disk-io.c 119 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/slab.h>
  29. #include <linux/migrate.h>
  30. #include <linux/ratelimit.h>
  31. #include <linux/uuid.h>
  32. #include <linux/semaphore.h>
  33. #include <asm/unaligned.h>
  34. #include "ctree.h"
  35. #include "disk-io.h"
  36. #include "hash.h"
  37. #include "transaction.h"
  38. #include "btrfs_inode.h"
  39. #include "volumes.h"
  40. #include "print-tree.h"
  41. #include "locking.h"
  42. #include "tree-log.h"
  43. #include "free-space-cache.h"
  44. #include "inode-map.h"
  45. #include "check-integrity.h"
  46. #include "rcu-string.h"
  47. #include "dev-replace.h"
  48. #include "raid56.h"
  49. #include "sysfs.h"
  50. #include "qgroup.h"
  51. #ifdef CONFIG_X86
  52. #include <asm/cpufeature.h>
  53. #endif
  54. static const struct extent_io_ops btree_extent_io_ops;
  55. static void end_workqueue_fn(struct btrfs_work *work);
  56. static void free_fs_root(struct btrfs_root *root);
  57. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  58. int read_only);
  59. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  60. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  61. struct btrfs_root *root);
  62. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  63. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  64. struct extent_io_tree *dirty_pages,
  65. int mark);
  66. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  67. struct extent_io_tree *pinned_extents);
  68. static int btrfs_cleanup_transaction(struct btrfs_root *root);
  69. static void btrfs_error_commit_super(struct btrfs_root *root);
  70. /*
  71. * btrfs_end_io_wq structs are used to do processing in task context when an IO
  72. * is complete. This is used during reads to verify checksums, and it is used
  73. * by writes to insert metadata for new file extents after IO is complete.
  74. */
  75. struct btrfs_end_io_wq {
  76. struct bio *bio;
  77. bio_end_io_t *end_io;
  78. void *private;
  79. struct btrfs_fs_info *info;
  80. int error;
  81. enum btrfs_wq_endio_type metadata;
  82. struct list_head list;
  83. struct btrfs_work work;
  84. };
  85. static struct kmem_cache *btrfs_end_io_wq_cache;
  86. int __init btrfs_end_io_wq_init(void)
  87. {
  88. btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
  89. sizeof(struct btrfs_end_io_wq),
  90. 0,
  91. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  92. NULL);
  93. if (!btrfs_end_io_wq_cache)
  94. return -ENOMEM;
  95. return 0;
  96. }
  97. void btrfs_end_io_wq_exit(void)
  98. {
  99. if (btrfs_end_io_wq_cache)
  100. kmem_cache_destroy(btrfs_end_io_wq_cache);
  101. }
  102. /*
  103. * async submit bios are used to offload expensive checksumming
  104. * onto the worker threads. They checksum file and metadata bios
  105. * just before they are sent down the IO stack.
  106. */
  107. struct async_submit_bio {
  108. struct inode *inode;
  109. struct bio *bio;
  110. struct list_head list;
  111. extent_submit_bio_hook_t *submit_bio_start;
  112. extent_submit_bio_hook_t *submit_bio_done;
  113. int rw;
  114. int mirror_num;
  115. unsigned long bio_flags;
  116. /*
  117. * bio_offset is optional, can be used if the pages in the bio
  118. * can't tell us where in the file the bio should go
  119. */
  120. u64 bio_offset;
  121. struct btrfs_work work;
  122. int error;
  123. };
  124. /*
  125. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  126. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  127. * the level the eb occupies in the tree.
  128. *
  129. * Different roots are used for different purposes and may nest inside each
  130. * other and they require separate keysets. As lockdep keys should be
  131. * static, assign keysets according to the purpose of the root as indicated
  132. * by btrfs_root->objectid. This ensures that all special purpose roots
  133. * have separate keysets.
  134. *
  135. * Lock-nesting across peer nodes is always done with the immediate parent
  136. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  137. * subclass to avoid triggering lockdep warning in such cases.
  138. *
  139. * The key is set by the readpage_end_io_hook after the buffer has passed
  140. * csum validation but before the pages are unlocked. It is also set by
  141. * btrfs_init_new_buffer on freshly allocated blocks.
  142. *
  143. * We also add a check to make sure the highest level of the tree is the
  144. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  145. * needs update as well.
  146. */
  147. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  148. # if BTRFS_MAX_LEVEL != 8
  149. # error
  150. # endif
  151. static struct btrfs_lockdep_keyset {
  152. u64 id; /* root objectid */
  153. const char *name_stem; /* lock name stem */
  154. char names[BTRFS_MAX_LEVEL + 1][20];
  155. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  156. } btrfs_lockdep_keysets[] = {
  157. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  158. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  159. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  160. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  161. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  162. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  163. { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
  164. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  165. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  166. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  167. { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
  168. { .id = 0, .name_stem = "tree" },
  169. };
  170. void __init btrfs_init_lockdep(void)
  171. {
  172. int i, j;
  173. /* initialize lockdep class names */
  174. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  175. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  176. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  177. snprintf(ks->names[j], sizeof(ks->names[j]),
  178. "btrfs-%s-%02d", ks->name_stem, j);
  179. }
  180. }
  181. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  182. int level)
  183. {
  184. struct btrfs_lockdep_keyset *ks;
  185. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  186. /* find the matching keyset, id 0 is the default entry */
  187. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  188. if (ks->id == objectid)
  189. break;
  190. lockdep_set_class_and_name(&eb->lock,
  191. &ks->keys[level], ks->names[level]);
  192. }
  193. #endif
  194. /*
  195. * extents on the btree inode are pretty simple, there's one extent
  196. * that covers the entire device
  197. */
  198. static struct extent_map *btree_get_extent(struct inode *inode,
  199. struct page *page, size_t pg_offset, u64 start, u64 len,
  200. int create)
  201. {
  202. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  203. struct extent_map *em;
  204. int ret;
  205. read_lock(&em_tree->lock);
  206. em = lookup_extent_mapping(em_tree, start, len);
  207. if (em) {
  208. em->bdev =
  209. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  210. read_unlock(&em_tree->lock);
  211. goto out;
  212. }
  213. read_unlock(&em_tree->lock);
  214. em = alloc_extent_map();
  215. if (!em) {
  216. em = ERR_PTR(-ENOMEM);
  217. goto out;
  218. }
  219. em->start = 0;
  220. em->len = (u64)-1;
  221. em->block_len = (u64)-1;
  222. em->block_start = 0;
  223. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  224. write_lock(&em_tree->lock);
  225. ret = add_extent_mapping(em_tree, em, 0);
  226. if (ret == -EEXIST) {
  227. free_extent_map(em);
  228. em = lookup_extent_mapping(em_tree, start, len);
  229. if (!em)
  230. em = ERR_PTR(-EIO);
  231. } else if (ret) {
  232. free_extent_map(em);
  233. em = ERR_PTR(ret);
  234. }
  235. write_unlock(&em_tree->lock);
  236. out:
  237. return em;
  238. }
  239. u32 btrfs_csum_data(char *data, u32 seed, size_t len)
  240. {
  241. return btrfs_crc32c(seed, data, len);
  242. }
  243. void btrfs_csum_final(u32 crc, char *result)
  244. {
  245. put_unaligned_le32(~crc, result);
  246. }
  247. /*
  248. * compute the csum for a btree block, and either verify it or write it
  249. * into the csum field of the block.
  250. */
  251. static int csum_tree_block(struct btrfs_fs_info *fs_info,
  252. struct extent_buffer *buf,
  253. int verify)
  254. {
  255. u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
  256. char *result = NULL;
  257. unsigned long len;
  258. unsigned long cur_len;
  259. unsigned long offset = BTRFS_CSUM_SIZE;
  260. char *kaddr;
  261. unsigned long map_start;
  262. unsigned long map_len;
  263. int err;
  264. u32 crc = ~(u32)0;
  265. unsigned long inline_result;
  266. len = buf->len - offset;
  267. while (len > 0) {
  268. err = map_private_extent_buffer(buf, offset, 32,
  269. &kaddr, &map_start, &map_len);
  270. if (err)
  271. return 1;
  272. cur_len = min(len, map_len - (offset - map_start));
  273. crc = btrfs_csum_data(kaddr + offset - map_start,
  274. crc, cur_len);
  275. len -= cur_len;
  276. offset += cur_len;
  277. }
  278. if (csum_size > sizeof(inline_result)) {
  279. result = kzalloc(csum_size, GFP_NOFS);
  280. if (!result)
  281. return 1;
  282. } else {
  283. result = (char *)&inline_result;
  284. }
  285. btrfs_csum_final(crc, result);
  286. if (verify) {
  287. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  288. u32 val;
  289. u32 found = 0;
  290. memcpy(&found, result, csum_size);
  291. read_extent_buffer(buf, &val, 0, csum_size);
  292. printk_ratelimited(KERN_WARNING
  293. "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
  294. "level %d\n",
  295. fs_info->sb->s_id, buf->start,
  296. val, found, btrfs_header_level(buf));
  297. if (result != (char *)&inline_result)
  298. kfree(result);
  299. return 1;
  300. }
  301. } else {
  302. write_extent_buffer(buf, result, 0, csum_size);
  303. }
  304. if (result != (char *)&inline_result)
  305. kfree(result);
  306. return 0;
  307. }
  308. /*
  309. * we can't consider a given block up to date unless the transid of the
  310. * block matches the transid in the parent node's pointer. This is how we
  311. * detect blocks that either didn't get written at all or got written
  312. * in the wrong place.
  313. */
  314. static int verify_parent_transid(struct extent_io_tree *io_tree,
  315. struct extent_buffer *eb, u64 parent_transid,
  316. int atomic)
  317. {
  318. struct extent_state *cached_state = NULL;
  319. int ret;
  320. bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
  321. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  322. return 0;
  323. if (atomic)
  324. return -EAGAIN;
  325. if (need_lock) {
  326. btrfs_tree_read_lock(eb);
  327. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  328. }
  329. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  330. 0, &cached_state);
  331. if (extent_buffer_uptodate(eb) &&
  332. btrfs_header_generation(eb) == parent_transid) {
  333. ret = 0;
  334. goto out;
  335. }
  336. printk_ratelimited(KERN_ERR
  337. "BTRFS (device %s): parent transid verify failed on %llu wanted %llu found %llu\n",
  338. eb->fs_info->sb->s_id, eb->start,
  339. parent_transid, btrfs_header_generation(eb));
  340. ret = 1;
  341. /*
  342. * Things reading via commit roots that don't have normal protection,
  343. * like send, can have a really old block in cache that may point at a
  344. * block that has been free'd and re-allocated. So don't clear uptodate
  345. * if we find an eb that is under IO (dirty/writeback) because we could
  346. * end up reading in the stale data and then writing it back out and
  347. * making everybody very sad.
  348. */
  349. if (!extent_buffer_under_io(eb))
  350. clear_extent_buffer_uptodate(eb);
  351. out:
  352. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  353. &cached_state, GFP_NOFS);
  354. if (need_lock)
  355. btrfs_tree_read_unlock_blocking(eb);
  356. return ret;
  357. }
  358. /*
  359. * Return 0 if the superblock checksum type matches the checksum value of that
  360. * algorithm. Pass the raw disk superblock data.
  361. */
  362. static int btrfs_check_super_csum(char *raw_disk_sb)
  363. {
  364. struct btrfs_super_block *disk_sb =
  365. (struct btrfs_super_block *)raw_disk_sb;
  366. u16 csum_type = btrfs_super_csum_type(disk_sb);
  367. int ret = 0;
  368. if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
  369. u32 crc = ~(u32)0;
  370. const int csum_size = sizeof(crc);
  371. char result[csum_size];
  372. /*
  373. * The super_block structure does not span the whole
  374. * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
  375. * is filled with zeros and is included in the checkum.
  376. */
  377. crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
  378. crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  379. btrfs_csum_final(crc, result);
  380. if (memcmp(raw_disk_sb, result, csum_size))
  381. ret = 1;
  382. }
  383. if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
  384. printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
  385. csum_type);
  386. ret = 1;
  387. }
  388. return ret;
  389. }
  390. /*
  391. * helper to read a given tree block, doing retries as required when
  392. * the checksums don't match and we have alternate mirrors to try.
  393. */
  394. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  395. struct extent_buffer *eb,
  396. u64 start, u64 parent_transid)
  397. {
  398. struct extent_io_tree *io_tree;
  399. int failed = 0;
  400. int ret;
  401. int num_copies = 0;
  402. int mirror_num = 0;
  403. int failed_mirror = 0;
  404. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  405. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  406. while (1) {
  407. ret = read_extent_buffer_pages(io_tree, eb, start,
  408. WAIT_COMPLETE,
  409. btree_get_extent, mirror_num);
  410. if (!ret) {
  411. if (!verify_parent_transid(io_tree, eb,
  412. parent_transid, 0))
  413. break;
  414. else
  415. ret = -EIO;
  416. }
  417. /*
  418. * This buffer's crc is fine, but its contents are corrupted, so
  419. * there is no reason to read the other copies, they won't be
  420. * any less wrong.
  421. */
  422. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  423. break;
  424. num_copies = btrfs_num_copies(root->fs_info,
  425. eb->start, eb->len);
  426. if (num_copies == 1)
  427. break;
  428. if (!failed_mirror) {
  429. failed = 1;
  430. failed_mirror = eb->read_mirror;
  431. }
  432. mirror_num++;
  433. if (mirror_num == failed_mirror)
  434. mirror_num++;
  435. if (mirror_num > num_copies)
  436. break;
  437. }
  438. if (failed && !ret && failed_mirror)
  439. repair_eb_io_failure(root, eb, failed_mirror);
  440. return ret;
  441. }
  442. /*
  443. * checksum a dirty tree block before IO. This has extra checks to make sure
  444. * we only fill in the checksum field in the first page of a multi-page block
  445. */
  446. static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
  447. {
  448. u64 start = page_offset(page);
  449. u64 found_start;
  450. struct extent_buffer *eb;
  451. eb = (struct extent_buffer *)page->private;
  452. if (page != eb->pages[0])
  453. return 0;
  454. found_start = btrfs_header_bytenr(eb);
  455. if (WARN_ON(found_start != start || !PageUptodate(page)))
  456. return 0;
  457. csum_tree_block(fs_info, eb, 0);
  458. return 0;
  459. }
  460. static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
  461. struct extent_buffer *eb)
  462. {
  463. struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
  464. u8 fsid[BTRFS_UUID_SIZE];
  465. int ret = 1;
  466. read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
  467. while (fs_devices) {
  468. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  469. ret = 0;
  470. break;
  471. }
  472. fs_devices = fs_devices->seed;
  473. }
  474. return ret;
  475. }
  476. #define CORRUPT(reason, eb, root, slot) \
  477. btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
  478. "root=%llu, slot=%d", reason, \
  479. btrfs_header_bytenr(eb), root->objectid, slot)
  480. static noinline int check_leaf(struct btrfs_root *root,
  481. struct extent_buffer *leaf)
  482. {
  483. struct btrfs_key key;
  484. struct btrfs_key leaf_key;
  485. u32 nritems = btrfs_header_nritems(leaf);
  486. int slot;
  487. if (nritems == 0)
  488. return 0;
  489. /* Check the 0 item */
  490. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  491. BTRFS_LEAF_DATA_SIZE(root)) {
  492. CORRUPT("invalid item offset size pair", leaf, root, 0);
  493. return -EIO;
  494. }
  495. /*
  496. * Check to make sure each items keys are in the correct order and their
  497. * offsets make sense. We only have to loop through nritems-1 because
  498. * we check the current slot against the next slot, which verifies the
  499. * next slot's offset+size makes sense and that the current's slot
  500. * offset is correct.
  501. */
  502. for (slot = 0; slot < nritems - 1; slot++) {
  503. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  504. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  505. /* Make sure the keys are in the right order */
  506. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  507. CORRUPT("bad key order", leaf, root, slot);
  508. return -EIO;
  509. }
  510. /*
  511. * Make sure the offset and ends are right, remember that the
  512. * item data starts at the end of the leaf and grows towards the
  513. * front.
  514. */
  515. if (btrfs_item_offset_nr(leaf, slot) !=
  516. btrfs_item_end_nr(leaf, slot + 1)) {
  517. CORRUPT("slot offset bad", leaf, root, slot);
  518. return -EIO;
  519. }
  520. /*
  521. * Check to make sure that we don't point outside of the leaf,
  522. * just incase all the items are consistent to eachother, but
  523. * all point outside of the leaf.
