direct-io.c 38 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334
  1. /*
  2. * fs/direct-io.c
  3. *
  4. * Copyright (C) 2002, Linus Torvalds.
  5. *
  6. * O_DIRECT
  7. *
  8. * 04Jul2002 Andrew Morton
  9. * Initial version
  10. * 11Sep2002 janetinc@us.ibm.com
  11. * added readv/writev support.
  12. * 29Oct2002 Andrew Morton
  13. * rewrote bio_add_page() support.
  14. * 30Oct2002 pbadari@us.ibm.com
  15. * added support for non-aligned IO.
  16. * 06Nov2002 pbadari@us.ibm.com
  17. * added asynchronous IO support.
  18. * 21Jul2003 nathans@sgi.com
  19. * added IO completion notifier.
  20. */
  21. #include <linux/kernel.h>
  22. #include <linux/module.h>
  23. #include <linux/types.h>
  24. #include <linux/fs.h>
  25. #include <linux/mm.h>
  26. #include <linux/slab.h>
  27. #include <linux/highmem.h>
  28. #include <linux/pagemap.h>
  29. #include <linux/task_io_accounting_ops.h>
  30. #include <linux/bio.h>
  31. #include <linux/wait.h>
  32. #include <linux/err.h>
  33. #include <linux/blkdev.h>
  34. #include <linux/buffer_head.h>
  35. #include <linux/rwsem.h>
  36. #include <linux/uio.h>
  37. #include <linux/atomic.h>
  38. #include <linux/prefetch.h>
  39. /*
  40. * How many user pages to map in one call to get_user_pages(). This determines
  41. * the size of a structure in the slab cache
  42. */
  43. #define DIO_PAGES 64
  44. /*
  45. * This code generally works in units of "dio_blocks". A dio_block is
  46. * somewhere between the hard sector size and the filesystem block size. it
  47. * is determined on a per-invocation basis. When talking to the filesystem
  48. * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
  49. * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
  50. * to bio_block quantities by shifting left by blkfactor.
  51. *
  52. * If blkfactor is zero then the user's request was aligned to the filesystem's
  53. * blocksize.
  54. */
  55. /* dio_state only used in the submission path */
  56. struct dio_submit {
  57. struct bio *bio; /* bio under assembly */
  58. unsigned blkbits; /* doesn't change */
  59. unsigned blkfactor; /* When we're using an alignment which
  60. is finer than the filesystem's soft
  61. blocksize, this specifies how much
  62. finer. blkfactor=2 means 1/4-block
  63. alignment. Does not change */
  64. unsigned start_zero_done; /* flag: sub-blocksize zeroing has
  65. been performed at the start of a
  66. write */
  67. int pages_in_io; /* approximate total IO pages */
  68. sector_t block_in_file; /* Current offset into the underlying
  69. file in dio_block units. */
  70. unsigned blocks_available; /* At block_in_file. changes */
  71. int reap_counter; /* rate limit reaping */
  72. sector_t final_block_in_request;/* doesn't change */
  73. int boundary; /* prev block is at a boundary */
  74. get_block_t *get_block; /* block mapping function */
  75. dio_submit_t *submit_io; /* IO submition function */
  76. loff_t logical_offset_in_bio; /* current first logical block in bio */
  77. sector_t final_block_in_bio; /* current final block in bio + 1 */
  78. sector_t next_block_for_io; /* next block to be put under IO,
  79. in dio_blocks units */
  80. /*
  81. * Deferred addition of a page to the dio. These variables are
  82. * private to dio_send_cur_page(), submit_page_section() and
  83. * dio_bio_add_page().
  84. */
  85. struct page *cur_page; /* The page */
  86. unsigned cur_page_offset; /* Offset into it, in bytes */
  87. unsigned cur_page_len; /* Nr of bytes at cur_page_offset */
  88. sector_t cur_page_block; /* Where it starts */
  89. loff_t cur_page_fs_offset; /* Offset in file */
  90. struct iov_iter *iter;
  91. /*
  92. * Page queue. These variables belong to dio_refill_pages() and
  93. * dio_get_page().
  94. */
  95. unsigned head; /* next page to process */
  96. unsigned tail; /* last valid page + 1 */
  97. size_t from, to;
  98. };
  99. /* dio_state communicated between submission path and end_io */
  100. struct dio {
  101. int flags; /* doesn't change */
  102. int rw;
  103. struct inode *inode;
  104. loff_t i_size; /* i_size when submitted */
  105. dio_iodone_t *end_io; /* IO completion function */
  106. void *private; /* copy from map_bh.b_private */
  107. /* BIO completion state */
  108. spinlock_t bio_lock; /* protects BIO fields below */
  109. int page_errors; /* errno from get_user_pages() */
  110. int is_async; /* is IO async ? */
  111. bool defer_completion; /* defer AIO completion to workqueue? */
  112. int io_error; /* IO error in completion path */
  113. unsigned long refcount; /* direct_io_worker() and bios */
  114. struct bio *bio_list; /* singly linked via bi_private */
  115. struct task_struct *waiter; /* waiting task (NULL if none) */
  116. /* AIO related stuff */
  117. struct kiocb *iocb; /* kiocb */
  118. ssize_t result; /* IO result */
  119. /*
  120. * pages[] (and any fields placed after it) are not zeroed out at
  121. * allocation time. Don't add new fields after pages[] unless you
  122. * wish that they not be zeroed.
  123. */
  124. union {
  125. struct page *pages[DIO_PAGES]; /* page buffer */
  126. struct work_struct complete_work;/* deferred AIO completion */
  127. };
  128. } ____cacheline_aligned_in_smp;
  129. static struct kmem_cache *dio_cache __read_mostly;
  130. /*
  131. * How many pages are in the queue?
