task_mmu.c 38 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611
  1. #include <linux/mm.h>
  2. #include <linux/vmacache.h>
  3. #include <linux/hugetlb.h>
  4. #include <linux/huge_mm.h>
  5. #include <linux/mount.h>
  6. #include <linux/seq_file.h>
  7. #include <linux/highmem.h>
  8. #include <linux/ptrace.h>
  9. #include <linux/slab.h>
  10. #include <linux/pagemap.h>
  11. #include <linux/mempolicy.h>
  12. #include <linux/rmap.h>
  13. #include <linux/swap.h>
  14. #include <linux/swapops.h>
  15. #include <linux/mmu_notifier.h>
  16. #include <linux/page_idle.h>
  17. #include <asm/elf.h>
  18. #include <asm/uaccess.h>
  19. #include <asm/tlbflush.h>
  20. #include "internal.h"
  21. void task_mem(struct seq_file *m, struct mm_struct *mm)
  22. {
  23. unsigned long data, text, lib, swap, ptes, pmds;
  24. unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
  25. /*
  26. * Note: to minimize their overhead, mm maintains hiwater_vm and
  27. * hiwater_rss only when about to *lower* total_vm or rss. Any
  28. * collector of these hiwater stats must therefore get total_vm
  29. * and rss too, which will usually be the higher. Barriers? not
  30. * worth the effort, such snapshots can always be inconsistent.
  31. */
  32. hiwater_vm = total_vm = mm->total_vm;
  33. if (hiwater_vm < mm->hiwater_vm)
  34. hiwater_vm = mm->hiwater_vm;
  35. hiwater_rss = total_rss = get_mm_rss(mm);
  36. if (hiwater_rss < mm->hiwater_rss)
  37. hiwater_rss = mm->hiwater_rss;
  38. data = mm->total_vm - mm->shared_vm - mm->stack_vm;
  39. text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
  40. lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
  41. swap = get_mm_counter(mm, MM_SWAPENTS);
  42. ptes = PTRS_PER_PTE * sizeof(pte_t) * atomic_long_read(&mm->nr_ptes);
  43. pmds = PTRS_PER_PMD * sizeof(pmd_t) * mm_nr_pmds(mm);
  44. seq_printf(m,
  45. "VmPeak:\t%8lu kB\n"
  46. "VmSize:\t%8lu kB\n"
  47. "VmLck:\t%8lu kB\n"
  48. "VmPin:\t%8lu kB\n"
  49. "VmHWM:\t%8lu kB\n"
  50. "VmRSS:\t%8lu kB\n"
  51. "VmData:\t%8lu kB\n"
  52. "VmStk:\t%8lu kB\n"
  53. "VmExe:\t%8lu kB\n"
  54. "VmLib:\t%8lu kB\n"
  55. "VmPTE:\t%8lu kB\n"
  56. "VmPMD:\t%8lu kB\n"
  57. "VmSwap:\t%8lu kB\n",
  58. hiwater_vm << (PAGE_SHIFT-10),
  59. total_vm << (PAGE_SHIFT-10),
  60. mm->locked_vm << (PAGE_SHIFT-10),
  61. mm->pinned_vm << (PAGE_SHIFT-10),
  62. hiwater_rss << (PAGE_SHIFT-10),
  63. total_rss << (PAGE_SHIFT-10),
  64. data << (PAGE_SHIFT-10),
  65. mm->stack_vm << (PAGE_SHIFT-10), text, lib,
  66. ptes >> 10,
  67. pmds >> 10,
  68. swap << (PAGE_SHIFT-10));
  69. }
  70. unsigned long task_vsize(struct mm_struct *mm)
  71. {
  72. return PAGE_SIZE * mm->total_vm;
  73. }
  74. unsigned long task_statm(struct mm_struct *mm,
  75. unsigned long *shared, unsigned long *text,
  76. unsigned long *data, unsigned long *resident)
  77. {
  78. *shared = get_mm_counter(mm, MM_FILEPAGES);
  79. *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
  80. >> PAGE_SHIFT;
  81. *data = mm->total_vm - mm->shared_vm;
  82. *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
  83. return mm->total_vm;
  84. }
  85. #ifdef CONFIG_NUMA
  86. /*
  87. * Save get_task_policy() for show_numa_map().
  88. */
  89. static void hold_task_mempolicy(struct proc_maps_private *priv)
  90. {
  91. struct task_struct *task = priv->task;
  92. task_lock(task);
  93. priv->task_mempolicy = get_task_policy(task);
  94. mpol_get(priv->task_mempolicy);
  95. task_unlock(task);
  96. }
  97. static void release_task_mempolicy(struct proc_maps_private *priv)
  98. {
  99. mpol_put(priv->task_mempolicy);
  100. }
  101. #else
  102. static void hold_task_mempolicy(struct proc_maps_private *priv)
  103. {
  104. }
  105. static void release_task_mempolicy(struct proc_maps_private *priv)
  106. {
  107. }
  108. #endif
  109. static void vma_stop(struct proc_maps_private *priv)
  110. {
  111. struct mm_struct *mm = priv->mm;
  112. release_task_mempolicy(priv);
  113. up_read(&mm->mmap_sem);
  114. mmput(mm);
  115. }
  116. static struct vm_area_struct *
  117. m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
  118. {
  119. if (vma == priv->tail_vma)
  120. return NULL;
  121. return vma->vm_next ?: priv->tail_vma;
  122. }
  123. static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
  124. {
  125. if (m->count < m->size) /* vma is copied successfully */
  126. m->version = m_next_vma(m->private, vma) ? vma->vm_start : -1UL;
  127. }
  128. static void *m_start(struct seq_file *m, loff_t *ppos)
  129. {
  130. struct proc_maps_private *priv = m->private;
  131. unsigned long last_addr = m->version;
  132. struct mm_struct *mm;
  133. struct vm_area_struct *vma;
  134. unsigned int pos = *ppos;
  135. /* See m_cache_vma(). Zero at the start or after lseek. */
  136. if (last_addr == -1UL)
  137. return NULL;
  138. priv->task = get_proc_task(priv->inode);
  139. if (!priv->task)
  140. return ERR_PTR(-ESRCH);
  141. mm = priv->mm;
  142. if (!mm || !atomic_inc_not_zero(&mm->mm_users))
  143. return NULL;
  144. down_read(&mm->mmap_sem);
  145. hold_task_mempolicy(priv);
  146. priv->tail_vma = get_gate_vma(mm);
  147. if (last_addr) {
  148. vma = find_vma(mm, last_addr);
  149. if (vma && (vma = m_next_vma(priv, vma)))
  150. return vma;
  151. }
  152. m->version = 0;
  153. if (pos < mm->map_count) {
  154. for (vma = mm->mmap; pos; pos--) {
  155. m->version = vma->vm_start;
  156. vma = vma->vm_next;
  157. }
  158. return vma;
  159. }
  160. /* we do not bother to update m->version in this case */
  161. if (pos == mm->map_count && priv->tail_vma)
  162. return priv->tail_vma;
  163. vma_stop(priv);
  164. return NULL;
  165. }
  166. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  167. {
  168. struct proc_maps_private *priv = m->private;