  524. */
  525. if (btrfs_item_end_nr(leaf, slot) >
  526. BTRFS_LEAF_DATA_SIZE(root)) {
  527. CORRUPT("slot end outside of leaf", leaf, root, slot);
  528. return -EIO;
  529. }
  530. }
  531. return 0;
  532. }
  533. static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
  534. u64 phy_offset, struct page *page,
  535. u64 start, u64 end, int mirror)
  536. {
  537. u64 found_start;
  538. int found_level;
  539. struct extent_buffer *eb;
  540. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  541. int ret = 0;
  542. int reads_done;
  543. if (!page->private)
  544. goto out;
  545. eb = (struct extent_buffer *)page->private;
  546. /* the pending IO might have been the only thing that kept this buffer
  547. * in memory. Make sure we have a ref for all this other checks
  548. */
  549. extent_buffer_get(eb);
  550. reads_done = atomic_dec_and_test(&eb->io_pages);
  551. if (!reads_done)
  552. goto err;
  553. eb->read_mirror = mirror;
  554. if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
  555. ret = -EIO;
  556. goto err;
  557. }
  558. found_start = btrfs_header_bytenr(eb);
  559. if (found_start != eb->start) {
  560. printk_ratelimited(KERN_ERR "BTRFS (device %s): bad tree block start "
  561. "%llu %llu\n",
  562. eb->fs_info->sb->s_id, found_start, eb->start);
  563. ret = -EIO;
  564. goto err;
  565. }
  566. if (check_tree_block_fsid(root->fs_info, eb)) {
  567. printk_ratelimited(KERN_ERR "BTRFS (device %s): bad fsid on block %llu\n",
  568. eb->fs_info->sb->s_id, eb->start);
  569. ret = -EIO;
  570. goto err;
  571. }
  572. found_level = btrfs_header_level(eb);
  573. if (found_level >= BTRFS_MAX_LEVEL) {
  574. btrfs_err(root->fs_info, "bad tree block level %d",
  575. (int)btrfs_header_level(eb));
  576. ret = -EIO;
  577. goto err;
  578. }
  579. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  580. eb, found_level);
  581. ret = csum_tree_block(root->fs_info, eb, 1);
  582. if (ret) {
  583. ret = -EIO;
  584. goto err;
  585. }
  586. /*
  587. * If this is a leaf block and it is corrupt, set the corrupt bit so
  588. * that we don't try and read the other copies of this block, just
  589. * return -EIO.
  590. */
  591. if (found_level == 0 && check_leaf(root, eb)) {
  592. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  593. ret = -EIO;
  594. }
  595. if (!ret)
  596. set_extent_buffer_uptodate(eb);
  597. err:
  598. if (reads_done &&
  599. test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  600. btree_readahead_hook(root, eb, eb->start, ret);
  601. if (ret) {
  602. /*
  603. * our io error hook is going to dec the io pages
  604. * again, we have to make sure it has something
  605. * to decrement
  606. */
  607. atomic_inc(&eb->io_pages);
  608. clear_extent_buffer_uptodate(eb);
  609. }
  610. free_extent_buffer(eb);
  611. out:
  612. return ret;
  613. }
  614. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  615. {
  616. struct extent_buffer *eb;
  617. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  618. eb = (struct extent_buffer *)page->private;
  619. set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
  620. eb->read_mirror = failed_mirror;
  621. atomic_dec(&eb->io_pages);
  622. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  623. btree_readahead_hook(root, eb, eb->start, -EIO);
  624. return -EIO; /* we fixed nothing */
  625. }
  626. static void end_workqueue_bio(struct bio *bio)
  627. {
  628. struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
  629. struct btrfs_fs_info *fs_info;
  630. struct btrfs_workqueue *wq;
  631. btrfs_work_func_t func;
  632. fs_info = end_io_wq->info;
  633. end_io_wq->error = bio->bi_error;
  634. if (bio->bi_rw & REQ_WRITE) {
  635. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
  636. wq = fs_info->endio_meta_write_workers;
  637. func = btrfs_endio_meta_write_helper;
  638. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
  639. wq = fs_info->endio_freespace_worker;
  640. func = btrfs_freespace_write_helper;
  641. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  642. wq = fs_info->endio_raid56_workers;
  643. func = btrfs_endio_raid56_helper;
  644. } else {
  645. wq = fs_info->endio_write_workers;
  646. func = btrfs_endio_write_helper;
  647. }
  648. } else {
  649. if (unlikely(end_io_wq->metadata ==
  650. BTRFS_WQ_ENDIO_DIO_REPAIR)) {
  651. wq = fs_info->endio_repair_workers;
  652. func = btrfs_endio_repair_helper;
  653. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  654. wq = fs_info->endio_raid56_workers;
  655. func = btrfs_endio_raid56_helper;
  656. } else if (end_io_wq->metadata) {
  657. wq = fs_info->endio_meta_workers;
  658. func = btrfs_endio_meta_helper;
  659. } else {
  660. wq = fs_info->endio_workers;
  661. func = btrfs_endio_helper;
  662. }
  663. }
  664. btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
  665. btrfs_queue_work(wq, &end_io_wq->work);
  666. }
  667. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  668. enum btrfs_wq_endio_type metadata)
  669. {
  670. struct btrfs_end_io_wq *end_io_wq;
  671. end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
  672. if (!end_io_wq)
  673. return -ENOMEM;
  674. end_io_wq->private = bio->bi_private;
  675. end_io_wq->end_io = bio->bi_end_io;
  676. end_io_wq->info = info;
  677. end_io_wq->error = 0;
  678. end_io_wq->bio = bio;
  679. end_io_wq->metadata = metadata;
  680. bio->bi_private = end_io_wq;
  681. bio->bi_end_io = end_workqueue_bio;
  682. return 0;
  683. }
  684. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  685. {
  686. unsigned long limit = min_t(unsigned long,
  687. info->thread_pool_size,
  688. info->fs_devices->open_devices);
  689. return 256 * limit;
  690. }
  691. static void run_one_async_start(struct btrfs_work *work)
  692. {
  693. struct async_submit_bio *async;
  694. int ret;
  695. async = container_of(work, struct async_submit_bio, work);
  696. ret = async->submit_bio_start(async->inode, async->rw, async->bio,
  697. async->mirror_num, async->bio_flags,
  698. async->bio_offset);
  699. if (ret)
  700. async->error = ret;
  701. }
  702. static void run_one_async_done(struct btrfs_work *work)
  703. {
  704. struct btrfs_fs_info *fs_info;
  705. struct async_submit_bio *async;
  706. int limit;
  707. async = container_of(work, struct async_submit_bio, work);
  708. fs_info = BTRFS_I(async->inode)->root->fs_info;
  709. limit = btrfs_async_submit_limit(fs_info);
  710. limit = limit * 2 / 3;
  711. if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
  712. waitqueue_active(&fs_info->async_submit_wait))
  713. wake_up(&fs_info->async_submit_wait);
  714. /* If an error occured we just want to clean up the bio and move on */
  715. if (async->error) {
  716. async->bio->bi_error = async->error;
  717. bio_endio(async->bio);
  718. return;
  719. }
  720. async->submit_bio_done(async->inode, async->rw, async->bio,
  721. async->mirror_num, async->bio_flags,
  722. async->bio_offset);
  723. }
  724. static void run_one_async_free(struct btrfs_work *work)
  725. {
  726. struct async_submit_bio *async;
  727. async = container_of(work, struct async_submit_bio, work);
  728. kfree(async);
  729. }
  730. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  731. int rw, struct bio *bio, int mirror_num,
  732. unsigned long bio_flags,
  733. u64 bio_offset,
  734. extent_submit_bio_hook_t *submit_bio_start,
  735. extent_submit_bio_hook_t *submit_bio_done)
  736. {
  737. struct async_submit_bio *async;
  738. async = kmalloc(sizeof(*async), GFP_NOFS);
  739. if (!async)
  740. return -ENOMEM;
  741. async->inode = inode;
  742. async->rw = rw;
  743. async->bio = bio;
  744. async->mirror_num = mirror_num;
  745. async->submit_bio_start = submit_bio_start;
  746. async->submit_bio_done = submit_bio_done;
  747. btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
  748. run_one_async_done, run_one_async_free);
  749. async->bio_flags = bio_flags;
  750. async->bio_offset = bio_offset;
  751. async->error = 0;
  752. atomic_inc(&fs_info->nr_async_submits);
  753. if (rw & REQ_SYNC)
  754. btrfs_set_work_high_priority(&async->work);
  755. btrfs_queue_work(fs_info->workers, &async->work);
  756. while (atomic_read(&fs_info->async_submit_draining) &&
  757. atomic_read(&fs_info->nr_async_submits)) {
  758. wait_event(fs_info->async_submit_wait,
  759. (atomic_read(&fs_info->nr_async_submits) == 0));
  760. }
  761. return 0;
  762. }
  763. static int btree_csum_one_bio(struct bio *bio)
  764. {
  765. struct bio_vec *bvec;
  766. struct btrfs_root *root;
  767. int i, ret = 0;
  768. bio_for_each_segment_all(bvec, bio, i) {
  769. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  770. ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
  771. if (ret)
  772. break;
  773. }
  774. return ret;
  775. }
  776. static int __btree_submit_bio_start(struct inode *inode, int rw,
  777. struct bio *bio, int mirror_num,
  778. unsigned long bio_flags,
  779. u64 bio_offset)
  780. {
  781. /*
  782. * when we're called for a write, we're already in the async
  783. * submission context. Just jump into btrfs_map_bio
  784. */
  785. return btree_csum_one_bio(bio);
  786. }
  787. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  788. int mirror_num, unsigned long bio_flags,
  789. u64 bio_offset)
  790. {
  791. int ret;
  792. /*
  793. * when we're called for a write, we're already in the async
  794. * submission context. Just jump into btrfs_map_bio
  795. */
  796. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  797. if (ret) {
  798. bio->bi_error = ret;
  799. bio_endio(bio);
  800. }
  801. return ret;
  802. }
  803. static int check_async_write(struct inode *inode, unsigned long bio_flags)
  804. {
  805. if (bio_flags & EXTENT_BIO_TREE_LOG)
  806. return 0;
  807. #ifdef CONFIG_X86
  808. if (cpu_has_xmm4_2)
  809. return 0;
  810. #endif
  811. return 1;
  812. }
  813. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  814. int mirror_num, unsigned long bio_flags,
  815. u64 bio_offset)
  816. {
  817. int async = check_async_write(inode, bio_flags);
  818. int ret;
  819. if (!(rw & REQ_WRITE)) {
  820. /*
  821. * called for a read, do the setup so that checksum validation
  822. * can happen in the async kernel threads
  823. */
  824. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  825. bio, BTRFS_WQ_ENDIO_METADATA);
  826. if (ret)
  827. goto out_w_error;
  828. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  829. mirror_num, 0);
  830. } else if (!async) {
  831. ret = btree_csum_one_bio(bio);
  832. if (ret)
  833. goto out_w_error;
  834. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  835. mirror_num, 0);
  836. } else {
  837. /*
  838. * kthread helpers are used to submit writes so that
  839. * checksumming can happen in parallel across all CPUs
  840. */
  841. ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  842. inode, rw, bio, mirror_num, 0,
  843. bio_offset,
  844. __btree_submit_bio_start,
  845. __btree_submit_bio_done);
  846. }
  847. if (ret)
  848. goto out_w_error;
  849. return 0;
  850. out_w_error:
  851. bio->bi_error = ret;
  852. bio_endio(bio);
  853. return ret;
  854. }
  855. #ifdef CONFIG_MIGRATION
  856. static int btree_migratepage(struct address_space *mapping,
  857. struct page *newpage, struct page *page,
  858. enum migrate_mode mode)
  859. {
  860. /*
  861. * we can't safely write a btree page from here,
  862. * we haven't done the locking hook
  863. */
  864. if (PageDirty(page))
  865. return -EAGAIN;
  866. /*
  867. * Buffers may be managed in a filesystem specific way.
  868. * We must have no buffers or drop them.
  869. */
  870. if (page_has_private(page) &&
  871. !try_to_release_page(page, GFP_KERNEL))
  872. return -EAGAIN;
  873. return migrate_page(mapping, newpage, page, mode);
  874. }
  875. #endif
  876. static int btree_writepages(struct address_space *mapping,
  877. struct writeback_control *wbc)
  878. {
  879. struct btrfs_fs_info *fs_info;
  880. int ret;
  881. if (wbc->sync_mode == WB_SYNC_NONE) {
  882. if (wbc->for_kupdate)
  883. return 0;
  884. fs_info = BTRFS_I(mapping->host)->root->fs_info;
  885. /* this is a bit racy, but that's ok */
  886. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  887. BTRFS_DIRTY_METADATA_THRESH);
  888. if (ret < 0)
  889. return 0;
  890. }
  891. return btree_write_cache_pages(mapping, wbc);
  892. }
  893. static int btree_readpage(struct file *file, struct page *page)
  894. {
  895. struct extent_io_tree *tree;
  896. tree = &BTRFS_I(page->mapping->host)->io_tree;
  897. return extent_read_full_page(tree, page, btree_get_extent, 0);
  898. }
  899. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  900. {
  901. if (PageWriteback(page) || PageDirty(page))
  902. return 0;
  903. return try_release_extent_buffer(page);
  904. }
  905. static void btree_invalidatepage(struct page *page, unsigned int offset,
  906. unsigned int length)
  907. {
  908. struct extent_io_tree *tree;
  909. tree = &BTRFS_I(page->mapping->host)->io_tree;
  910. extent_invalidatepage(tree, page, offset);
  911. btree_releasepage(page, GFP_NOFS);
  912. if (PagePrivate(page)) {
  913. btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
  914. "page private not zero on page %llu",
  915. (unsigned long long)page_offset(page));
  916. ClearPagePrivate(page);
  917. set_page_private(page, 0);
  918. page_cache_release(page);
  919. }
  920. }
  921. static int btree_set_page_dirty(struct page *page)
  922. {
  923. #ifdef DEBUG
  924. struct extent_buffer *eb;
  925. BUG_ON(!PagePrivate(page));
  926. eb = (struct extent_buffer *)page->private;
  927. BUG_ON(!eb);
  928. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  929. BUG_ON(!atomic_read(&eb->refs));
  930. btrfs_assert_tree_locked(eb);
  931. #endif
  932. return __set_page_dirty_nobuffers(page);
  933. }
  934. static const struct address_space_operations btree_aops = {
  935. .readpage = btree_readpage,
  936. .writepages = btree_writepages,
  937. .releasepage = btree_releasepage,
  938. .invalidatepage = btree_invalidatepage,
  939. #ifdef CONFIG_MIGRATION
  940. .migratepage = btree_migratepage,
  941. #endif
  942. .set_page_dirty = btree_set_page_dirty,
  943. };
  944. void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
  945. {
  946. struct extent_buffer *buf = NULL;
  947. struct inode *btree_inode = root->fs_info->btree_inode;
  948. buf = btrfs_find_create_tree_block(root, bytenr);
  949. if (!buf)
  950. return;
  951. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  952. buf, 0, WAIT_NONE, btree_get_extent, 0);
  953. free_extent_buffer(buf);
  954. }
  955. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
  956. int mirror_num, struct extent_buffer **eb)
  957. {
  958. struct extent_buffer *buf = NULL;
  959. struct inode *btree_inode = root->fs_info->btree_inode;
  960. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  961. int ret;
  962. buf = btrfs_find_create_tree_block(root, bytenr);
  963. if (!buf)
  964. return 0;
  965. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  966. ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
  967. btree_get_extent, mirror_num);
  968. if (ret) {
  969. free_extent_buffer(buf);
  970. return ret;
  971. }
  972. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  973. free_extent_buffer(buf);
  974. return -EIO;
  975. } else if (extent_buffer_uptodate(buf)) {
  976. *eb = buf;
  977. } else {
  978. free_extent_buffer(buf);
  979. }
  980. return 0;
  981. }
  982. struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
  983. u64 bytenr)
  984. {
  985. return find_extent_buffer(fs_info, bytenr);
  986. }
  987. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  988. u64 bytenr)
  989. {
  990. if (btrfs_test_is_dummy_root(root))
  991. return alloc_test_extent_buffer(root->fs_info, bytenr);
  992. return alloc_extent_buffer(root->fs_info, bytenr);
  993. }
  994. int btrfs_write_tree_block(struct extent_buffer *buf)
  995. {
  996. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  997. buf->start + buf->len - 1);
  998. }
  999. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  1000. {
  1001. return filemap_fdatawait_range(buf->pages[0]->mapping,
  1002. buf->start, buf->start + buf->len - 1);
  1003. }
  1004. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  1005. u64 parent_transid)
  1006. {
  1007. struct extent_buffer *buf = NULL;
  1008. int ret;
  1009. buf = btrfs_find_create_tree_block(root, bytenr);
  1010. if (!buf)
  1011. return ERR_PTR(-ENOMEM);
  1012. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  1013. if (ret) {
  1014. free_extent_buffer(buf);
  1015. return ERR_PTR(ret);
  1016. }
  1017. return buf;
  1018. }
  1019. void clean_tree_block(struct btrfs_trans_handle *trans,
  1020. struct btrfs_fs_info *fs_info,
  1021. struct extent_buffer *buf)
  1022. {
  1023. if (btrfs_header_generation(buf) ==
  1024. fs_info->running_transaction->transid) {
  1025. btrfs_assert_tree_locked(buf);
  1026. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  1027. __percpu_counter_add(&fs_info->dirty_metadata_bytes,
  1028. -buf->len,
  1029. fs_info->dirty_metadata_batch);
  1030. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  1031. btrfs_set_lock_blocking(buf);
  1032. clear_extent_buffer_dirty(buf);
  1033. }
  1034. }
  1035. }
  1036. static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
  1037. {
  1038. struct btrfs_subvolume_writers *writers;
  1039. int ret;
  1040. writers = kmalloc(sizeof(*writers), GFP_NOFS);
  1041. if (!writers)
  1042. return ERR_PTR(-ENOMEM);
  1043. ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
  1044. if (ret < 0) {
  1045. kfree(writers);
  1046. return ERR_PTR(ret);
  1047. }
  1048. init_waitqueue_head(&writers->wait);
  1049. return writers;
  1050. }
  1051. static void
