direct.c 29 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069
  1. /*
  2. * linux/fs/nfs/direct.c
  3. *
  4. * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
  5. *
  6. * High-performance uncached I/O for the Linux NFS client
  7. *
  8. * There are important applications whose performance or correctness
  9. * depends on uncached access to file data. Database clusters
  10. * (multiple copies of the same instance running on separate hosts)
  11. * implement their own cache coherency protocol that subsumes file
  12. * system cache protocols. Applications that process datasets
  13. * considerably larger than the client's memory do not always benefit
  14. * from a local cache. A streaming video server, for instance, has no
  15. * need to cache the contents of a file.
  16. *
  17. * When an application requests uncached I/O, all read and write requests
  18. * are made directly to the server; data stored or fetched via these
  19. * requests is not cached in the Linux page cache. The client does not
  20. * correct unaligned requests from applications. All requested bytes are
  21. * held on permanent storage before a direct write system call returns to
  22. * an application.
  23. *
  24. * Solaris implements an uncached I/O facility called directio() that
  25. * is used for backups and sequential I/O to very large files. Solaris
  26. * also supports uncaching whole NFS partitions with "-o forcedirectio,"
  27. * an undocumented mount option.
  28. *
  29. * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
  30. * help from Andrew Morton.
  31. *
  32. * 18 Dec 2001 Initial implementation for 2.4 --cel
  33. * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy
  34. * 08 Jun 2003 Port to 2.5 APIs --cel
  35. * 31 Mar 2004 Handle direct I/O without VFS support --cel
  36. * 15 Sep 2004 Parallel async reads --cel
  37. * 04 May 2005 support O_DIRECT with aio --cel
  38. *
  39. */
  40. #include <linux/errno.h>
  41. #include <linux/sched.h>
  42. #include <linux/kernel.h>
  43. #include <linux/file.h>
  44. #include <linux/pagemap.h>
  45. #include <linux/kref.h>
  46. #include <linux/slab.h>
  47. #include <linux/task_io_accounting_ops.h>
  48. #include <linux/module.h>
  49. #include <linux/nfs_fs.h>
  50. #include <linux/nfs_page.h>
  51. #include <linux/sunrpc/clnt.h>
  52. #include <asm/uaccess.h>
  53. #include <linux/atomic.h>
  54. #include "internal.h"
  55. #include "iostat.h"
  56. #include "pnfs.h"
  57. #define NFSDBG_FACILITY NFSDBG_VFS
  58. static struct kmem_cache *nfs_direct_cachep;
  59. /*
  60. * This represents a set of asynchronous requests that we're waiting on
  61. */
  62. struct nfs_direct_mirror {
  63. ssize_t count;
  64. };
  65. struct nfs_direct_req {
  66. struct kref kref; /* release manager */
  67. /* I/O parameters */
  68. struct nfs_open_context *ctx; /* file open context info */
  69. struct nfs_lock_context *l_ctx; /* Lock context info */
  70. struct kiocb * iocb; /* controlling i/o request */
  71. struct inode * inode; /* target file of i/o */
  72. /* completion state */
  73. atomic_t io_count; /* i/os we're waiting for */
  74. spinlock_t lock; /* protect completion state */
  75. struct nfs_direct_mirror mirrors[NFS_PAGEIO_DESCRIPTOR_MIRROR_MAX];
  76. int mirror_count;
  77. ssize_t count, /* bytes actually processed */
  78. bytes_left, /* bytes left to be sent */
  79. io_start, /* start of IO */
  80. error; /* any reported error */
  81. struct completion completion; /* wait for i/o completion */
  82. /* commit state */
  83. struct nfs_mds_commit_info mds_cinfo; /* Storage for cinfo */
  84. struct pnfs_ds_commit_info ds_cinfo; /* Storage for cinfo */
  85. struct work_struct work;
  86. int flags;
  87. #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */
  88. #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */
  89. struct nfs_writeverf verf; /* unstable write verifier */
  90. };
  91. static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
  92. static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
  93. static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
  94. static void nfs_direct_write_schedule_work(struct work_struct *work);
  95. static inline void get_dreq(struct nfs_direct_req *dreq)
  96. {
  97. atomic_inc(&dreq->io_count);
  98. }
  99. static inline int put_dreq(struct nfs_direct_req *dreq)
  100. {
  101. return atomic_dec_and_test(&dreq->io_count);
  102. }
  103. void nfs_direct_set_resched_writes(struct nfs_direct_req *dreq)
  104. {
  105. dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
  106. }
  107. EXPORT_SYMBOL_GPL(nfs_direct_set_resched_writes);
  108. static void