  132. */
  133. static inline unsigned dio_pages_present(struct dio_submit *sdio)
  134. {
  135. return sdio->tail - sdio->head;
  136. }
  137. /*
  138. * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
  139. */
  140. static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
  141. {
  142. ssize_t ret;
  143. ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
  144. &sdio->from);
  145. if (ret < 0 && sdio->blocks_available && (dio->rw & WRITE)) {
  146. struct page *page = ZERO_PAGE(0);
  147. /*
  148. * A memory fault, but the filesystem has some outstanding
  149. * mapped blocks. We need to use those blocks up to avoid
  150. * leaking stale data in the file.
  151. */
  152. if (dio->page_errors == 0)
  153. dio->page_errors = ret;
  154. page_cache_get(page);
  155. dio->pages[0] = page;
  156. sdio->head = 0;
  157. sdio->tail = 1;
  158. sdio->from = 0;
  159. sdio->to = PAGE_SIZE;
  160. return 0;
  161. }
  162. if (ret >= 0) {
  163. iov_iter_advance(sdio->iter, ret);
  164. ret += sdio->from;
  165. sdio->head = 0;
  166. sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
  167. sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
  168. return 0;
  169. }
  170. return ret;
  171. }
  172. /*
  173. * Get another userspace page. Returns an ERR_PTR on error. Pages are
  174. * buffered inside the dio so that we can call get_user_pages() against a
  175. * decent number of pages, less frequently. To provide nicer use of the
  176. * L1 cache.
  177. */
  178. static inline struct page *dio_get_page(struct dio *dio,
  179. struct dio_submit *sdio)
  180. {
  181. if (dio_pages_present(sdio) == 0) {
  182. int ret;
  183. ret = dio_refill_pages(dio, sdio);
  184. if (ret)
  185. return ERR_PTR(ret);
  186. BUG_ON(dio_pages_present(sdio) == 0);
  187. }
  188. return dio->pages[sdio->head];
  189. }
  190. /**
  191. * dio_complete() - called when all DIO BIO I/O has been completed
  192. * @offset: the byte offset in the file of the completed operation
  193. *
  194. * This drops i_dio_count, lets interested parties know that a DIO operation
  195. * has completed, and calculates the resulting return code for the operation.
  196. *
  197. * It lets the filesystem know if it registered an interest earlier via
  198. * get_block. Pass the private field of the map buffer_head so that
  199. * filesystems can use it to hold additional state between get_block calls and
  200. * dio_complete.
  201. */
  202. static ssize_t dio_complete(struct dio *dio, loff_t offset, ssize_t ret,
  203. bool is_async)
  204. {
  205. ssize_t transferred = 0;
  206. /*
  207. * AIO submission can race with bio completion to get here while
  208. * expecting to have the last io completed by bio completion.
  209. * In that case -EIOCBQUEUED is in fact not an error we want
  210. * to preserve through this call.
  211. */
  212. if (ret == -EIOCBQUEUED)
  213. ret = 0;
  214. if (dio->result) {
  215. transferred = dio->result;
  216. /* Check for short read case */
  217. if ((dio->rw == READ) && ((offset + transferred) > dio->i_size))
  218. transferred = dio->i_size - offset;
  219. }
  220. if (ret == 0)
  221. ret = dio->page_errors;
  222. if (ret == 0)
  223. ret = dio->io_error;
  224. if (ret == 0)
  225. ret = transferred;
  226. if (dio->end_io && dio->result)
  227. dio->end_io(dio->iocb, offset, transferred, dio->private);
  228. if (!(dio->flags & DIO_SKIP_DIO_COUNT))
  229. inode_dio_end(dio->inode);
  230. if (is_async) {
  231. if (dio->rw & WRITE) {
  232. int err;
  233. err = generic_write_sync(dio->iocb->ki_filp, offset,
  234. transferred);
  235. if (err < 0 && ret > 0)
  236. ret = err;
  237. }
  238. dio->iocb->ki_complete(dio->iocb, ret, 0);
  239. }
  240. kmem_cache_free(dio_cache, dio);
  241. return ret;
  242. }
  243. static void dio_aio_complete_work(struct work_struct *work)
  244. {
  245. struct dio *dio = container_of(work, struct dio, complete_work);
  246. dio_complete(dio, dio->iocb->ki_pos, 0, true);
  247. }
  248. static int dio_bio_complete(struct dio *dio, struct bio *bio);
  249. /*
  250. * Asynchronous IO callback.
  251. */
  252. static void dio_bio_end_aio(struct bio *bio)
  253. {
  254. struct dio *dio = bio->bi_private;
  255. unsigned long remaining;
  256. unsigned long flags;
  257. /* cleanup the bio */
  258. dio_bio_complete(dio, bio);
  259. spin_lock_irqsave(&dio->bio_lock, flags);
  260. remaining = --dio->refcount;
  261. if (remaining == 1 && dio->waiter)
  262. wake_up_process(dio->waiter);
  263. spin_unlock_irqrestore(&dio->bio_lock, flags);
  264. if (remaining == 0) {
  265. if (dio->result && dio->defer_completion) {
  266. INIT_WORK(&dio->complete_work, dio_aio_complete_work);
  267. queue_work(dio->inode->i_sb->s_dio_done_wq,
  268. &dio->complete_work);
  269. } else {
  270. dio_complete(dio, dio->iocb->ki_pos, 0, true);
  271. }
  272. }
  273. }
  274. /*
  275. * The BIO completion handler simply queues the BIO up for the process-context
  276. * handler.
  277. *
  278. * During I/O bi_private points at the dio. After I/O, bi_private is used to
  279. * implement a singly-linked list of completed BIOs, at dio->bio_list.
