delayed-inode.c 52 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997
  1. /*
  2. * Copyright (C) 2011 Fujitsu. All rights reserved.
  3. * Written by Miao Xie <miaox@cn.fujitsu.com>
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public
  7. * License v2 as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public
  15. * License along with this program; if not, write to the
  16. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  17. * Boston, MA 021110-1307, USA.
  18. */
  19. #include <linux/slab.h>
  20. #include "delayed-inode.h"
  21. #include "disk-io.h"
  22. #include "transaction.h"
  23. #include "ctree.h"
  24. #define BTRFS_DELAYED_WRITEBACK 512
  25. #define BTRFS_DELAYED_BACKGROUND 128
  26. #define BTRFS_DELAYED_BATCH 16
  27. static struct kmem_cache *delayed_node_cache;
  28. int __init btrfs_delayed_inode_init(void)
  29. {
  30. delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
  31. sizeof(struct btrfs_delayed_node),
  32. 0,
  33. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  34. NULL);
  35. if (!delayed_node_cache)
  36. return -ENOMEM;
  37. return 0;
  38. }
  39. void btrfs_delayed_inode_exit(void)
  40. {
  41. if (delayed_node_cache)
  42. kmem_cache_destroy(delayed_node_cache);
  43. }
  44. static inline void btrfs_init_delayed_node(
  45. struct btrfs_delayed_node *delayed_node,
  46. struct btrfs_root *root, u64 inode_id)
  47. {
  48. delayed_node->root = root;
  49. delayed_node->inode_id = inode_id;
  50. atomic_set(&delayed_node->refs, 0);
  51. delayed_node->count = 0;
  52. delayed_node->flags = 0;
  53. delayed_node->ins_root = RB_ROOT;
  54. delayed_node->del_root = RB_ROOT;
  55. mutex_init(&delayed_node->mutex);
  56. delayed_node->index_cnt = 0;
  57. INIT_LIST_HEAD(&delayed_node->n_list);
  58. INIT_LIST_HEAD(&delayed_node->p_list);
  59. delayed_node->bytes_reserved = 0;
  60. memset(&delayed_node->inode_item, 0, sizeof(delayed_node->inode_item));
  61. }
  62. static inline int btrfs_is_continuous_delayed_item(
  63. struct btrfs_delayed_item *item1,
  64. struct btrfs_delayed_item *item2)
  65. {
  66. if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
  67. item1->key.objectid == item2->key.objectid &&
  68. item1->key.type == item2->key.type &&
  69. item1->key.offset + 1 == item2->key.offset)
  70. return 1;
  71. return 0;
  72. }
  73. static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
  74. struct btrfs_root *root)
  75. {
  76. return root->fs_info->delayed_root;
  77. }
  78. static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
  79. {
  80. struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
  81. struct btrfs_root *root = btrfs_inode->root;
  82. u64 ino = btrfs_ino(inode);
  83. struct btrfs_delayed_node *node;
  84. node = ACCESS_ONCE(btrfs_inode->delayed_node);
  85. if (node) {
  86. atomic_inc(&node->refs);
  87. return node;
  88. }
  89. spin_lock(&root->inode_lock);
  90. node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
  91. if (node) {
  92. if (btrfs_inode->delayed_node) {
  93. atomic_inc(&node->refs); /* can be accessed */
  94. BUG_ON(btrfs_inode->delayed_node != node);
  95. spin_unlock(&root->inode_lock);
  96. return node;
  97. }
  98. btrfs_inode->delayed_node = node;
  99. /* can be accessed and cached in the inode */
  100. atomic_add(2, &node->refs);
  101. spin_unlock(&root->inode_lock);
  102. return node;
  103. }
  104. spin_unlock(&root->inode_lock);
  105. return NULL;
  106. }
  107. /* Will return either the node or PTR_ERR(-ENOMEM) */
  108. static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
  109. struct inode *inode)
  110. {
  111. struct btrfs_delayed_node *node;
  112. struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
  113. struct btrfs_root *root = btrfs_inode->root;
  114. u64 ino = btrfs_ino(inode);
  115. int ret;
  116. again:
  117. node = btrfs_get_delayed_node(inode);
  118. if (node)
  119. return node;
  120. node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
  121. if (!node)
  122. return ERR_PTR(-ENOMEM);
  123. btrfs_init_delayed_node(node, root, ino);
  124. /* cached in the btrfs inode and can be accessed */
  125. atomic_add(2, &node->refs);
  126. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  127. if (ret) {
  128. kmem_cache_free(delayed_node_cache, node);
  129. return ERR_PTR(ret);
  130. }
  131. spin_lock(&root->inode_lock);
  132. ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
  133. if (ret == -EEXIST) {
  134. spin_unlock(&root->inode_lock);
  135. kmem_cache_free(delayed_node_cache, node);
  136. radix_tree_preload_end();
  137. goto again;
  138. }
  139. btrfs_inode->delayed_node = node;
  140. spin_unlock(&root->inode_lock);
  141. radix_tree_preload_end();
  142. return node;
  143. }
  144. /*
  145. * Call it when holding delayed_node->mutex
  146. *
  147. * If mod = 1, add this node into the prepared list.