  109. nfs_direct_good_bytes(struct nfs_direct_req *dreq, struct nfs_pgio_header *hdr)
  110. {
  111. int i;
  112. ssize_t count;
  113. if (dreq->mirror_count == 1) {
  114. dreq->mirrors[hdr->pgio_mirror_idx].count += hdr->good_bytes;
  115. dreq->count += hdr->good_bytes;
  116. } else {
  117. /* mirrored writes */
  118. count = dreq->mirrors[hdr->pgio_mirror_idx].count;
  119. if (count + dreq->io_start < hdr->io_start + hdr->good_bytes) {
  120. count = hdr->io_start + hdr->good_bytes - dreq->io_start;
  121. dreq->mirrors[hdr->pgio_mirror_idx].count = count;
  122. }
  123. /* update the dreq->count by finding the minimum agreed count from all
  124. * mirrors */
  125. count = dreq->mirrors[0].count;
  126. for (i = 1; i < dreq->mirror_count; i++)
  127. count = min(count, dreq->mirrors[i].count);
  128. dreq->count = count;
  129. }
  130. }
  131. /*
  132. * nfs_direct_select_verf - select the right verifier
  133. * @dreq - direct request possibly spanning multiple servers
  134. * @ds_clp - nfs_client of data server or NULL if MDS / non-pnfs
  135. * @commit_idx - commit bucket index for the DS
  136. *
  137. * returns the correct verifier to use given the role of the server
  138. */
  139. static struct nfs_writeverf *
  140. nfs_direct_select_verf(struct nfs_direct_req *dreq,
  141. struct nfs_client *ds_clp,
  142. int commit_idx)
  143. {
  144. struct nfs_writeverf *verfp = &dreq->verf;
  145. #ifdef CONFIG_NFS_V4_1
  146. /*
  147. * pNFS is in use, use the DS verf except commit_through_mds is set
  148. * for layout segment where nbuckets is zero.
  149. */
  150. if (ds_clp && dreq->ds_cinfo.nbuckets > 0) {
  151. if (commit_idx >= 0 && commit_idx < dreq->ds_cinfo.nbuckets)
  152. verfp = &dreq->ds_cinfo.buckets[commit_idx].direct_verf;
  153. else
  154. WARN_ON_ONCE(1);
  155. }
  156. #endif
  157. return verfp;
  158. }
  159. /*
  160. * nfs_direct_set_hdr_verf - set the write/commit verifier
  161. * @dreq - direct request possibly spanning multiple servers
  162. * @hdr - pageio header to validate against previously seen verfs
  163. *
  164. * Set the server's (MDS or DS) "seen" verifier
  165. */
  166. static void nfs_direct_set_hdr_verf(struct nfs_direct_req *dreq,
  167. struct nfs_pgio_header *hdr)
  168. {
  169. struct nfs_writeverf *verfp;
  170. verfp = nfs_direct_select_verf(dreq, hdr->ds_clp, hdr->ds_commit_idx);
  171. WARN_ON_ONCE(verfp->committed >= 0);
  172. memcpy(verfp, &hdr->verf, sizeof(struct nfs_writeverf));
  173. WARN_ON_ONCE(verfp->committed < 0);
  174. }
  175. /*
  176. * nfs_direct_cmp_hdr_verf - compare verifier for pgio header
  177. * @dreq - direct request possibly spanning multiple servers
  178. * @hdr - pageio header to validate against previously seen verf
  179. *
  180. * set the server's "seen" verf if not initialized.
  181. * returns result of comparison between @hdr->verf and the "seen"
  182. * verf of the server used by @hdr (DS or MDS)
  183. */
  184. static int nfs_direct_set_or_cmp_hdr_verf(struct nfs_direct_req *dreq,
  185. struct nfs_pgio_header *hdr)
  186. {
  187. struct nfs_writeverf *verfp;
  188. verfp = nfs_direct_select_verf(dreq, hdr->ds_clp, hdr->ds_commit_idx);
  189. if (verfp->committed < 0) {
  190. nfs_direct_set_hdr_verf(dreq, hdr);
  191. return 0;
  192. }
  193. return memcmp(verfp, &hdr->verf, sizeof(struct nfs_writeverf));
  194. }
  195. /*
  196. * nfs_direct_cmp_commit_data_verf - compare verifier for commit data
  197. * @dreq - direct request possibly spanning multiple servers
  198. * @data - commit data to validate against previously seen verf
  199. *
  200. * returns result of comparison between @data->verf and the verf of
  201. * the server used by @data (DS or MDS)
  202. */
  203. static int nfs_direct_cmp_commit_data_verf(struct nfs_direct_req *dreq,
  204. struct nfs_commit_data *data)
  205. {
  206. struct nfs_writeverf *verfp;
  207. verfp = nfs_direct_select_verf(dreq, data->ds_clp,
  208. data->ds_commit_index);
  209. /* verifier not set so always fail */
  210. if (verfp->committed < 0)
  211. return 1;
  212. return memcmp(verfp, &data->verf, sizeof(struct nfs_writeverf));
  213. }
  214. /**
  215. * nfs_direct_IO - NFS address space operation for direct I/O
  216. * @iocb: target I/O control block
  217. * @iov: array of vectors that define I/O buffer
  218. * @pos: offset in file to begin the operation
  219. * @nr_segs: size of iovec array
  220. *
  221. * The presence of this routine in the address space ops vector means
  222. * the NFS client supports direct I/O. However, for most direct IO, we
  223. * shunt off direct read and write requests before the VFS gets them,
  224. * so this method is only ever called for swap.