  1052. btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
  1053. {
  1054. percpu_counter_destroy(&writers->counter);
  1055. kfree(writers);
  1056. }
  1057. static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
  1058. struct btrfs_root *root, struct btrfs_fs_info *fs_info,
  1059. u64 objectid)
  1060. {
  1061. root->node = NULL;
  1062. root->commit_root = NULL;
  1063. root->sectorsize = sectorsize;
  1064. root->nodesize = nodesize;
  1065. root->stripesize = stripesize;
  1066. root->state = 0;
  1067. root->orphan_cleanup_state = 0;
  1068. root->objectid = objectid;
  1069. root->last_trans = 0;
  1070. root->highest_objectid = 0;
  1071. root->nr_delalloc_inodes = 0;
  1072. root->nr_ordered_extents = 0;
  1073. root->name = NULL;
  1074. root->inode_tree = RB_ROOT;
  1075. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1076. root->block_rsv = NULL;
  1077. root->orphan_block_rsv = NULL;
  1078. INIT_LIST_HEAD(&root->dirty_list);
  1079. INIT_LIST_HEAD(&root->root_list);
  1080. INIT_LIST_HEAD(&root->delalloc_inodes);
  1081. INIT_LIST_HEAD(&root->delalloc_root);
  1082. INIT_LIST_HEAD(&root->ordered_extents);
  1083. INIT_LIST_HEAD(&root->ordered_root);
  1084. INIT_LIST_HEAD(&root->logged_list[0]);
  1085. INIT_LIST_HEAD(&root->logged_list[1]);
  1086. spin_lock_init(&root->orphan_lock);
  1087. spin_lock_init(&root->inode_lock);
  1088. spin_lock_init(&root->delalloc_lock);
  1089. spin_lock_init(&root->ordered_extent_lock);
  1090. spin_lock_init(&root->accounting_lock);
  1091. spin_lock_init(&root->log_extents_lock[0]);
  1092. spin_lock_init(&root->log_extents_lock[1]);
  1093. mutex_init(&root->objectid_mutex);
  1094. mutex_init(&root->log_mutex);
  1095. mutex_init(&root->ordered_extent_mutex);
  1096. mutex_init(&root->delalloc_mutex);
  1097. init_waitqueue_head(&root->log_writer_wait);
  1098. init_waitqueue_head(&root->log_commit_wait[0]);
  1099. init_waitqueue_head(&root->log_commit_wait[1]);
  1100. INIT_LIST_HEAD(&root->log_ctxs[0]);
  1101. INIT_LIST_HEAD(&root->log_ctxs[1]);
  1102. atomic_set(&root->log_commit[0], 0);
  1103. atomic_set(&root->log_commit[1], 0);
  1104. atomic_set(&root->log_writers, 0);
  1105. atomic_set(&root->log_batch, 0);
  1106. atomic_set(&root->orphan_inodes, 0);
  1107. atomic_set(&root->refs, 1);
  1108. atomic_set(&root->will_be_snapshoted, 0);
  1109. root->log_transid = 0;
  1110. root->log_transid_committed = -1;
  1111. root->last_log_commit = 0;
  1112. if (fs_info)
  1113. extent_io_tree_init(&root->dirty_log_pages,
  1114. fs_info->btree_inode->i_mapping);
  1115. memset(&root->root_key, 0, sizeof(root->root_key));
  1116. memset(&root->root_item, 0, sizeof(root->root_item));
  1117. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1118. if (fs_info)
  1119. root->defrag_trans_start = fs_info->generation;
  1120. else
  1121. root->defrag_trans_start = 0;
  1122. root->root_key.objectid = objectid;
  1123. root->anon_dev = 0;
  1124. spin_lock_init(&root->root_item_lock);
  1125. }
  1126. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
  1127. {
  1128. struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
  1129. if (root)
  1130. root->fs_info = fs_info;
  1131. return root;
  1132. }
  1133. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  1134. /* Should only be used by the testing infrastructure */
  1135. struct btrfs_root *btrfs_alloc_dummy_root(void)
  1136. {
  1137. struct btrfs_root *root;
  1138. root = btrfs_alloc_root(NULL);
  1139. if (!root)
  1140. return ERR_PTR(-ENOMEM);
  1141. __setup_root(4096, 4096, 4096, root, NULL, 1);
  1142. set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
  1143. root->alloc_bytenr = 0;
  1144. return root;
  1145. }
  1146. #endif
  1147. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1148. struct btrfs_fs_info *fs_info,
  1149. u64 objectid)
  1150. {
  1151. struct extent_buffer *leaf;
  1152. struct btrfs_root *tree_root = fs_info->tree_root;
  1153. struct btrfs_root *root;
  1154. struct btrfs_key key;
  1155. int ret = 0;
  1156. uuid_le uuid;
  1157. root = btrfs_alloc_root(fs_info);
  1158. if (!root)
  1159. return ERR_PTR(-ENOMEM);
  1160. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  1161. tree_root->stripesize, root, fs_info, objectid);
  1162. root->root_key.objectid = objectid;
  1163. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1164. root->root_key.offset = 0;
  1165. leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
  1166. if (IS_ERR(leaf)) {
  1167. ret = PTR_ERR(leaf);
  1168. leaf = NULL;
  1169. goto fail;
  1170. }
  1171. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1172. btrfs_set_header_bytenr(leaf, leaf->start);
  1173. btrfs_set_header_generation(leaf, trans->transid);
  1174. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1175. btrfs_set_header_owner(leaf, objectid);
  1176. root->node = leaf;
  1177. write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
  1178. BTRFS_FSID_SIZE);
  1179. write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
  1180. btrfs_header_chunk_tree_uuid(leaf),
  1181. BTRFS_UUID_SIZE);
  1182. btrfs_mark_buffer_dirty(leaf);
  1183. root->commit_root = btrfs_root_node(root);
  1184. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  1185. root->root_item.flags = 0;
  1186. root->root_item.byte_limit = 0;
  1187. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1188. btrfs_set_root_generation(&root->root_item, trans->transid);
  1189. btrfs_set_root_level(&root->root_item, 0);
  1190. btrfs_set_root_refs(&root->root_item, 1);
  1191. btrfs_set_root_used(&root->root_item, leaf->len);
  1192. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1193. btrfs_set_root_dirid(&root->root_item, 0);
  1194. uuid_le_gen(&uuid);
  1195. memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
  1196. root->root_item.drop_level = 0;
  1197. key.objectid = objectid;
  1198. key.type = BTRFS_ROOT_ITEM_KEY;
  1199. key.offset = 0;
  1200. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1201. if (ret)
  1202. goto fail;
  1203. btrfs_tree_unlock(leaf);
  1204. return root;
  1205. fail:
  1206. if (leaf) {
  1207. btrfs_tree_unlock(leaf);
  1208. free_extent_buffer(root->commit_root);
  1209. free_extent_buffer(leaf);
  1210. }
  1211. kfree(root);
  1212. return ERR_PTR(ret);
  1213. }
  1214. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1215. struct btrfs_fs_info *fs_info)
  1216. {
  1217. struct btrfs_root *root;
  1218. struct btrfs_root *tree_root = fs_info->tree_root;
  1219. struct extent_buffer *leaf;
  1220. root = btrfs_alloc_root(fs_info);
  1221. if (!root)
  1222. return ERR_PTR(-ENOMEM);
  1223. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  1224. tree_root->stripesize, root, fs_info,
  1225. BTRFS_TREE_LOG_OBJECTID);
  1226. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1227. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1228. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1229. /*
  1230. * DON'T set REF_COWS for log trees
  1231. *
  1232. * log trees do not get reference counted because they go away
  1233. * before a real commit is actually done. They do store pointers
  1234. * to file data extents, and those reference counts still get
  1235. * updated (along with back refs to the log tree).
  1236. */
  1237. leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
  1238. NULL, 0, 0, 0);
  1239. if (IS_ERR(leaf)) {
  1240. kfree(root);
  1241. return ERR_CAST(leaf);
  1242. }
  1243. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1244. btrfs_set_header_bytenr(leaf, leaf->start);
  1245. btrfs_set_header_generation(leaf, trans->transid);
  1246. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1247. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1248. root->node = leaf;
  1249. write_extent_buffer(root->node, root->fs_info->fsid,
  1250. btrfs_header_fsid(), BTRFS_FSID_SIZE);
  1251. btrfs_mark_buffer_dirty(root->node);
  1252. btrfs_tree_unlock(root->node);
  1253. return root;
  1254. }
  1255. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1256. struct btrfs_fs_info *fs_info)
  1257. {
  1258. struct btrfs_root *log_root;
  1259. log_root = alloc_log_tree(trans, fs_info);
  1260. if (IS_ERR(log_root))
  1261. return PTR_ERR(log_root);
  1262. WARN_ON(fs_info->log_root_tree);
  1263. fs_info->log_root_tree = log_root;
  1264. return 0;
  1265. }
  1266. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1267. struct btrfs_root *root)
  1268. {
  1269. struct btrfs_root *log_root;
  1270. struct btrfs_inode_item *inode_item;
  1271. log_root = alloc_log_tree(trans, root->fs_info);
  1272. if (IS_ERR(log_root))
  1273. return PTR_ERR(log_root);
  1274. log_root->last_trans = trans->transid;
  1275. log_root->root_key.offset = root->root_key.objectid;
  1276. inode_item = &log_root->root_item.inode;
  1277. btrfs_set_stack_inode_generation(inode_item, 1);
  1278. btrfs_set_stack_inode_size(inode_item, 3);
  1279. btrfs_set_stack_inode_nlink(inode_item, 1);
  1280. btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
  1281. btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
  1282. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1283. WARN_ON(root->log_root);
  1284. root->log_root = log_root;
  1285. root->log_transid = 0;
  1286. root->log_transid_committed = -1;
  1287. root->last_log_commit = 0;
  1288. return 0;
  1289. }
  1290. static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
  1291. struct btrfs_key *key)
  1292. {
  1293. struct btrfs_root *root;
  1294. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1295. struct btrfs_path *path;
  1296. u64 generation;
  1297. int ret;
  1298. path = btrfs_alloc_path();
  1299. if (!path)
  1300. return ERR_PTR(-ENOMEM);
  1301. root = btrfs_alloc_root(fs_info);
  1302. if (!root) {
  1303. ret = -ENOMEM;
  1304. goto alloc_fail;
  1305. }
  1306. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  1307. tree_root->stripesize, root, fs_info, key->objectid);
  1308. ret = btrfs_find_root(tree_root, key, path,
  1309. &root->root_item, &root->root_key);
  1310. if (ret) {
  1311. if (ret > 0)
  1312. ret = -ENOENT;
  1313. goto find_fail;
  1314. }
  1315. generation = btrfs_root_generation(&root->root_item);
  1316. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1317. generation);
  1318. if (IS_ERR(root->node)) {
  1319. ret = PTR_ERR(root->node);
  1320. goto find_fail;
  1321. } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
  1322. ret = -EIO;
  1323. free_extent_buffer(root->node);
  1324. goto find_fail;
  1325. }
  1326. root->commit_root = btrfs_root_node(root);
  1327. out:
  1328. btrfs_free_path(path);
  1329. return root;
  1330. find_fail:
  1331. kfree(root);
  1332. alloc_fail:
  1333. root = ERR_PTR(ret);
  1334. goto out;
  1335. }
  1336. struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
  1337. struct btrfs_key *location)
  1338. {
  1339. struct btrfs_root *root;
  1340. root = btrfs_read_tree_root(tree_root, location);
  1341. if (IS_ERR(root))
  1342. return root;
  1343. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  1344. set_bit(BTRFS_ROOT_REF_COWS, &root->state);
  1345. btrfs_check_and_init_root_item(&root->root_item);
  1346. }
  1347. return root;
  1348. }
  1349. int btrfs_init_fs_root(struct btrfs_root *root)
  1350. {
  1351. int ret;
  1352. struct btrfs_subvolume_writers *writers;
  1353. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1354. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1355. GFP_NOFS);
  1356. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1357. ret = -ENOMEM;
  1358. goto fail;
  1359. }
  1360. writers = btrfs_alloc_subvolume_writers();
  1361. if (IS_ERR(writers)) {
  1362. ret = PTR_ERR(writers);
  1363. goto fail;
  1364. }
  1365. root->subv_writers = writers;
  1366. btrfs_init_free_ino_ctl(root);
  1367. spin_lock_init(&root->ino_cache_lock);
  1368. init_waitqueue_head(&root->ino_cache_wait);
  1369. ret = get_anon_bdev(&root->anon_dev);
  1370. if (ret)
  1371. goto free_writers;
  1372. return 0;
  1373. free_writers:
  1374. btrfs_free_subvolume_writers(root->subv_writers);
  1375. fail:
  1376. kfree(root->free_ino_ctl);
  1377. kfree(root->free_ino_pinned);
  1378. return ret;
  1379. }
  1380. static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  1381. u64 root_id)
  1382. {
  1383. struct btrfs_root *root;
  1384. spin_lock(&fs_info->fs_roots_radix_lock);
  1385. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1386. (unsigned long)root_id);
  1387. spin_unlock(&fs_info->fs_roots_radix_lock);
  1388. return root;
  1389. }
  1390. int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
  1391. struct btrfs_root *root)
  1392. {
  1393. int ret;
  1394. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1395. if (ret)
  1396. return ret;
  1397. spin_lock(&fs_info->fs_roots_radix_lock);
  1398. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1399. (unsigned long)root->root_key.objectid,
  1400. root);
  1401. if (ret == 0)
  1402. set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
  1403. spin_unlock(&fs_info->fs_roots_radix_lock);
  1404. radix_tree_preload_end();
  1405. return ret;
  1406. }
  1407. struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
  1408. struct btrfs_key *location,
  1409. bool check_ref)
  1410. {
  1411. struct btrfs_root *root;
  1412. struct btrfs_path *path;
  1413. struct btrfs_key key;
  1414. int ret;
  1415. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1416. return fs_info->tree_root;
  1417. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1418. return fs_info->extent_root;
  1419. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1420. return fs_info->chunk_root;
  1421. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1422. return fs_info->dev_root;
  1423. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1424. return fs_info->csum_root;
  1425. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1426. return fs_info->quota_root ? fs_info->quota_root :
  1427. ERR_PTR(-ENOENT);
  1428. if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
  1429. return fs_info->uuid_root ? fs_info->uuid_root :
  1430. ERR_PTR(-ENOENT);
  1431. again:
  1432. root = btrfs_lookup_fs_root(fs_info, location->objectid);
  1433. if (root) {
  1434. if (check_ref && btrfs_root_refs(&root->root_item) == 0)
  1435. return ERR_PTR(-ENOENT);
  1436. return root;
  1437. }
  1438. root = btrfs_read_fs_root(fs_info->tree_root, location);
  1439. if (IS_ERR(root))
  1440. return root;
  1441. if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
  1442. ret = -ENOENT;
  1443. goto fail;
  1444. }
  1445. ret = btrfs_init_fs_root(root);
  1446. if (ret)
  1447. goto fail;
  1448. path = btrfs_alloc_path();
  1449. if (!path) {
  1450. ret = -ENOMEM;
  1451. goto fail;
  1452. }
  1453. key.objectid = BTRFS_ORPHAN_OBJECTID;
  1454. key.type = BTRFS_ORPHAN_ITEM_KEY;
  1455. key.offset = location->objectid;
  1456. ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
  1457. btrfs_free_path(path);
  1458. if (ret < 0)
  1459. goto fail;
  1460. if (ret == 0)
  1461. set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
  1462. ret = btrfs_insert_fs_root(fs_info, root);
  1463. if (ret) {
  1464. if (ret == -EEXIST) {
  1465. free_fs_root(root);
  1466. goto again;
  1467. }
  1468. goto fail;
  1469. }
  1470. return root;
  1471. fail:
  1472. free_fs_root(root);
  1473. return ERR_PTR(ret);
  1474. }
  1475. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1476. {
  1477. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1478. int ret = 0;
  1479. struct btrfs_device *device;
  1480. struct backing_dev_info *bdi;
  1481. rcu_read_lock();
  1482. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1483. if (!device->bdev)
  1484. continue;
  1485. bdi = blk_get_backing_dev_info(device->bdev);
  1486. if (bdi_congested(bdi, bdi_bits)) {
  1487. ret = 1;
  1488. break;
  1489. }
  1490. }
  1491. rcu_read_unlock();
  1492. return ret;
  1493. }
  1494. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1495. {
  1496. int err;
  1497. err = bdi_setup_and_register(bdi, "btrfs");
  1498. if (err)
  1499. return err;
  1500. bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE;
  1501. bdi->congested_fn = btrfs_congested_fn;
  1502. bdi->congested_data = info;
  1503. bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
  1504. return 0;
  1505. }
  1506. /*
  1507. * called by the kthread helper functions to finally call the bio end_io
  1508. * functions. This is where read checksum verification actually happens
  1509. */
  1510. static void end_workqueue_fn(struct btrfs_work *work)
  1511. {
  1512. struct bio *bio;
  1513. struct btrfs_end_io_wq *end_io_wq;
  1514. end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
  1515. bio = end_io_wq->bio;
  1516. bio->bi_error = end_io_wq->error;
  1517. bio->bi_private = end_io_wq->private;
  1518. bio->bi_end_io = end_io_wq->end_io;
  1519. kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
  1520. bio_endio(bio);
  1521. }
  1522. static int cleaner_kthread(void *arg)
  1523. {
  1524. struct btrfs_root *root = arg;
  1525. int again;
  1526. struct btrfs_trans_handle *trans;
  1527. do {
  1528. again = 0;
  1529. /* Make the cleaner go to sleep early. */
  1530. if (btrfs_need_cleaner_sleep(root))
  1531. goto sleep;
  1532. if (!mutex_trylock(&root->fs_info->cleaner_mutex))
  1533. goto sleep;
  1534. /*
  1535. * Avoid the problem that we change the status of the fs
  1536. * during the above check and trylock.
  1537. */
  1538. if (btrfs_need_cleaner_sleep(root)) {
  1539. mutex_unlock(&root->fs_info->cleaner_mutex);
  1540. goto sleep;
  1541. }
  1542. btrfs_run_delayed_iputs(root);
  1543. again = btrfs_clean_one_deleted_snapshot(root);
  1544. mutex_unlock(&root->fs_info->cleaner_mutex);
  1545. /*
  1546. * The defragger has dealt with the R/O remount and umount,
  1547. * needn't do anything special here.