  169. struct vm_area_struct *next;
  170. (*pos)++;
  171. next = m_next_vma(priv, v);
  172. if (!next)
  173. vma_stop(priv);
  174. return next;
  175. }
  176. static void m_stop(struct seq_file *m, void *v)
  177. {
  178. struct proc_maps_private *priv = m->private;
  179. if (!IS_ERR_OR_NULL(v))
  180. vma_stop(priv);
  181. if (priv->task) {
  182. put_task_struct(priv->task);
  183. priv->task = NULL;
  184. }
  185. }
  186. static int proc_maps_open(struct inode *inode, struct file *file,
  187. const struct seq_operations *ops, int psize)
  188. {
  189. struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
  190. if (!priv)
  191. return -ENOMEM;
  192. priv->inode = inode;
  193. priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
  194. if (IS_ERR(priv->mm)) {
  195. int err = PTR_ERR(priv->mm);
  196. seq_release_private(inode, file);
  197. return err;
  198. }
  199. return 0;
  200. }
  201. static int proc_map_release(struct inode *inode, struct file *file)
  202. {
  203. struct seq_file *seq = file->private_data;
  204. struct proc_maps_private *priv = seq->private;
  205. if (priv->mm)
  206. mmdrop(priv->mm);
  207. return seq_release_private(inode, file);
  208. }
  209. static int do_maps_open(struct inode *inode, struct file *file,
  210. const struct seq_operations *ops)
  211. {
  212. return proc_maps_open(inode, file, ops,
  213. sizeof(struct proc_maps_private));
  214. }
  215. static pid_t pid_of_stack(struct proc_maps_private *priv,
  216. struct vm_area_struct *vma, bool is_pid)
  217. {
  218. struct inode *inode = priv->inode;
  219. struct task_struct *task;
  220. pid_t ret = 0;
  221. rcu_read_lock();
  222. task = pid_task(proc_pid(inode), PIDTYPE_PID);
  223. if (task) {
  224. task = task_of_stack(task, vma, is_pid);
  225. if (task)
  226. ret = task_pid_nr_ns(task, inode->i_sb->s_fs_info);
  227. }
  228. rcu_read_unlock();
  229. return ret;
  230. }
  231. static void
  232. show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
  233. {
  234. struct mm_struct *mm = vma->vm_mm;
  235. struct file *file = vma->vm_file;
  236. struct proc_maps_private *priv = m->private;
  237. vm_flags_t flags = vma->vm_flags;
  238. unsigned long ino = 0;
  239. unsigned long long pgoff = 0;
  240. unsigned long start, end;
  241. dev_t dev = 0;
  242. const char *name = NULL;
  243. if (file) {
  244. struct inode *inode = file_inode(vma->vm_file);
  245. dev = inode->i_sb->s_dev;
  246. ino = inode->i_ino;
  247. pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
  248. }
  249. /* We don't show the stack guard page in /proc/maps */
  250. start = vma->vm_start;
  251. if (stack_guard_page_start(vma, start))
  252. start += PAGE_SIZE;
  253. end = vma->vm_end;
  254. if (stack_guard_page_end(vma, end))
  255. end -= PAGE_SIZE;
  256. seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
  257. seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
  258. start,
  259. end,
  260. flags & VM_READ ? 'r' : '-',
  261. flags & VM_WRITE ? 'w' : '-',
  262. flags & VM_EXEC ? 'x' : '-',
  263. flags & VM_MAYSHARE ? 's' : 'p',
  264. pgoff,
  265. MAJOR(dev), MINOR(dev), ino);
  266. /*
  267. * Print the dentry name for named mappings, and a
  268. * special [heap] marker for the heap:
  269. */
  270. if (file) {
  271. seq_pad(m, ' ');
  272. seq_file_path(m, file, "\n");
  273. goto done;
  274. }
  275. if (vma->vm_ops && vma->vm_ops->name) {
  276. name = vma->vm_ops->name(vma);
  277. if (name)
  278. goto done;
  279. }
  280. name = arch_vma_name(vma);
  281. if (!name) {
  282. pid_t tid;
  283. if (!mm) {
  284. name = "[vdso]";
  285. goto done;
  286. }
  287. if (vma->vm_start <= mm->brk &&
  288. vma->vm_end >= mm->start_brk) {
  289. name = "[heap]";
  290. goto done;
  291. }
  292. tid = pid_of_stack(priv, vma, is_pid);
  293. if (tid != 0) {
  294. /*
  295. * Thread stack in /proc/PID/task/TID/maps or
  296. * the main process stack.
  297. */
  298. if (!is_pid || (vma->vm_start <= mm->start_stack &&
  299. vma->vm_end >= mm->start_stack)) {
  300. name = "[stack]";
  301. } else {
  302. /* Thread stack in /proc/PID/maps */
  303. seq_pad(m, ' ');
  304. seq_printf(m, "[stack:%d]", tid);
  305. }
  306. }
  307. }
  308. done:
  309. if (name) {
  310. seq_pad(m, ' ');
  311. seq_puts(m, name);
  312. }
  313. seq_putc(m, '\n');
  314. }
  315. static int show_map(struct seq_file *m, void *v, int is_pid)
  316. {
  317. show_map_vma(m, v, is_pid);
  318. m_cache_vma(m, v);
  319. return 0;
  320. }
  321. static int show_pid_map(struct seq_file *m, void *v)
  322. {
  323. return show_map(m, v, 1);
  324. }
  325. static int show_tid_map(struct seq_file *m, void *v)
  326. {
  327. return show_map(m, v, 0);
  328. }
  329. static const struct seq_operations proc_pid_maps_op = {
  330. .start = m_start,
  331. .next = m_next,
  332. .stop = m_stop,
  333. .show = show_pid_map
  334. };
  335. static const struct seq_operations proc_tid_maps_op = {
  336. .start = m_start,
  337. .next = m_next,
  338. .stop = m_stop,
  339. .show = show_tid_map
  340. };
  341. static int pid_maps_open(struct inode *inode, struct file *file)
  342. {
  343. return do_maps_open(inode, file, &proc_pid_maps_op);
  344. }
  345. static int tid_maps_open(struct inode *inode, struct file *file)
  346. {
  347. return do_maps_open(inode, file, &proc_tid_maps_op);
  348. }
  349. const struct file_operations proc_pid_maps_operations = {
  350. .open = pid_maps_open,
  351. .read = seq_read,
  352. .llseek = seq_lseek,
  353. .release = proc_map_release,
  354. };
  355. const struct file_operations proc_tid_maps_operations = {
  356. .open = tid_maps_open,
  357. .read = seq_read,
  358. .llseek = seq_lseek,
  359. .release = proc_map_release,
  360. };
  361. /*
  362. * Proportional Set Size(PSS): my share of RSS.