  148. */
  149. static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
  150. struct btrfs_delayed_node *node,
  151. int mod)
  152. {
  153. spin_lock(&root->lock);
  154. if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
  155. if (!list_empty(&node->p_list))
  156. list_move_tail(&node->p_list, &root->prepare_list);
  157. else if (mod)
  158. list_add_tail(&node->p_list, &root->prepare_list);
  159. } else {
  160. list_add_tail(&node->n_list, &root->node_list);
  161. list_add_tail(&node->p_list, &root->prepare_list);
  162. atomic_inc(&node->refs); /* inserted into list */
  163. root->nodes++;
  164. set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
  165. }
  166. spin_unlock(&root->lock);
  167. }
  168. /* Call it when holding delayed_node->mutex */
  169. static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
  170. struct btrfs_delayed_node *node)
  171. {
  172. spin_lock(&root->lock);
  173. if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
  174. root->nodes--;
  175. atomic_dec(&node->refs); /* not in the list */
  176. list_del_init(&node->n_list);
  177. if (!list_empty(&node->p_list))
  178. list_del_init(&node->p_list);
  179. clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
  180. }
  181. spin_unlock(&root->lock);
  182. }
  183. static struct btrfs_delayed_node *btrfs_first_delayed_node(
  184. struct btrfs_delayed_root *delayed_root)
  185. {
  186. struct list_head *p;
  187. struct btrfs_delayed_node *node = NULL;
  188. spin_lock(&delayed_root->lock);
  189. if (list_empty(&delayed_root->node_list))
  190. goto out;
  191. p = delayed_root->node_list.next;
  192. node = list_entry(p, struct btrfs_delayed_node, n_list);
  193. atomic_inc(&node->refs);
  194. out:
  195. spin_unlock(&delayed_root->lock);
  196. return node;
  197. }
  198. static struct btrfs_delayed_node *btrfs_next_delayed_node(
  199. struct btrfs_delayed_node *node)
  200. {
  201. struct btrfs_delayed_root *delayed_root;
  202. struct list_head *p;
  203. struct btrfs_delayed_node *next = NULL;
  204. delayed_root = node->root->fs_info->delayed_root;
  205. spin_lock(&delayed_root->lock);
  206. if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
  207. /* not in the list */
  208. if (list_empty(&delayed_root->node_list))
  209. goto out;
  210. p = delayed_root->node_list.next;
  211. } else if (list_is_last(&node->n_list, &delayed_root->node_list))
  212. goto out;
  213. else
  214. p = node->n_list.next;
  215. next = list_entry(p, struct btrfs_delayed_node, n_list);
  216. atomic_inc(&next->refs);
  217. out:
  218. spin_unlock(&delayed_root->lock);
  219. return next;
  220. }
  221. static void __btrfs_release_delayed_node(
  222. struct btrfs_delayed_node *delayed_node,
  223. int mod)
  224. {
  225. struct btrfs_delayed_root *delayed_root;
  226. if (!delayed_node)
  227. return;
  228. delayed_root = delayed_node->root->fs_info->delayed_root;
  229. mutex_lock(&delayed_node->mutex);
  230. if (delayed_node->count)
  231. btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
  232. else
  233. btrfs_dequeue_delayed_node(delayed_root, delayed_node);
  234. mutex_unlock(&delayed_node->mutex);
  235. if (atomic_dec_and_test(&delayed_node->refs)) {
  236. bool free = false;
  237. struct btrfs_root *root = delayed_node->root;
  238. spin_lock(&root->inode_lock);
  239. if (atomic_read(&delayed_node->refs) == 0) {
  240. radix_tree_delete(&root->delayed_nodes_tree,
  241. delayed_node->inode_id);
  242. free = true;
  243. }
  244. spin_unlock(&root->inode_lock);
  245. if (free)
  246. kmem_cache_free(delayed_node_cache, delayed_node);
  247. }
  248. }
  249. static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
  250. {
  251. __btrfs_release_delayed_node(node, 0);
  252. }
  253. static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
  254. struct btrfs_delayed_root *delayed_root)
  255. {
  256. struct list_head *p;
  257. struct btrfs_delayed_node *node = NULL;
  258. spin_lock(&delayed_root->lock);
  259. if (list_empty(&delayed_root->prepare_list))
  260. goto out;
  261. p = delayed_root->prepare_list.next;
  262. list_del_init(p);
  263. node = list_entry(p, struct btrfs_delayed_node, p_list);
  264. atomic_inc(&node->refs);
  265. out:
  266. spin_unlock(&delayed_root->lock);
  267. return node;
  268. }
  269. static inline void btrfs_release_prepared_delayed_node(
  270. struct btrfs_delayed_node *node)
  271. {
  272. __btrfs_release_delayed_node(node, 1);
  273. }
  274. static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
  275. {
  276. struct btrfs_delayed_item *item;
  277. item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
  278. if (item) {
  279. item->data_len = data_len;
  280. item->ins_or_del = 0;
  281. item->bytes_reserved = 0;
  282. item->delayed_node = NULL;
  283. atomic_set(&item->refs, 1);
  284. }
  285. return item;
  286. }
  287. /*
  288. * __btrfs_lookup_delayed_item - look up the delayed item by key
  289. * @delayed_node: pointer to the delayed node
  290. * @key: the key to look up
  291. * @prev: used to store the prev item if the right item isn't found
  292. * @next: used to store the next item if the right item isn't found
  293. *
  294. * Note: if we don't find the right item, we will return the prev item and
  295. * the next item.
  296. */
  297. static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
  298. struct rb_root *root,
  299. struct btrfs_key *key,
  300. struct btrfs_delayed_item **prev,
  301. struct btrfs_delayed_item **next)
  302. {
  303. struct rb_node *node, *prev_node = NULL;
  304. struct btrfs_delayed_item *delayed_item = NULL;
  305. int ret = 0;
  306. node = root->rb_node;
  307. while (node) {
  308. delayed_item = rb_entry(node, struct btrfs_delayed_item,
  309. rb_node);
  310. prev_node = node;
  311. ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
  312. if (ret < 0)
  313. node = node->rb_right;
  314. else if (ret > 0)
  315. node = node->rb_left;
  316. else
  317. return delayed_item;
  318. }
  319. if (prev) {
  320. if (!prev_node)
  321. *prev = NULL;
  322. else if (ret < 0)
  323. *prev = delayed_item;
  324. else if ((node = rb_prev(prev_node)) != NULL) {
  325. *prev = rb_entry(node, struct btrfs_delayed_item,
  326. rb_node);
  327. } else
  328. *prev = NULL;
  329. }
  330. if (next) {
  331. if (!prev_node)
  332. *next = NULL;
  333. else if (ret > 0)
  334. *next = delayed_item;
  335. else if ((node = rb_next(prev_node)) != NULL) {
  336. *next = rb_entry(node, struct btrfs_delayed_item,
  337. rb_node);
  338. } else
  339. *next = NULL;
  340. }
  341. return NULL;
  342. }
  343. static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
  344. struct btrfs_delayed_node *delayed_node,
  345. struct btrfs_key *key)
  346. {
  347. struct btrfs_delayed_item *item;
  348. item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
  349. NULL, NULL);
  350. return item;
  351. }
  352. static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
  353. struct btrfs_delayed_item *ins,
  354. int action)
  355. {
  356. struct rb_node **p, *node;
  357. struct rb_node *parent_node = NULL;
  358. struct rb_root *root;
  359. struct btrfs_delayed_item *item;
  360. int cmp;
  361. if (action == BTRFS_DELAYED_INSERTION_ITEM)
  362. root = &delayed_node->ins_root;
  363. else if (action == BTRFS_DELAYED_DELETION_ITEM)
  364. root = &delayed_node->del_root;
  365. else
  366. BUG();
  367. p = &root->rb_node;
  368. node = &ins->rb_node;
  369. while (*p) {
  370. parent_node = *p;
  371. item = rb_entry(parent_node, struct btrfs_delayed_item,
  372. rb_node);
  373. cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
  374. if (cmp < 0)
  375. p = &(*p)->rb_right;
  376. else if (cmp > 0)
  377. p = &(*p)->rb_left;
  378. else
  379. return -EEXIST;
  380. }
  381. rb_link_node(node, parent_node, p);
  382. rb_insert_color(node, root);
  383. ins->delayed_node = delayed_node;
  384. ins->ins_or_del = action;