  1548. */
  1549. btrfs_run_defrag_inodes(root->fs_info);
  1550. /*
  1551. * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
  1552. * with relocation (btrfs_relocate_chunk) and relocation
  1553. * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
  1554. * after acquiring fs_info->delete_unused_bgs_mutex. So we
  1555. * can't hold, nor need to, fs_info->cleaner_mutex when deleting
  1556. * unused block groups.
  1557. */
  1558. btrfs_delete_unused_bgs(root->fs_info);
  1559. sleep:
  1560. if (!try_to_freeze() && !again) {
  1561. set_current_state(TASK_INTERRUPTIBLE);
  1562. if (!kthread_should_stop())
  1563. schedule();
  1564. __set_current_state(TASK_RUNNING);
  1565. }
  1566. } while (!kthread_should_stop());
  1567. /*
  1568. * Transaction kthread is stopped before us and wakes us up.
  1569. * However we might have started a new transaction and COWed some
  1570. * tree blocks when deleting unused block groups for example. So
  1571. * make sure we commit the transaction we started to have a clean
  1572. * shutdown when evicting the btree inode - if it has dirty pages
  1573. * when we do the final iput() on it, eviction will trigger a
  1574. * writeback for it which will fail with null pointer dereferences
  1575. * since work queues and other resources were already released and
  1576. * destroyed by the time the iput/eviction/writeback is made.
  1577. */
  1578. trans = btrfs_attach_transaction(root);
  1579. if (IS_ERR(trans)) {
  1580. if (PTR_ERR(trans) != -ENOENT)
  1581. btrfs_err(root->fs_info,
  1582. "cleaner transaction attach returned %ld",
  1583. PTR_ERR(trans));
  1584. } else {
  1585. int ret;
  1586. ret = btrfs_commit_transaction(trans, root);
  1587. if (ret)
  1588. btrfs_err(root->fs_info,
  1589. "cleaner open transaction commit returned %d",
  1590. ret);
  1591. }
  1592. return 0;
  1593. }
  1594. static int transaction_kthread(void *arg)
  1595. {
  1596. struct btrfs_root *root = arg;
  1597. struct btrfs_trans_handle *trans;
  1598. struct btrfs_transaction *cur;
  1599. u64 transid;
  1600. unsigned long now;
  1601. unsigned long delay;
  1602. bool cannot_commit;
  1603. do {
  1604. cannot_commit = false;
  1605. delay = HZ * root->fs_info->commit_interval;
  1606. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1607. spin_lock(&root->fs_info->trans_lock);
  1608. cur = root->fs_info->running_transaction;
  1609. if (!cur) {
  1610. spin_unlock(&root->fs_info->trans_lock);
  1611. goto sleep;
  1612. }
  1613. now = get_seconds();
  1614. if (cur->state < TRANS_STATE_BLOCKED &&
  1615. (now < cur->start_time ||
  1616. now - cur->start_time < root->fs_info->commit_interval)) {
  1617. spin_unlock(&root->fs_info->trans_lock);
  1618. delay = HZ * 5;
  1619. goto sleep;
  1620. }
  1621. transid = cur->transid;
  1622. spin_unlock(&root->fs_info->trans_lock);
  1623. /* If the file system is aborted, this will always fail. */
  1624. trans = btrfs_attach_transaction(root);
  1625. if (IS_ERR(trans)) {
  1626. if (PTR_ERR(trans) != -ENOENT)
  1627. cannot_commit = true;
  1628. goto sleep;
  1629. }
  1630. if (transid == trans->transid) {
  1631. btrfs_commit_transaction(trans, root);
  1632. } else {
  1633. btrfs_end_transaction(trans, root);
  1634. }
  1635. sleep:
  1636. wake_up_process(root->fs_info->cleaner_kthread);
  1637. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1638. if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
  1639. &root->fs_info->fs_state)))
  1640. btrfs_cleanup_transaction(root);
  1641. if (!try_to_freeze()) {
  1642. set_current_state(TASK_INTERRUPTIBLE);
  1643. if (!kthread_should_stop() &&
  1644. (!btrfs_transaction_blocked(root->fs_info) ||
  1645. cannot_commit))
  1646. schedule_timeout(delay);
  1647. __set_current_state(TASK_RUNNING);
  1648. }
  1649. } while (!kthread_should_stop());
  1650. return 0;
  1651. }
  1652. /*
  1653. * this will find the highest generation in the array of
  1654. * root backups. The index of the highest array is returned,
  1655. * or -1 if we can't find anything.
  1656. *
  1657. * We check to make sure the array is valid by comparing the
  1658. * generation of the latest root in the array with the generation
  1659. * in the super block. If they don't match we pitch it.
  1660. */
  1661. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1662. {
  1663. u64 cur;
  1664. int newest_index = -1;
  1665. struct btrfs_root_backup *root_backup;
  1666. int i;
  1667. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1668. root_backup = info->super_copy->super_roots + i;
  1669. cur = btrfs_backup_tree_root_gen(root_backup);
  1670. if (cur == newest_gen)
  1671. newest_index = i;
  1672. }
  1673. /* check to see if we actually wrapped around */
  1674. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1675. root_backup = info->super_copy->super_roots;
  1676. cur = btrfs_backup_tree_root_gen(root_backup);
  1677. if (cur == newest_gen)
  1678. newest_index = 0;
  1679. }
  1680. return newest_index;
  1681. }
  1682. /*
  1683. * find the oldest backup so we know where to store new entries
  1684. * in the backup array. This will set the backup_root_index
  1685. * field in the fs_info struct
  1686. */
  1687. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1688. u64 newest_gen)
  1689. {
  1690. int newest_index = -1;
  1691. newest_index = find_newest_super_backup(info, newest_gen);
  1692. /* if there was garbage in there, just move along */
  1693. if (newest_index == -1) {
  1694. info->backup_root_index = 0;
  1695. } else {
  1696. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1697. }
  1698. }
  1699. /*
  1700. * copy all the root pointers into the super backup array.
  1701. * this will bump the backup pointer by one when it is
  1702. * done
  1703. */
  1704. static void backup_super_roots(struct btrfs_fs_info *info)
  1705. {
  1706. int next_backup;
  1707. struct btrfs_root_backup *root_backup;
  1708. int last_backup;
  1709. next_backup = info->backup_root_index;
  1710. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1711. BTRFS_NUM_BACKUP_ROOTS;
  1712. /*
  1713. * just overwrite the last backup if we're at the same generation
  1714. * this happens only at umount
  1715. */
  1716. root_backup = info->super_for_commit->super_roots + last_backup;
  1717. if (btrfs_backup_tree_root_gen(root_backup) ==
  1718. btrfs_header_generation(info->tree_root->node))
  1719. next_backup = last_backup;
  1720. root_backup = info->super_for_commit->super_roots + next_backup;
  1721. /*
  1722. * make sure all of our padding and empty slots get zero filled
  1723. * regardless of which ones we use today
  1724. */
  1725. memset(root_backup, 0, sizeof(*root_backup));
  1726. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1727. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1728. btrfs_set_backup_tree_root_gen(root_backup,
  1729. btrfs_header_generation(info->tree_root->node));
  1730. btrfs_set_backup_tree_root_level(root_backup,
  1731. btrfs_header_level(info->tree_root->node));
  1732. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1733. btrfs_set_backup_chunk_root_gen(root_backup,
  1734. btrfs_header_generation(info->chunk_root->node));
  1735. btrfs_set_backup_chunk_root_level(root_backup,
  1736. btrfs_header_level(info->chunk_root->node));
  1737. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1738. btrfs_set_backup_extent_root_gen(root_backup,
  1739. btrfs_header_generation(info->extent_root->node));
  1740. btrfs_set_backup_extent_root_level(root_backup,
  1741. btrfs_header_level(info->extent_root->node));
  1742. /*
  1743. * we might commit during log recovery, which happens before we set
  1744. * the fs_root. Make sure it is valid before we fill it in.
  1745. */
  1746. if (info->fs_root && info->fs_root->node) {
  1747. btrfs_set_backup_fs_root(root_backup,
  1748. info->fs_root->node->start);
  1749. btrfs_set_backup_fs_root_gen(root_backup,
  1750. btrfs_header_generation(info->fs_root->node));
  1751. btrfs_set_backup_fs_root_level(root_backup,
  1752. btrfs_header_level(info->fs_root->node));
  1753. }
  1754. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1755. btrfs_set_backup_dev_root_gen(root_backup,
  1756. btrfs_header_generation(info->dev_root->node));
  1757. btrfs_set_backup_dev_root_level(root_backup,
  1758. btrfs_header_level(info->dev_root->node));
  1759. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1760. btrfs_set_backup_csum_root_gen(root_backup,
  1761. btrfs_header_generation(info->csum_root->node));
  1762. btrfs_set_backup_csum_root_level(root_backup,
  1763. btrfs_header_level(info->csum_root->node));
  1764. btrfs_set_backup_total_bytes(root_backup,
  1765. btrfs_super_total_bytes(info->super_copy));
  1766. btrfs_set_backup_bytes_used(root_backup,
  1767. btrfs_super_bytes_used(info->super_copy));
  1768. btrfs_set_backup_num_devices(root_backup,
  1769. btrfs_super_num_devices(info->super_copy));
  1770. /*
  1771. * if we don't copy this out to the super_copy, it won't get remembered
  1772. * for the next commit
  1773. */
  1774. memcpy(&info->super_copy->super_roots,
  1775. &info->super_for_commit->super_roots,
  1776. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1777. }
  1778. /*
  1779. * this copies info out of the root backup array and back into
  1780. * the in-memory super block. It is meant to help iterate through
  1781. * the array, so you send it the number of backups you've already
  1782. * tried and the last backup index you used.
  1783. *
  1784. * this returns -1 when it has tried all the backups
  1785. */
  1786. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1787. struct btrfs_super_block *super,
  1788. int *num_backups_tried, int *backup_index)
  1789. {
  1790. struct btrfs_root_backup *root_backup;
  1791. int newest = *backup_index;
  1792. if (*num_backups_tried == 0) {
  1793. u64 gen = btrfs_super_generation(super);
  1794. newest = find_newest_super_backup(info, gen);
  1795. if (newest == -1)
  1796. return -1;
  1797. *backup_index = newest;
  1798. *num_backups_tried = 1;
  1799. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1800. /* we've tried all the backups, all done */
  1801. return -1;
  1802. } else {
  1803. /* jump to the next oldest backup */
  1804. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1805. BTRFS_NUM_BACKUP_ROOTS;
  1806. *backup_index = newest;
  1807. *num_backups_tried += 1;
  1808. }
  1809. root_backup = super->super_roots + newest;
  1810. btrfs_set_super_generation(super,
  1811. btrfs_backup_tree_root_gen(root_backup));
  1812. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1813. btrfs_set_super_root_level(super,
  1814. btrfs_backup_tree_root_level(root_backup));
  1815. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1816. /*
  1817. * fixme: the total bytes and num_devices need to match or we should
  1818. * need a fsck
  1819. */
  1820. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1821. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1822. return 0;
  1823. }
  1824. /* helper to cleanup workers */
  1825. static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
  1826. {
  1827. btrfs_destroy_workqueue(fs_info->fixup_workers);
  1828. btrfs_destroy_workqueue(fs_info->delalloc_workers);
  1829. btrfs_destroy_workqueue(fs_info->workers);
  1830. btrfs_destroy_workqueue(fs_info->endio_workers);
  1831. btrfs_destroy_workqueue(fs_info->endio_meta_workers);
  1832. btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
  1833. btrfs_destroy_workqueue(fs_info->endio_repair_workers);
  1834. btrfs_destroy_workqueue(fs_info->rmw_workers);
  1835. btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
  1836. btrfs_destroy_workqueue(fs_info->endio_write_workers);
  1837. btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
  1838. btrfs_destroy_workqueue(fs_info->submit_workers);
  1839. btrfs_destroy_workqueue(fs_info->delayed_workers);
  1840. btrfs_destroy_workqueue(fs_info->caching_workers);
  1841. btrfs_destroy_workqueue(fs_info->readahead_workers);
  1842. btrfs_destroy_workqueue(fs_info->flush_workers);
  1843. btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
  1844. btrfs_destroy_workqueue(fs_info->extent_workers);
  1845. }
  1846. static void free_root_extent_buffers(struct btrfs_root *root)
  1847. {
  1848. if (root) {
  1849. free_extent_buffer(root->node);
  1850. free_extent_buffer(root->commit_root);
  1851. root->node = NULL;
  1852. root->commit_root = NULL;
  1853. }
  1854. }
  1855. /* helper to cleanup tree roots */
  1856. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1857. {
  1858. free_root_extent_buffers(info->tree_root);
  1859. free_root_extent_buffers(info->dev_root);
  1860. free_root_extent_buffers(info->extent_root);
  1861. free_root_extent_buffers(info->csum_root);
  1862. free_root_extent_buffers(info->quota_root);
  1863. free_root_extent_buffers(info->uuid_root);
  1864. if (chunk_root)
  1865. free_root_extent_buffers(info->chunk_root);
  1866. }
  1867. void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
  1868. {
  1869. int ret;
  1870. struct btrfs_root *gang[8];
  1871. int i;
  1872. while (!list_empty(&fs_info->dead_roots)) {
  1873. gang[0] = list_entry(fs_info->dead_roots.next,
  1874. struct btrfs_root, root_list);
  1875. list_del(&gang[0]->root_list);
  1876. if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
  1877. btrfs_drop_and_free_fs_root(fs_info, gang[0]);
  1878. } else {
  1879. free_extent_buffer(gang[0]->node);
  1880. free_extent_buffer(gang[0]->commit_root);
  1881. btrfs_put_fs_root(gang[0]);
  1882. }
  1883. }
  1884. while (1) {
  1885. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1886. (void **)gang, 0,
  1887. ARRAY_SIZE(gang));
  1888. if (!ret)
  1889. break;
  1890. for (i = 0; i < ret; i++)
  1891. btrfs_drop_and_free_fs_root(fs_info, gang[i]);
  1892. }
  1893. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  1894. btrfs_free_log_root_tree(NULL, fs_info);
  1895. btrfs_destroy_pinned_extent(fs_info->tree_root,
  1896. fs_info->pinned_extents);
  1897. }
  1898. }
  1899. static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
  1900. {
  1901. mutex_init(&fs_info->scrub_lock);
  1902. atomic_set(&fs_info->scrubs_running, 0);
  1903. atomic_set(&fs_info->scrub_pause_req, 0);
  1904. atomic_set(&fs_info->scrubs_paused, 0);
  1905. atomic_set(&fs_info->scrub_cancel_req, 0);
  1906. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1907. fs_info->scrub_workers_refcnt = 0;
  1908. }
  1909. static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
  1910. {
  1911. spin_lock_init(&fs_info->balance_lock);
  1912. mutex_init(&fs_info->balance_mutex);
  1913. atomic_set(&fs_info->balance_running, 0);
  1914. atomic_set(&fs_info->balance_pause_req, 0);
  1915. atomic_set(&fs_info->balance_cancel_req, 0);
  1916. fs_info->balance_ctl = NULL;
  1917. init_waitqueue_head(&fs_info->balance_wait_q);
  1918. }
  1919. static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
  1920. struct btrfs_root *tree_root)
  1921. {
  1922. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1923. set_nlink(fs_info->btree_inode, 1);
  1924. /*
  1925. * we set the i_size on the btree inode to the max possible int.