  363. *
  364. * PSS of a process is the count of pages it has in memory, where each
  365. * page is divided by the number of processes sharing it. So if a
  366. * process has 1000 pages all to itself, and 1000 shared with one other
  367. * process, its PSS will be 1500.
  368. *
  369. * To keep (accumulated) division errors low, we adopt a 64bit
  370. * fixed-point pss counter to minimize division errors. So (pss >>
  371. * PSS_SHIFT) would be the real byte count.
  372. *
  373. * A shift of 12 before division means (assuming 4K page size):
  374. * - 1M 3-user-pages add up to 8KB errors;
  375. * - supports mapcount up to 2^24, or 16M;
  376. * - supports PSS up to 2^52 bytes, or 4PB.
  377. */
  378. #define PSS_SHIFT 12
  379. #ifdef CONFIG_PROC_PAGE_MONITOR
  380. struct mem_size_stats {
  381. unsigned long resident;
  382. unsigned long shared_clean;
  383. unsigned long shared_dirty;
  384. unsigned long private_clean;
  385. unsigned long private_dirty;
  386. unsigned long referenced;
  387. unsigned long anonymous;
  388. unsigned long anonymous_thp;
  389. unsigned long swap;
  390. u64 pss;
  391. u64 swap_pss;
  392. };
  393. static void smaps_account(struct mem_size_stats *mss, struct page *page,
  394. unsigned long size, bool young, bool dirty)
  395. {
  396. int mapcount;
  397. if (PageAnon(page))
  398. mss->anonymous += size;
  399. mss->resident += size;
  400. /* Accumulate the size in pages that have been accessed. */
  401. if (young || page_is_young(page) || PageReferenced(page))
  402. mss->referenced += size;
  403. mapcount = page_mapcount(page);
  404. if (mapcount >= 2) {
  405. u64 pss_delta;
  406. if (dirty || PageDirty(page))
  407. mss->shared_dirty += size;
  408. else
  409. mss->shared_clean += size;
  410. pss_delta = (u64)size << PSS_SHIFT;
  411. do_div(pss_delta, mapcount);
  412. mss->pss += pss_delta;
  413. } else {
  414. if (dirty || PageDirty(page))
  415. mss->private_dirty += size;
  416. else
  417. mss->private_clean += size;
  418. mss->pss += (u64)size << PSS_SHIFT;
  419. }
  420. }
  421. static void smaps_pte_entry(pte_t *pte, unsigned long addr,
  422. struct mm_walk *walk)
  423. {
  424. struct mem_size_stats *mss = walk->private;
  425. struct vm_area_struct *vma = walk->vma;
  426. struct page *page = NULL;
  427. if (pte_present(*pte)) {
  428. page = vm_normal_page(vma, addr, *pte);
  429. } else if (is_swap_pte(*pte)) {
  430. swp_entry_t swpent = pte_to_swp_entry(*pte);
  431. if (!non_swap_entry(swpent)) {
  432. int mapcount;
  433. mss->swap += PAGE_SIZE;
  434. mapcount = swp_swapcount(swpent);
  435. if (mapcount >= 2) {
  436. u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
  437. do_div(pss_delta, mapcount);
  438. mss->swap_pss += pss_delta;
  439. } else {
  440. mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
  441. }
  442. } else if (is_migration_entry(swpent))
  443. page = migration_entry_to_page(swpent);
  444. }
  445. if (!page)
  446. return;
  447. smaps_account(mss, page, PAGE_SIZE, pte_young(*pte), pte_dirty(*pte));
  448. }
  449. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  450. static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
  451. struct mm_walk *walk)
  452. {
  453. struct mem_size_stats *mss = walk->private;
  454. struct vm_area_struct *vma = walk->vma;
  455. struct page *page;
  456. /* FOLL_DUMP will return -EFAULT on huge zero page */
  457. page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
  458. if (IS_ERR_OR_NULL(page))
  459. return;
  460. mss->anonymous_thp += HPAGE_PMD_SIZE;
  461. smaps_account(mss, page, HPAGE_PMD_SIZE,
  462. pmd_young(*pmd), pmd_dirty(*pmd));
  463. }
  464. #else
  465. static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
  466. struct mm_walk *walk)
  467. {
  468. }
  469. #endif
  470. static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
  471. struct mm_walk *walk)
  472. {
  473. struct vm_area_struct *vma = walk->vma;
  474. pte_t *pte;
  475. spinlock_t *ptl;
  476. if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
  477. smaps_pmd_entry(pmd, addr, walk);
  478. spin_unlock(ptl);
  479. return 0;
  480. }
  481. if (pmd_trans_unstable(pmd))
  482. return 0;
  483. /*
  484. * The mmap_sem held all the way back in m_start() is what
  485. * keeps khugepaged out of here and from collapsing things
  486. * in here.
  487. */
  488. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  489. for (; addr != end; pte++, addr += PAGE_SIZE)
  490. smaps_pte_entry(pte, addr, walk);
  491. pte_unmap_unlock(pte - 1, ptl);
  492. cond_resched();
  493. return 0;
  494. }
  495. static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
  496. {
  497. /*
  498. * Don't forget to update Documentation/ on changes.
  499. */
  500. static const char mnemonics[BITS_PER_LONG][2] = {
  501. /*
  502. * In case if we meet a flag we don't know about.