  385. if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
  386. action == BTRFS_DELAYED_INSERTION_ITEM &&
  387. ins->key.offset >= delayed_node->index_cnt)
  388. delayed_node->index_cnt = ins->key.offset + 1;
  389. delayed_node->count++;
  390. atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
  391. return 0;
  392. }
  393. static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
  394. struct btrfs_delayed_item *item)
  395. {
  396. return __btrfs_add_delayed_item(node, item,
  397. BTRFS_DELAYED_INSERTION_ITEM);
  398. }
  399. static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
  400. struct btrfs_delayed_item *item)
  401. {
  402. return __btrfs_add_delayed_item(node, item,
  403. BTRFS_DELAYED_DELETION_ITEM);
  404. }
  405. static void finish_one_item(struct btrfs_delayed_root *delayed_root)
  406. {
  407. int seq = atomic_inc_return(&delayed_root->items_seq);
  408. if ((atomic_dec_return(&delayed_root->items) <
  409. BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
  410. waitqueue_active(&delayed_root->wait))
  411. wake_up(&delayed_root->wait);
  412. }
  413. static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
  414. {
  415. struct rb_root *root;
  416. struct btrfs_delayed_root *delayed_root;
  417. delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
  418. BUG_ON(!delayed_root);
  419. BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
  420. delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
  421. if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
  422. root = &delayed_item->delayed_node->ins_root;
  423. else
  424. root = &delayed_item->delayed_node->del_root;
  425. rb_erase(&delayed_item->rb_node, root);
  426. delayed_item->delayed_node->count--;
  427. finish_one_item(delayed_root);
  428. }
  429. static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
  430. {
  431. if (item) {
  432. __btrfs_remove_delayed_item(item);
  433. if (atomic_dec_and_test(&item->refs))
  434. kfree(item);
  435. }
  436. }
  437. static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
  438. struct btrfs_delayed_node *delayed_node)
  439. {
  440. struct rb_node *p;
  441. struct btrfs_delayed_item *item = NULL;
  442. p = rb_first(&delayed_node->ins_root);
  443. if (p)
  444. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  445. return item;
  446. }
  447. static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
  448. struct btrfs_delayed_node *delayed_node)
  449. {
  450. struct rb_node *p;
  451. struct btrfs_delayed_item *item = NULL;
  452. p = rb_first(&delayed_node->del_root);
  453. if (p)
  454. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  455. return item;
  456. }
  457. static struct btrfs_delayed_item *__btrfs_next_delayed_item(
  458. struct btrfs_delayed_item *item)
  459. {
  460. struct rb_node *p;
  461. struct btrfs_delayed_item *next = NULL;
  462. p = rb_next(&item->rb_node);
  463. if (p)
  464. next = rb_entry(p, struct btrfs_delayed_item, rb_node);
  465. return next;
  466. }
  467. static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
  468. struct btrfs_root *root,
  469. struct btrfs_delayed_item *item)
  470. {
  471. struct btrfs_block_rsv *src_rsv;
  472. struct btrfs_block_rsv *dst_rsv;
  473. u64 num_bytes;
  474. int ret;
  475. if (!trans->bytes_reserved)
  476. return 0;
  477. src_rsv = trans->block_rsv;
  478. dst_rsv = &root->fs_info->delayed_block_rsv;
  479. num_bytes = btrfs_calc_trans_metadata_size(root, 1);
  480. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
  481. if (!ret) {
  482. trace_btrfs_space_reservation(root->fs_info, "delayed_item",
  483. item->key.objectid,
  484. num_bytes, 1);
  485. item->bytes_reserved = num_bytes;
  486. }
  487. return ret;
  488. }
  489. static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
  490. struct btrfs_delayed_item *item)
  491. {
  492. struct btrfs_block_rsv *rsv;
  493. if (!item->bytes_reserved)
  494. return;
  495. rsv = &root->fs_info->delayed_block_rsv;
  496. trace_btrfs_space_reservation(root->fs_info, "delayed_item",
  497. item->key.objectid, item->bytes_reserved,
  498. 0);
  499. btrfs_block_rsv_release(root, rsv,
  500. item->bytes_reserved);
  501. }
  502. static int btrfs_delayed_inode_reserve_metadata(
  503. struct btrfs_trans_handle *trans,
  504. struct btrfs_root *root,
  505. struct inode *inode,
  506. struct btrfs_delayed_node *node)
  507. {
  508. struct btrfs_block_rsv *src_rsv;
  509. struct btrfs_block_rsv *dst_rsv;
  510. u64 num_bytes;
  511. int ret;
  512. bool release = false;
  513. src_rsv = trans->block_rsv;
  514. dst_rsv = &root->fs_info->delayed_block_rsv;
  515. num_bytes = btrfs_calc_trans_metadata_size(root, 1);
  516. /*
  517. * btrfs_dirty_inode will update the inode under btrfs_join_transaction
  518. * which doesn't reserve space for speed. This is a problem since we
  519. * still need to reserve space for this update, so try to reserve the
  520. * space.
  521. *
  522. * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
  523. * we're accounted for.
  524. */
  525. if (!src_rsv || (!trans->bytes_reserved &&
  526. src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
  527. ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
  528. BTRFS_RESERVE_NO_FLUSH);
  529. /*
  530. * Since we're under a transaction reserve_metadata_bytes could
  531. * try to commit the transaction which will make it return
  532. * EAGAIN to make us stop the transaction we have, so return
  533. * ENOSPC instead so that btrfs_dirty_inode knows what to do.
  534. */
  535. if (ret == -EAGAIN)
  536. ret = -ENOSPC;
  537. if (!ret) {
  538. node->bytes_reserved = num_bytes;
  539. trace_btrfs_space_reservation(root->fs_info,
  540. "delayed_inode",
  541. btrfs_ino(inode),
  542. num_bytes, 1);
  543. }
  544. return ret;
  545. } else if (src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) {
  546. spin_lock(&BTRFS_I(inode)->lock);
  547. if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
  548. &BTRFS_I(inode)->runtime_flags)) {
  549. spin_unlock(&BTRFS_I(inode)->lock);
  550. release = true;
  551. goto migrate;
  552. }
  553. spin_unlock(&BTRFS_I(inode)->lock);
  554. /* Ok we didn't have space pre-reserved. This shouldn't happen
  555. * too often but it can happen if we do delalloc to an existing
  556. * inode which gets dirtied because of the time update, and then
  557. * isn't touched again until after the transaction commits and
  558. * then we try to write out the data. First try to be nice and
  559. * reserve something strictly for us. If not be a pain and try
  560. * to steal from the delalloc block rsv.
  561. */
  562. ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
  563. BTRFS_RESERVE_NO_FLUSH);
  564. if (!ret)
  565. goto out;
  566. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
  567. if (!WARN_ON(ret))
  568. goto out;
  569. /*
  570. * Ok this is a problem, let's just steal from the global rsv
  571. * since this really shouldn't happen that often.
  572. */
  573. ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv,
  574. dst_rsv, num_bytes);
  575. goto out;
  576. }
  577. migrate:
  578. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
  579. out:
  580. /*
  581. * Migrate only takes a reservation, it doesn't touch the size of the
  582. * block_rsv. This is to simplify people who don't normally have things
  583. * migrated from their block rsv. If they go to release their
  584. * reservation, that will decrease the size as well, so if migrate
  585. * reduced size we'd end up with a negative size. But for the
  586. * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
  587. * but we could in fact do this reserve/migrate dance several times
  588. * between the time we did the original reservation and we'd clean it
  589. * up. So to take care of this, release the space for the meta
  590. * reservation here. I think it may be time for a documentation page on
  591. * how block rsvs. work.
