other
  625. * wakeup related duties to follow. This allows other tasks to acquire
  626. * the lock sooner, while still handling cleanups in past unlock calls.
  627. * This can be done as we do not enforce strict equivalence between the
  628. * mutex counter and wait_list.
  629. *
  630. *
  631. * Some architectures leave the lock unlocked in the fastpath failure
  632. * case, others need to leave it locked. In the later case we have to
  633. * unlock it here - as the lock counter is currently 0 or negative.
  634. */
  635. if (__mutex_slowpath_needs_to_unlock())
  636. atomic_set(&lock->count, 1);
  637. spin_lock_mutex(&lock->wait_lock, flags);
  638. mutex_release(&lock->dep_map, nested, _RET_IP_);
  639. debug_mutex_unlock(lock);
  640. if (!list_empty(&lock->wait_list)) {
  641. /* get the first entry from the wait-list: */
  642. struct mutex_waiter *waiter =
  643. list_entry(lock->wait_list.next,
  644. struct mutex_waiter, list);
  645. debug_mutex_wake_waiter(lock, waiter);
  646. wake_up_process(waiter->task);
  647. }
  648. spin_unlock_mutex(&lock->wait_lock, flags);
  649. }
  650. /*
  651. * Release the lock, slowpath:
  652. */
  653. __visible void
  654. __mutex_unlock_slowpath(atomic_t *lock_count)
  655. {
  656. struct mutex *lock = container_of(lock_count, struct mutex, count);
  657. __mutex_unlock_common_slowpath(lock, 1);
  658. }
  659. #ifndef CONFIG_DEBUG_LOCK_ALLOC
  660. /*
  661. * Here come the less common (and hence less performance-critical) APIs:
  662. * mutex_lock_interruptible() and mutex_trylock().
  663. */
  664. static noinline int __sched
  665. __mutex_lock_killable_slowpath(struct mutex *lock);
  666. static noinline int __sched
  667. __mutex_lock_interruptible_slowpath(struct mutex *lock);
  668. /**
  669. * mutex_lock_interruptible - acquire the mutex, interruptible
  670. * @lock: the mutex to be acquired
  671. *
  672. * Lock the mutex like mutex_lock(), and return 0 if the mutex has
  673. * been acquired or sleep until the mutex becomes available. If a
  674. * signal arrives while waiting for the lock then this function
  675. * returns -EINTR.
  676. *
  677. * This function is similar to (but not equivalent to) down_interruptible().
  678. */
  679. int __sched mutex_lock_interruptible(struct mutex *lock)
  680. {
  681. int ret;
  682. might_sleep();
  683. ret = __mutex_fastpath_lock_retval(&lock->count);
  684. if (likely(!ret)) {
  685. mutex_set_owner(lock);
  686. return 0;
  687. } else
  688. return __mutex_lock_interruptible_slowpath(lock);
  689. }
  690. EXPORT_SYMBOL(mutex_lock_interruptible);
  691. int __sched mutex_lock_killable(struct mutex *lock)
  692. {
  693. int ret;
  694. might_sleep();
  695. ret = __mutex_fastpath_lock_retval(&lock->count);
  696. if (likely(!ret)) {
  697. mutex_set_owner(lock);
  698. return 0;
  699. } else
  700. return __mutex_lock_killable_slowpath(lock);
  701. }
  702. EXPORT_SYMBOL(mutex_lock_killable);
  703. __visible void __sched
  704. __mutex_lock_slowpath(atomic_t *lock_count)
  705. {
  706. struct mutex *lock = container_of(lock_count, struct mutex, count);
  707. __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0,
  708. NULL, _RET_IP_, NULL, 0);
  709. }
  710. static noinline int __sched
  711. __mutex_lock_killable_slowpath(struct mutex *lock)
  712. {
  713. return __mutex_lock_common(lock, TASK_KILLABLE, 0,
  714. NULL, _RET_IP_, NULL, 0);
  715. }
  716. static noinline int __sched
  717. __mutex_lock_interruptible_slowpath(struct mutex *lock)
  718. {
  719. return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0,
  720. NULL, _RET_IP_, NULL, 0);
  721. }
  722. static noinline int __sched
  723. __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
  724. {
  725. return __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE, 0,