  503. */
  504. [0 ... (BITS_PER_LONG-1)] = "??",
  505. [ilog2(VM_READ)] = "rd",
  506. [ilog2(VM_WRITE)] = "wr",
  507. [ilog2(VM_EXEC)] = "ex",
  508. [ilog2(VM_SHARED)] = "sh",
  509. [ilog2(VM_MAYREAD)] = "mr",
  510. [ilog2(VM_MAYWRITE)] = "mw",
  511. [ilog2(VM_MAYEXEC)] = "me",
  512. [ilog2(VM_MAYSHARE)] = "ms",
  513. [ilog2(VM_GROWSDOWN)] = "gd",
  514. [ilog2(VM_PFNMAP)] = "pf",
  515. [ilog2(VM_DENYWRITE)] = "dw",
  516. #ifdef CONFIG_X86_INTEL_MPX
  517. [ilog2(VM_MPX)] = "mp",
  518. #endif
  519. [ilog2(VM_LOCKED)] = "lo",
  520. [ilog2(VM_IO)] = "io",
  521. [ilog2(VM_SEQ_READ)] = "sr",
  522. [ilog2(VM_RAND_READ)] = "rr",
  523. [ilog2(VM_DONTCOPY)] = "dc",
  524. [ilog2(VM_DONTEXPAND)] = "de",
  525. [ilog2(VM_ACCOUNT)] = "ac",
  526. [ilog2(VM_NORESERVE)] = "nr",
  527. [ilog2(VM_HUGETLB)] = "ht",
  528. [ilog2(VM_ARCH_1)] = "ar",
  529. [ilog2(VM_DONTDUMP)] = "dd",
  530. #ifdef CONFIG_MEM_SOFT_DIRTY
  531. [ilog2(VM_SOFTDIRTY)] = "sd",
  532. #endif
  533. [ilog2(VM_MIXEDMAP)] = "mm",
  534. [ilog2(VM_HUGEPAGE)] = "hg",
  535. [ilog2(VM_NOHUGEPAGE)] = "nh",
  536. [ilog2(VM_MERGEABLE)] = "mg",
  537. [ilog2(VM_UFFD_MISSING)]= "um",
  538. [ilog2(VM_UFFD_WP)] = "uw",
  539. };
  540. size_t i;
  541. seq_puts(m, "VmFlags: ");
  542. for (i = 0; i < BITS_PER_LONG; i++) {
  543. if (vma->vm_flags & (1UL << i)) {
  544. seq_printf(m, "%c%c ",
  545. mnemonics[i][0], mnemonics[i][1]);
  546. }
  547. }
  548. seq_putc(m, '\n');
  549. }
  550. static int show_smap(struct seq_file *m, void *v, int is_pid)
  551. {
  552. struct vm_area_struct *vma = v;
  553. struct mem_size_stats mss;
  554. struct mm_walk smaps_walk = {
  555. .pmd_entry = smaps_pte_range,
  556. .mm = vma->vm_mm,
  557. .private = &mss,
  558. };
  559. memset(&mss, 0, sizeof mss);
  560. /* mmap_sem is held in m_start */
  561. walk_page_vma(vma, &smaps_walk);
  562. show_map_vma(m, vma, is_pid);
  563. seq_printf(m,
  564. "Size: %8lu kB\n"
  565. "Rss: %8lu kB\n"
  566. "Pss: %8lu kB\n"
  567. "Shared_Clean: %8lu kB\n"
  568. "Shared_Dirty: %8lu kB\n"
  569. "Private_Clean: %8lu kB\n"
  570. "Private_Dirty: %8lu kB\n"
  571. "Referenced: %8lu kB\n"
  572. "Anonymous: %8lu kB\n"
  573. "AnonHugePages: %8lu kB\n"
  574. "Swap: %8lu kB\n"
  575. "SwapPss: %8lu kB\n"
  576. "KernelPageSize: %8lu kB\n"
  577. "MMUPageSize: %8lu kB\n"
  578. "Locked: %8lu kB\n",
  579. (vma->vm_end - vma->vm_start) >> 10,
  580. mss.resident >> 10,
  581. (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
  582. mss.shared_clean >> 10,
  583. mss.shared_dirty >> 10,
  584. mss.private_clean >> 10,
  585. mss.private_dirty >> 10,
  586. mss.referenced >> 10,
  587. mss.anonymous >> 10,
  588. mss.anonymous_thp >> 10,
  589. mss.swap >> 10,
  590. (unsigned long)(mss.swap_pss >> (10 + PSS_SHIFT)),
  591. vma_kernel_pagesize(vma) >> 10,
  592. vma_mmu_pagesize(vma) >> 10,
  593. (vma->vm_flags & VM_LOCKED) ?
  594. (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
  595. show_smap_vma_flags(m, vma);
  596. m_cache_vma(m, vma);
  597. return 0;
  598. }
  599. static int show_pid_smap(struct seq_file *m, void *v)
  600. {
  601. return show_smap(m, v, 1);
  602. }
  603. static int show_tid_smap(struct seq_file *m, void *v)
  604. {
  605. return show_smap(m, v, 0);
  606. }
  607. static const struct seq_operations proc_pid_smaps_op = {
  608. .start = m_start,
  609. .next = m_next,
  610. .stop = m_stop,
  611. .show = show_pid_smap
  612. };
  613. static const struct seq_operations proc_tid_smaps_op = {
  614. .start = m_start,
  615. .next = m_next,
  616. .stop = m_stop,
  617. .show = show_tid_smap
  618. };
  619. static int pid_smaps_open(struct inode *inode, struct file *file)
  620. {
  621. return do_maps_open(inode, file, &proc_pid_smaps_op);
  622. }
  623. static int tid_smaps_open(struct inode *inode, struct file *file)
  624. {
  625. return do_maps_open(inode, file, &proc_tid_smaps_op);
  626. }
  627. const struct file_operations proc_pid_smaps_operations = {
  628. .open = pid_smaps_open,
  629. .read = seq_read,
  630. .llseek = seq_lseek,
  631. .release = proc_map_release,
  632. };
  633. const struct file_operations proc_tid_smaps_operations = {
  634. .open = tid_smaps_open,
  635. .read = seq_read,
  636. .llseek = seq_lseek,
  637. .release = proc_map_release,
  638. };
  639. enum clear_refs_types {
  640. CLEAR_REFS_ALL = 1,
  641. CLEAR_REFS_ANON,
  642. CLEAR_REFS_MAPPED,
  643. CLEAR_REFS_SOFT_DIRTY,
  644. CLEAR_REFS_MM_HIWATER_RSS,
  645. CLEAR_REFS_LAST,
  646. };
  647. struct clear_refs_private {
  648. enum clear_refs_types type;
  649. };
  650. #ifdef CONFIG_MEM_SOFT_DIRTY
  651. static inline void clear_soft_dirty(struct vm_area_struct *vma,
  652. unsigned long addr, pte_t *pte)
  653. {
  654. /*
  655. * The soft-dirty tracker uses #PF-s to catch writes
  656. * to pages, so write-protect the pte as well. See the
  657. * Documentation/vm/soft-dirty.txt for full description
  658. * of how soft-dirty works.