  592. */
  593. if (!ret) {
  594. trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
  595. btrfs_ino(inode), num_bytes, 1);
  596. node->bytes_reserved = num_bytes;
  597. }
  598. if (release) {
  599. trace_btrfs_space_reservation(root->fs_info, "delalloc",
  600. btrfs_ino(inode), num_bytes, 0);
  601. btrfs_block_rsv_release(root, src_rsv, num_bytes);
  602. }
  603. return ret;
  604. }
  605. static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
  606. struct btrfs_delayed_node *node)
  607. {
  608. struct btrfs_block_rsv *rsv;
  609. if (!node->bytes_reserved)
  610. return;
  611. rsv = &root->fs_info->delayed_block_rsv;
  612. trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
  613. node->inode_id, node->bytes_reserved, 0);
  614. btrfs_block_rsv_release(root, rsv,
  615. node->bytes_reserved);
  616. node->bytes_reserved = 0;
  617. }
  618. /*
  619. * This helper will insert some continuous items into the same leaf according
  620. * to the free space of the leaf.
  621. */
  622. static int btrfs_batch_insert_items(struct btrfs_root *root,
  623. struct btrfs_path *path,
  624. struct btrfs_delayed_item *item)
  625. {
  626. struct btrfs_delayed_item *curr, *next;
  627. int free_space;
  628. int total_data_size = 0, total_size = 0;
  629. struct extent_buffer *leaf;
  630. char *data_ptr;
  631. struct btrfs_key *keys;
  632. u32 *data_size;
  633. struct list_head head;
  634. int slot;
  635. int nitems;
  636. int i;
  637. int ret = 0;
  638. BUG_ON(!path->nodes[0]);
  639. leaf = path->nodes[0];
  640. free_space = btrfs_leaf_free_space(root, leaf);
  641. INIT_LIST_HEAD(&head);
  642. next = item;
  643. nitems = 0;
  644. /*
  645. * count the number of the continuous items that we can insert in batch
  646. */
  647. while (total_size + next->data_len + sizeof(struct btrfs_item) <=
  648. free_space) {
  649. total_data_size += next->data_len;
  650. total_size += next->data_len + sizeof(struct btrfs_item);
  651. list_add_tail(&next->tree_list, &head);
  652. nitems++;
  653. curr = next;
  654. next = __btrfs_next_delayed_item(curr);
  655. if (!next)
  656. break;
  657. if (!btrfs_is_continuous_delayed_item(curr, next))
  658. break;
  659. }
  660. if (!nitems) {
  661. ret = 0;
  662. goto out;
  663. }
  664. /*
  665. * we need allocate some memory space, but it might cause the task
  666. * to sleep, so we set all locked nodes in the path to blocking locks
  667. * first.
  668. */
  669. btrfs_set_path_blocking(path);
  670. keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
  671. if (!keys) {
  672. ret = -ENOMEM;
  673. goto out;
  674. }
  675. data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
  676. if (!data_size) {
  677. ret = -ENOMEM;
  678. goto error;
  679. }
  680. /* get keys of all the delayed items */
  681. i = 0;
  682. list_for_each_entry(next, &head, tree_list) {
  683. keys[i] = next->key;
  684. data_size[i] = next->data_len;
  685. i++;
  686. }
  687. /* reset all the locked nodes in the patch to spinning locks. */
  688. btrfs_clear_path_blocking(path, NULL, 0);
  689. /* insert the keys of the items */
  690. setup_items_for_insert(root, path, keys, data_size,
  691. total_data_size, total_size, nitems);
  692. /* insert the dir index items */
  693. slot = path->slots[0];
  694. list_for_each_entry_safe(curr, next, &head, tree_list) {
  695. data_ptr = btrfs_item_ptr(leaf, slot, char);
  696. write_extent_buffer(leaf, &curr->data,
  697. (unsigned long)data_ptr,
  698. curr->data_len);
  699. slot++;
  700. btrfs_delayed_item_release_metadata(root, curr);
  701. list_del(&curr->tree_list);
  702. btrfs_release_delayed_item(curr);
  703. }
  704. error:
  705. kfree(data_size);
  706. kfree(keys);
  707. out:
  708. return ret;
  709. }
  710. /*
  711. * This helper can just do simple insertion that needn't extend item for new
  712. * data, such as directory name index insertion, inode insertion.
  713. */
  714. static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
  715. struct btrfs_root *root,
  716. struct btrfs_path *path,
  717. struct btrfs_delayed_item *delayed_item)
  718. {
  719. struct extent_buffer *leaf;
  720. char *ptr;
  721. int ret;
  722. ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
  723. delayed_item->data_len);
  724. if (ret < 0 && ret != -EEXIST)
  725. return ret;
  726. leaf = path->nodes[0];
  727. ptr = btrfs_item_ptr(leaf, path->slots[0], char);
  728. write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
  729. delayed_item->data_len);
  730. btrfs_mark_buffer_dirty(leaf);
  731. btrfs_delayed_item_release_metadata(root, delayed_item);
  732. return 0;
  733. }
  734. /*
  735. * we insert an item first, then if there are some continuous items, we try
  736. * to insert those items into the same leaf.
  737. */
  738. static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
  739. struct btrfs_path *path,
  740. struct btrfs_root *root,
  741. struct btrfs_delayed_node *node)
  742. {
  743. struct btrfs_delayed_item *curr, *prev;
  744. int ret = 0;
  745. do_again:
  746. mutex_lock(&node->mutex);
  747. curr = __btrfs_first_delayed_insertion_item(node);
  748. if (!curr)
  749. goto insert_end;
  750. ret = btrfs_insert_delayed_item(trans, root, path, curr);
  751. if (ret < 0) {
  752. btrfs_release_path(path);
  753. goto insert_end;
  754. }
  755. prev = curr;
  756. curr = __btrfs_next_delayed_item(prev);
  757. if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
  758. /* insert the continuous items into the same leaf */
  759. path->slots[0]++;
  760. btrfs_batch_insert_items(root, path, curr);
  761. }
  762. btrfs_release_delayed_item(prev);
  763. btrfs_mark_buffer_dirty(path->nodes[0]);
  764. btrfs_release_path(path);
  765. mutex_unlock(&node->mutex);
  766. goto do_again;
  767. insert_end:
  768. mutex_unlock(&node->mutex);
  769. return ret;
  770. }
  771. static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
  772. struct btrfs_root *root,
  773. struct btrfs_path *path,
  774. struct btrfs_delayed_item *item)
  775. {
  776. struct btrfs_delayed_item *curr, *next;
  777. struct extent_buffer *leaf;
  778. struct btrfs_key key;
  779. struct list_head head;
  780. int nitems, i, last_item;
  781. int ret = 0;
  782. BUG_ON(!path->nodes[0]);
  783. leaf = path->nodes[0];
  784. i = path->slots[0];
  785. last_item = btrfs_header_nritems(leaf) - 1;
  786. if (i > last_item)
  787. return -ENOENT; /* FIXME: Is errno suitable? */
  788. next = item;
  789. INIT_LIST_HEAD(&head);
  790. btrfs_item_key_to_cpu(leaf, &key, i);
  791. nitems = 0;
  792. /*
  793. * count the number of the dir index items that we can delete in batch
  794. */
  795. while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
  796. list_add_tail(&next->tree_list, &head);
  797. nitems++;
  798. curr = next;
  799. next = __btrfs_next_delayed_item(curr);
  800. if (!next)
  801. break;
  802. if (!btrfs_is_continuous_delayed_item(curr, next))
  803. break;
  804. i++;
  805. if (i > last_item)
  806. break;
  807. btrfs_item_key_to_cpu(leaf, &key, i);
  808. }
  809. if (!nitems)
  810. return 0;
  811. ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
  812. if (ret)
  813. goto out;
  814. list_for_each_entry_safe(curr, next, &head, tree_list) {
  815. btrfs_delayed_item_release_metadata(root, curr);
  816. list_del(&curr->tree_list);
  817. btrfs_release_delayed_item(curr);
  818. }
  819. out:
  820. return ret;
  821. }
  822. static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
  823. struct btrfs_path *path,
  824. struct btrfs_root *root,
  825. struct btrfs_delayed_node *node)
  826. {
  827. struct btrfs_delayed_item *curr, *prev;
  828. int ret = 0;
  829. do_again:
  830. mutex_lock(&node->mutex);
  831. curr = __btrfs_first_delayed_deletion_item(node);
  832. if (!curr)
  833. goto delete_fail;
  834. ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
  835. if (ret < 0)
  836. goto delete_fail;
  837. else if (ret > 0) {
  838. /*
  839. * can't find the item which the node points to, so this node
  840. * is invalid, just drop it.