  1926. * the real end of the address space is determined by all of
  1927. * the devices in the system
  1928. */
  1929. fs_info->btree_inode->i_size = OFFSET_MAX;
  1930. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1931. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1932. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1933. fs_info->btree_inode->i_mapping);
  1934. BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
  1935. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  1936. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1937. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1938. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1939. sizeof(struct btrfs_key));
  1940. set_bit(BTRFS_INODE_DUMMY,
  1941. &BTRFS_I(fs_info->btree_inode)->runtime_flags);
  1942. btrfs_insert_inode_hash(fs_info->btree_inode);
  1943. }
  1944. static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
  1945. {
  1946. fs_info->dev_replace.lock_owner = 0;
  1947. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  1948. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  1949. mutex_init(&fs_info->dev_replace.lock_management_lock);
  1950. mutex_init(&fs_info->dev_replace.lock);
  1951. init_waitqueue_head(&fs_info->replace_wait);
  1952. }
  1953. static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
  1954. {
  1955. spin_lock_init(&fs_info->qgroup_lock);
  1956. mutex_init(&fs_info->qgroup_ioctl_lock);
  1957. fs_info->qgroup_tree = RB_ROOT;
  1958. fs_info->qgroup_op_tree = RB_ROOT;
  1959. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  1960. fs_info->qgroup_seq = 1;
  1961. fs_info->quota_enabled = 0;
  1962. fs_info->pending_quota_state = 0;
  1963. fs_info->qgroup_ulist = NULL;
  1964. mutex_init(&fs_info->qgroup_rescan_lock);
  1965. }
  1966. static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
  1967. struct btrfs_fs_devices *fs_devices)
  1968. {
  1969. int max_active = fs_info->thread_pool_size;
  1970. unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
  1971. fs_info->workers =
  1972. btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
  1973. max_active, 16);
  1974. fs_info->delalloc_workers =
  1975. btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
  1976. fs_info->flush_workers =
  1977. btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
  1978. fs_info->caching_workers =
  1979. btrfs_alloc_workqueue("cache", flags, max_active, 0);
  1980. /*
  1981. * a higher idle thresh on the submit workers makes it much more
  1982. * likely that bios will be send down in a sane order to the
  1983. * devices
  1984. */
  1985. fs_info->submit_workers =
  1986. btrfs_alloc_workqueue("submit", flags,
  1987. min_t(u64, fs_devices->num_devices,
  1988. max_active), 64);
  1989. fs_info->fixup_workers =
  1990. btrfs_alloc_workqueue("fixup", flags, 1, 0);
  1991. /*
  1992. * endios are largely parallel and should have a very
  1993. * low idle thresh
  1994. */
  1995. fs_info->endio_workers =
  1996. btrfs_alloc_workqueue("endio", flags, max_active, 4);
  1997. fs_info->endio_meta_workers =
  1998. btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
  1999. fs_info->endio_meta_write_workers =
  2000. btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
  2001. fs_info->endio_raid56_workers =
  2002. btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
  2003. fs_info->endio_repair_workers =
  2004. btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
  2005. fs_info->rmw_workers =
  2006. btrfs_alloc_workqueue("rmw", flags, max_active, 2);
  2007. fs_info->endio_write_workers =
  2008. btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
  2009. fs_info->endio_freespace_worker =
  2010. btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
  2011. fs_info->delayed_workers =
  2012. btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
  2013. fs_info->readahead_workers =
  2014. btrfs_alloc_workqueue("readahead", flags, max_active, 2);
  2015. fs_info->qgroup_rescan_workers =
  2016. btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
  2017. fs_info->extent_workers =
  2018. btrfs_alloc_workqueue("extent-refs", flags,
  2019. min_t(u64, fs_devices->num_devices,
  2020. max_active), 8);
  2021. if (!(fs_info->workers && fs_info->delalloc_workers &&
  2022. fs_info->submit_workers && fs_info->flush_workers &&
  2023. fs_info->endio_workers && fs_info->endio_meta_workers &&
  2024. fs_info->endio_meta_write_workers &&
  2025. fs_info->endio_repair_workers &&
  2026. fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
  2027. fs_info->endio_freespace_worker && fs_info->rmw_workers &&
  2028. fs_info->caching_workers && fs_info->readahead_workers &&
  2029. fs_info->fixup_workers && fs_info->delayed_workers &&
  2030. fs_info->extent_workers &&
  2031. fs_info->qgroup_rescan_workers)) {
  2032. return -ENOMEM;
  2033. }
  2034. return 0;
  2035. }
  2036. static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
  2037. struct btrfs_fs_devices *fs_devices)
  2038. {
  2039. int ret;
  2040. struct btrfs_root *tree_root = fs_info->tree_root;
  2041. struct btrfs_root *log_tree_root;
  2042. struct btrfs_super_block *disk_super = fs_info->super_copy;
  2043. u64 bytenr = btrfs_super_log_root(disk_super);
  2044. if (fs_devices->rw_devices == 0) {
  2045. printk(KERN_WARNING "BTRFS: log replay required "
  2046. "on RO media\n");
  2047. return -EIO;
  2048. }
  2049. log_tree_root = btrfs_alloc_root(fs_info);
  2050. if (!log_tree_root)
  2051. return -ENOMEM;
  2052. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  2053. tree_root->stripesize, log_tree_root, fs_info,
  2054. BTRFS_TREE_LOG_OBJECTID);
  2055. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2056. fs_info->generation + 1);
  2057. if (IS_ERR(log_tree_root->node)) {
  2058. printk(KERN_ERR "BTRFS: failed to read log tree\n");
  2059. ret = PTR_ERR(log_tree_root->node);
  2060. kfree(log_tree_root);
  2061. return ret;
  2062. } else if (!extent_buffer_uptodate(log_tree_root->node)) {
  2063. printk(KERN_ERR "BTRFS: failed to read log tree\n");
  2064. free_extent_buffer(log_tree_root->node);
  2065. kfree(log_tree_root);
  2066. return -EIO;
  2067. }
  2068. /* returns with log_tree_root freed on success */
  2069. ret = btrfs_recover_log_trees(log_tree_root);
  2070. if (ret) {
  2071. btrfs_error(tree_root->fs_info, ret,
  2072. "Failed to recover log tree");
  2073. free_extent_buffer(log_tree_root->node);
  2074. kfree(log_tree_root);
  2075. return ret;
  2076. }
  2077. if (fs_info->sb->s_flags & MS_RDONLY) {
  2078. ret = btrfs_commit_super(tree_root);
  2079. if (ret)
  2080. return ret;
  2081. }
  2082. return 0;
  2083. }
  2084. static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
  2085. struct btrfs_root *tree_root)
  2086. {
  2087. struct btrfs_root *root;
  2088. struct btrfs_key location;
  2089. int ret;
  2090. location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
  2091. location.type = BTRFS_ROOT_ITEM_KEY;
  2092. location.offset = 0;
  2093. root = btrfs_read_tree_root(tree_root, &location);
  2094. if (IS_ERR(root))
  2095. return PTR_ERR(root);
  2096. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2097. fs_info->extent_root = root;
  2098. location.objectid = BTRFS_DEV_TREE_OBJECTID;
  2099. root = btrfs_read_tree_root(tree_root, &location);
  2100. if (IS_ERR(root))
  2101. return PTR_ERR(root);
  2102. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2103. fs_info->dev_root = root;
  2104. btrfs_init_devices_late(fs_info);
  2105. location.objectid = BTRFS_CSUM_TREE_OBJECTID;
  2106. root = btrfs_read_tree_root(tree_root, &location);
  2107. if (IS_ERR(root))
  2108. return PTR_ERR(root);
  2109. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2110. fs_info->csum_root = root;
  2111. location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
  2112. root = btrfs_read_tree_root(tree_root, &location);
  2113. if (!IS_ERR(root)) {
  2114. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2115. fs_info->quota_enabled = 1;
  2116. fs_info->pending_quota_state = 1;
  2117. fs_info->quota_root = root;
  2118. }
  2119. location.objectid = BTRFS_UUID_TREE_OBJECTID;
  2120. root = btrfs_read_tree_root(tree_root, &location);
  2121. if (IS_ERR(root)) {
  2122. ret = PTR_ERR(root);
  2123. if (ret != -ENOENT)
  2124. return ret;
  2125. } else {
  2126. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2127. fs_info->uuid_root = root;
  2128. }
  2129. return 0;
  2130. }
  2131. int open_ctree(struct super_block *sb,
  2132. struct btrfs_fs_devices *fs_devices,
  2133. char *options)
  2134. {
  2135. u32 sectorsize;
  2136. u32 nodesize;
  2137. u32 stripesize;
  2138. u64 generation;
  2139. u64 features;
  2140. struct btrfs_key location;
  2141. struct buffer_head *bh;
  2142. struct btrfs_super_block *disk_super;
  2143. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  2144. struct btrfs_root *tree_root;
  2145. struct btrfs_root *chunk_root;
  2146. int ret;
  2147. int err = -EINVAL;
  2148. int num_backups_tried = 0;
  2149. int backup_index = 0;
  2150. int max_active;
  2151. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
  2152. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
  2153. if (!tree_root || !chunk_root) {
  2154. err = -ENOMEM;
  2155. goto fail;
  2156. }
  2157. ret = init_srcu_struct(&fs_info->subvol_srcu);
  2158. if (ret) {
  2159. err = ret;
  2160. goto fail;
  2161. }
  2162. ret = setup_bdi(fs_info, &fs_info->bdi);
  2163. if (ret) {
  2164. err = ret;
  2165. goto fail_srcu;
  2166. }
  2167. ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
  2168. if (ret) {
  2169. err = ret;
  2170. goto fail_bdi;
  2171. }
  2172. fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
  2173. (1 + ilog2(nr_cpu_ids));
  2174. ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
  2175. if (ret) {
  2176. err = ret;
  2177. goto fail_dirty_metadata_bytes;
  2178. }
  2179. ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
  2180. if (ret) {
  2181. err = ret;
  2182. goto fail_delalloc_bytes;
  2183. }
  2184. fs_info->btree_inode = new_inode(sb);
  2185. if (!fs_info->btree_inode) {
  2186. err = -ENOMEM;
  2187. goto fail_bio_counter;
  2188. }
  2189. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  2190. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  2191. INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
  2192. INIT_LIST_HEAD(&fs_info->trans_list);
  2193. INIT_LIST_HEAD(&fs_info->dead_roots);
  2194. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  2195. INIT_LIST_HEAD(&fs_info->delalloc_roots);
  2196. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  2197. spin_lock_init(&fs_info->delalloc_root_lock);
  2198. spin_lock_init(&fs_info->trans_lock);
  2199. spin_lock_init(&fs_info->fs_roots_radix_lock);
  2200. spin_lock_init(&fs_info->delayed_iput_lock);
  2201. spin_lock_init(&fs_info->defrag_inodes_lock);
  2202. spin_lock_init(&fs_info->free_chunk_lock);
  2203. spin_lock_init(&fs_info->tree_mod_seq_lock);
  2204. spin_lock_init(&fs_info->super_lock);
  2205. spin_lock_init(&fs_info->qgroup_op_lock);
  2206. spin_lock_init(&fs_info->buffer_lock);
  2207. spin_lock_init(&fs_info->unused_bgs_lock);
  2208. rwlock_init(&fs_info->tree_mod_log_lock);
  2209. mutex_init(&fs_info->unused_bg_unpin_mutex);
  2210. mutex_init(&fs_info->delete_unused_bgs_mutex);
  2211. mutex_init(&fs_info->reloc_mutex);
  2212. mutex_init(&fs_info->delalloc_root_mutex);
  2213. seqlock_init(&fs_info->profiles_lock);
  2214. init_rwsem(&fs_info->delayed_iput_sem);
  2215. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  2216. INIT_LIST_HEAD(&fs_info->space_info);
  2217. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  2218. INIT_LIST_HEAD(&fs_info->unused_bgs);
  2219. btrfs_mapping_init(&fs_info->mapping_tree);
  2220. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  2221. BTRFS_BLOCK_RSV_GLOBAL);
  2222. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
  2223. BTRFS_BLOCK_RSV_DELALLOC);
  2224. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  2225. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  2226. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  2227. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  2228. BTRFS_BLOCK_RSV_DELOPS);
  2229. atomic_set(&fs_info->nr_async_submits, 0);
  2230. atomic_set(&fs_info->async_delalloc_pages, 0);
  2231. atomic_set(&fs_info->async_submit_draining, 0);
  2232. atomic_set(&fs_info->nr_async_bios, 0);
  2233. atomic_set(&fs_info->defrag_running, 0);
  2234. atomic_set(&fs_info->qgroup_op_seq, 0);
  2235. atomic64_set(&fs_info->tree_mod_seq, 0);
  2236. fs_info->sb = sb;
  2237. fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
  2238. fs_info->metadata_ratio = 0;
  2239. fs_info->defrag_inodes = RB_ROOT;
  2240. fs_info->free_chunk_space = 0;
  2241. fs_info->tree_mod_log = RB_ROOT;
  2242. fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
  2243. fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
  2244. /* readahead state */
  2245. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
  2246. spin_lock_init(&fs_info->reada_lock);
  2247. fs_info->thread_pool_size = min_t(unsigned long,
  2248. num_online_cpus() + 2, 8);
  2249. INIT_LIST_HEAD(&fs_info->ordered_roots);
  2250. spin_lock_init(&fs_info->ordered_root_lock);
  2251. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  2252. GFP_NOFS);
  2253. if (!fs_info->delayed_root) {
  2254. err = -ENOMEM;
  2255. goto fail_iput;
  2256. }
  2257. btrfs_init_delayed_root(fs_info->delayed_root);
  2258. btrfs_init_scrub(fs_info);
  2259. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2260. fs_info->check_integrity_print_mask = 0;
  2261. #endif
  2262. btrfs_init_balance(fs_info);
  2263. btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
  2264. sb->s_blocksize = 4096;
  2265. sb->s_blocksize_bits = blksize_bits(4096);
  2266. sb->s_bdi = &fs_info->bdi;
  2267. btrfs_init_btree_inode(fs_info, tree_root);
  2268. spin_lock_init(&fs_info->block_group_cache_lock);
  2269. fs_info->block_group_cache_tree = RB_ROOT;
  2270. fs_info->first_logical_byte = (u64)-1;
  2271. extent_io_tree_init(&fs_info->freed_extents[0],
  2272. fs_info->btree_inode->i_mapping);
  2273. extent_io_tree_init(&fs_info->freed_extents[1],
  2274. fs_info->btree_inode->i_mapping);
  2275. fs_info->pinned_extents = &fs_info->freed_extents[0];
  2276. fs_info->do_barriers = 1;
  2277. mutex_init(&fs_info->ordered_operations_mutex);
  2278. mutex_init(&fs_info->tree_log_mutex);
  2279. mutex_init(&fs_info->chunk_mutex);
  2280. mutex_init(&fs_info->transaction_kthread_mutex);
  2281. mutex_init(&fs_info->cleaner_mutex);
  2282. mutex_init(&fs_info->volume_mutex);
  2283. mutex_init(&fs_info->ro_block_group_mutex);
  2284. init_rwsem(&fs_info->commit_root_sem);
  2285. init_rwsem(&fs_info->cleanup_work_sem);
  2286. init_rwsem(&fs_info->subvol_sem);
  2287. sema_init(&fs_info->uuid_tree_rescan_sem, 1);
  2288. btrfs_init_dev_replace_locks(fs_info);
  2289. btrfs_init_qgroup(fs_info);
  2290. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  2291. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  2292. init_waitqueue_head(&fs_info->transaction_throttle);
  2293. init_waitqueue_head(&fs_info->transaction_wait);
  2294. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  2295. init_waitqueue_head(&fs_info->async_submit_wait);
  2296. INIT_LIST_HEAD(&fs_info->pinned_chunks);
  2297. ret = btrfs_alloc_stripe_hash_table(fs_info);
  2298. if (ret) {
  2299. err = ret;
  2300. goto fail_alloc;
  2301. }
  2302. __setup_root(4096, 4096, 4096, tree_root,
  2303. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  2304. invalidate_bdev(fs_devices->latest_bdev);
  2305. /*
  2306. * Read super block and check the signature bytes only
  2307. */
  2308. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  2309. if (!bh) {
  2310. err = -EINVAL;
  2311. goto fail_alloc;
  2312. }
  2313. /*
  2314. * We want to check superblock checksum, the type is stored inside.
  2315. * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
  2316. */
  2317. if (btrfs_check_super_csum(bh->b_data)) {
  2318. printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
  2319. err = -EINVAL;
  2320. goto fail_alloc;
  2321. }
  2322. /*
  2323. * super_copy is zeroed at allocation time and we never touch the
  2324. * following bytes up to INFO_SIZE, the checksum is calculated from
  2325. * the whole block of INFO_SIZE
  2326. */
  2327. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  2328. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  2329. sizeof(*fs_info->super_for_commit));
  2330. brelse(bh);
  2331. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  2332. ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  2333. if (ret) {
  2334. printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
  2335. err = -EINVAL;
  2336. goto fail_alloc;
  2337. }
  2338. disk_super = fs_info->super_copy;
  2339. if (!btrfs_super_root(disk_super))
  2340. goto fail_alloc;
  2341. /* check FS state, whether FS is broken. */
  2342. if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
  2343. set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
  2344. /*
  2345. * run through our array of backup supers and setup
  2346. * our ring pointer to the oldest one
  2347. */
  2348. generation = btrfs_super_generation(disk_super);
  2349. find_oldest_super_backup(fs_info, generation);
  2350. /*
  2351. * In the long term, we'll store the compression type in the super
  2352. * block, and it'll be used for per file compression control.
  2353. */
  2354. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  2355. ret = btrfs_parse_options(tree_root, options);
  2356. if (ret) {
  2357. err = ret;
  2358. goto fail_alloc;
  2359. }
  2360. features = btrfs_super_incompat_flags(disk_super) &
  2361. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  2362. if (features) {
  2363. printk(KERN_ERR "BTRFS: couldn't mount because of "
  2364. "unsupported optional features (%Lx).\n",
  2365. features);
  2366. err = -EINVAL;
  2367. goto fail_alloc;
  2368. }
  2369. /*
  2370. * Leafsize and nodesize were always equal, this is only a sanity check.
  2371. */
  2372. if (le32_to_cpu(disk_super->__unused_leafsize) !=
  2373. btrfs_super_nodesize(disk_super)) {
  2374. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2375. "blocksizes don't match. node %d leaf %d\n",
  2376. btrfs_super_nodesize(disk_super),
  2377. le32_to_cpu(disk_super->__unused_leafsize));
  2378. err = -EINVAL;
  2379. goto fail_alloc;
  2380. }
  2381. if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
  2382. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2383. "blocksize (%d) was too large\n",
  2384. btrfs_super_nodesize(disk_super));
  2385. err = -EINVAL;
  2386. goto fail_alloc;
  2387. }
  2388. features = btrfs_super_incompat_flags(disk_super);
  2389. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  2390. if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
  2391. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  2392. if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
  2393. printk(KERN_INFO "BTRFS: has skinny extents\n");
  2394. /*
  2395. * flag our filesystem as having big metadata blocks if
  2396. * they are bigger than the page size
  2397. */
  2398. if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
  2399. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  2400. printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
  2401. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  2402. }
  2403. nodesize = btrfs_super_nodesize(disk_super);
  2404. sectorsize = btrfs_super_sectorsize(disk_super);
  2405. stripesize = btrfs_super_stripesize(disk_super);
  2406. fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
  2407. fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
  2408. /*
  2409. * mixed block groups end up with duplicate but slightly offset
  2410. * extent buffers for the same range. It leads to corruptions
  2411. */
  2412. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  2413. (sectorsize != nodesize)) {
  2414. printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes "
  2415. "are not allowed for mixed block groups on %s\n",
  2416. sb->s_id);
  2417. goto fail_alloc;
  2418. }
  2419. /*
  2420. * Needn't use the lock because there is no other task which will
  2421. * update the flag.