  659. */
  660. pte_t ptent = *pte;
  661. if (pte_present(ptent)) {
  662. ptent = pte_wrprotect(ptent);
  663. ptent = pte_clear_flags(ptent, _PAGE_SOFT_DIRTY);
  664. } else if (is_swap_pte(ptent)) {
  665. ptent = pte_swp_clear_soft_dirty(ptent);
  666. }
  667. set_pte_at(vma->vm_mm, addr, pte, ptent);
  668. }
  669. static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
  670. unsigned long addr, pmd_t *pmdp)
  671. {
  672. pmd_t pmd = *pmdp;
  673. pmd = pmd_wrprotect(pmd);
  674. pmd = pmd_clear_flags(pmd, _PAGE_SOFT_DIRTY);
  675. if (vma->vm_flags & VM_SOFTDIRTY)
  676. vma->vm_flags &= ~VM_SOFTDIRTY;
  677. set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
  678. }
  679. #else
  680. static inline void clear_soft_dirty(struct vm_area_struct *vma,
  681. unsigned long addr, pte_t *pte)
  682. {
  683. }
  684. static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
  685. unsigned long addr, pmd_t *pmdp)
  686. {
  687. }
  688. #endif
  689. static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
  690. unsigned long end, struct mm_walk *walk)
  691. {
  692. struct clear_refs_private *cp = walk->private;
  693. struct vm_area_struct *vma = walk->vma;
  694. pte_t *pte, ptent;
  695. spinlock_t *ptl;
  696. struct page *page;
  697. if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
  698. if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
  699. clear_soft_dirty_pmd(vma, addr, pmd);
  700. goto out;
  701. }
  702. page = pmd_page(*pmd);
  703. /* Clear accessed and referenced bits. */
  704. pmdp_test_and_clear_young(vma, addr, pmd);
  705. test_and_clear_page_young(page);
  706. ClearPageReferenced(page);
  707. out:
  708. spin_unlock(ptl);
  709. return 0;
  710. }
  711. if (pmd_trans_unstable(pmd))
  712. return 0;
  713. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  714. for (; addr != end; pte++, addr += PAGE_SIZE) {
  715. ptent = *pte;
  716. if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
  717. clear_soft_dirty(vma, addr, pte);
  718. continue;
  719. }
  720. if (!pte_present(ptent))
  721. continue;
  722. page = vm_normal_page(vma, addr, ptent);
  723. if (!page)
  724. continue;
  725. /* Clear accessed and referenced bits. */
  726. ptep_test_and_clear_young(vma, addr, pte);
  727. test_and_clear_page_young(page);
  728. ClearPageReferenced(page);
  729. }
  730. pte_unmap_unlock(pte - 1, ptl);
  731. cond_resched();
  732. return 0;
  733. }
  734. static int clear_refs_test_walk(unsigned long start, unsigned long end,
  735. struct mm_walk *walk)
  736. {
  737. struct clear_refs_private *cp = walk->private;
  738. struct vm_area_struct *vma = walk->vma;
  739. if (vma->vm_flags & VM_PFNMAP)
  740. return 1;
  741. /*
  742. * Writing 1 to /proc/pid/clear_refs affects all pages.
  743. * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
  744. * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
  745. * Writing 4 to /proc/pid/clear_refs affects all pages.
  746. */
  747. if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
  748. return 1;
  749. if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
  750. return 1;
  751. return 0;
  752. }
  753. static ssize_t clear_refs_write(struct file *file, const char __user *buf,
  754. size_t count, loff_t *ppos)
  755. {
  756. struct task_struct *task;
  757. char buffer[PROC_NUMBUF];
  758. struct mm_struct *mm;
  759. struct vm_area_struct *vma;
  760. enum clear_refs_types type;
  761. int itype;
  762. int rv;
  763. memset(buffer, 0, sizeof(buffer));
  764. if (count > sizeof(buffer) - 1)
  765. count = sizeof(buffer) - 1;
  766. if (copy_from_user(buffer, buf, count))
  767. return -EFAULT;
  768. rv = kstrtoint(strstrip(buffer), 10, &itype);
  769. if (rv < 0)
  770. return rv;
  771. type = (enum clear_refs_types)itype;
  772. if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
  773. return -EINVAL;
  774. task = get_proc_task(file_inode(file));
  775. if (!task)
  776. return -ESRCH;
  777. mm = get_task_mm(task);
  778. if (mm) {
  779. struct clear_refs_private cp = {
  780. .type = type,
  781. };
  782. struct mm_walk clear_refs_walk = {
  783. .pmd_entry = clear_refs_pte_range,
  784. .test_walk = clear_refs_test_walk,
  785. .mm = mm,
  786. .private = &cp,
  787. };
  788. if (type == CLEAR_REFS_MM_HIWATER_RSS) {
  789. /*
  790. * Writing 5 to /proc/pid/clear_refs resets the peak
  791. * resident set size to this mm's current rss value.
  792. */
  793. down_write(&mm->mmap_sem);
  794. reset_mm_hiwater_rss(mm);
  795. up_write(&mm->mmap_sem);
  796. goto out_mm;
  797. }
  798. down_read(&mm->mmap_sem);
  799. if (type == CLEAR_REFS_SOFT_DIRTY) {
  800. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  801. if (!(vma->vm_flags & VM_SOFTDIRTY))
  802. continue;
  803. up_read(&mm->mmap_sem);
  804. down_write(&mm->mmap_sem);
  805. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  806. vma->vm_flags &= ~VM_SOFTDIRTY;
  807. vma_set_page_prot(vma);
  808. }
  809. downgrade_write(&mm->mmap_sem);
  810. break;
  811. }
  812. mmu_notifier_invalidate_range_start(mm, 0, -1);
  813. }
  814. walk_page_range(0, ~0UL, &clear_refs_walk);
  815. if (type == CLEAR_REFS_SOFT_DIRTY)
  816. mmu_notifier_invalidate_range_end(mm, 0, -1);
  817. flush_tlb_mm(mm);
  818. up_read(&mm->mmap_sem);
  819. out_mm:
  820. mmput(mm);
  821. }
  822. put_task_struct(task);
  823. return count;
  824. }
  825. const struct file_operations proc_clear_refs_operations = {
  826. .write = clear_refs_write,
  827. .llseek = noop_llseek,
  828. };
  829. typedef struct {
  830. u64 pme;
  831. } pagemap_entry_t;
  832. struct pagemapread {
  833. int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
  834. pagemap_entry_t *buffer;
  835. bool show_pfn;
  836. };
  837. #define PAGEMAP_WALK_SIZE (PMD_SIZE)
  838. #define PAGEMAP_WALK_MASK (PMD_MASK)
  839. #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
  840. #define PM_PFRAME_BITS 55
  841. #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
  842. #define PM_SOFT_DIRTY BIT_ULL(55)
  843. #define PM_MMAP_EXCLUSIVE BIT_ULL(56)
  844. #define PM_FILE BIT_ULL(61)
  845. #define PM_SWAP BIT_ULL(62)
  846. #define PM_PRESENT BIT_ULL(63)
  847. #define PM_END_OF_BUFFER 1
  848. static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
  849. {
  850. return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
  851. }
  852. static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