  841. */
  842. prev = curr;
  843. curr = __btrfs_next_delayed_item(prev);
  844. btrfs_release_delayed_item(prev);
  845. ret = 0;
  846. btrfs_release_path(path);
  847. if (curr) {
  848. mutex_unlock(&node->mutex);
  849. goto do_again;
  850. } else
  851. goto delete_fail;
  852. }
  853. btrfs_batch_delete_items(trans, root, path, curr);
  854. btrfs_release_path(path);
  855. mutex_unlock(&node->mutex);
  856. goto do_again;
  857. delete_fail:
  858. btrfs_release_path(path);
  859. mutex_unlock(&node->mutex);
  860. return ret;
  861. }
  862. static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
  863. {
  864. struct btrfs_delayed_root *delayed_root;
  865. if (delayed_node &&
  866. test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  867. BUG_ON(!delayed_node->root);
  868. clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
  869. delayed_node->count--;
  870. delayed_root = delayed_node->root->fs_info->delayed_root;
  871. finish_one_item(delayed_root);
  872. }
  873. }
  874. static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
  875. {
  876. struct btrfs_delayed_root *delayed_root;
  877. ASSERT(delayed_node->root);
  878. clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
  879. delayed_node->count--;
  880. delayed_root = delayed_node->root->fs_info->delayed_root;
  881. finish_one_item(delayed_root);
  882. }
  883. static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
  884. struct btrfs_root *root,
  885. struct btrfs_path *path,
  886. struct btrfs_delayed_node *node)
  887. {
  888. struct btrfs_key key;
  889. struct btrfs_inode_item *inode_item;
  890. struct extent_buffer *leaf;
  891. int mod;
  892. int ret;
  893. key.objectid = node->inode_id;
  894. key.type = BTRFS_INODE_ITEM_KEY;
  895. key.offset = 0;
  896. if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
  897. mod = -1;
  898. else
  899. mod = 1;
  900. ret = btrfs_lookup_inode(trans, root, path, &key, mod);
  901. if (ret > 0) {
  902. btrfs_release_path(path);
  903. return -ENOENT;
  904. } else if (ret < 0) {
  905. return ret;
  906. }
  907. leaf = path->nodes[0];
  908. inode_item = btrfs_item_ptr(leaf, path->slots[0],
  909. struct btrfs_inode_item);
  910. write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
  911. sizeof(struct btrfs_inode_item));
  912. btrfs_mark_buffer_dirty(leaf);
  913. if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
  914. goto no_iref;
  915. path->slots[0]++;
  916. if (path->slots[0] >= btrfs_header_nritems(leaf))
  917. goto search;
  918. again:
  919. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  920. if (key.objectid != node->inode_id)
  921. goto out;
  922. if (key.type != BTRFS_INODE_REF_KEY &&
  923. key.type != BTRFS_INODE_EXTREF_KEY)
  924. goto out;
  925. /*
  926. * Delayed iref deletion is for the inode who has only one link,
  927. * so there is only one iref. The case that several irefs are
  928. * in the same item doesn't exist.
  929. */
  930. btrfs_del_item(trans, root, path);
  931. out:
  932. btrfs_release_delayed_iref(node);
  933. no_iref:
  934. btrfs_release_path(path);
  935. err_out:
  936. btrfs_delayed_inode_release_metadata(root, node);
  937. btrfs_release_delayed_inode(node);
  938. return ret;
  939. search:
  940. btrfs_release_path(path);
  941. key.type = BTRFS_INODE_EXTREF_KEY;
  942. key.offset = -1;
  943. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  944. if (ret < 0)
  945. goto err_out;
  946. ASSERT(ret);
  947. ret = 0;
  948. leaf = path->nodes[0];
  949. path->slots[0]--;
  950. goto again;
  951. }
  952. static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
  953. struct btrfs_root *root,
  954. struct btrfs_path *path,
  955. struct btrfs_delayed_node *node)
  956. {
  957. int ret;
  958. mutex_lock(&node->mutex);
  959. if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
  960. mutex_unlock(&node->mutex);
  961. return 0;
  962. }
  963. ret = __btrfs_update_delayed_inode(trans, root, path, node);
  964. mutex_unlock(&node->mutex);
  965. return ret;
  966. }
  967. static inline int
  968. __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  969. struct btrfs_path *path,
  970. struct btrfs_delayed_node *node)
  971. {
  972. int ret;
  973. ret = btrfs_insert_delayed_items(trans, path, node->root, node);
  974. if (ret)
  975. return ret;
  976. ret = btrfs_delete_delayed_items(trans, path, node->root, node);
  977. if (ret)
  978. return ret;
  979. ret = btrfs_update_delayed_inode(trans, node->root, path, node);
  980. return ret;
  981. }
  982. /*
  983. * Called when committing the transaction.
  984. * Returns 0 on success.
  985. * Returns < 0 on error and returns with an aborted transaction with any
  986. * outstanding delayed items cleaned up.