  726. NULL, _RET_IP_, ctx, 1);
  727. }
  728. static noinline int __sched
  729. __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
  730. struct ww_acquire_ctx *ctx)
  731. {
  732. return __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE, 0,
  733. NULL, _RET_IP_, ctx, 1);
  734. }
  735. #endif
  736. /*
  737. * Spinlock based trylock, we take the spinlock and check whether we
  738. * can get the lock:
  739. */
  740. static inline int __mutex_trylock_slowpath(atomic_t *lock_count)
  741. {
  742. struct mutex *lock = container_of(lock_count, struct mutex, count);
  743. unsigned long flags;
  744. int prev;
  745. /* No need to trylock if the mutex is locked. */
  746. if (mutex_is_locked(lock))
  747. return 0;
  748. spin_lock_mutex(&lock->wait_lock, flags);
  749. prev = atomic_xchg(&lock->count, -1);
  750. if (likely(prev == 1)) {
  751. mutex_set_owner(lock);
  752. mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
  753. }
  754. /* Set it back to 0 if there are no waiters: */
  755. if (likely(list_empty(&lock->wait_list)))
  756. atomic_set(&lock->count, 0);
  757. spin_unlock_mutex(&lock->wait_lock, flags);
  758. return prev == 1;
  759. }
  760. /**
  761. * mutex_trylock - try to acquire the mutex, without waiting
  762. * @lock: the mutex to be acquired
  763. *
  764. * Try to acquire the mutex atomically. Returns 1 if the mutex
  765. * has been acquired successfully, and 0 on contention.
  766. *
  767. * NOTE: this function follows the spin_trylock() convention, so
  768. * it is negated from the down_trylock() return values! Be careful
  769. * about this when converting semaphore users to mutexes.
  770. *
  771. * This function must not be used in interrupt context. The
  772. * mutex must be released by the same task that acquired it.
  773. */
  774. int __sched mutex_trylock(struct mutex *lock)
  775. {
  776. int ret;
  777. ret = __mutex_fastpath_trylock(&lock->count, __mutex_trylock_slowpath);
  778. if (ret)
  779. mutex_set_owner(lock);
  780. return ret;
  781. }
  782. EXPORT_SYMBOL(mutex_trylock);
  783. #ifndef CONFIG_DEBUG_LOCK_ALLOC
  784. int __sched
  785. __ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
  786. {
  787. int ret;
  788. might_sleep();
  789. ret = __mutex_fastpath_lock_retval(&lock->base.count);
  790. if (likely(!ret)) {
  791. ww_mutex_set_context_fastpath(lock, ctx);
  792. mutex_set_owner(&lock->base);
  793. } else
  794. ret = __ww_mutex_lock_slowpath(lock, ctx);
  795. return ret;
  796. }
  797. EXPORT_SYMBOL(__ww_mutex_lock);
  798. int __sched
  799. __ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
  800. {
  801. int ret;
  802. might_sleep();
  803. ret = __mutex_fastpath_lock_retval(&lock->base.count);
  804. if (likely(!ret)) {
  805. ww_mutex_set_context_fastpath(lock, ctx);
  806. mutex_set_owner(&lock->base);
  807. } else
  808. ret = __ww_mutex_lock_interruptible_slowpath(lock, ctx);
  809. return ret;
  810. }
  811. EXPORT_SYMBOL(__ww_mutex_lock_interruptible);
  812. #endif
  813. /**
  814. * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
  815. * @cnt: the atomic which we are to dec
  816. * @lock: the mutex to return holding if we dec to 0
  817. *
  818. * return true and hold lock if we dec to 0, return false otherwise
  819. */
  820. int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
  821. {
  822. /* dec if we can't possibly hit 0 */
  823. if (atomic_add_unless(cnt, -1, 1))
  824. return 0;
  825. /* we might hit 0, so take the lock */
  826. mutex_lock(lock);
  827. if (!atomic_dec_and_test(cnt)) {
  828. /* when we actually did the dec, we didn't hit 0 */
  829. mutex_unlock(lock);
  830. return 0;
  831. }
  832. /* we hit 0, and we hold the lock */
  833. return 1;
  834. }
  835. EXPORT_SYMBOL(atomic_dec_and_mutex_lock);