  2422. */
  2423. btrfs_set_super_incompat_flags(disk_super, features);
  2424. features = btrfs_super_compat_ro_flags(disk_super) &
  2425. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  2426. if (!(sb->s_flags & MS_RDONLY) && features) {
  2427. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  2428. "unsupported option features (%Lx).\n",
  2429. features);
  2430. err = -EINVAL;
  2431. goto fail_alloc;
  2432. }
  2433. max_active = fs_info->thread_pool_size;
  2434. ret = btrfs_init_workqueues(fs_info, fs_devices);
  2435. if (ret) {
  2436. err = ret;
  2437. goto fail_sb_buffer;
  2438. }
  2439. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  2440. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  2441. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  2442. tree_root->nodesize = nodesize;
  2443. tree_root->sectorsize = sectorsize;
  2444. tree_root->stripesize = stripesize;
  2445. sb->s_blocksize = sectorsize;
  2446. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2447. if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
  2448. printk(KERN_ERR "BTRFS: valid FS not found on %s\n", sb->s_id);
  2449. goto fail_sb_buffer;
  2450. }
  2451. if (sectorsize != PAGE_SIZE) {
  2452. printk(KERN_ERR "BTRFS: incompatible sector size (%lu) "
  2453. "found on %s\n", (unsigned long)sectorsize, sb->s_id);
  2454. goto fail_sb_buffer;
  2455. }
  2456. mutex_lock(&fs_info->chunk_mutex);
  2457. ret = btrfs_read_sys_array(tree_root);
  2458. mutex_unlock(&fs_info->chunk_mutex);
  2459. if (ret) {
  2460. printk(KERN_ERR "BTRFS: failed to read the system "
  2461. "array on %s\n", sb->s_id);
  2462. goto fail_sb_buffer;
  2463. }
  2464. generation = btrfs_super_chunk_root_generation(disk_super);
  2465. __setup_root(nodesize, sectorsize, stripesize, chunk_root,
  2466. fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2467. chunk_root->node = read_tree_block(chunk_root,
  2468. btrfs_super_chunk_root(disk_super),
  2469. generation);
  2470. if (IS_ERR(chunk_root->node) ||
  2471. !extent_buffer_uptodate(chunk_root->node)) {
  2472. printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n",
  2473. sb->s_id);
  2474. chunk_root->node = NULL;
  2475. goto fail_tree_roots;
  2476. }
  2477. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2478. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2479. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2480. btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
  2481. ret = btrfs_read_chunk_tree(chunk_root);
  2482. if (ret) {
  2483. printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n",
  2484. sb->s_id);
  2485. goto fail_tree_roots;
  2486. }
  2487. /*
  2488. * keep the device that is marked to be the target device for the
  2489. * dev_replace procedure
  2490. */
  2491. btrfs_close_extra_devices(fs_devices, 0);
  2492. if (!fs_devices->latest_bdev) {
  2493. printk(KERN_ERR "BTRFS: failed to read devices on %s\n",
  2494. sb->s_id);
  2495. goto fail_tree_roots;
  2496. }
  2497. retry_root_backup:
  2498. generation = btrfs_super_generation(disk_super);
  2499. tree_root->node = read_tree_block(tree_root,
  2500. btrfs_super_root(disk_super),
  2501. generation);
  2502. if (IS_ERR(tree_root->node) ||
  2503. !extent_buffer_uptodate(tree_root->node)) {
  2504. printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
  2505. sb->s_id);
  2506. tree_root->node = NULL;
  2507. goto recovery_tree_root;
  2508. }
  2509. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2510. tree_root->commit_root = btrfs_root_node(tree_root);
  2511. btrfs_set_root_refs(&tree_root->root_item, 1);
  2512. ret = btrfs_read_roots(fs_info, tree_root);
  2513. if (ret)
  2514. goto recovery_tree_root;
  2515. fs_info->generation = generation;
  2516. fs_info->last_trans_committed = generation;
  2517. ret = btrfs_recover_balance(fs_info);
  2518. if (ret) {
  2519. printk(KERN_ERR "BTRFS: failed to recover balance\n");
  2520. goto fail_block_groups;
  2521. }
  2522. ret = btrfs_init_dev_stats(fs_info);
  2523. if (ret) {
  2524. printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
  2525. ret);
  2526. goto fail_block_groups;
  2527. }
  2528. ret = btrfs_init_dev_replace(fs_info);
  2529. if (ret) {
  2530. pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
  2531. goto fail_block_groups;
  2532. }
  2533. btrfs_close_extra_devices(fs_devices, 1);
  2534. ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
  2535. if (ret) {
  2536. pr_err("BTRFS: failed to init sysfs fsid interface: %d\n", ret);
  2537. goto fail_block_groups;
  2538. }
  2539. ret = btrfs_sysfs_add_device(fs_devices);
  2540. if (ret) {
  2541. pr_err("BTRFS: failed to init sysfs device interface: %d\n", ret);
  2542. goto fail_fsdev_sysfs;
  2543. }
  2544. ret = btrfs_sysfs_add_one(fs_info);
  2545. if (ret) {
  2546. pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
  2547. goto fail_fsdev_sysfs;
  2548. }
  2549. ret = btrfs_init_space_info(fs_info);
  2550. if (ret) {
  2551. printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
  2552. goto fail_sysfs;
  2553. }
  2554. ret = btrfs_read_block_groups(fs_info->extent_root);
  2555. if (ret) {
  2556. printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
  2557. goto fail_sysfs;
  2558. }
  2559. fs_info->num_tolerated_disk_barrier_failures =
  2560. btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
  2561. if (fs_info->fs_devices->missing_devices >
  2562. fs_info->num_tolerated_disk_barrier_failures &&
  2563. !(sb->s_flags & MS_RDONLY)) {
  2564. pr_warn("BTRFS: missing devices(%llu) exceeds the limit(%d), writeable mount is not allowed\n",
  2565. fs_info->fs_devices->missing_devices,
  2566. fs_info->num_tolerated_disk_barrier_failures);
  2567. goto fail_sysfs;
  2568. }
  2569. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2570. "btrfs-cleaner");
  2571. if (IS_ERR(fs_info->cleaner_kthread))
  2572. goto fail_sysfs;
  2573. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2574. tree_root,
  2575. "btrfs-transaction");
  2576. if (IS_ERR(fs_info->transaction_kthread))
  2577. goto fail_cleaner;
  2578. if (!btrfs_test_opt(tree_root, SSD) &&
  2579. !btrfs_test_opt(tree_root, NOSSD) &&
  2580. !fs_info->fs_devices->rotating) {
  2581. printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
  2582. "mode\n");
  2583. btrfs_set_opt(fs_info->mount_opt, SSD);
  2584. }
  2585. /*
  2586. * Mount does not set all options immediatelly, we can do it now and do
  2587. * not have to wait for transaction commit
  2588. */
  2589. btrfs_apply_pending_changes(fs_info);
  2590. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2591. if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
  2592. ret = btrfsic_mount(tree_root, fs_devices,
  2593. btrfs_test_opt(tree_root,
  2594. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2595. 1 : 0,
  2596. fs_info->check_integrity_print_mask);
  2597. if (ret)
  2598. printk(KERN_WARNING "BTRFS: failed to initialize"
  2599. " integrity check module %s\n", sb->s_id);
  2600. }
  2601. #endif
  2602. ret = btrfs_read_qgroup_config(fs_info);
  2603. if (ret)
  2604. goto fail_trans_kthread;
  2605. /* do not make disk changes in broken FS */
  2606. if (btrfs_super_log_root(disk_super) != 0) {
  2607. ret = btrfs_replay_log(fs_info, fs_devices);
  2608. if (ret) {
  2609. err = ret;
  2610. goto fail_qgroup;
  2611. }
  2612. }
  2613. ret = btrfs_find_orphan_roots(tree_root);
  2614. if (ret)
  2615. goto fail_qgroup;
  2616. if (!(sb->s_flags & MS_RDONLY)) {
  2617. ret = btrfs_cleanup_fs_roots(fs_info);
  2618. if (ret)
  2619. goto fail_qgroup;
  2620. mutex_lock(&fs_info->cleaner_mutex);
  2621. ret = btrfs_recover_relocation(tree_root);
  2622. mutex_unlock(&fs_info->cleaner_mutex);
  2623. if (ret < 0) {
  2624. printk(KERN_WARNING
  2625. "BTRFS: failed to recover relocation\n");
  2626. err = -EINVAL;
  2627. goto fail_qgroup;
  2628. }
  2629. }
  2630. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2631. location.type = BTRFS_ROOT_ITEM_KEY;
  2632. location.offset = 0;
  2633. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2634. if (IS_ERR(fs_info->fs_root)) {
  2635. err = PTR_ERR(fs_info->fs_root);
  2636. goto fail_qgroup;
  2637. }
  2638. if (sb->s_flags & MS_RDONLY)
  2639. return 0;
  2640. down_read(&fs_info->cleanup_work_sem);
  2641. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2642. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2643. up_read(&fs_info->cleanup_work_sem);
  2644. close_ctree(tree_root);
  2645. return ret;
  2646. }
  2647. up_read(&fs_info->cleanup_work_sem);
  2648. ret = btrfs_resume_balance_async(fs_info);
  2649. if (ret) {
  2650. printk(KERN_WARNING "BTRFS: failed to resume balance\n");
  2651. close_ctree(tree_root);
  2652. return ret;
  2653. }
  2654. ret = btrfs_resume_dev_replace_async(fs_info);
  2655. if (ret) {
  2656. pr_warn("BTRFS: failed to resume dev_replace\n");
  2657. close_ctree(tree_root);
  2658. return ret;
  2659. }
  2660. btrfs_qgroup_rescan_resume(fs_info);
  2661. if (!fs_info->uuid_root) {
  2662. pr_info("BTRFS: creating UUID tree\n");
  2663. ret = btrfs_create_uuid_tree(fs_info);
  2664. if (ret) {
  2665. pr_warn("BTRFS: failed to create the UUID tree %d\n",
  2666. ret);
  2667. close_ctree(tree_root);
  2668. return ret;
  2669. }
  2670. } else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
  2671. fs_info->generation !=
  2672. btrfs_super_uuid_tree_generation(disk_super)) {
  2673. pr_info("BTRFS: checking UUID tree\n");
  2674. ret = btrfs_check_uuid_tree(fs_info);
  2675. if (ret) {
  2676. pr_warn("BTRFS: failed to check the UUID tree %d\n",
  2677. ret);
  2678. close_ctree(tree_root);
  2679. return ret;
  2680. }
  2681. } else {
  2682. fs_info->update_uuid_tree_gen = 1;
  2683. }
  2684. fs_info->open = 1;
  2685. return 0;
  2686. fail_qgroup:
  2687. btrfs_free_qgroup_config(fs_info);
  2688. fail_trans_kthread:
  2689. kthread_stop(fs_info->transaction_kthread);
  2690. btrfs_cleanup_transaction(fs_info->tree_root);
  2691. btrfs_free_fs_roots(fs_info);
  2692. fail_cleaner:
  2693. kthread_stop(fs_info->cleaner_kthread);
  2694. /*
  2695. * make sure we're done with the btree inode before we stop our
  2696. * kthreads
  2697. */
  2698. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2699. fail_sysfs:
  2700. btrfs_sysfs_remove_one(fs_info);
  2701. fail_fsdev_sysfs:
  2702. btrfs_sysfs_remove_fsid(fs_info->fs_devices);
  2703. fail_block_groups:
  2704. btrfs_put_block_group_cache(fs_info);
  2705. btrfs_free_block_groups(fs_info);
  2706. fail_tree_roots:
  2707. free_root_pointers(fs_info, 1);
  2708. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2709. fail_sb_buffer:
  2710. btrfs_stop_all_workers(fs_info);
  2711. fail_alloc:
  2712. fail_iput:
  2713. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2714. iput(fs_info->btree_inode);
  2715. fail_bio_counter:
  2716. percpu_counter_destroy(&fs_info->bio_counter);
  2717. fail_delalloc_bytes:
  2718. percpu_counter_destroy(&fs_info->delalloc_bytes);
  2719. fail_dirty_metadata_bytes:
  2720. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  2721. fail_bdi:
  2722. bdi_destroy(&fs_info->bdi);
  2723. fail_srcu:
  2724. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2725. fail:
  2726. btrfs_free_stripe_hash_table(fs_info);
  2727. btrfs_close_devices(fs_info->fs_devices);
  2728. return err;
  2729. recovery_tree_root:
  2730. if (!btrfs_test_opt(tree_root, RECOVERY))
  2731. goto fail_tree_roots;
  2732. free_root_pointers(fs_info, 0);
  2733. /* don't use the log in recovery mode, it won't be valid */
  2734. btrfs_set_super_log_root(disk_super, 0);
  2735. /* we can't trust the free space cache either */
  2736. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2737. ret = next_root_backup(fs_info, fs_info->super_copy,
  2738. &num_backups_tried, &backup_index);
  2739. if (ret == -1)
  2740. goto fail_block_groups;
  2741. goto retry_root_backup;
  2742. }
  2743. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2744. {
  2745. if (uptodate) {
  2746. set_buffer_uptodate(bh);
  2747. } else {
  2748. struct btrfs_device *device = (struct btrfs_device *)
  2749. bh->b_private;
  2750. printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
  2751. "I/O error on %s\n",
  2752. rcu_str_deref(device->name));
  2753. /* note, we dont' set_buffer_write_io_error because we have
  2754. * our own ways of dealing with the IO errors
  2755. */
  2756. clear_buffer_uptodate(bh);
  2757. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2758. }
  2759. unlock_buffer(bh);
  2760. put_bh(bh);
  2761. }
  2762. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2763. {
  2764. struct buffer_head *bh;
  2765. struct buffer_head *latest = NULL;
  2766. struct btrfs_super_block *super;
  2767. int i;
  2768. u64 transid = 0;
  2769. u64 bytenr;
  2770. /* we would like to check all the supers, but that would make
  2771. * a btrfs mount succeed after a mkfs from a different FS.
  2772. * So, we need to add a special mount option to scan for
  2773. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2774. */
  2775. for (i = 0; i < 1; i++) {
  2776. bytenr = btrfs_sb_offset(i);
  2777. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2778. i_size_read(bdev->bd_inode))
  2779. break;
  2780. bh = __bread(bdev, bytenr / 4096,
  2781. BTRFS_SUPER_INFO_SIZE);
  2782. if (!bh)
  2783. continue;
  2784. super = (struct btrfs_super_block *)bh->b_data;
  2785. if (btrfs_super_bytenr(super) != bytenr ||
  2786. btrfs_super_magic(super) != BTRFS_MAGIC) {
  2787. brelse(bh);
  2788. continue;
  2789. }
  2790. if (!latest || btrfs_super_generation(super) > transid) {
  2791. brelse(latest);
  2792. latest = bh;
  2793. transid = btrfs_super_generation(super);
  2794. } else {
  2795. brelse(bh);
  2796. }
  2797. }
  2798. return latest;
  2799. }
  2800. /*
  2801. * this should be called twice, once with wait == 0 and
  2802. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2803. * we write are pinned.
  2804. *
  2805. * They are released when wait == 1 is done.
  2806. * max_mirrors must be the same for both runs, and it indicates how
  2807. * many supers on this one device should be written.
  2808. *
  2809. * max_mirrors == 0 means to write them all.
  2810. */
  2811. static int write_dev_supers(struct btrfs_device *device,
  2812. struct btrfs_super_block *sb,
  2813. int do_barriers, int wait, int max_mirrors)
  2814. {
  2815. struct buffer_head *bh;
  2816. int i;
  2817. int ret;
  2818. int errors = 0;
  2819. u32 crc;
  2820. u64 bytenr;
  2821. if (max_mirrors == 0)
  2822. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2823. for (i = 0; i < max_mirrors; i++) {
  2824. bytenr = btrfs_sb_offset(i);
  2825. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2826. device->commit_total_bytes)
  2827. break;
  2828. if (wait) {
  2829. bh = __find_get_block(device->bdev, bytenr / 4096,
  2830. BTRFS_SUPER_INFO_SIZE);
  2831. if (!bh) {
  2832. errors++;
  2833. continue;
  2834. }
  2835. wait_on_buffer(bh);
  2836. if (!buffer_uptodate(bh))
  2837. errors++;
  2838. /* drop our reference */
  2839. brelse(bh);
  2840. /* drop the reference from the wait == 0 run */
  2841. brelse(bh);
  2842. continue;
  2843. } else {
  2844. btrfs_set_super_bytenr(sb, bytenr);
  2845. crc = ~(u32)0;
  2846. crc = btrfs_csum_data((char *)sb +
  2847. BTRFS_CSUM_SIZE, crc,
  2848. BTRFS_SUPER_INFO_SIZE -
  2849. BTRFS_CSUM_SIZE);
  2850. btrfs_csum_final(crc, sb->csum);
  2851. /*
  2852. * one reference for us, and we leave it for the
  2853. * caller
  2854. */
  2855. bh = __getblk(device->bdev, bytenr / 4096,
  2856. BTRFS_SUPER_INFO_SIZE);
  2857. if (!bh) {
  2858. printk(KERN_ERR "BTRFS: couldn't get super "
  2859. "buffer head for bytenr %Lu\n", bytenr);
  2860. errors++;
  2861. continue;
  2862. }
  2863. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2864. /* one reference for submit_bh */
  2865. get_bh(bh);
  2866. set_buffer_uptodate(bh);
  2867. lock_buffer(bh);
  2868. bh->b_end_io = btrfs_end_buffer_write_sync;
  2869. bh->b_private = device;
  2870. }
  2871. /*
  2872. * we fua the first super. The others we allow
  2873. * to go down lazy.