  280. */
  281. static void dio_bio_end_io(struct bio *bio)
  282. {
  283. struct dio *dio = bio->bi_private;
  284. unsigned long flags;
  285. spin_lock_irqsave(&dio->bio_lock, flags);
  286. bio->bi_private = dio->bio_list;
  287. dio->bio_list = bio;
  288. if (--dio->refcount == 1 && dio->waiter)
  289. wake_up_process(dio->waiter);
  290. spin_unlock_irqrestore(&dio->bio_lock, flags);
  291. }
  292. /**
  293. * dio_end_io - handle the end io action for the given bio
  294. * @bio: The direct io bio thats being completed
  295. * @error: Error if there was one
  296. *
  297. * This is meant to be called by any filesystem that uses their own dio_submit_t
  298. * so that the DIO specific endio actions are dealt with after the filesystem
  299. * has done it's completion work.
  300. */
  301. void dio_end_io(struct bio *bio, int error)
  302. {
  303. struct dio *dio = bio->bi_private;
  304. if (dio->is_async)
  305. dio_bio_end_aio(bio);
  306. else
  307. dio_bio_end_io(bio);
  308. }
  309. EXPORT_SYMBOL_GPL(dio_end_io);
  310. static inline void
  311. dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
  312. struct block_device *bdev,
  313. sector_t first_sector, int nr_vecs)
  314. {
  315. struct bio *bio;
  316. /*
  317. * bio_alloc() is guaranteed to return a bio when called with
  318. * __GFP_WAIT and we request a valid number of vectors.
  319. */
  320. bio = bio_alloc(GFP_KERNEL, nr_vecs);
  321. bio->bi_bdev = bdev;
  322. bio->bi_iter.bi_sector = first_sector;
  323. if (dio->is_async)
  324. bio->bi_end_io = dio_bio_end_aio;
  325. else
  326. bio->bi_end_io = dio_bio_end_io;
  327. sdio->bio = bio;
  328. sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
  329. }
  330. /*
  331. * In the AIO read case we speculatively dirty the pages before starting IO.
  332. * During IO completion, any of these pages which happen to have been written
  333. * back will be redirtied by bio_check_pages_dirty().
  334. *
  335. * bios hold a dio reference between submit_bio and ->end_io.
  336. */
  337. static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
  338. {
  339. struct bio *bio = sdio->bio;
  340. unsigned long flags;
  341. bio->bi_private = dio;
  342. spin_lock_irqsave(&dio->bio_lock, flags);
  343. dio->refcount++;
  344. spin_unlock_irqrestore(&dio->bio_lock, flags);
  345. if (dio->is_async && dio->rw == READ)
  346. bio_set_pages_dirty(bio);
  347. if (sdio->submit_io)
  348. sdio->submit_io(dio->rw, bio, dio->inode,
  349. sdio->logical_offset_in_bio);
  350. else
  351. submit_bio(dio->rw, bio);
  352. sdio->bio = NULL;
  353. sdio->boundary = 0;
  354. sdio->logical_offset_in_bio = 0;
  355. }
  356. /*
  357. * Release any resources in case of a failure
  358. */
  359. static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
  360. {
  361. while (sdio->head < sdio->tail)
  362. page_cache_release(dio->pages[sdio->head++]);
  363. }
  364. /*
  365. * Wait for the next BIO to complete. Remove it and return it. NULL is
  366. * returned once all BIOs have been completed. This must only be called once
  367. * all bios have been issued so that dio->refcount can only decrease. This
  368. * requires that that the caller hold a reference on the dio.
  369. */
  370. static struct bio *dio_await_one(struct dio *dio)
  371. {
  372. unsigned long flags;
  373. struct bio *bio = NULL;
  374. spin_lock_irqsave(&dio->bio_lock, flags);
  375. /*
  376. * Wait as long as the list is empty and there are bios in flight. bio
  377. * completion drops the count, maybe adds to the list, and wakes while
  378. * holding the bio_lock so we don't need set_current_state()'s barrier
  379. * and can call it after testing our condition.
  380. */
  381. while (dio->refcount > 1 && dio->bio_list == NULL) {
  382. __set_current_state(TASK_UNINTERRUPTIBLE);
  383. dio->waiter = current;
  384. spin_unlock_irqrestore(&dio->bio_lock, flags);
  385. io_schedule();
  386. /* wake up sets us TASK_RUNNING */
  387. spin_lock_irqsave(&dio->bio_lock, flags);
  388. dio->waiter = NULL;
  389. }
  390. if (dio->bio_list) {
  391. bio = dio->bio_list;
  392. dio->bio_list = bio->bi_private;
  393. }
  394. spin_unlock_irqrestore(&dio->bio_lock, flags);
  395. return bio;
  396. }
  397. /*
  398. * Process one completed BIO. No locks are held.
  399. */
  400. static int dio_bio_complete(struct dio *dio, struct bio *bio)
  401. {
  402. struct bio_vec *bvec;
  403. unsigned i;
  404. int err;
  405. if (bio->bi_error)
  406. dio->io_error = -EIO;
  407. if (dio->is_async && dio->rw == READ) {
  408. bio_check_pages_dirty(bio); /* transfers ownership */
  409. err = bio->bi_error;
  410. } else {
  411. bio_for_each_segment_all(bvec, bio, i) {
  412. struct page *page = bvec->bv_page;
  413. if (dio->rw == READ && !PageCompound(page))
  414. set_page_dirty_lock(page);
  415. page_cache_release(page);
  416. }
  417. err = bio->bi_error;
  418. bio_put(bio);
  419. }
  420. return err;
  421. }
  422. /*
  423. * Wait on and process all in-flight BIOs. This must only be called once
  424. * all bios have been issued so that the refcount can only decrease.
  425. * This just waits for all bios to make it through dio_bio_complete. IO
  426. * errors are propagated through dio->io_error and should be propagated via
  427. * dio_complete().
  428. */
  429. static void dio_await_completion(struct dio *dio)
  430. {
  431. struct bio *bio;
  432. do {
  433. bio = dio_await_one(dio);
  434. if (bio)
  435. dio_bio_complete(dio, bio);
  436. } while (bio);
  437. }
  438. /*
  439. * A really large O_DIRECT read or write can generate a lot of BIOs. So
  440. * to keep the memory consumption sane we periodically reap any completed BIOs
  441. * during the BIO generation phase.