  225. */
  226. ssize_t nfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter, loff_t pos)
  227. {
  228. struct inode *inode = iocb->ki_filp->f_mapping->host;
  229. /* we only support swap file calling nfs_direct_IO */
  230. if (!IS_SWAPFILE(inode))
  231. return 0;
  232. VM_BUG_ON(iov_iter_count(iter) != PAGE_SIZE);
  233. if (iov_iter_rw(iter) == READ)
  234. return nfs_file_direct_read(iocb, iter, pos);
  235. return nfs_file_direct_write(iocb, iter);
  236. }
  237. static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
  238. {
  239. unsigned int i;
  240. for (i = 0; i < npages; i++)
  241. page_cache_release(pages[i]);
  242. }
  243. void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
  244. struct nfs_direct_req *dreq)
  245. {
  246. cinfo->lock = &dreq->inode->i_lock;
  247. cinfo->mds = &dreq->mds_cinfo;
  248. cinfo->ds = &dreq->ds_cinfo;
  249. cinfo->dreq = dreq;
  250. cinfo->completion_ops = &nfs_direct_commit_completion_ops;
  251. }
  252. static inline void nfs_direct_setup_mirroring(struct nfs_direct_req *dreq,
  253. struct nfs_pageio_descriptor *pgio,
  254. struct nfs_page *req)
  255. {
  256. int mirror_count = 1;
  257. if (pgio->pg_ops->pg_get_mirror_count)
  258. mirror_count = pgio->pg_ops->pg_get_mirror_count(pgio, req);
  259. dreq->mirror_count = mirror_count;
  260. }
  261. static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
  262. {
  263. struct nfs_direct_req *dreq;
  264. dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
  265. if (!dreq)
  266. return NULL;
  267. kref_init(&dreq->kref);
  268. kref_get(&dreq->kref);
  269. init_completion(&dreq->completion);
  270. INIT_LIST_HEAD(&dreq->mds_cinfo.list);
  271. dreq->verf.committed = NFS_INVALID_STABLE_HOW; /* not set yet */
  272. INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
  273. dreq->mirror_count = 1;
  274. spin_lock_init(&dreq->lock);
  275. return dreq;
  276. }
  277. static void nfs_direct_req_free(struct kref *kref)
  278. {
  279. struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
  280. nfs_free_pnfs_ds_cinfo(&dreq->ds_cinfo);
  281. if (dreq->l_ctx != NULL)
  282. nfs_put_lock_context(dreq->l_ctx);
  283. if (dreq->ctx != NULL)
  284. put_nfs_open_context(dreq->ctx);
  285. kmem_cache_free(nfs_direct_cachep, dreq);
  286. }
  287. static void nfs_direct_req_release(struct nfs_direct_req *dreq)
  288. {
  289. kref_put(&dreq->kref, nfs_direct_req_free);
  290. }
  291. ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq)
  292. {
  293. return dreq->bytes_left;
  294. }
  295. EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
  296. /*
  297. * Collects and returns the final error value/byte-count.
  298. */
  299. static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
  300. {
  301. ssize_t result = -EIOCBQUEUED;
  302. /* Async requests don't wait here */
  303. if (dreq->iocb)
  304. goto out;
  305. result = wait_for_completion_killable(&dreq->completion);
  306. if (!result)
  307. result = dreq->error;
  308. if (!result)
  309. result = dreq->count;
  310. out:
  311. return (ssize_t) result;
  312. }
  313. /*
  314. * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust
  315. * the iocb is still valid here if this is a synchronous request.