  853. struct pagemapread *pm)
  854. {
  855. pm->buffer[pm->pos++] = *pme;
  856. if (pm->pos >= pm->len)
  857. return PM_END_OF_BUFFER;
  858. return 0;
  859. }
  860. static int pagemap_pte_hole(unsigned long start, unsigned long end,
  861. struct mm_walk *walk)
  862. {
  863. struct pagemapread *pm = walk->private;
  864. unsigned long addr = start;
  865. int err = 0;
  866. while (addr < end) {
  867. struct vm_area_struct *vma = find_vma(walk->mm, addr);
  868. pagemap_entry_t pme = make_pme(0, 0);
  869. /* End of address space hole, which we mark as non-present. */
  870. unsigned long hole_end;
  871. if (vma)
  872. hole_end = min(end, vma->vm_start);
  873. else
  874. hole_end = end;
  875. for (; addr < hole_end; addr += PAGE_SIZE) {
  876. err = add_to_pagemap(addr, &pme, pm);
  877. if (err)
  878. goto out;
  879. }
  880. if (!vma)
  881. break;
  882. /* Addresses in the VMA. */
  883. if (vma->vm_flags & VM_SOFTDIRTY)
  884. pme = make_pme(0, PM_SOFT_DIRTY);
  885. for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
  886. err = add_to_pagemap(addr, &pme, pm);
  887. if (err)
  888. goto out;
  889. }
  890. }
  891. out:
  892. return err;
  893. }
  894. static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
  895. struct vm_area_struct *vma, unsigned long addr, pte_t pte)
  896. {
  897. u64 frame = 0, flags = 0;
  898. struct page *page = NULL;
  899. if (pte_present(pte)) {
  900. if (pm->show_pfn)
  901. frame = pte_pfn(pte);
  902. flags |= PM_PRESENT;
  903. page = vm_normal_page(vma, addr, pte);
  904. if (pte_soft_dirty(pte))
  905. flags |= PM_SOFT_DIRTY;
  906. } else if (is_swap_pte(pte)) {
  907. swp_entry_t entry;
  908. if (pte_swp_soft_dirty(pte))
  909. flags |= PM_SOFT_DIRTY;
  910. entry = pte_to_swp_entry(pte);
  911. frame = swp_type(entry) |
  912. (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
  913. flags |= PM_SWAP;
  914. if (is_migration_entry(entry))
  915. page = migration_entry_to_page(entry);
  916. }
  917. if (page && !PageAnon(page))
  918. flags |= PM_FILE;
  919. if (page && page_mapcount(page) == 1)
  920. flags |= PM_MMAP_EXCLUSIVE;
  921. if (vma->vm_flags & VM_SOFTDIRTY)
  922. flags |= PM_SOFT_DIRTY;
  923. return make_pme(frame, flags);
  924. }
  925. static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
  926. struct mm_walk *walk)
  927. {
  928. struct vm_area_struct *vma = walk->vma;
  929. struct pagemapread *pm = walk->private;
  930. spinlock_t *ptl;
  931. pte_t *pte, *orig_pte;
  932. int err = 0;
  933. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  934. if (pmd_trans_huge_lock(pmdp, vma, &ptl) == 1) {
  935. u64 flags = 0, frame = 0;
  936. pmd_t pmd = *pmdp;
  937. if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(pmd))
  938. flags |= PM_SOFT_DIRTY;
  939. /*
  940. * Currently pmd for thp is always present because thp
  941. * can not be swapped-out, migrated, or HWPOISONed
  942. * (split in such cases instead.)
  943. * This if-check is just to prepare for future implementation.
  944. */
  945. if (pmd_present(pmd)) {
  946. struct page *page = pmd_page(pmd);
  947. if (page_mapcount(page) == 1)
  948. flags |= PM_MMAP_EXCLUSIVE;
  949. flags |= PM_PRESENT;
  950. if (pm->show_pfn)
  951. frame = pmd_pfn(pmd) +
  952. ((addr & ~PMD_MASK) >> PAGE_SHIFT);
  953. }
  954. for (; addr != end; addr += PAGE_SIZE) {
  955. pagemap_entry_t pme = make_pme(frame, flags);
  956. err = add_to_pagemap(addr, &pme, pm);
  957. if (err)
  958. break;
  959. if (pm->show_pfn && (flags & PM_PRESENT))
  960. frame++;
  961. }
  962. spin_unlock(ptl);
  963. return err;
  964. }
  965. if (pmd_trans_unstable(pmdp))
  966. return 0;
  967. #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  968. /*
  969. * We can assume that @vma always points to a valid one and @end never
  970. * goes beyond vma->vm_end.
  971. */
  972. orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
  973. for (; addr < end; pte++, addr += PAGE_SIZE) {
  974. pagemap_entry_t pme;
  975. pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
  976. err = add_to_pagemap(addr, &pme, pm);
  977. if (err)
  978. break;
  979. }
  980. pte_unmap_unlock(orig_pte, ptl);
  981. cond_resched();
  982. return err;
  983. }
  984. #ifdef CONFIG_HUGETLB_PAGE
  985. /* This function walks within one hugetlb entry in the single call */
  986. static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
  987. unsigned long addr, unsigned long end,
  988. struct mm_walk *walk)
  989. {
  990. struct pagemapread *pm = walk->private;
  991. struct vm_area_struct *vma = walk->vma;
  992. u64 flags = 0, frame = 0;
  993. int err = 0;
  994. pte_t pte;
  995. if (vma->vm_flags & VM_SOFTDIRTY)
  996. flags |= PM_SOFT_DIRTY;
  997. pte = huge_ptep_get(ptep);
  998. if (pte_present(pte)) {
  999. struct page *page = pte_page(pte);
  1000. if (!PageAnon(page))
  1001. flags |= PM_FILE;
  1002. if (page_mapcount(page) == 1)
  1003. flags |= PM_MMAP_EXCLUSIVE;
  1004. flags |= PM_PRESENT;
  1005. if (pm->show_pfn)
  1006. frame = pte_pfn(pte) +
  1007. ((addr & ~hmask) >> PAGE_SHIFT);
  1008. }
  1009. for (; addr != end; addr += PAGE_SIZE) {
  1010. pagemap_entry_t pme = make_pme(frame, flags);
  1011. err = add_to_pagemap(addr, &pme, pm);
  1012. if (err)
  1013. return err;
  1014. if (pm->show_pfn && (flags & PM_PRESENT))
  1015. frame++;
  1016. }
  1017. cond_resched();
  1018. return err;
  1019. }
  1020. #endif /* HUGETLB_PAGE */
  1021. /*
  1022. * /proc/pid/pagemap - an array mapping virtual pages to pfns
  1023. *
  1024. * For each page in the address space, this file contains one 64-bit entry
  1025. * consisting of the following:
  1026. *
  1027. * Bits 0-54 page frame number (PFN) if present
  1028. * Bits 0-4 swap type if swapped
  1029. * Bits 5-54 swap offset if swapped
  1030. * Bit 55 pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
  1031. * Bit 56 page exclusively mapped
  1032. * Bits 57-60 zero
  1033. * Bit 61 page is file-page or shared-anon
  1034. * Bit 62 page swapped
  1035. * Bit 63 page present
  1036. *
  1037. * If the page is not present but in swap, then the PFN contains an
  1038. * encoding of the swap file number and the page's offset into the
  1039. * swap. Unmapped pages return a null PFN. This allows determining
  1040. * precisely which pages are mapped (or in swap) and comparing mapped
  1041. * pages between processes.