  442. *
  443. * This also helps to limit the peak amount of pinned userspace memory.
  444. */
  445. static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
  446. {
  447. int ret = 0;
  448. if (sdio->reap_counter++ >= 64) {
  449. while (dio->bio_list) {
  450. unsigned long flags;
  451. struct bio *bio;
  452. int ret2;
  453. spin_lock_irqsave(&dio->bio_lock, flags);
  454. bio = dio->bio_list;
  455. dio->bio_list = bio->bi_private;
  456. spin_unlock_irqrestore(&dio->bio_lock, flags);
  457. ret2 = dio_bio_complete(dio, bio);
  458. if (ret == 0)
  459. ret = ret2;
  460. }
  461. sdio->reap_counter = 0;
  462. }
  463. return ret;
  464. }
  465. /*
  466. * Create workqueue for deferred direct IO completions. We allocate the
  467. * workqueue when it's first needed. This avoids creating workqueue for
  468. * filesystems that don't need it and also allows us to create the workqueue
  469. * late enough so the we can include s_id in the name of the workqueue.
  470. */
  471. static int sb_init_dio_done_wq(struct super_block *sb)
  472. {
  473. struct workqueue_struct *old;
  474. struct workqueue_struct *wq = alloc_workqueue("dio/%s",
  475. WQ_MEM_RECLAIM, 0,
  476. sb->s_id);
  477. if (!wq)
  478. return -ENOMEM;
  479. /*
  480. * This has to be atomic as more DIOs can race to create the workqueue
  481. */
  482. old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
  483. /* Someone created workqueue before us? Free ours... */
  484. if (old)
  485. destroy_workqueue(wq);
  486. return 0;
  487. }
  488. static int dio_set_defer_completion(struct dio *dio)
  489. {
  490. struct super_block *sb = dio->inode->i_sb;
  491. if (dio->defer_completion)
  492. return 0;
  493. dio->defer_completion = true;
  494. if (!sb->s_dio_done_wq)
  495. return sb_init_dio_done_wq(sb);
  496. return 0;
  497. }
  498. /*
  499. * Call into the fs to map some more disk blocks. We record the current number
  500. * of available blocks at sdio->blocks_available. These are in units of the
  501. * fs blocksize, (1 << inode->i_blkbits).
  502. *
  503. * The fs is allowed to map lots of blocks at once. If it wants to do that,
  504. * it uses the passed inode-relative block number as the file offset, as usual.
  505. *
  506. * get_block() is passed the number of i_blkbits-sized blocks which direct_io
  507. * has remaining to do. The fs should not map more than this number of blocks.
  508. *
  509. * If the fs has mapped a lot of blocks, it should populate bh->b_size to
  510. * indicate how much contiguous disk space has been made available at
  511. * bh->b_blocknr.
  512. *
  513. * If *any* of the mapped blocks are new, then the fs must set buffer_new().
  514. * This isn't very efficient...
  515. *
  516. * In the case of filesystem holes: the fs may return an arbitrarily-large
  517. * hole by returning an appropriate value in b_size and by clearing
  518. * buffer_mapped(). However the direct-io code will only process holes one
  519. * block at a time - it will repeatedly call get_block() as it walks the hole.
  520. */
  521. static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
  522. struct buffer_head *map_bh)
  523. {
  524. int ret;
  525. sector_t fs_startblk; /* Into file, in filesystem-sized blocks */
  526. sector_t fs_endblk; /* Into file, in filesystem-sized blocks */
  527. unsigned long fs_count; /* Number of filesystem-sized blocks */
  528. int create;
  529. unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
  530. /*
  531. * If there was a memory error and we've overwritten all the
  532. * mapped blocks then we can now return that memory error
  533. */
  534. ret = dio->page_errors;
  535. if (ret == 0) {
  536. BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
  537. fs_startblk = sdio->block_in_file >> sdio->blkfactor;
  538. fs_endblk = (sdio->final_block_in_request - 1) >>
  539. sdio->blkfactor;
  540. fs_count = fs_endblk - fs_startblk + 1;
  541. map_bh->b_state = 0;
  542. map_bh->b_size = fs_count << i_blkbits;
  543. /*
  544. * For writes inside i_size on a DIO_SKIP_HOLES filesystem we
  545. * forbid block creations: only overwrites are permitted.
  546. * We will return early to the caller once we see an
  547. * unmapped buffer head returned, and the caller will fall
  548. * back to buffered I/O.
  549. *
  550. * Otherwise the decision is left to the get_blocks method,
  551. * which may decide to handle it or also return an unmapped
  552. * buffer head.
  553. */
  554. create = dio->rw & WRITE;
  555. if (dio->flags & DIO_SKIP_HOLES) {
  556. if (sdio->block_in_file < (i_size_read(dio->inode) >>
  557. sdio->blkbits))
  558. create = 0;
  559. }
  560. ret = (*sdio->get_block)(dio->inode, fs_startblk,
  561. map_bh, create);
  562. /* Store for completion */
  563. dio->private = map_bh->b_private;
  564. if (ret == 0 && buffer_defer_completion(map_bh))
  565. ret = dio_set_defer_completion(dio);
  566. }
  567. return ret;
  568. }
  569. /*
  570. * There is no bio. Make one now.
  571. */
  572. static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
  573. sector_t start_sector, struct buffer_head *map_bh)
  574. {
  575. sector_t sector;
  576. int ret, nr_pages;
  577. ret = dio_bio_reap(dio, sdio);
  578. if (ret)
  579. goto out;
  580. sector = start_sector << (sdio->blkbits - 9);
  581. nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES);
  582. BUG_ON(nr_pages <= 0);
  583. dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
  584. sdio->boundary = 0;
  585. out:
  586. return ret;
  587. }
  588. /*
  589. * Attempt to put the current chunk of 'cur_page' into the current BIO. If
  590. * that was successful then update final_block_in_bio and take a ref against
  591. * the just-added page.