  316. */
  317. static void nfs_direct_complete(struct nfs_direct_req *dreq, bool write)
  318. {
  319. struct inode *inode = dreq->inode;
  320. if (dreq->iocb && write) {
  321. loff_t pos = dreq->iocb->ki_pos + dreq->count;
  322. spin_lock(&inode->i_lock);
  323. if (i_size_read(inode) < pos)
  324. i_size_write(inode, pos);
  325. spin_unlock(&inode->i_lock);
  326. }
  327. if (write)
  328. nfs_zap_mapping(inode, inode->i_mapping);
  329. inode_dio_end(inode);
  330. if (dreq->iocb) {
  331. long res = (long) dreq->error;
  332. if (!res)
  333. res = (long) dreq->count;
  334. dreq->iocb->ki_complete(dreq->iocb, res, 0);
  335. }
  336. complete_all(&dreq->completion);
  337. nfs_direct_req_release(dreq);
  338. }
  339. static void nfs_direct_readpage_release(struct nfs_page *req)
  340. {
  341. dprintk("NFS: direct read done (%s/%llu %d@%lld)\n",
  342. d_inode(req->wb_context->dentry)->i_sb->s_id,
  343. (unsigned long long)NFS_FILEID(d_inode(req->wb_context->dentry)),
  344. req->wb_bytes,
  345. (long long)req_offset(req));
  346. nfs_release_request(req);
  347. }
  348. static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
  349. {
  350. unsigned long bytes = 0;
  351. struct nfs_direct_req *dreq = hdr->dreq;
  352. if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
  353. goto out_put;
  354. spin_lock(&dreq->lock);
  355. if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0))
  356. dreq->error = hdr->error;
  357. else
  358. nfs_direct_good_bytes(dreq, hdr);
  359. spin_unlock(&dreq->lock);
  360. while (!list_empty(&hdr->pages)) {
  361. struct nfs_page *req = nfs_list_entry(hdr->pages.next);
  362. struct page *page = req->wb_page;
  363. if (!PageCompound(page) && bytes < hdr->good_bytes)
  364. set_page_dirty(page);
  365. bytes += req->wb_bytes;
  366. nfs_list_remove_request(req);
  367. nfs_direct_readpage_release(req);
  368. }
  369. out_put:
  370. if (put_dreq(dreq))
  371. nfs_direct_complete(dreq, false);
  372. hdr->release(hdr);
  373. }
  374. static void nfs_read_sync_pgio_error(struct list_head *head)
  375. {
  376. struct nfs_page *req;
  377. while (!list_empty(head)) {
  378. req = nfs_list_entry(head->next);
  379. nfs_list_remove_request(req);
  380. nfs_release_request(req);
  381. }
  382. }
  383. static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
  384. {
  385. get_dreq(hdr->dreq);
  386. }
  387. static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
  388. .error_cleanup = nfs_read_sync_pgio_error,
  389. .init_hdr = nfs_direct_pgio_init,
  390. .completion = nfs_direct_read_completion,
  391. };
  392. /*
  393. * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
  394. * operation. If nfs_readdata_alloc() or get_user_pages() fails,
  395. * bail and stop sending more reads. Read length accounting is
  396. * handled automatically by nfs_direct_read_result(). Otherwise, if
  397. * no requests have been sent, just return an error.
  398. */
  399. static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
  400. struct iov_iter *iter,
  401. loff_t pos)
  402. {
  403. struct nfs_pageio_descriptor desc;
  404. struct inode *inode = dreq->inode;
  405. ssize_t result = -EINVAL;
  406. size_t requested_bytes = 0;
  407. size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE);
  408. nfs_pageio_init_read(&desc, dreq->inode, false,
  409. &nfs_direct_read_completion_ops);
  410. get_dreq(dreq);
  411. desc.pg_dreq = dreq;
  412. inode_dio_begin(inode);
  413. while (iov_iter_count(iter)) {
  414. struct page **pagevec;
  415. size_t bytes;
  416. size_t pgbase;
  417. unsigned npages, i;
  418. result = iov_iter_get_pages_alloc(iter, &pagevec,
  419. rsize, &pgbase);
  420. if (result < 0)
  421. break;
  422. bytes = result;
  423. iov_iter_advance(iter, bytes);
  424. npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
  425. for (i = 0; i < npages; i++) {
  426. struct nfs_page *req;
  427. unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
  428. /* XXX do we need to do the eof zeroing found in async_filler? */
  429. req = nfs_create_request(dreq->ctx, pagevec[i], NULL,
  430. pgbase, req_len);
  431. if (IS_ERR(req)) {
  432. result = PTR_ERR(req);
  433. break;
  434. }
  435. req->wb_index = pos >> PAGE_SHIFT;
  436. req->wb_offset = pos & ~PAGE_MASK;
  437. if (!nfs_pageio_add_request(&desc, req)) {
  438. result = desc.pg_error;
  439. nfs_release_request(req);
  440. break;
  441. }
  442. pgbase = 0;
  443. bytes -= req_len;
  444. requested_bytes += req_len;
  445. pos += req_len;
  446. dreq->bytes_left -= req_len;
  447. }
  448. nfs_direct_release_pages(pagevec, npages);
  449. kvfree(pagevec);
  450. if (result < 0)
  451. break;
  452. }
  453. nfs_pageio_complete(&desc);
  454. /*
  455. * If no bytes were started, return the error, and let the
  456. * generic layer handle the completion.