  987. */
  988. static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
  989. struct btrfs_root *root, int nr)
  990. {
  991. struct btrfs_delayed_root *delayed_root;
  992. struct btrfs_delayed_node *curr_node, *prev_node;
  993. struct btrfs_path *path;
  994. struct btrfs_block_rsv *block_rsv;
  995. int ret = 0;
  996. bool count = (nr > 0);
  997. if (trans->aborted)
  998. return -EIO;
  999. path = btrfs_alloc_path();
  1000. if (!path)
  1001. return -ENOMEM;
  1002. path->leave_spinning = 1;
  1003. block_rsv = trans->block_rsv;
  1004. trans->block_rsv = &root->fs_info->delayed_block_rsv;
  1005. delayed_root = btrfs_get_delayed_root(root);
  1006. curr_node = btrfs_first_delayed_node(delayed_root);
  1007. while (curr_node && (!count || (count && nr--))) {
  1008. ret = __btrfs_commit_inode_delayed_items(trans, path,
  1009. curr_node);
  1010. if (ret) {
  1011. btrfs_release_delayed_node(curr_node);
  1012. curr_node = NULL;
  1013. btrfs_abort_transaction(trans, root, ret);
  1014. break;
  1015. }
  1016. prev_node = curr_node;
  1017. curr_node = btrfs_next_delayed_node(curr_node);
  1018. btrfs_release_delayed_node(prev_node);
  1019. }
  1020. if (curr_node)
  1021. btrfs_release_delayed_node(curr_node);
  1022. btrfs_free_path(path);
  1023. trans->block_rsv = block_rsv;
  1024. return ret;
  1025. }
  1026. int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
  1027. struct btrfs_root *root)
  1028. {
  1029. return __btrfs_run_delayed_items(trans, root, -1);
  1030. }
  1031. int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
  1032. struct btrfs_root *root, int nr)
  1033. {
  1034. return __btrfs_run_delayed_items(trans, root, nr);
  1035. }
  1036. int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  1037. struct inode *inode)
  1038. {
  1039. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1040. struct btrfs_path *path;
  1041. struct btrfs_block_rsv *block_rsv;
  1042. int ret;
  1043. if (!delayed_node)
  1044. return 0;
  1045. mutex_lock(&delayed_node->mutex);
  1046. if (!delayed_node->count) {
  1047. mutex_unlock(&delayed_node->mutex);
  1048. btrfs_release_delayed_node(delayed_node);
  1049. return 0;
  1050. }
  1051. mutex_unlock(&delayed_node->mutex);
  1052. path = btrfs_alloc_path();
  1053. if (!path) {
  1054. btrfs_release_delayed_node(delayed_node);
  1055. return -ENOMEM;
  1056. }
  1057. path->leave_spinning = 1;
  1058. block_rsv = trans->block_rsv;
  1059. trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
  1060. ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
  1061. btrfs_release_delayed_node(delayed_node);
  1062. btrfs_free_path(path);
  1063. trans->block_rsv = block_rsv;
  1064. return ret;
  1065. }
  1066. int btrfs_commit_inode_delayed_inode(struct inode *inode)
  1067. {
  1068. struct btrfs_trans_handle *trans;
  1069. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1070. struct btrfs_path *path;
  1071. struct btrfs_block_rsv *block_rsv;
  1072. int ret;
  1073. if (!delayed_node)
  1074. return 0;
  1075. mutex_lock(&delayed_node->mutex);
  1076. if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1077. mutex_unlock(&delayed_node->mutex);
  1078. btrfs_release_delayed_node(delayed_node);
  1079. return 0;
  1080. }
  1081. mutex_unlock(&delayed_node->mutex);
  1082. trans = btrfs_join_transaction(delayed_node->root);
  1083. if (IS_ERR(trans)) {
  1084. ret = PTR_ERR(trans);
  1085. goto out;
  1086. }
  1087. path = btrfs_alloc_path();
  1088. if (!path) {
  1089. ret = -ENOMEM;
  1090. goto trans_out;
  1091. }
  1092. path->leave_spinning = 1;
  1093. block_rsv = trans->block_rsv;
  1094. trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
  1095. mutex_lock(&delayed_node->mutex);
  1096. if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
  1097. ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
  1098. path, delayed_node);
  1099. else
  1100. ret = 0;
  1101. mutex_unlock(&delayed_node->mutex);
  1102. btrfs_free_path(path);
  1103. trans->block_rsv = block_rsv;
  1104. trans_out:
  1105. btrfs_end_transaction(trans, delayed_node->root);
  1106. btrfs_btree_balance_dirty(delayed_node->root);
  1107. out:
  1108. btrfs_release_delayed_node(delayed_node);
  1109. return ret;
  1110. }
  1111. void btrfs_remove_delayed_node(struct inode *inode)
  1112. {
  1113. struct btrfs_delayed_node *delayed_node;
  1114. delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
  1115. if (!delayed_node)
  1116. return;
  1117. BTRFS_I(inode)->delayed_node = NULL;
  1118. btrfs_release_delayed_node(delayed_node);
  1119. }
  1120. struct btrfs_async_delayed_work {
  1121. struct btrfs_delayed_root *delayed_root;
  1122. int nr;
  1123. struct btrfs_work work;
  1124. };
  1125. static void btrfs_async_run_delayed_root(struct btrfs_work *work)
  1126. {
  1127. struct btrfs_async_delayed_work *async_work;
  1128. struct btrfs_delayed_root *delayed_root;
  1129. struct btrfs_trans_handle *trans;
  1130. struct btrfs_path *path;
  1131. struct btrfs_delayed_node *delayed_node = NULL;
  1132. struct btrfs_root *root;
  1133. struct btrfs_block_rsv *block_rsv;
  1134. int total_done = 0;
  1135. async_work = container_of(work, struct btrfs_async_delayed_work, work);
  1136. delayed_root = async_work->delayed_root;
  1137. path = btrfs_alloc_path();
  1138. if (!path)
  1139. goto out;
  1140. again:
  1141. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
  1142. goto free_path;
  1143. delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
  1144. if (!delayed_node)
  1145. goto free_path;
  1146. path->leave_spinning = 1;
  1147. root = delayed_node->root;
  1148. trans = btrfs_join_transaction(root);
  1149. if (IS_ERR(trans))
  1150. goto release_path;
  1151. block_rsv = trans->block_rsv;
  1152. trans->block_rsv = &root->fs_info->delayed_block_rsv;
  1153. __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
  1154. trans->block_rsv = block_rsv;
  1155. btrfs_end_transaction(trans, root);
  1156. btrfs_btree_balance_dirty_nodelay(root);
  1157. release_path:
  1158. btrfs_release_path(path);
  1159. total_done++;
  1160. btrfs_release_prepared_delayed_node(delayed_node);
  1161. if (async_work->nr == 0 || total_done < async_work->nr)
  1162. goto again;
  1163. free_path:
  1164. btrfs_free_path(path);
  1165. out:
  1166. wake_up(&delayed_root->wait);
  1167. kfree(async_work);
  1168. }
  1169. static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
  1170. struct btrfs_fs_info *fs_info, int nr)
  1171. {
  1172. struct btrfs_async_delayed_work *async_work;
  1173. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
  1174. return 0;
  1175. async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
  1176. if (!async_work)
  1177. return -ENOMEM;
  1178. async_work->delayed_root = delayed_root;
  1179. btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
  1180. btrfs_async_run_delayed_root, NULL, NULL);
  1181. async_work->nr = nr;
  1182. btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
  1183. return 0;
  1184. }
  1185. void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
  1186. {
  1187. struct btrfs_delayed_root *delayed_root;