  592. *
  593. * Return zero on success. Non-zero means the caller needs to start a new BIO.
  594. */
  595. static inline int dio_bio_add_page(struct dio_submit *sdio)
  596. {
  597. int ret;
  598. ret = bio_add_page(sdio->bio, sdio->cur_page,
  599. sdio->cur_page_len, sdio->cur_page_offset);
  600. if (ret == sdio->cur_page_len) {
  601. /*
  602. * Decrement count only, if we are done with this page
  603. */
  604. if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
  605. sdio->pages_in_io--;
  606. page_cache_get(sdio->cur_page);
  607. sdio->final_block_in_bio = sdio->cur_page_block +
  608. (sdio->cur_page_len >> sdio->blkbits);
  609. ret = 0;
  610. } else {
  611. ret = 1;
  612. }
  613. return ret;
  614. }
  615. /*
  616. * Put cur_page under IO. The section of cur_page which is described by
  617. * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
  618. * starts on-disk at cur_page_block.
  619. *
  620. * We take a ref against the page here (on behalf of its presence in the bio).
  621. *
  622. * The caller of this function is responsible for removing cur_page from the
  623. * dio, and for dropping the refcount which came from that presence.
  624. */
  625. static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
  626. struct buffer_head *map_bh)
  627. {
  628. int ret = 0;
  629. if (sdio->bio) {
  630. loff_t cur_offset = sdio->cur_page_fs_offset;
  631. loff_t bio_next_offset = sdio->logical_offset_in_bio +
  632. sdio->bio->bi_iter.bi_size;
  633. /*
  634. * See whether this new request is contiguous with the old.
  635. *
  636. * Btrfs cannot handle having logically non-contiguous requests
  637. * submitted. For example if you have
  638. *
  639. * Logical: [0-4095][HOLE][8192-12287]
  640. * Physical: [0-4095] [4096-8191]
  641. *
  642. * We cannot submit those pages together as one BIO. So if our
  643. * current logical offset in the file does not equal what would
  644. * be the next logical offset in the bio, submit the bio we
  645. * have.
  646. */
  647. if (sdio->final_block_in_bio != sdio->cur_page_block ||
  648. cur_offset != bio_next_offset)
  649. dio_bio_submit(dio, sdio);
  650. }
  651. if (sdio->bio == NULL) {
  652. ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
  653. if (ret)
  654. goto out;
  655. }
  656. if (dio_bio_add_page(sdio) != 0) {
  657. dio_bio_submit(dio, sdio);
  658. ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
  659. if (ret == 0) {
  660. ret = dio_bio_add_page(sdio);
  661. BUG_ON(ret != 0);
  662. }
  663. }
  664. out:
  665. return ret;
  666. }
  667. /*
  668. * An autonomous function to put a chunk of a page under deferred IO.
  669. *
  670. * The caller doesn't actually know (or care) whether this piece of page is in
  671. * a BIO, or is under IO or whatever. We just take care of all possible
  672. * situations here. The separation between the logic of do_direct_IO() and
  673. * that of submit_page_section() is important for clarity. Please don't break.
  674. *
  675. * The chunk of page starts on-disk at blocknr.
  676. *
  677. * We perform deferred IO, by recording the last-submitted page inside our
  678. * private part of the dio structure. If possible, we just expand the IO
  679. * across that page here.
  680. *
  681. * If that doesn't work out then we put the old page into the bio and add this
  682. * page to the dio instead.
  683. */
  684. static inline int
  685. submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
  686. unsigned offset, unsigned len, sector_t blocknr,
  687. struct buffer_head *map_bh)
  688. {
  689. int ret = 0;
  690. if (dio->rw & WRITE) {
  691. /*
  692. * Read accounting is performed in submit_bio()
  693. */
  694. task_io_account_write(len);
  695. }
  696. /*
  697. * Can we just grow the current page's presence in the dio?
  698. */
  699. if (sdio->cur_page == page &&
  700. sdio->cur_page_offset + sdio->cur_page_len == offset &&
  701. sdio->cur_page_block +
  702. (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
  703. sdio->cur_page_len += len;
  704. goto out;
  705. }
  706. /*
  707. * If there's a deferred page already there then send it.
  708. */
  709. if (sdio->cur_page) {
  710. ret = dio_send_cur_page(dio, sdio, map_bh);
  711. page_cache_release(sdio->cur_page);
  712. sdio->cur_page = NULL;
  713. if (ret)
  714. return ret;
  715. }
  716. page_cache_get(page); /* It is in dio */
  717. sdio->cur_page = page;
  718. sdio->cur_page_offset = offset;
  719. sdio->cur_page_len = len;
  720. sdio->cur_page_block = blocknr;
  721. sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
  722. out:
  723. /*
  724. * If sdio->boundary then we want to schedule the IO now to
  725. * avoid metadata seeks.
  726. */
  727. if (sdio->boundary) {
  728. ret = dio_send_cur_page(dio, sdio, map_bh);
  729. dio_bio_submit(dio, sdio);
  730. page_cache_release(sdio->cur_page);
  731. sdio->cur_page = NULL;
  732. }
  733. return ret;
  734. }
  735. /*
  736. * Clean any dirty buffers in the blockdev mapping which alias newly-created
  737. * file blocks. Only called for S_ISREG files - blockdevs do not set
  738. * buffer_new
  739. */
  740. static void clean_blockdev_aliases(struct dio *dio, struct buffer_head *map_bh)
  741. {
  742. unsigned i;
  743. unsigned nblocks;
  744. nblocks = map_bh->b_size >> dio->inode->i_blkbits;
  745. for (i = 0; i < nblocks; i++) {
  746. unmap_underlying_metadata(map_bh->b_bdev,
  747. map_bh->b_blocknr + i);
  748. }
  749. }
  750. /*
  751. * If we are not writing the entire block and get_block() allocated
  752. * the block for us, we need to fill-in the unused portion of the
  753. * block with zeros. This happens only if user-buffer, fileoffset or
  754. * io length is not filesystem block-size multiple.