  1042. *
  1043. * Efficient users of this interface will use /proc/pid/maps to
  1044. * determine which areas of memory are actually mapped and llseek to
  1045. * skip over unmapped regions.
  1046. */
  1047. static ssize_t pagemap_read(struct file *file, char __user *buf,
  1048. size_t count, loff_t *ppos)
  1049. {
  1050. struct mm_struct *mm = file->private_data;
  1051. struct pagemapread pm;
  1052. struct mm_walk pagemap_walk = {};
  1053. unsigned long src;
  1054. unsigned long svpfn;
  1055. unsigned long start_vaddr;
  1056. unsigned long end_vaddr;
  1057. int ret = 0, copied = 0;
  1058. if (!mm || !atomic_inc_not_zero(&mm->mm_users))
  1059. goto out;
  1060. ret = -EINVAL;
  1061. /* file position must be aligned */
  1062. if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
  1063. goto out_mm;
  1064. ret = 0;
  1065. if (!count)
  1066. goto out_mm;
  1067. /* do not disclose physical addresses: attack vector */
  1068. pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
  1069. pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
  1070. pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
  1071. ret = -ENOMEM;
  1072. if (!pm.buffer)
  1073. goto out_mm;
  1074. pagemap_walk.pmd_entry = pagemap_pmd_range;
  1075. pagemap_walk.pte_hole = pagemap_pte_hole;
  1076. #ifdef CONFIG_HUGETLB_PAGE
  1077. pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
  1078. #endif
  1079. pagemap_walk.mm = mm;
  1080. pagemap_walk.private = &pm;
  1081. src = *ppos;
  1082. svpfn = src / PM_ENTRY_BYTES;
  1083. start_vaddr = svpfn << PAGE_SHIFT;
  1084. end_vaddr = mm->task_size;
  1085. /* watch out for wraparound */
  1086. if (svpfn > mm->task_size >> PAGE_SHIFT)
  1087. start_vaddr = end_vaddr;
  1088. /*
  1089. * The odds are that this will stop walking way
  1090. * before end_vaddr, because the length of the
  1091. * user buffer is tracked in "pm", and the walk
  1092. * will stop when we hit the end of the buffer.
  1093. */
  1094. ret = 0;
  1095. while (count && (start_vaddr < end_vaddr)) {
  1096. int len;
  1097. unsigned long end;
  1098. pm.pos = 0;
  1099. end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
  1100. /* overflow ? */
  1101. if (end < start_vaddr || end > end_vaddr)
  1102. end = end_vaddr;
  1103. down_read(&mm->mmap_sem);
  1104. ret = walk_page_range(start_vaddr, end, &pagemap_walk);
  1105. up_read(&mm->mmap_sem);
  1106. start_vaddr = end;
  1107. len = min(count, PM_ENTRY_BYTES * pm.pos);
  1108. if (copy_to_user(buf, pm.buffer, len)) {
  1109. ret = -EFAULT;
  1110. goto out_free;
  1111. }
  1112. copied += len;
  1113. buf += len;
  1114. count -= len;
  1115. }
  1116. *ppos += copied;
  1117. if (!ret || ret == PM_END_OF_BUFFER)
  1118. ret = copied;
  1119. out_free:
  1120. kfree(pm.buffer);
  1121. out_mm:
  1122. mmput(mm);
  1123. out:
  1124. return ret;
  1125. }
  1126. static int pagemap_open(struct inode *inode, struct file *file)
  1127. {
  1128. struct mm_struct *mm;
  1129. mm = proc_mem_open(inode, PTRACE_MODE_READ);
  1130. if (IS_ERR(mm))
  1131. return PTR_ERR(mm);
  1132. file->private_data = mm;
  1133. return 0;
  1134. }
  1135. static int pagemap_release(struct inode *inode, struct file *file)
  1136. {
  1137. struct mm_struct *mm = file->private_data;
  1138. if (mm)
  1139. mmdrop(mm);
  1140. return 0;
  1141. }
  1142. const struct file_operations proc_pagemap_operations = {
  1143. .llseek = mem_lseek, /* borrow this */
  1144. .read = pagemap_read,
  1145. .open = pagemap_open,
  1146. .release = pagemap_release,
  1147. };
  1148. #endif /* CONFIG_PROC_PAGE_MONITOR */
  1149. #ifdef CONFIG_NUMA
  1150. struct numa_maps {
  1151. unsigned long pages;
  1152. unsigned long anon;
  1153. unsigned long active;
  1154. unsigned long writeback;
  1155. unsigned long mapcount_max;
  1156. unsigned long dirty;
  1157. unsigned long swapcache;
  1158. unsigned long node[MAX_NUMNODES];
  1159. };
  1160. struct numa_maps_private {
  1161. struct proc_maps_private proc_maps;
  1162. struct numa_maps md;
  1163. };
  1164. static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
  1165. unsigned long nr_pages)
  1166. {
  1167. int count = page_mapcount(page);
  1168. md->pages += nr_pages;
  1169. if (pte_dirty || PageDirty(page))
  1170. md->dirty += nr_pages;
  1171. if (PageSwapCache(page))
  1172. md->swapcache += nr_pages;
  1173. if (PageActive(page) || PageUnevictable(page))
  1174. md->active += nr_pages;
  1175. if (PageWriteback(page))
  1176. md->writeback += nr_pages;
  1177. if (PageAnon(page))
  1178. md->anon += nr_pages;
  1179. if (count > md->mapcount_max)
  1180. md->mapcount_max = count;
  1181. md->node[page_to_nid(page)] += nr_pages;
  1182. }
  1183. static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
  1184. unsigned long addr)
  1185. {
  1186. struct page *page;
  1187. int nid;
  1188. if (!pte_present(pte))
  1189. return NULL;
  1190. page = vm_normal_page(vma, addr, pte);
  1191. if (!page)
  1192. return NULL;
  1193. if (PageReserved(page))
  1194. return NULL;
  1195. nid = page_to_nid(page);
  1196. if (!node_isset(nid, node_states[N_MEMORY]))
  1197. return NULL;
  1198. return page;
  1199. }
  1200. static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
  1201. unsigned long end, struct mm_walk *walk)
  1202. {
  1203. struct numa_maps *md = walk->private;
  1204. struct vm_area_struct *vma = walk->vma;
  1205. spinlock_t *ptl;
  1206. pte_t *orig_pte;
  1207. pte_t *pte;
  1208. if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
  1209. pte_t huge_pte = *(pte_t *)pmd;
  1210. struct page *page;
  1211. page = can_gather_numa_stats(huge_pte, vma, addr);
  1212. if (page)
  1213. gather_stats(page, md, pte_dirty(huge_pte),
  1214. HPAGE_PMD_SIZE/PAGE_SIZE);
  1215. spin_unlock(ptl);
  1216. return 0;
  1217. }
  1218. if (pmd_trans_unstable(pmd))
  1219. return 0;
  1220. orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
  1221. do {
  1222. struct page *page = can_gather_numa_stats(*pte, vma, addr);
  1223. if (!page)
  1224. continue;
  1225. gather_stats(page, md, pte_dirty(*pte), 1);
  1226. } while (pte++, addr += PAGE_SIZE, addr != end);
  1227. pte_unmap_unlock(orig_pte, ptl);
  1228. return 0;
  1229. }
  1230. #ifdef CONFIG_HUGETLB_PAGE
  1231. static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
  1232. unsigned long addr, unsigned long end, struct mm_walk *walk)
  1233. {
  1234. struct numa_maps *md;
  1235. struct page *page;
  1236. if (!pte_present(*pte))
  1237. return 0;
  1238. page = pte_page(*pte);
  1239. if (!page)
  1240. return 0;
  1241. md = walk->private;
  1242. gather_stats(page, md, pte_dirty(*pte), 1);
  1243. return 0;
  1244. }
  1245. #else
  1246. static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
  1247. unsigned long addr, unsigned long end, struct mm_walk *walk)
  1248. {
  1249. return 0;
  1250. }
  1251. #endif
  1252. /*
  1253. * Display pages allocated per node and memory policy via /proc.