  457. */
  458. if (requested_bytes == 0) {
  459. inode_dio_end(inode);
  460. nfs_direct_req_release(dreq);
  461. return result < 0 ? result : -EIO;
  462. }
  463. if (put_dreq(dreq))
  464. nfs_direct_complete(dreq, false);
  465. return 0;
  466. }
  467. /**
  468. * nfs_file_direct_read - file direct read operation for NFS files
  469. * @iocb: target I/O control block
  470. * @iter: vector of user buffers into which to read data
  471. * @pos: byte offset in file where reading starts
  472. *
  473. * We use this function for direct reads instead of calling
  474. * generic_file_aio_read() in order to avoid gfar's check to see if
  475. * the request starts before the end of the file. For that check
  476. * to work, we must generate a GETATTR before each direct read, and
  477. * even then there is a window between the GETATTR and the subsequent
  478. * READ where the file size could change. Our preference is simply
  479. * to do all reads the application wants, and the server will take
  480. * care of managing the end of file boundary.
  481. *
  482. * This function also eliminates unnecessarily updating the file's
  483. * atime locally, as the NFS server sets the file's atime, and this
  484. * client must read the updated atime from the server back into its
  485. * cache.
  486. */
  487. ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter,
  488. loff_t pos)
  489. {
  490. struct file *file = iocb->ki_filp;
  491. struct address_space *mapping = file->f_mapping;
  492. struct inode *inode = mapping->host;
  493. struct nfs_direct_req *dreq;
  494. struct nfs_lock_context *l_ctx;
  495. ssize_t result = -EINVAL;
  496. size_t count = iov_iter_count(iter);
  497. nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
  498. dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n",
  499. file, count, (long long) pos);
  500. result = 0;
  501. if (!count)
  502. goto out;
  503. mutex_lock(&inode->i_mutex);
  504. result = nfs_sync_mapping(mapping);
  505. if (result)
  506. goto out_unlock;
  507. task_io_account_read(count);
  508. result = -ENOMEM;
  509. dreq = nfs_direct_req_alloc();
  510. if (dreq == NULL)
  511. goto out_unlock;
  512. dreq->inode = inode;
  513. dreq->bytes_left = count;
  514. dreq->io_start = pos;
  515. dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
  516. l_ctx = nfs_get_lock_context(dreq->ctx);
  517. if (IS_ERR(l_ctx)) {
  518. result = PTR_ERR(l_ctx);
  519. goto out_release;
  520. }
  521. dreq->l_ctx = l_ctx;
  522. if (!is_sync_kiocb(iocb))
  523. dreq->iocb = iocb;
  524. NFS_I(inode)->read_io += count;
  525. result = nfs_direct_read_schedule_iovec(dreq, iter, pos);
  526. mutex_unlock(&inode->i_mutex);
  527. if (!result) {
  528. result = nfs_direct_wait(dreq);
  529. if (result > 0)
  530. iocb->ki_pos = pos + result;
  531. }
  532. nfs_direct_req_release(dreq);
  533. return result;
  534. out_release:
  535. nfs_direct_req_release(dreq);
  536. out_unlock:
  537. mutex_unlock(&inode->i_mutex);
  538. out:
  539. return result;
  540. }
  541. static void
  542. nfs_direct_write_scan_commit_list(struct inode *inode,
  543. struct list_head *list,
  544. struct nfs_commit_info *cinfo)
  545. {
  546. spin_lock(cinfo->lock);
  547. #ifdef CONFIG_NFS_V4_1
  548. if (cinfo->ds != NULL && cinfo->ds->nwritten != 0)
  549. NFS_SERVER(inode)->pnfs_curr_ld->recover_commit_reqs(list, cinfo);
  550. #endif
  551. nfs_scan_commit_list(&cinfo->mds->list, list, cinfo, 0);
  552. spin_unlock(cinfo->lock);
  553. }
  554. static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
  555. {
  556. struct nfs_pageio_descriptor desc;
  557. struct nfs_page *req, *tmp;
  558. LIST_HEAD(reqs);
  559. struct nfs_commit_info cinfo;
  560. LIST_HEAD(failed);
  561. int i;
  562. nfs_init_cinfo_from_dreq(&cinfo, dreq);
  563. nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
  564. dreq->count = 0;
  565. for (i = 0; i < dreq->mirror_count; i++)
  566. dreq->mirrors[i].count = 0;
  567. get_dreq(dreq);