  2874. */
  2875. if (i == 0)
  2876. ret = btrfsic_submit_bh(WRITE_FUA, bh);
  2877. else
  2878. ret = btrfsic_submit_bh(WRITE_SYNC, bh);
  2879. if (ret)
  2880. errors++;
  2881. }
  2882. return errors < i ? 0 : -1;
  2883. }
  2884. /*
  2885. * endio for the write_dev_flush, this will wake anyone waiting
  2886. * for the barrier when it is done
  2887. */
  2888. static void btrfs_end_empty_barrier(struct bio *bio)
  2889. {
  2890. if (bio->bi_private)
  2891. complete(bio->bi_private);
  2892. bio_put(bio);
  2893. }
  2894. /*
  2895. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  2896. * sent down. With wait == 1, it waits for the previous flush.
  2897. *
  2898. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  2899. * capable
  2900. */
  2901. static int write_dev_flush(struct btrfs_device *device, int wait)
  2902. {
  2903. struct bio *bio;
  2904. int ret = 0;
  2905. if (device->nobarriers)
  2906. return 0;
  2907. if (wait) {
  2908. bio = device->flush_bio;
  2909. if (!bio)
  2910. return 0;
  2911. wait_for_completion(&device->flush_wait);
  2912. if (bio->bi_error) {
  2913. ret = bio->bi_error;
  2914. btrfs_dev_stat_inc_and_print(device,
  2915. BTRFS_DEV_STAT_FLUSH_ERRS);
  2916. }
  2917. /* drop the reference from the wait == 0 run */
  2918. bio_put(bio);
  2919. device->flush_bio = NULL;
  2920. return ret;
  2921. }
  2922. /*
  2923. * one reference for us, and we leave it for the
  2924. * caller
  2925. */
  2926. device->flush_bio = NULL;
  2927. bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
  2928. if (!bio)
  2929. return -ENOMEM;
  2930. bio->bi_end_io = btrfs_end_empty_barrier;
  2931. bio->bi_bdev = device->bdev;
  2932. init_completion(&device->flush_wait);
  2933. bio->bi_private = &device->flush_wait;
  2934. device->flush_bio = bio;
  2935. bio_get(bio);
  2936. btrfsic_submit_bio(WRITE_FLUSH, bio);
  2937. return 0;
  2938. }
  2939. /*
  2940. * send an empty flush down to each device in parallel,
  2941. * then wait for them
  2942. */
  2943. static int barrier_all_devices(struct btrfs_fs_info *info)
  2944. {
  2945. struct list_head *head;
  2946. struct btrfs_device *dev;
  2947. int errors_send = 0;
  2948. int errors_wait = 0;
  2949. int ret;
  2950. /* send down all the barriers */
  2951. head = &info->fs_devices->devices;
  2952. list_for_each_entry_rcu(dev, head, dev_list) {
  2953. if (dev->missing)
  2954. continue;
  2955. if (!dev->bdev) {
  2956. errors_send++;
  2957. continue;
  2958. }
  2959. if (!dev->in_fs_metadata || !dev->writeable)
  2960. continue;
  2961. ret = write_dev_flush(dev, 0);
  2962. if (ret)
  2963. errors_send++;
  2964. }
  2965. /* wait for all the barriers */
  2966. list_for_each_entry_rcu(dev, head, dev_list) {
  2967. if (dev->missing)
  2968. continue;
  2969. if (!dev->bdev) {
  2970. errors_wait++;
  2971. continue;
  2972. }
  2973. if (!dev->in_fs_metadata || !dev->writeable)
  2974. continue;
  2975. ret = write_dev_flush(dev, 1);
  2976. if (ret)
  2977. errors_wait++;
  2978. }
  2979. if (errors_send > info->num_tolerated_disk_barrier_failures ||
  2980. errors_wait > info->num_tolerated_disk_barrier_failures)
  2981. return -EIO;
  2982. return 0;
  2983. }
  2984. int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
  2985. {
  2986. if ((flags & (BTRFS_BLOCK_GROUP_DUP |
  2987. BTRFS_BLOCK_GROUP_RAID0 |
  2988. BTRFS_AVAIL_ALLOC_BIT_SINGLE)) ||
  2989. ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0))
  2990. return 0;
  2991. if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
  2992. BTRFS_BLOCK_GROUP_RAID5 |
  2993. BTRFS_BLOCK_GROUP_RAID10))
  2994. return 1;
  2995. if (flags & BTRFS_BLOCK_GROUP_RAID6)
  2996. return 2;
  2997. pr_warn("BTRFS: unknown raid type: %llu\n", flags);
  2998. return 0;
  2999. }
  3000. int btrfs_calc_num_tolerated_disk_barrier_failures(
  3001. struct btrfs_fs_info *fs_info)
  3002. {
  3003. struct btrfs_ioctl_space_info space;
  3004. struct btrfs_space_info *sinfo;
  3005. u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
  3006. BTRFS_BLOCK_GROUP_SYSTEM,
  3007. BTRFS_BLOCK_GROUP_METADATA,
  3008. BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
  3009. int i;
  3010. int c;
  3011. int num_tolerated_disk_barrier_failures =
  3012. (int)fs_info->fs_devices->num_devices;
  3013. for (i = 0; i < ARRAY_SIZE(types); i++) {
  3014. struct btrfs_space_info *tmp;
  3015. sinfo = NULL;
  3016. rcu_read_lock();
  3017. list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
  3018. if (tmp->flags == types[i]) {
  3019. sinfo = tmp;
  3020. break;
  3021. }
  3022. }
  3023. rcu_read_unlock();
  3024. if (!sinfo)
  3025. continue;
  3026. down_read(&sinfo->groups_sem);
  3027. for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
  3028. u64 flags;
  3029. if (list_empty(&sinfo->block_groups[c]))
  3030. continue;
  3031. btrfs_get_block_group_info(&sinfo->block_groups[c],
  3032. &space);
  3033. if (space.total_bytes == 0 || space.used_bytes == 0)
  3034. continue;
  3035. flags = space.flags;
  3036. num_tolerated_disk_barrier_failures = min(
  3037. num_tolerated_disk_barrier_failures,
  3038. btrfs_get_num_tolerated_disk_barrier_failures(
  3039. flags));
  3040. }
  3041. up_read(&sinfo->groups_sem);
  3042. }
  3043. return num_tolerated_disk_barrier_failures;
  3044. }
  3045. static int write_all_supers(struct btrfs_root *root, int max_mirrors)
  3046. {
  3047. struct list_head *head;
  3048. struct btrfs_device *dev;
  3049. struct btrfs_super_block *sb;
  3050. struct btrfs_dev_item *dev_item;
  3051. int ret;
  3052. int do_barriers;
  3053. int max_errors;
  3054. int total_errors = 0;
  3055. u64 flags;
  3056. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  3057. backup_super_roots(root->fs_info);
  3058. sb = root->fs_info->super_for_commit;
  3059. dev_item = &sb->dev_item;
  3060. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  3061. head = &root->fs_info->fs_devices->devices;
  3062. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  3063. if (do_barriers) {
  3064. ret = barrier_all_devices(root->fs_info);
  3065. if (ret) {
  3066. mutex_unlock(
  3067. &root->fs_info->fs_devices->device_list_mutex);
  3068. btrfs_error(root->fs_info, ret,
  3069. "errors while submitting device barriers.");
  3070. return ret;
  3071. }
  3072. }
  3073. list_for_each_entry_rcu(dev, head, dev_list) {
  3074. if (!dev->bdev) {
  3075. total_errors++;
  3076. continue;
  3077. }
  3078. if (!dev->in_fs_metadata || !dev->writeable)
  3079. continue;
  3080. btrfs_set_stack_device_generation(dev_item, 0);
  3081. btrfs_set_stack_device_type(dev_item, dev->type);
  3082. btrfs_set_stack_device_id(dev_item, dev->devid);
  3083. btrfs_set_stack_device_total_bytes(dev_item,
  3084. dev->commit_total_bytes);
  3085. btrfs_set_stack_device_bytes_used(dev_item,
  3086. dev->commit_bytes_used);
  3087. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  3088. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  3089. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  3090. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  3091. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  3092. flags = btrfs_super_flags(sb);
  3093. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  3094. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  3095. if (ret)
  3096. total_errors++;
  3097. }
  3098. if (total_errors > max_errors) {
  3099. btrfs_err(root->fs_info, "%d errors while writing supers",
  3100. total_errors);
  3101. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  3102. /* FUA is masked off if unsupported and can't be the reason */
  3103. btrfs_error(root->fs_info, -EIO,
  3104. "%d errors while writing supers", total_errors);
  3105. return -EIO;
  3106. }
  3107. total_errors = 0;
  3108. list_for_each_entry_rcu(dev, head, dev_list) {
  3109. if (!dev->bdev)
  3110. continue;
  3111. if (!dev->in_fs_metadata || !dev->writeable)
  3112. continue;
  3113. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  3114. if (ret)
  3115. total_errors++;
  3116. }
  3117. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  3118. if (total_errors > max_errors) {
  3119. btrfs_error(root->fs_info, -EIO,
  3120. "%d errors while writing supers", total_errors);
  3121. return -EIO;
  3122. }
  3123. return 0;
  3124. }
  3125. int write_ctree_super(struct btrfs_trans_handle *trans,
  3126. struct btrfs_root *root, int max_mirrors)
  3127. {
  3128. return write_all_supers(root, max_mirrors);
  3129. }
  3130. /* Drop a fs root from the radix tree and free it. */
  3131. void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
  3132. struct btrfs_root *root)
  3133. {
  3134. spin_lock(&fs_info->fs_roots_radix_lock);
  3135. radix_tree_delete(&fs_info->fs_roots_radix,
  3136. (unsigned long)root->root_key.objectid);
  3137. spin_unlock(&fs_info->fs_roots_radix_lock);
  3138. if (btrfs_root_refs(&root->root_item) == 0)
  3139. synchronize_srcu(&fs_info->subvol_srcu);
  3140. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3141. btrfs_free_log(NULL, root);
  3142. if (root->free_ino_pinned)
  3143. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  3144. if (root->free_ino_ctl)
  3145. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  3146. free_fs_root(root);
  3147. }
  3148. static void free_fs_root(struct btrfs_root *root)
  3149. {
  3150. iput(root->ino_cache_inode);
  3151. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  3152. btrfs_free_block_rsv(root, root->orphan_block_rsv);
  3153. root->orphan_block_rsv = NULL;
  3154. if (root->anon_dev)
  3155. free_anon_bdev(root->anon_dev);
  3156. if (root->subv_writers)
  3157. btrfs_free_subvolume_writers(root->subv_writers);
  3158. free_extent_buffer(root->node);
  3159. free_extent_buffer(root->commit_root);
  3160. kfree(root->free_ino_ctl);
  3161. kfree(root->free_ino_pinned);
  3162. kfree(root->name);
  3163. btrfs_put_fs_root(root);
  3164. }
  3165. void btrfs_free_fs_root(struct btrfs_root *root)
  3166. {
  3167. free_fs_root(root);
  3168. }
  3169. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  3170. {
  3171. u64 root_objectid = 0;
  3172. struct btrfs_root *gang[8];
  3173. int i = 0;
  3174. int err = 0;
  3175. unsigned int ret = 0;
  3176. int index;
  3177. while (1) {
  3178. index = srcu_read_lock(&fs_info->subvol_srcu);
  3179. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  3180. (void **)gang, root_objectid,
  3181. ARRAY_SIZE(gang));
  3182. if (!ret) {
  3183. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3184. break;
  3185. }
  3186. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  3187. for (i = 0; i < ret; i++) {
  3188. /* Avoid to grab roots in dead_roots */
  3189. if (btrfs_root_refs(&gang[i]->root_item) == 0) {
  3190. gang[i] = NULL;
  3191. continue;
  3192. }
  3193. /* grab all the search result for later use */
  3194. gang[i] = btrfs_grab_fs_root(gang[i]);
  3195. }
  3196. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3197. for (i = 0; i < ret; i++) {
  3198. if (!gang[i])
  3199. continue;
  3200. root_objectid = gang[i]->root_key.objectid;
  3201. err = btrfs_orphan_cleanup(gang[i]);
  3202. if (err)
  3203. break;
  3204. btrfs_put_fs_root(gang[i]);
  3205. }
  3206. root_objectid++;
  3207. }
  3208. /* release the uncleaned roots due to error */
  3209. for (; i < ret; i++) {
  3210. if (gang[i])
  3211. btrfs_put_fs_root(gang[i]);
  3212. }
  3213. return err;
  3214. }
  3215. int btrfs_commit_super(struct btrfs_root *root)
  3216. {
  3217. struct btrfs_trans_handle *trans;
  3218. mutex_lock(&root->fs_info->cleaner_mutex);
  3219. btrfs_run_delayed_iputs(root);
  3220. mutex_unlock(&root->fs_info->cleaner_mutex);
  3221. wake_up_process(root->fs_info->cleaner_kthread);
  3222. /* wait until ongoing cleanup work done */
  3223. down_write(&root->fs_info->cleanup_work_sem);
  3224. up_write(&root->fs_info->cleanup_work_sem);
  3225. trans = btrfs_join_transaction(root);
  3226. if (IS_ERR(trans))
  3227. return PTR_ERR(trans);
  3228. return btrfs_commit_transaction(trans, root);
  3229. }
  3230. void close_ctree(struct btrfs_root *root)
  3231. {
  3232. struct btrfs_fs_info *fs_info = root->fs_info;
  3233. int ret;
  3234. fs_info->closing = 1;
  3235. smp_mb();
  3236. /* wait for the uuid_scan task to finish */
  3237. down(&fs_info->uuid_tree_rescan_sem);
  3238. /* avoid complains from lockdep et al., set sem back to initial state */
  3239. up(&fs_info->uuid_tree_rescan_sem);
  3240. /* pause restriper - we want to resume on mount */
  3241. btrfs_pause_balance(fs_info);
  3242. btrfs_dev_replace_suspend_for_unmount(fs_info);
  3243. btrfs_scrub_cancel(fs_info);
  3244. /* wait for any defraggers to finish */
  3245. wait_event(fs_info->transaction_wait,
  3246. (atomic_read(&fs_info->defrag_running) == 0));
  3247. /* clear out the rbtree of defraggable inodes */
  3248. btrfs_cleanup_defrag_inodes(fs_info);
  3249. cancel_work_sync(&fs_info->async_reclaim_work);
  3250. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  3251. /*
  3252. * If the cleaner thread is stopped and there are
  3253. * block groups queued for removal, the deletion will be
  3254. * skipped when we quit the cleaner thread.
  3255. */
  3256. btrfs_delete_unused_bgs(root->fs_info);
  3257. ret = btrfs_commit_super(root);
  3258. if (ret)
  3259. btrfs_err(fs_info, "commit super ret %d", ret);
  3260. }
  3261. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3262. btrfs_error_commit_super(root);
  3263. kthread_stop(fs_info->transaction_kthread);
  3264. kthread_stop(fs_info->cleaner_kthread);
  3265. fs_info->closing = 2;
  3266. smp_mb();
  3267. btrfs_free_qgroup_config(fs_info);
  3268. if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
  3269. btrfs_info(fs_info, "at unmount delalloc count %lld",
  3270. percpu_counter_sum(&fs_info->delalloc_bytes));
  3271. }
  3272. btrfs_sysfs_remove_one(fs_info);
  3273. btrfs_sysfs_remove_fsid(fs_info->fs_devices);
  3274. btrfs_free_fs_roots(fs_info);
  3275. btrfs_put_block_group_cache(fs_info);
  3276. btrfs_free_block_groups(fs_info);
  3277. /*
  3278. * we must make sure there is not any read request to
  3279. * submit after we stopping all workers.
  3280. */
  3281. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  3282. btrfs_stop_all_workers(fs_info);
  3283. fs_info->open = 0;
  3284. free_root_pointers(fs_info, 1);
  3285. iput(fs_info->btree_inode);
  3286. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3287. if (btrfs_test_opt(root, CHECK_INTEGRITY))
  3288. btrfsic_unmount(root, fs_info->fs_devices);
  3289. #endif
  3290. btrfs_close_devices(fs_info->fs_devices);
  3291. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  3292. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  3293. percpu_counter_destroy(&fs_info->delalloc_bytes);
  3294. percpu_counter_destroy(&fs_info->bio_counter);
  3295. bdi_destroy(&fs_info->bdi);
  3296. cleanup_srcu_struct(&fs_info->subvol_srcu);
  3297. btrfs_free_stripe_hash_table(fs_info);
  3298. __btrfs_free_block_rsv(root->orphan_block_rsv);
  3299. root->orphan_block_rsv = NULL;
  3300. lock_chunks(root);
  3301. while (!list_empty(&fs_info->pinned_chunks)) {
  3302. struct extent_map *em;
  3303. em = list_first_entry(&fs_info->pinned_chunks,
  3304. struct extent_map, list);
  3305. list_del_init(&em->list);
  3306. free_extent_map(em);
  3307. }
  3308. unlock_chunks(root);
  3309. }
  3310. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  3311. int atomic)
  3312. {
  3313. int ret;
  3314. struct inode *btree_inode = buf->pages[0]->mapping->host;
  3315. ret = extent_buffer_uptodate(buf);
  3316. if (!ret)
  3317. return ret;
  3318. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  3319. parent_transid, atomic);
  3320. if (ret == -EAGAIN)
  3321. return ret;
  3322. return !ret;
  3323. }
  3324. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  3325. {
  3326. return set_extent_buffer_uptodate(buf);
  3327. }
  3328. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  3329. {
  3330. struct btrfs_root *root;
  3331. u64 transid = btrfs_header_generation(buf);
  3332. int was_dirty;
  3333. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  3334. /*
  3335. * This is a fast path so only do this check if we have sanity tests
  3336. * enabled. Normal people shouldn't be marking dummy buffers as dirty
  3337. * outside of the sanity tests.