  1254. */
  1255. static int show_numa_map(struct seq_file *m, void *v, int is_pid)
  1256. {
  1257. struct numa_maps_private *numa_priv = m->private;
  1258. struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
  1259. struct vm_area_struct *vma = v;
  1260. struct numa_maps *md = &numa_priv->md;
  1261. struct file *file = vma->vm_file;
  1262. struct mm_struct *mm = vma->vm_mm;
  1263. struct mm_walk walk = {
  1264. .hugetlb_entry = gather_hugetlb_stats,
  1265. .pmd_entry = gather_pte_stats,
  1266. .private = md,
  1267. .mm = mm,
  1268. };
  1269. struct mempolicy *pol;
  1270. char buffer[64];
  1271. int nid;
  1272. if (!mm)
  1273. return 0;
  1274. /* Ensure we start with an empty set of numa_maps statistics. */
  1275. memset(md, 0, sizeof(*md));
  1276. pol = __get_vma_policy(vma, vma->vm_start);
  1277. if (pol) {
  1278. mpol_to_str(buffer, sizeof(buffer), pol);
  1279. mpol_cond_put(pol);
  1280. } else {
  1281. mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
  1282. }
  1283. seq_printf(m, "%08lx %s", vma->vm_start, buffer);
  1284. if (file) {
  1285. seq_puts(m, " file=");
  1286. seq_file_path(m, file, "\n\t= ");
  1287. } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
  1288. seq_puts(m, " heap");
  1289. } else {
  1290. pid_t tid = pid_of_stack(proc_priv, vma, is_pid);
  1291. if (tid != 0) {
  1292. /*
  1293. * Thread stack in /proc/PID/task/TID/maps or
  1294. * the main process stack.
  1295. */
  1296. if (!is_pid || (vma->vm_start <= mm->start_stack &&
  1297. vma->vm_end >= mm->start_stack))
  1298. seq_puts(m, " stack");
  1299. else
  1300. seq_printf(m, " stack:%d", tid);
  1301. }
  1302. }
  1303. if (is_vm_hugetlb_page(vma))
  1304. seq_puts(m, " huge");
  1305. /* mmap_sem is held by m_start */
  1306. walk_page_vma(vma, &walk);
  1307. if (!md->pages)
  1308. goto out;
  1309. if (md->anon)
  1310. seq_printf(m, " anon=%lu", md->anon);
  1311. if (md->dirty)
  1312. seq_printf(m, " dirty=%lu", md->dirty);
  1313. if (md->pages != md->anon && md->pages != md->dirty)
  1314. seq_printf(m, " mapped=%lu", md->pages);
  1315. if (md->mapcount_max > 1)
  1316. seq_printf(m, " mapmax=%lu", md->mapcount_max);
  1317. if (md->swapcache)
  1318. seq_printf(m, " swapcache=%lu", md->swapcache);
  1319. if (md->active < md->pages && !is_vm_hugetlb_page(vma))
  1320. seq_printf(m, " active=%lu", md->active);
  1321. if (md->writeback)
  1322. seq_printf(m, " writeback=%lu", md->writeback);
  1323. for_each_node_state(nid, N_MEMORY)
  1324. if (md->node[nid])
  1325. seq_printf(m, " N%d=%lu", nid, md->node[nid]);
  1326. seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
  1327. out:
  1328. seq_putc(m, '\n');
  1329. m_cache_vma(m, vma);
  1330. return 0;
  1331. }
  1332. static int show_pid_numa_map(struct seq_file *m, void *v)
  1333. {
  1334. return show_numa_map(m, v, 1);
  1335. }
  1336. static int show_tid_numa_map(struct seq_file *m, void *v)
  1337. {
  1338. return show_numa_map(m, v, 0);
  1339. }
  1340. static const struct seq_operations proc_pid_numa_maps_op = {
  1341. .start = m_start,
  1342. .next = m_next,
  1343. .stop = m_stop,
  1344. .show = show_pid_numa_map,
  1345. };
  1346. static const struct seq_operations proc_tid_numa_maps_op = {
  1347. .start = m_start,
  1348. .next = m_next,
  1349. .stop = m_stop,
  1350. .show = show_tid_numa_map,
  1351. };
  1352. static int numa_maps_open(struct inode *inode, struct file *file,
  1353. const struct seq_operations *ops)
  1354. {
  1355. return proc_maps_open(inode, file, ops,
  1356. sizeof(struct numa_maps_private));
  1357. }
  1358. static int pid_numa_maps_open(struct inode *inode, struct file *file)
  1359. {
  1360. return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
  1361. }
  1362. static int tid_numa_maps_open(struct inode *inode, struct file *file)
  1363. {
  1364. return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
  1365. }
  1366. const struct file_operations proc_pid_numa_maps_operations = {
  1367. .open = pid_numa_maps_open,
  1368. .read = seq_read,
  1369. .llseek = seq_lseek,
  1370. .release = proc_map_release,
  1371. };
  1372. const struct file_operations proc_tid_numa_maps_operations = {
  1373. .open = tid_numa_maps_open,
  1374. .read = seq_read,
  1375. .llseek = seq_lseek,
  1376. .release = proc_map_release,
  1377. };
  1378. #endif /* CONFIG_NUMA */