  568. nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false,
  569. &nfs_direct_write_completion_ops);
  570. desc.pg_dreq = dreq;
  571. req = nfs_list_entry(reqs.next);
  572. nfs_direct_setup_mirroring(dreq, &desc, req);
  573. list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
  574. if (!nfs_pageio_add_request(&desc, req)) {
  575. nfs_list_remove_request(req);
  576. nfs_list_add_request(req, &failed);
  577. spin_lock(cinfo.lock);
  578. dreq->flags = 0;
  579. dreq->error = -EIO;
  580. spin_unlock(cinfo.lock);
  581. }
  582. nfs_release_request(req);
  583. }
  584. nfs_pageio_complete(&desc);
  585. while (!list_empty(&failed)) {
  586. req = nfs_list_entry(failed.next);
  587. nfs_list_remove_request(req);
  588. nfs_unlock_and_release_request(req);
  589. }
  590. if (put_dreq(dreq))
  591. nfs_direct_write_complete(dreq, dreq->inode);
  592. }
  593. static void nfs_direct_commit_complete(struct nfs_commit_data *data)
  594. {
  595. struct nfs_direct_req *dreq = data->dreq;
  596. struct nfs_commit_info cinfo;
  597. struct nfs_page *req;
  598. int status = data->task.tk_status;
  599. nfs_init_cinfo_from_dreq(&cinfo, dreq);
  600. if (status < 0) {
  601. dprintk("NFS: %5u commit failed with error %d.\n",
  602. data->task.tk_pid, status);
  603. dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
  604. } else if (nfs_direct_cmp_commit_data_verf(dreq, data)) {
  605. dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid);
  606. dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
  607. }
  608. dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status);
  609. while (!list_empty(&data->pages)) {
  610. req = nfs_list_entry(data->pages.next);
  611. nfs_list_remove_request(req);
  612. if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) {
  613. /* Note the rewrite will go through mds */
  614. nfs_mark_request_commit(req, NULL, &cinfo, 0);
  615. } else
  616. nfs_release_request(req);
  617. nfs_unlock_and_release_request(req);
  618. }
  619. if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
  620. nfs_direct_write_complete(dreq, data->inode);
  621. }
  622. static void nfs_direct_error_cleanup(struct nfs_inode *nfsi)
  623. {
  624. /* There is no lock to clear */
  625. }
  626. static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
  627. .completion = nfs_direct_commit_complete,
  628. .error_cleanup = nfs_direct_error_cleanup,
  629. };
  630. static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
  631. {
  632. int res;
  633. struct nfs_commit_info cinfo;
  634. LIST_HEAD(mds_list);
  635. nfs_init_cinfo_from_dreq(&cinfo, dreq);
  636. nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
  637. res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
  638. if (res < 0) /* res == -ENOMEM */
  639. nfs_direct_write_reschedule(dreq);
  640. }
  641. static void nfs_direct_write_schedule_work(struct work_struct *work)
  642. {
  643. struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
  644. int flags = dreq->flags;
  645. dreq->flags = 0;
  646. switch (flags) {
  647. case NFS_ODIRECT_DO_COMMIT:
  648. nfs_direct_commit_schedule(dreq);
  649. break;
  650. case NFS_ODIRECT_RESCHED_WRITES:
  651. nfs_direct_write_reschedule(dreq);
  652. break;
  653. default:
  654. nfs_direct_complete(dreq, true);
  655. }
  656. }
  657. static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
  658. {
  659. schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */
  660. }
  661. static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
  662. {
  663. struct nfs_direct_req *dreq = hdr->dreq;
  664. struct nfs_commit_info cinfo;
  665. bool request_commit = false;
  666. struct nfs_page *req = nfs_list_entry(hdr->pages.next);
  667. if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
  668. goto out_put;
  669. nfs_init_cinfo_from_dreq(&cinfo, dreq);
  670. spin_lock(&dreq->lock);
  671. if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
  672. dreq->flags = 0;
  673. dreq->error = hdr->error;
  674. }
  675. if (dreq->error == 0) {