  755. *
  756. * `end' is zero if we're doing the start of the IO, 1 at the end of the
  757. * IO.
  758. */
  759. static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
  760. int end, struct buffer_head *map_bh)
  761. {
  762. unsigned dio_blocks_per_fs_block;
  763. unsigned this_chunk_blocks; /* In dio_blocks */
  764. unsigned this_chunk_bytes;
  765. struct page *page;
  766. sdio->start_zero_done = 1;
  767. if (!sdio->blkfactor || !buffer_new(map_bh))
  768. return;
  769. dio_blocks_per_fs_block = 1 << sdio->blkfactor;
  770. this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
  771. if (!this_chunk_blocks)
  772. return;
  773. /*
  774. * We need to zero out part of an fs block. It is either at the
  775. * beginning or the end of the fs block.
  776. */
  777. if (end)
  778. this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
  779. this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
  780. page = ZERO_PAGE(0);
  781. if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
  782. sdio->next_block_for_io, map_bh))
  783. return;
  784. sdio->next_block_for_io += this_chunk_blocks;
  785. }
  786. /*
  787. * Walk the user pages, and the file, mapping blocks to disk and generating
  788. * a sequence of (page,offset,len,block) mappings. These mappings are injected
  789. * into submit_page_section(), which takes care of the next stage of submission
  790. *
  791. * Direct IO against a blockdev is different from a file. Because we can
  792. * happily perform page-sized but 512-byte aligned IOs. It is important that
  793. * blockdev IO be able to have fine alignment and large sizes.
  794. *
  795. * So what we do is to permit the ->get_block function to populate bh.b_size
  796. * with the size of IO which is permitted at this offset and this i_blkbits.
  797. *
  798. * For best results, the blockdev should be set up with 512-byte i_blkbits and
  799. * it should set b_size to PAGE_SIZE or more inside get_block(). This gives
  800. * fine alignment but still allows this function to work in PAGE_SIZE units.
  801. */
  802. static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
  803. struct buffer_head *map_bh)
  804. {
  805. const unsigned blkbits = sdio->blkbits;
  806. int ret = 0;
  807. while (sdio->block_in_file < sdio->final_block_in_request) {
  808. struct page *page;
  809. size_t from, to;
  810. page = dio_get_page(dio, sdio);
  811. if (IS_ERR(page)) {
  812. ret = PTR_ERR(page);
  813. goto out;
  814. }
  815. from = sdio->head ? 0 : sdio->from;
  816. to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
  817. sdio->head++;
  818. while (from < to) {
  819. unsigned this_chunk_bytes; /* # of bytes mapped */
  820. unsigned this_chunk_blocks; /* # of blocks */
  821. unsigned u;
  822. if (sdio->blocks_available == 0) {
  823. /*
  824. * Need to go and map some more disk
  825. */
  826. unsigned long blkmask;
  827. unsigned long dio_remainder;
  828. ret = get_more_blocks(dio, sdio, map_bh);
  829. if (ret) {
  830. page_cache_release(page);
  831. goto out;
  832. }
  833. if (!buffer_mapped(map_bh))
  834. goto do_holes;
  835. sdio->blocks_available =
  836. map_bh->b_size >> sdio->blkbits;
  837. sdio->next_block_for_io =
  838. map_bh->b_blocknr << sdio->blkfactor;
  839. if (buffer_new(map_bh))
  840. clean_blockdev_aliases(dio, map_bh);
  841. if (!sdio->blkfactor)
  842. goto do_holes;
  843. blkmask = (1 << sdio->blkfactor) - 1;
  844. dio_remainder = (sdio->block_in_file & blkmask);
  845. /*
  846. * If we are at the start of IO and that IO
  847. * starts partway into a fs-block,
  848. * dio_remainder will be non-zero. If the IO
  849. * is a read then we can simply advance the IO
  850. * cursor to the first block which is to be
  851. * read. But if the IO is a write and the
  852. * block was newly allocated we cannot do that;
  853. * the start of the fs block must be zeroed out
  854. * on-disk
  855. */
  856. if (!buffer_new(map_bh))
  857. sdio->next_block_for_io += dio_remainder;
  858. sdio->blocks_available -= dio_remainder;
  859. }
  860. do_holes:
  861. /* Handle holes */
  862. if (!buffer_mapped(map_bh)) {
  863. loff_t i_size_aligned;
  864. /* AKPM: eargh, -ENOTBLK is a hack */
  865. if (dio->rw & WRITE) {
  866. page_cache_release(page);
  867. return -ENOTBLK;
  868. }
  869. /*
  870. * Be sure to account for a partial block as the
  871. * last block in the file
  872. */
  873. i_size_aligned = ALIGN(i_size_read(dio->inode),
  874. 1 << blkbits);
  875. if (sdio->block_in_file >=
  876. i_size_aligned >> blkbits) {
  877. /* We hit eof */
  878. page_cache_release(page);
  879. goto out;
  880. }
  881. zero_user(page, from, 1 << blkbits);
  882. sdio->block_in_file++;
  883. from += 1 << blkbits;
  884. dio->result += 1 << blkbits;
  885. goto next_block;
  886. }
  887. /*
  888. * If we're performing IO which has an alignment which
  889. * is finer than the underlying fs, go check to see if
  890. * we must zero out the start of this block.