  1188. delayed_root = btrfs_get_delayed_root(root);
  1189. WARN_ON(btrfs_first_delayed_node(delayed_root));
  1190. }
  1191. static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
  1192. {
  1193. int val = atomic_read(&delayed_root->items_seq);
  1194. if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
  1195. return 1;
  1196. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
  1197. return 1;
  1198. return 0;
  1199. }
  1200. void btrfs_balance_delayed_items(struct btrfs_root *root)
  1201. {
  1202. struct btrfs_delayed_root *delayed_root;
  1203. struct btrfs_fs_info *fs_info = root->fs_info;
  1204. delayed_root = btrfs_get_delayed_root(root);
  1205. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
  1206. return;
  1207. if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
  1208. int seq;
  1209. int ret;
  1210. seq = atomic_read(&delayed_root->items_seq);
  1211. ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
  1212. if (ret)
  1213. return;
  1214. wait_event_interruptible(delayed_root->wait,
  1215. could_end_wait(delayed_root, seq));
  1216. return;
  1217. }
  1218. btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
  1219. }
  1220. /* Will return 0 or -ENOMEM */
  1221. int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
  1222. struct btrfs_root *root, const char *name,
  1223. int name_len, struct inode *dir,
  1224. struct btrfs_disk_key *disk_key, u8 type,
  1225. u64 index)
  1226. {
  1227. struct btrfs_delayed_node *delayed_node;
  1228. struct btrfs_delayed_item *delayed_item;
  1229. struct btrfs_dir_item *dir_item;
  1230. int ret;
  1231. delayed_node = btrfs_get_or_create_delayed_node(dir);
  1232. if (IS_ERR(delayed_node))
  1233. return PTR_ERR(delayed_node);
  1234. delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
  1235. if (!delayed_item) {
  1236. ret = -ENOMEM;
  1237. goto release_node;
  1238. }
  1239. delayed_item->key.objectid = btrfs_ino(dir);
  1240. delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
  1241. delayed_item->key.offset = index;
  1242. dir_item = (struct btrfs_dir_item *)delayed_item->data;
  1243. dir_item->location = *disk_key;
  1244. btrfs_set_stack_dir_transid(dir_item, trans->transid);
  1245. btrfs_set_stack_dir_data_len(dir_item, 0);
  1246. btrfs_set_stack_dir_name_len(dir_item, name_len);
  1247. btrfs_set_stack_dir_type(dir_item, type);
  1248. memcpy((char *)(dir_item + 1), name, name_len);
  1249. ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
  1250. /*
  1251. * we have reserved enough space when we start a new transaction,
  1252. * so reserving metadata failure is impossible
  1253. */
  1254. BUG_ON(ret);
  1255. mutex_lock(&delayed_node->mutex);
  1256. ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
  1257. if (unlikely(ret)) {
  1258. btrfs_err(root->fs_info, "err add delayed dir index item(name: %.*s) "
  1259. "into the insertion tree of the delayed node"
  1260. "(root id: %llu, inode id: %llu, errno: %d)",
  1261. name_len, name, delayed_node->root->objectid,
  1262. delayed_node->inode_id, ret);
  1263. BUG();
  1264. }
  1265. mutex_unlock(&delayed_node->mutex);
  1266. release_node:
  1267. btrfs_release_delayed_node(delayed_node);
  1268. return ret;
  1269. }
  1270. static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
  1271. struct btrfs_delayed_node *node,
  1272. struct btrfs_key *key)
  1273. {
  1274. struct btrfs_delayed_item *item;
  1275. mutex_lock(&node->mutex);
  1276. item = __btrfs_lookup_delayed_insertion_item(node, key);
  1277. if (!item) {
  1278. mutex_unlock(&node->mutex);
  1279. return 1;
  1280. }
  1281. btrfs_delayed_item_release_metadata(root, item);
  1282. btrfs_release_delayed_item(item);
  1283. mutex_unlock(&node->mutex);
  1284. return 0;
  1285. }
  1286. int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
  1287. struct btrfs_root *root, struct inode *dir,
  1288. u64 index)
  1289. {
  1290. struct btrfs_delayed_node *node;
  1291. struct btrfs_delayed_item *item;
  1292. struct btrfs_key item_key;
  1293. int ret;
  1294. node = btrfs_get_or_create_delayed_node(dir);
  1295. if (IS_ERR(node))
  1296. return PTR_ERR(node);
  1297. item_key.objectid = btrfs_ino(dir);
  1298. item_key.type = BTRFS_DIR_INDEX_KEY;
  1299. item_key.offset = index;
  1300. ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
  1301. if (!ret)
  1302. goto end;
  1303. item = btrfs_alloc_delayed_item(0);
  1304. if (!item) {
  1305. ret = -ENOMEM;
  1306. goto end;
  1307. }
  1308. item->key = item_key;
  1309. ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
  1310. /*
  1311. * we have reserved enough space when we start a new transaction,
  1312. * so reserving metadata failure is impossible.
  1313. */
  1314. BUG_ON(ret);
  1315. mutex_lock(&node->mutex);
  1316. ret = __btrfs_add_delayed_deletion_item(node, item);
  1317. if (unlikely(ret)) {
  1318. btrfs_err(root->fs_info, "err add delayed dir index item(index: %llu) "
  1319. "into the deletion tree of the delayed node"
  1320. "(root id: %llu, inode id: %llu, errno: %d)",
  1321. index, node->root->objectid, node->inode_id,
  1322. ret);
  1323. BUG();
  1324. }
  1325. mutex_unlock(&node->mutex);
  1326. end:
  1327. btrfs_release_delayed_node(node);
  1328. return ret;
  1329. }
  1330. int btrfs_inode_delayed_dir_index_count(struct inode *inode)
  1331. {
  1332. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1333. if (!delayed_node)
  1334. return -ENOENT;
  1335. /*
  1336. * Since we have held i_mutex of this directory, it is impossible that
  1337. * a new directory index is added into the delayed node and index_cnt
  1338. * is updated now. So we needn't lock the delayed node.
  1339. */
  1340. if (!delayed_node->index_cnt) {
  1341. btrfs_release_delayed_node(delayed_node);
  1342. return -EINVAL;
  1343. }
  1344. BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
  1345. btrfs_release_delayed_node(delayed_node);
  1346. return 0;
  1347. }
  1348. void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
  1349. struct list_head *del_list)
  1350. {
  1351. struct btrfs_delayed_node *delayed_node;
  1352. struct btrfs_delayed_item *item;
  1353. delayed_node = btrfs_get_delayed_node(inode);
  1354. if (!delayed_node)
  1355. return;
  1356. mutex_lock(&delayed_node->mutex);
  1357. item = __btrfs_first_delayed_insertion_item(delayed_node);
  1358. while (item) {
  1359. atomic_inc(&item->refs);
  1360. list_add_tail(&item->readdir_list, ins_list);
  1361. item = __btrfs_next_delayed_item(item);
  1362. }
  1363. item = __btrfs_first_delayed_deletion_item(delayed_node);
  1364. while (item) {
  1365. atomic_inc(&item->refs);
  1366. list_add_tail(&item->readdir_list, del_list);
  1367. item = __btrfs_next_delayed_item(item);
  1368. }
  1369. mutex_unlock(&delayed_node->mutex);
  1370. /*
  1371. * This delayed node is still cached in the btrfs inode, so refs
  1372. * must be > 1 now, and we needn't check it is going to be freed
  1373. * or not.
  1374. *
  1375. * Besides that, this function is used to read dir, we do not
  1376. * insert/delete delayed items in this period. So we also needn't
  1377. * requeue or dequeue this delayed node.