  676. nfs_direct_good_bytes(dreq, hdr);
  677. if (nfs_write_need_commit(hdr)) {
  678. if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES)
  679. request_commit = true;
  680. else if (dreq->flags == 0) {
  681. nfs_direct_set_hdr_verf(dreq, hdr);
  682. request_commit = true;
  683. dreq->flags = NFS_ODIRECT_DO_COMMIT;
  684. } else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) {
  685. request_commit = true;
  686. if (nfs_direct_set_or_cmp_hdr_verf(dreq, hdr))
  687. dreq->flags =
  688. NFS_ODIRECT_RESCHED_WRITES;
  689. }
  690. }
  691. }
  692. spin_unlock(&dreq->lock);
  693. while (!list_empty(&hdr->pages)) {
  694. req = nfs_list_entry(hdr->pages.next);
  695. nfs_list_remove_request(req);
  696. if (request_commit) {
  697. kref_get(&req->wb_kref);
  698. nfs_mark_request_commit(req, hdr->lseg, &cinfo,
  699. hdr->ds_commit_idx);
  700. }
  701. nfs_unlock_and_release_request(req);
  702. }
  703. out_put:
  704. if (put_dreq(dreq))
  705. nfs_direct_write_complete(dreq, hdr->inode);
  706. hdr->release(hdr);
  707. }
  708. static void nfs_write_sync_pgio_error(struct list_head *head)
  709. {
  710. struct nfs_page *req;
  711. while (!list_empty(head)) {
  712. req = nfs_list_entry(head->next);
  713. nfs_list_remove_request(req);
  714. nfs_unlock_and_release_request(req);
  715. }
  716. }
  717. static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
  718. .error_cleanup = nfs_write_sync_pgio_error,
  719. .init_hdr = nfs_direct_pgio_init,
  720. .completion = nfs_direct_write_completion,
  721. };
  722. /*
  723. * NB: Return the value of the first error return code. Subsequent
  724. * errors after the first one are ignored.
  725. */
  726. /*
  727. * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
  728. * operation. If nfs_writedata_alloc() or get_user_pages() fails,
  729. * bail and stop sending more writes. Write length accounting is
  730. * handled automatically by nfs_direct_write_result(). Otherwise, if
  731. * no requests have been sent, just return an error.
  732. */
  733. static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
  734. struct iov_iter *iter,
  735. loff_t pos)
  736. {
  737. struct nfs_pageio_descriptor desc;
  738. struct inode *inode = dreq->inode;
  739. ssize_t result = 0;
  740. size_t requested_bytes = 0;
  741. size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE);
  742. nfs_pageio_init_write(&desc, inode, FLUSH_COND_STABLE, false,
  743. &nfs_direct_write_completion_ops);
  744. desc.pg_dreq = dreq;
  745. get_dreq(dreq);
  746. inode_dio_begin(inode);
  747. NFS_I(inode)->write_io += iov_iter_count(iter);
  748. while (iov_iter_count(iter)) {
  749. struct page **pagevec;
  750. size_t bytes;
  751. size_t pgbase;
  752. unsigned npages, i;
  753. result = iov_iter_get_pages_alloc(iter, &pagevec,
  754. wsize, &pgbase);
  755. if (result < 0)
  756. break;
  757. bytes = result;
  758. iov_iter_advance(iter, bytes);
  759. npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
  760. for (i = 0; i < npages; i++) {
  761. struct nfs_page *req;
  762. unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
  763. req = nfs_create_request(dreq->ctx, pagevec[i], NULL,
  764. pgbase, req_len);
  765. if (IS_ERR(req)) {
  766. result = PTR_ERR(req);
  767. break;
  768. }
  769. nfs_direct_setup_mirroring(dreq, &desc, req);
  770. nfs_lock_request(req);
  771. req->wb_index = pos >> PAGE_SHIFT;
  772. req->wb_offset = pos & ~PAGE_MASK;
  773. if (!nfs_pageio_add_request(&desc, req)) {
  774. result = desc.pg_error;
  775. nfs_unlock_and_release_request(req);
  776. break;
  777. }
  778. pgbase = 0;
  779. bytes -= req_len;
  780. requested_bytes += req_len;
  781. pos += req_len;
  782. dreq->bytes_left -= req_len;
  783. }
  784. nfs_direct_release_pages(pagevec, npages);
  785. kvfree(pagevec);
  786. if (result < 0)
  787. break;
  788. }
  789. nfs_pageio_complete(&desc);
  790. /*
  791. * If no bytes were started, return the error, and let the
  792. * generic layer handle the completion.