  891. */
  892. if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
  893. dio_zero_block(dio, sdio, 0, map_bh);
  894. /*
  895. * Work out, in this_chunk_blocks, how much disk we
  896. * can add to this page
  897. */
  898. this_chunk_blocks = sdio->blocks_available;
  899. u = (to - from) >> blkbits;
  900. if (this_chunk_blocks > u)
  901. this_chunk_blocks = u;
  902. u = sdio->final_block_in_request - sdio->block_in_file;
  903. if (this_chunk_blocks > u)
  904. this_chunk_blocks = u;
  905. this_chunk_bytes = this_chunk_blocks << blkbits;
  906. BUG_ON(this_chunk_bytes == 0);
  907. if (this_chunk_blocks == sdio->blocks_available)
  908. sdio->boundary = buffer_boundary(map_bh);
  909. ret = submit_page_section(dio, sdio, page,
  910. from,
  911. this_chunk_bytes,
  912. sdio->next_block_for_io,
  913. map_bh);
  914. if (ret) {
  915. page_cache_release(page);
  916. goto out;
  917. }
  918. sdio->next_block_for_io += this_chunk_blocks;
  919. sdio->block_in_file += this_chunk_blocks;
  920. from += this_chunk_bytes;
  921. dio->result += this_chunk_bytes;
  922. sdio->blocks_available -= this_chunk_blocks;
  923. next_block:
  924. BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
  925. if (sdio->block_in_file == sdio->final_block_in_request)
  926. break;
  927. }
  928. /* Drop the ref which was taken in get_user_pages() */
  929. page_cache_release(page);
  930. }
  931. out:
  932. return ret;
  933. }
  934. static inline int drop_refcount(struct dio *dio)
  935. {
  936. int ret2;
  937. unsigned long flags;
  938. /*
  939. * Sync will always be dropping the final ref and completing the
  940. * operation. AIO can if it was a broken operation described above or
  941. * in fact if all the bios race to complete before we get here. In
  942. * that case dio_complete() translates the EIOCBQUEUED into the proper
  943. * return code that the caller will hand to ->complete().
  944. *
  945. * This is managed by the bio_lock instead of being an atomic_t so that
  946. * completion paths can drop their ref and use the remaining count to
  947. * decide to wake the submission path atomically.
  948. */
  949. spin_lock_irqsave(&dio->bio_lock, flags);
  950. ret2 = --dio->refcount;
  951. spin_unlock_irqrestore(&dio->bio_lock, flags);
  952. return ret2;
  953. }
  954. /*
  955. * This is a library function for use by filesystem drivers.
  956. *
  957. * The locking rules are governed by the flags parameter:
  958. * - if the flags value contains DIO_LOCKING we use a fancy locking
  959. * scheme for dumb filesystems.
  960. * For writes this function is called under i_mutex and returns with
  961. * i_mutex held, for reads, i_mutex is not held on entry, but it is
  962. * taken and dropped again before returning.
  963. * - if the flags value does NOT contain DIO_LOCKING we don't use any
  964. * internal locking but rather rely on the filesystem to synchronize
  965. * direct I/O reads/writes versus each other and truncate.
  966. *
  967. * To help with locking against truncate we incremented the i_dio_count
  968. * counter before starting direct I/O, and decrement it once we are done.
  969. * Truncate can wait for it to reach zero to provide exclusion. It is
  970. * expected that filesystem provide exclusion between new direct I/O
  971. * and truncates. For DIO_LOCKING filesystems this is done by i_mutex,
  972. * but other filesystems need to take care of this on their own.
  973. *
  974. * NOTE: if you pass "sdio" to anything by pointer make sure that function
  975. * is always inlined. Otherwise gcc is unable to split the structure into
  976. * individual fields and will generate much worse code. This is important
  977. * for the whole file.
  978. */
  979. static inline ssize_t
  980. do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
  981. struct block_device *bdev, struct iov_iter *iter,
  982. loff_t offset, get_block_t get_block, dio_iodone_t end_io,
  983. dio_submit_t submit_io, int flags)
  984. {
  985. unsigned i_blkbits = ACCESS_ONCE(inode->i_blkbits);
  986. unsigned blkbits = i_blkbits;
  987. unsigned blocksize_mask = (1 << blkbits) - 1;
  988. ssize_t retval = -EINVAL;
  989. size_t count = iov_iter_count(iter);
  990. loff_t end = offset + count;
  991. struct dio *dio;
  992. struct dio_submit sdio = { 0, };
  993. struct buffer_head map_bh = { 0, };
  994. struct blk_plug plug;
  995. unsigned long align = offset | iov_iter_alignment(iter);
  996. /*
  997. * Avoid references to bdev if not absolutely needed to give
  998. * the early prefetch in the caller enough time.
  999. */
  1000. if (align & blocksize_mask) {
  1001. if (bdev)
  1002. blkbits = blksize_bits(bdev_logical_block_size(bdev));
  1003. blocksize_mask = (1 << blkbits) - 1;
  1004. if (align & blocksize_mask)
  1005. goto out;
  1006. }
  1007. /* watch out for a 0 len io from a tricksy fs */
  1008. if (iov_iter_rw(iter) == READ && !iov_iter_count(iter))
  1009. return 0;
  1010. dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
  1011. retval = -ENOMEM;
  1012. if (!dio)
  1013. goto out;
  1014. /*
  1015. * Believe it or not, zeroing out the page array caused a .5%
  1016. * performance regression in a database benchmark. So, we take
  1017. * care to only zero out what's needed.
  1018. */
  1019. memset(dio, 0, offsetof(struct dio, pages));
  1020. dio->flags = flags;
  1021. if (dio->flags & DIO_LOCKING) {
  1022. if (iov_iter_rw(iter) == READ) {
  1023. struct address_space *mapping =
  1024. iocb->ki_filp->f_mapping;
  1025. /* will be released by direct_io_worker */
  1026. mutex_lock(&inode->i_mutex);
  1027. retval = filemap_write_and_wait_range(mapping, offset,
  1028. end - 1);
  1029. if (retval) {
  1030. mutex_unlock(&inode->i_mutex);
  1031. kmem_cache_free(dio_cache, dio);
  1032. goto out;
  1033. }
  1034. }
  1035. }
  1036. /*
  1037. * For file extending writes updating i_size before data writeouts
  1038. * complete can expose uninitialized blocks in dumb filesystems.