  3338. */
  3339. if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
  3340. return;
  3341. #endif
  3342. root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3343. btrfs_assert_tree_locked(buf);
  3344. if (transid != root->fs_info->generation)
  3345. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
  3346. "found %llu running %llu\n",
  3347. buf->start, transid, root->fs_info->generation);
  3348. was_dirty = set_extent_buffer_dirty(buf);
  3349. if (!was_dirty)
  3350. __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
  3351. buf->len,
  3352. root->fs_info->dirty_metadata_batch);
  3353. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3354. if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
  3355. btrfs_print_leaf(root, buf);
  3356. ASSERT(0);
  3357. }
  3358. #endif
  3359. }
  3360. static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
  3361. int flush_delayed)
  3362. {
  3363. /*
  3364. * looks as though older kernels can get into trouble with
  3365. * this code, they end up stuck in balance_dirty_pages forever
  3366. */
  3367. int ret;
  3368. if (current->flags & PF_MEMALLOC)
  3369. return;
  3370. if (flush_delayed)
  3371. btrfs_balance_delayed_items(root);
  3372. ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
  3373. BTRFS_DIRTY_METADATA_THRESH);
  3374. if (ret > 0) {
  3375. balance_dirty_pages_ratelimited(
  3376. root->fs_info->btree_inode->i_mapping);
  3377. }
  3378. return;
  3379. }
  3380. void btrfs_btree_balance_dirty(struct btrfs_root *root)
  3381. {
  3382. __btrfs_btree_balance_dirty(root, 1);
  3383. }
  3384. void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
  3385. {
  3386. __btrfs_btree_balance_dirty(root, 0);
  3387. }
  3388. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  3389. {
  3390. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3391. return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  3392. }
  3393. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  3394. int read_only)
  3395. {
  3396. struct btrfs_super_block *sb = fs_info->super_copy;
  3397. int ret = 0;
  3398. if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3399. printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
  3400. btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
  3401. ret = -EINVAL;
  3402. }
  3403. if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3404. printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
  3405. btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
  3406. ret = -EINVAL;
  3407. }
  3408. if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3409. printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
  3410. btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
  3411. ret = -EINVAL;
  3412. }
  3413. /*
  3414. * The common minimum, we don't know if we can trust the nodesize/sectorsize
  3415. * items yet, they'll be verified later. Issue just a warning.
  3416. */
  3417. if (!IS_ALIGNED(btrfs_super_root(sb), 4096))
  3418. printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
  3419. btrfs_super_root(sb));
  3420. if (!IS_ALIGNED(btrfs_super_chunk_root(sb), 4096))
  3421. printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
  3422. btrfs_super_chunk_root(sb));
  3423. if (!IS_ALIGNED(btrfs_super_log_root(sb), 4096))
  3424. printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
  3425. btrfs_super_log_root(sb));
  3426. /*
  3427. * Check the lower bound, the alignment and other constraints are
  3428. * checked later.
  3429. */
  3430. if (btrfs_super_nodesize(sb) < 4096) {
  3431. printk(KERN_ERR "BTRFS: nodesize too small: %u < 4096\n",
  3432. btrfs_super_nodesize(sb));
  3433. ret = -EINVAL;
  3434. }
  3435. if (btrfs_super_sectorsize(sb) < 4096) {
  3436. printk(KERN_ERR "BTRFS: sectorsize too small: %u < 4096\n",
  3437. btrfs_super_sectorsize(sb));
  3438. ret = -EINVAL;
  3439. }
  3440. if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
  3441. printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
  3442. fs_info->fsid, sb->dev_item.fsid);
  3443. ret = -EINVAL;
  3444. }
  3445. /*
  3446. * Hint to catch really bogus numbers, bitflips or so, more exact checks are
  3447. * done later
  3448. */
  3449. if (btrfs_super_num_devices(sb) > (1UL << 31))
  3450. printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
  3451. btrfs_super_num_devices(sb));
  3452. if (btrfs_super_num_devices(sb) == 0) {
  3453. printk(KERN_ERR "BTRFS: number of devices is 0\n");
  3454. ret = -EINVAL;
  3455. }
  3456. if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
  3457. printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
  3458. btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
  3459. ret = -EINVAL;
  3460. }
  3461. /*
  3462. * Obvious sys_chunk_array corruptions, it must hold at least one key
  3463. * and one chunk
  3464. */
  3465. if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
  3466. printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
  3467. btrfs_super_sys_array_size(sb),
  3468. BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
  3469. ret = -EINVAL;
  3470. }
  3471. if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
  3472. + sizeof(struct btrfs_chunk)) {
  3473. printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
  3474. btrfs_super_sys_array_size(sb),
  3475. sizeof(struct btrfs_disk_key)
  3476. + sizeof(struct btrfs_chunk));
  3477. ret = -EINVAL;
  3478. }
  3479. /*
  3480. * The generation is a global counter, we'll trust it more than the others
  3481. * but it's still possible that it's the one that's wrong.
  3482. */
  3483. if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
  3484. printk(KERN_WARNING
  3485. "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
  3486. btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
  3487. if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
  3488. && btrfs_super_cache_generation(sb) != (u64)-1)
  3489. printk(KERN_WARNING
  3490. "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
  3491. btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
  3492. return ret;
  3493. }
  3494. static void btrfs_error_commit_super(struct btrfs_root *root)
  3495. {
  3496. mutex_lock(&root->fs_info->cleaner_mutex);
  3497. btrfs_run_delayed_iputs(root);
  3498. mutex_unlock(&root->fs_info->cleaner_mutex);
  3499. down_write(&root->fs_info->cleanup_work_sem);
  3500. up_write(&root->fs_info->cleanup_work_sem);
  3501. /* cleanup FS via transaction */
  3502. btrfs_cleanup_transaction(root);
  3503. }
  3504. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3505. {
  3506. struct btrfs_ordered_extent *ordered;
  3507. spin_lock(&root->ordered_extent_lock);
  3508. /*
  3509. * This will just short circuit the ordered completion stuff which will
  3510. * make sure the ordered extent gets properly cleaned up.
  3511. */
  3512. list_for_each_entry(ordered, &root->ordered_extents,
  3513. root_extent_list)
  3514. set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
  3515. spin_unlock(&root->ordered_extent_lock);
  3516. }
  3517. static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
  3518. {
  3519. struct btrfs_root *root;
  3520. struct list_head splice;
  3521. INIT_LIST_HEAD(&splice);
  3522. spin_lock(&fs_info->ordered_root_lock);
  3523. list_splice_init(&fs_info->ordered_roots, &splice);
  3524. while (!list_empty(&splice)) {
  3525. root = list_first_entry(&splice, struct btrfs_root,
  3526. ordered_root);
  3527. list_move_tail(&root->ordered_root,
  3528. &fs_info->ordered_roots);
  3529. spin_unlock(&fs_info->ordered_root_lock);
  3530. btrfs_destroy_ordered_extents(root);
  3531. cond_resched();
  3532. spin_lock(&fs_info->ordered_root_lock);
  3533. }
  3534. spin_unlock(&fs_info->ordered_root_lock);
  3535. }
  3536. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3537. struct btrfs_root *root)
  3538. {
  3539. struct rb_node *node;
  3540. struct btrfs_delayed_ref_root *delayed_refs;
  3541. struct btrfs_delayed_ref_node *ref;
  3542. int ret = 0;
  3543. delayed_refs = &trans->delayed_refs;
  3544. spin_lock(&delayed_refs->lock);
  3545. if (atomic_read(&delayed_refs->num_entries) == 0) {
  3546. spin_unlock(&delayed_refs->lock);
  3547. btrfs_info(root->fs_info, "delayed_refs has NO entry");
  3548. return ret;
  3549. }
  3550. while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
  3551. struct btrfs_delayed_ref_head *head;
  3552. struct btrfs_delayed_ref_node *tmp;
  3553. bool pin_bytes = false;
  3554. head = rb_entry(node, struct btrfs_delayed_ref_head,
  3555. href_node);
  3556. if (!mutex_trylock(&head->mutex)) {
  3557. atomic_inc(&head->node.refs);
  3558. spin_unlock(&delayed_refs->lock);
  3559. mutex_lock(&head->mutex);
  3560. mutex_unlock(&head->mutex);
  3561. btrfs_put_delayed_ref(&head->node);
  3562. spin_lock(&delayed_refs->lock);
  3563. continue;
  3564. }
  3565. spin_lock(&head->lock);
  3566. list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
  3567. list) {
  3568. ref->in_tree = 0;
  3569. list_del(&ref->list);
  3570. atomic_dec(&delayed_refs->num_entries);
  3571. btrfs_put_delayed_ref(ref);
  3572. }
  3573. if (head->must_insert_reserved)
  3574. pin_bytes = true;
  3575. btrfs_free_delayed_extent_op(head->extent_op);
  3576. delayed_refs->num_heads--;
  3577. if (head->processing == 0)
  3578. delayed_refs->num_heads_ready--;
  3579. atomic_dec(&delayed_refs->num_entries);
  3580. head->node.in_tree = 0;
  3581. rb_erase(&head->href_node, &delayed_refs->href_root);
  3582. spin_unlock(&head->lock);
  3583. spin_unlock(&delayed_refs->lock);
  3584. mutex_unlock(&head->mutex);
  3585. if (pin_bytes)
  3586. btrfs_pin_extent(root, head->node.bytenr,
  3587. head->node.num_bytes, 1);
  3588. btrfs_put_delayed_ref(&head->node);
  3589. cond_resched();
  3590. spin_lock(&delayed_refs->lock);
  3591. }
  3592. spin_unlock(&delayed_refs->lock);
  3593. return ret;
  3594. }
  3595. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3596. {
  3597. struct btrfs_inode *btrfs_inode;
  3598. struct list_head splice;
  3599. INIT_LIST_HEAD(&splice);
  3600. spin_lock(&root->delalloc_lock);
  3601. list_splice_init(&root->delalloc_inodes, &splice);
  3602. while (!list_empty(&splice)) {
  3603. btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
  3604. delalloc_inodes);
  3605. list_del_init(&btrfs_inode->delalloc_inodes);
  3606. clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  3607. &btrfs_inode->runtime_flags);
  3608. spin_unlock(&root->delalloc_lock);
  3609. btrfs_invalidate_inodes(btrfs_inode->root);
  3610. spin_lock(&root->delalloc_lock);
  3611. }
  3612. spin_unlock(&root->delalloc_lock);
  3613. }
  3614. static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
  3615. {
  3616. struct btrfs_root *root;
  3617. struct list_head splice;
  3618. INIT_LIST_HEAD(&splice);
  3619. spin_lock(&fs_info->delalloc_root_lock);
  3620. list_splice_init(&fs_info->delalloc_roots, &splice);
  3621. while (!list_empty(&splice)) {
  3622. root = list_first_entry(&splice, struct btrfs_root,
  3623. delalloc_root);
  3624. list_del_init(&root->delalloc_root);
  3625. root = btrfs_grab_fs_root(root);
  3626. BUG_ON(!root);
  3627. spin_unlock(&fs_info->delalloc_root_lock);
  3628. btrfs_destroy_delalloc_inodes(root);
  3629. btrfs_put_fs_root(root);
  3630. spin_lock(&fs_info->delalloc_root_lock);
  3631. }
  3632. spin_unlock(&fs_info->delalloc_root_lock);
  3633. }
  3634. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  3635. struct extent_io_tree *dirty_pages,
  3636. int mark)
  3637. {
  3638. int ret;
  3639. struct extent_buffer *eb;
  3640. u64 start = 0;
  3641. u64 end;
  3642. while (1) {
  3643. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3644. mark, NULL);
  3645. if (ret)
  3646. break;
  3647. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  3648. while (start <= end) {
  3649. eb = btrfs_find_tree_block(root->fs_info, start);
  3650. start += root->nodesize;
  3651. if (!eb)
  3652. continue;
  3653. wait_on_extent_buffer_writeback(eb);
  3654. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3655. &eb->bflags))
  3656. clear_extent_buffer_dirty(eb);
  3657. free_extent_buffer_stale(eb);
  3658. }
  3659. }
  3660. return ret;
  3661. }
  3662. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  3663. struct extent_io_tree *pinned_extents)
  3664. {
  3665. struct extent_io_tree *unpin;
  3666. u64 start;
  3667. u64 end;
  3668. int ret;
  3669. bool loop = true;
  3670. unpin = pinned_extents;
  3671. again:
  3672. while (1) {
  3673. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3674. EXTENT_DIRTY, NULL);
  3675. if (ret)
  3676. break;
  3677. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  3678. btrfs_error_unpin_extent_range(root, start, end);
  3679. cond_resched();
  3680. }
  3681. if (loop) {
  3682. if (unpin == &root->fs_info->freed_extents[0])
  3683. unpin = &root->fs_info->freed_extents[1];
  3684. else
  3685. unpin = &root->fs_info->freed_extents[0];
  3686. loop = false;
  3687. goto again;
  3688. }
  3689. return 0;
  3690. }
  3691. static void btrfs_free_pending_ordered(struct btrfs_transaction *cur_trans,
  3692. struct btrfs_fs_info *fs_info)
  3693. {
  3694. struct btrfs_ordered_extent *ordered;
  3695. spin_lock(&fs_info->trans_lock);
  3696. while (!list_empty(&cur_trans->pending_ordered)) {
  3697. ordered = list_first_entry(&cur_trans->pending_ordered,
  3698. struct btrfs_ordered_extent,
  3699. trans_list);
  3700. list_del_init(&ordered->trans_list);
  3701. spin_unlock(&fs_info->trans_lock);
  3702. btrfs_put_ordered_extent(ordered);
  3703. spin_lock(&fs_info->trans_lock);
  3704. }
  3705. spin_unlock(&fs_info->trans_lock);
  3706. }
  3707. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3708. struct btrfs_root *root)
  3709. {
  3710. btrfs_destroy_delayed_refs(cur_trans, root);
  3711. cur_trans->state = TRANS_STATE_COMMIT_START;
  3712. wake_up(&root->fs_info->transaction_blocked_wait);
  3713. cur_trans->state = TRANS_STATE_UNBLOCKED;
  3714. wake_up(&root->fs_info->transaction_wait);
  3715. btrfs_free_pending_ordered(cur_trans, root->fs_info);
  3716. btrfs_destroy_delayed_inodes(root);
  3717. btrfs_assert_delayed_root_empty(root);
  3718. btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
  3719. EXTENT_DIRTY);
  3720. btrfs_destroy_pinned_extent(root,
  3721. root->fs_info->pinned_extents);
  3722. cur_trans->state =TRANS_STATE_COMPLETED;
  3723. wake_up(&cur_trans->commit_wait);
  3724. /*
  3725. memset(cur_trans, 0, sizeof(*cur_trans));
  3726. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3727. */
  3728. }
  3729. static int btrfs_cleanup_transaction(struct btrfs_root *root)
  3730. {
  3731. struct btrfs_transaction *t;
  3732. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  3733. spin_lock(&root->fs_info->trans_lock);
  3734. while (!list_empty(&root->fs_info->trans_list)) {
  3735. t = list_first_entry(&root->fs_info->trans_list,
  3736. struct btrfs_transaction, list);
  3737. if (t->state >= TRANS_STATE_COMMIT_START) {
  3738. atomic_inc(&t->use_count);
  3739. spin_unlock(&root->fs_info->trans_lock);
  3740. btrfs_wait_for_commit(root, t->transid);
  3741. btrfs_put_transaction(t);
  3742. spin_lock(&root->fs_info->trans_lock);
  3743. continue;
  3744. }
  3745. if (t == root->fs_info->running_transaction) {
  3746. t->state = TRANS_STATE_COMMIT_DOING;
  3747. spin_unlock(&root->fs_info->trans_lock);
  3748. /*
  3749. * We wait for 0 num_writers since we don't hold a trans
  3750. * handle open currently for this transaction.
  3751. */
  3752. wait_event(t->writer_wait,
  3753. atomic_read(&t->num_writers) == 0);
  3754. } else {
  3755. spin_unlock(&root->fs_info->trans_lock);
  3756. }
  3757. btrfs_cleanup_one_transaction(t, root);
  3758. spin_lock(&root->fs_info->trans_lock);
  3759. if (t == root->fs_info->running_transaction)
  3760. root->fs_info->running_transaction = NULL;
  3761. list_del_init(&t->list);
  3762. spin_unlock(&root->fs_info->trans_lock);
  3763. btrfs_put_transaction(t);
  3764. trace_btrfs_transaction_commit(root);
  3765. spin_lock(&root->fs_info->trans_lock);
  3766. }
  3767. spin_unlock(&root->fs_info->trans_lock);
  3768. btrfs_destroy_all_ordered_extents(root->fs_info);
  3769. btrfs_destroy_delayed_inodes(root);
  3770. btrfs_assert_delayed_root_empty(root);
  3771. btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
  3772. btrfs_destroy_all_delalloc_inodes(root->fs_info);
  3773. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3774. return 0;
  3775. }
  3776. static const struct extent_io_ops btree_extent_io_ops = {
  3777. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3778. .readpage_io_failed_hook = btree_io_failed_hook,
  3779. .submit_bio_hook = btree_submit_bio_hook,
  3780. /* note we're sharing with inode.c for the merge bio hook */
  3781. .merge_bio_hook = btrfs_merge_bio_hook,
  3782. };