  793. */
  794. if (requested_bytes == 0) {
  795. inode_dio_end(inode);
  796. nfs_direct_req_release(dreq);
  797. return result < 0 ? result : -EIO;
  798. }
  799. if (put_dreq(dreq))
  800. nfs_direct_write_complete(dreq, dreq->inode);
  801. return 0;
  802. }
  803. /**
  804. * nfs_file_direct_write - file direct write operation for NFS files
  805. * @iocb: target I/O control block
  806. * @iter: vector of user buffers from which to write data
  807. * @pos: byte offset in file where writing starts
  808. *
  809. * We use this function for direct writes instead of calling
  810. * generic_file_aio_write() in order to avoid taking the inode
  811. * semaphore and updating the i_size. The NFS server will set
  812. * the new i_size and this client must read the updated size
  813. * back into its cache. We let the server do generic write
  814. * parameter checking and report problems.
  815. *
  816. * We eliminate local atime updates, see direct read above.
  817. *
  818. * We avoid unnecessary page cache invalidations for normal cached
  819. * readers of this file.
  820. *
  821. * Note that O_APPEND is not supported for NFS direct writes, as there
  822. * is no atomic O_APPEND write facility in the NFS protocol.
  823. */
  824. ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter)
  825. {
  826. ssize_t result = -EINVAL;
  827. struct file *file = iocb->ki_filp;
  828. struct address_space *mapping = file->f_mapping;
  829. struct inode *inode = mapping->host;
  830. struct nfs_direct_req *dreq;
  831. struct nfs_lock_context *l_ctx;
  832. loff_t pos, end;
  833. dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n",
  834. file, iov_iter_count(iter), (long long) iocb->ki_pos);
  835. nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES,
  836. iov_iter_count(iter));
  837. pos = iocb->ki_pos;
  838. end = (pos + iov_iter_count(iter) - 1) >> PAGE_CACHE_SHIFT;
  839. mutex_lock(&inode->i_mutex);
  840. result = nfs_sync_mapping(mapping);
  841. if (result)
  842. goto out_unlock;
  843. if (mapping->nrpages) {
  844. result = invalidate_inode_pages2_range(mapping,
  845. pos >> PAGE_CACHE_SHIFT, end);
  846. if (result)
  847. goto out_unlock;
  848. }
  849. task_io_account_write(iov_iter_count(iter));
  850. result = -ENOMEM;
  851. dreq = nfs_direct_req_alloc();
  852. if (!dreq)
  853. goto out_unlock;
  854. dreq->inode = inode;
  855. dreq->bytes_left = iov_iter_count(iter);
  856. dreq->io_start = pos;
  857. dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
  858. l_ctx = nfs_get_lock_context(dreq->ctx);
  859. if (IS_ERR(l_ctx)) {
  860. result = PTR_ERR(l_ctx);
  861. goto out_release;
  862. }
  863. dreq->l_ctx = l_ctx;
  864. if (!is_sync_kiocb(iocb))
  865. dreq->iocb = iocb;
  866. result = nfs_direct_write_schedule_iovec(dreq, iter, pos);
  867. if (mapping->nrpages) {
  868. invalidate_inode_pages2_range(mapping,
  869. pos >> PAGE_CACHE_SHIFT, end);
  870. }
  871. mutex_unlock(&inode->i_mutex);
  872. if (!result) {
  873. result = nfs_direct_wait(dreq);
  874. if (result > 0) {
  875. struct inode *inode = mapping->host;
  876. iocb->ki_pos = pos + result;
  877. spin_lock(&inode->i_lock);
  878. if (i_size_read(inode) < iocb->ki_pos)
  879. i_size_write(inode, iocb->ki_pos);
  880. spin_unlock(&inode->i_lock);
  881. generic_write_sync(file, pos, result);
  882. }
  883. }
  884. nfs_direct_req_release(dreq);
  885. return result;
  886. out_release:
  887. nfs_direct_req_release(dreq);
  888. out_unlock:
  889. mutex_unlock(&inode->i_mutex);
  890. return result;
  891. }
  892. /**
  893. * nfs_init_directcache - create a slab cache for nfs_direct_req structures
  894. *
  895. */
  896. int __init nfs_init_directcache(void)
  897. {
  898. nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
  899. sizeof(struct nfs_direct_req),
  900. 0, (SLAB_RECLAIM_ACCOUNT|
  901. SLAB_MEM_SPREAD),
  902. NULL);
  903. if (nfs_direct_cachep == NULL)
  904. return -ENOMEM;
  905. return 0;
  906. }
  907. /**
  908. * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
  909. *
  910. */
  911. void nfs_destroy_directcache(void)
  912. {
  913. kmem_cache_destroy(nfs_direct_cachep);
  914. }