  1039. * In that case we need to wait for I/O completion even if asked
  1040. * for an asynchronous write.
  1041. */
  1042. if (is_sync_kiocb(iocb))
  1043. dio->is_async = false;
  1044. else if (!(dio->flags & DIO_ASYNC_EXTEND) &&
  1045. iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
  1046. dio->is_async = false;
  1047. else
  1048. dio->is_async = true;
  1049. dio->inode = inode;
  1050. dio->rw = iov_iter_rw(iter) == WRITE ? WRITE_ODIRECT : READ;
  1051. /*
  1052. * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
  1053. * so that we can call ->fsync.
  1054. */
  1055. if (dio->is_async && iov_iter_rw(iter) == WRITE &&
  1056. ((iocb->ki_filp->f_flags & O_DSYNC) ||
  1057. IS_SYNC(iocb->ki_filp->f_mapping->host))) {
  1058. retval = dio_set_defer_completion(dio);
  1059. if (retval) {
  1060. /*
  1061. * We grab i_mutex only for reads so we don't have
  1062. * to release it here
  1063. */
  1064. kmem_cache_free(dio_cache, dio);
  1065. goto out;
  1066. }
  1067. }
  1068. /*
  1069. * Will be decremented at I/O completion time.
  1070. */
  1071. if (!(dio->flags & DIO_SKIP_DIO_COUNT))
  1072. inode_dio_begin(inode);
  1073. retval = 0;
  1074. sdio.blkbits = blkbits;
  1075. sdio.blkfactor = i_blkbits - blkbits;
  1076. sdio.block_in_file = offset >> blkbits;
  1077. sdio.get_block = get_block;
  1078. dio->end_io = end_io;
  1079. sdio.submit_io = submit_io;
  1080. sdio.final_block_in_bio = -1;
  1081. sdio.next_block_for_io = -1;
  1082. dio->iocb = iocb;
  1083. dio->i_size = i_size_read(inode);
  1084. spin_lock_init(&dio->bio_lock);
  1085. dio->refcount = 1;
  1086. sdio.iter = iter;
  1087. sdio.final_block_in_request =
  1088. (offset + iov_iter_count(iter)) >> blkbits;
  1089. /*
  1090. * In case of non-aligned buffers, we may need 2 more
  1091. * pages since we need to zero out first and last block.
  1092. */
  1093. if (unlikely(sdio.blkfactor))
  1094. sdio.pages_in_io = 2;
  1095. sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
  1096. blk_start_plug(&plug);
  1097. retval = do_direct_IO(dio, &sdio, &map_bh);
  1098. if (retval)
  1099. dio_cleanup(dio, &sdio);
  1100. if (retval == -ENOTBLK) {
  1101. /*
  1102. * The remaining part of the request will be
  1103. * be handled by buffered I/O when we return
  1104. */
  1105. retval = 0;
  1106. }
  1107. /*
  1108. * There may be some unwritten disk at the end of a part-written
  1109. * fs-block-sized block. Go zero that now.
  1110. */
  1111. dio_zero_block(dio, &sdio, 1, &map_bh);
  1112. if (sdio.cur_page) {
  1113. ssize_t ret2;
  1114. ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
  1115. if (retval == 0)
  1116. retval = ret2;
  1117. page_cache_release(sdio.cur_page);
  1118. sdio.cur_page = NULL;
  1119. }
  1120. if (sdio.bio)
  1121. dio_bio_submit(dio, &sdio);
  1122. blk_finish_plug(&plug);
  1123. /*
  1124. * It is possible that, we return short IO due to end of file.
  1125. * In that case, we need to release all the pages we got hold on.
  1126. */
  1127. dio_cleanup(dio, &sdio);
  1128. /*
  1129. * All block lookups have been performed. For READ requests
  1130. * we can let i_mutex go now that its achieved its purpose
  1131. * of protecting us from looking up uninitialized blocks.
  1132. */
  1133. if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
  1134. mutex_unlock(&dio->inode->i_mutex);
  1135. /*
  1136. * The only time we want to leave bios in flight is when a successful
  1137. * partial aio read or full aio write have been setup. In that case
  1138. * bio completion will call aio_complete. The only time it's safe to
  1139. * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
  1140. * This had *better* be the only place that raises -EIOCBQUEUED.
  1141. */
  1142. BUG_ON(retval == -EIOCBQUEUED);
  1143. if (dio->is_async && retval == 0 && dio->result &&
  1144. (iov_iter_rw(iter) == READ || dio->result == count))
  1145. retval = -EIOCBQUEUED;
  1146. else
  1147. dio_await_completion(dio);
  1148. if (drop_refcount(dio) == 0) {
  1149. retval = dio_complete(dio, offset, retval, false);
  1150. } else
  1151. BUG_ON(retval != -EIOCBQUEUED);
  1152. out:
  1153. return retval;
  1154. }
  1155. ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
  1156. struct block_device *bdev, struct iov_iter *iter,
  1157. loff_t offset, get_block_t get_block,
  1158. dio_iodone_t end_io, dio_submit_t submit_io,
  1159. int flags)
  1160. {
  1161. /*
  1162. * The block device state is needed in the end to finally
  1163. * submit everything. Since it's likely to be cache cold
  1164. * prefetch it here as first thing to hide some of the
  1165. * latency.
  1166. *
  1167. * Attempt to prefetch the pieces we likely need later.
  1168. */
  1169. prefetch(&bdev->bd_disk->part_tbl);
  1170. prefetch(bdev->bd_queue);
  1171. prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
  1172. return do_blockdev_direct_IO(iocb, inode, bdev, iter, offset, get_block,
  1173. end_io, submit_io, flags);
  1174. }
  1175. EXPORT_SYMBOL(__blockdev_direct_IO);
  1176. static __init int dio_init(void)
  1177. {
  1178. dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
  1179. return 0;
  1180. }
  1181. module_init(dio_init)