  1378. */
  1379. atomic_dec(&delayed_node->refs);
  1380. }
  1381. void btrfs_put_delayed_items(struct list_head *ins_list,
  1382. struct list_head *del_list)
  1383. {
  1384. struct btrfs_delayed_item *curr, *next;
  1385. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1386. list_del(&curr->readdir_list);
  1387. if (atomic_dec_and_test(&curr->refs))
  1388. kfree(curr);
  1389. }
  1390. list_for_each_entry_safe(curr, next, del_list, readdir_list) {
  1391. list_del(&curr->readdir_list);
  1392. if (atomic_dec_and_test(&curr->refs))
  1393. kfree(curr);
  1394. }
  1395. }
  1396. int btrfs_should_delete_dir_index(struct list_head *del_list,
  1397. u64 index)
  1398. {
  1399. struct btrfs_delayed_item *curr, *next;
  1400. int ret;
  1401. if (list_empty(del_list))
  1402. return 0;
  1403. list_for_each_entry_safe(curr, next, del_list, readdir_list) {
  1404. if (curr->key.offset > index)
  1405. break;
  1406. list_del(&curr->readdir_list);
  1407. ret = (curr->key.offset == index);
  1408. if (atomic_dec_and_test(&curr->refs))
  1409. kfree(curr);
  1410. if (ret)
  1411. return 1;
  1412. else
  1413. continue;
  1414. }
  1415. return 0;
  1416. }
  1417. /*
  1418. * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
  1419. *
  1420. */
  1421. int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
  1422. struct list_head *ins_list)
  1423. {
  1424. struct btrfs_dir_item *di;
  1425. struct btrfs_delayed_item *curr, *next;
  1426. struct btrfs_key location;
  1427. char *name;
  1428. int name_len;
  1429. int over = 0;
  1430. unsigned char d_type;
  1431. if (list_empty(ins_list))
  1432. return 0;
  1433. /*
  1434. * Changing the data of the delayed item is impossible. So
  1435. * we needn't lock them. And we have held i_mutex of the
  1436. * directory, nobody can delete any directory indexes now.
  1437. */
  1438. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1439. list_del(&curr->readdir_list);
  1440. if (curr->key.offset < ctx->pos) {
  1441. if (atomic_dec_and_test(&curr->refs))
  1442. kfree(curr);
  1443. continue;
  1444. }
  1445. ctx->pos = curr->key.offset;
  1446. di = (struct btrfs_dir_item *)curr->data;
  1447. name = (char *)(di + 1);
  1448. name_len = btrfs_stack_dir_name_len(di);
  1449. d_type = btrfs_filetype_table[di->type];
  1450. btrfs_disk_key_to_cpu(&location, &di->location);
  1451. over = !dir_emit(ctx, name, name_len,
  1452. location.objectid, d_type);
  1453. if (atomic_dec_and_test(&curr->refs))
  1454. kfree(curr);
  1455. if (over)
  1456. return 1;
  1457. }
  1458. return 0;
  1459. }
  1460. static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
  1461. struct btrfs_inode_item *inode_item,
  1462. struct inode *inode)
  1463. {
  1464. btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
  1465. btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
  1466. btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
  1467. btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
  1468. btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
  1469. btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
  1470. btrfs_set_stack_inode_generation(inode_item,
  1471. BTRFS_I(inode)->generation);
  1472. btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
  1473. btrfs_set_stack_inode_transid(inode_item, trans->transid);
  1474. btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
  1475. btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
  1476. btrfs_set_stack_inode_block_group(inode_item, 0);
  1477. btrfs_set_stack_timespec_sec(&inode_item->atime,
  1478. inode->i_atime.tv_sec);
  1479. btrfs_set_stack_timespec_nsec(&inode_item->atime,
  1480. inode->i_atime.tv_nsec);
  1481. btrfs_set_stack_timespec_sec(&inode_item->mtime,
  1482. inode->i_mtime.tv_sec);
  1483. btrfs_set_stack_timespec_nsec(&inode_item->mtime,
  1484. inode->i_mtime.tv_nsec);
  1485. btrfs_set_stack_timespec_sec(&inode_item->ctime,
  1486. inode->i_ctime.tv_sec);
  1487. btrfs_set_stack_timespec_nsec(&inode_item->ctime,
  1488. inode->i_ctime.tv_nsec);
  1489. btrfs_set_stack_timespec_sec(&inode_item->otime,
  1490. BTRFS_I(inode)->i_otime.tv_sec);
  1491. btrfs_set_stack_timespec_nsec(&inode_item->otime,
  1492. BTRFS_I(inode)->i_otime.tv_nsec);
  1493. }
  1494. int btrfs_fill_inode(struct inode *inode, u32 *rdev)
  1495. {
  1496. struct btrfs_delayed_node *delayed_node;
  1497. struct btrfs_inode_item *inode_item;
  1498. delayed_node = btrfs_get_delayed_node(inode);
  1499. if (!delayed_node)
  1500. return -ENOENT;
  1501. mutex_lock(&delayed_node->mutex);
  1502. if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1503. mutex_unlock(&delayed_node->mutex);
  1504. btrfs_release_delayed_node(delayed_node);
  1505. return -ENOENT;
  1506. }
  1507. inode_item = &delayed_node->inode_item;
  1508. i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
  1509. i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
  1510. btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
  1511. inode->i_mode = btrfs_stack_inode_mode(inode_item);
  1512. set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
  1513. inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
  1514. BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
  1515. BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
  1516. inode->i_version = btrfs_stack_inode_sequence(inode_item);
  1517. inode->i_rdev = 0;
  1518. *rdev = btrfs_stack_inode_rdev(inode_item);
  1519. BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
  1520. inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
  1521. inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
  1522. inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
  1523. inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
  1524. inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
  1525. inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
  1526. BTRFS_I(inode)->i_otime.tv_sec =
  1527. btrfs_stack_timespec_sec(&inode_item->otime);
  1528. BTRFS_I(inode)->i_otime.tv_nsec =
  1529. btrfs_stack_timespec_nsec(&inode_item->otime);
  1530. inode->i_generation = BTRFS_I(inode)->generation;
  1531. BTRFS_I(inode)->index_cnt = (u64)-1;
  1532. mutex_unlock(&delayed_node->mutex);
  1533. btrfs_release_delayed_node(delayed_node);
  1534. return 0;
  1535. }
  1536. int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
  1537. struct btrfs_root *root, struct inode *inode)
  1538. {
  1539. struct btrfs_delayed_node *delayed_node;
  1540. int ret = 0;
  1541. delayed_node = btrfs_get_or_create_delayed_node(inode);
  1542. if (IS_ERR(delayed_node))
  1543. return PTR_ERR(delayed_node);
  1544. mutex_lock(&delayed_node->mutex);
  1545. if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1546. fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
  1547. goto release_node;
  1548. }
  1549. ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
  1550. delayed_node);
  1551. if (ret)
  1552. goto release_node;
  1553. fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
  1554. set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
  1555. delayed_node->count++;
  1556. atomic_inc(&root->fs_info->delayed_root->items);
  1557. release_node:
  1558. mutex_unlock(&delayed_node->mutex);
  1559. btrfs_release_delayed_node(delayed_node);
  1560. return ret;
  1561. }
  1562. int btrfs_delayed_delete_inode_ref(struct inode *inode)
  1563. {
  1564. struct btrfs_delayed_node *delayed_node;
  1565. /*
  1566. * we don't do delayed inode updates during log recovery because it
  1567. * leads to enospc problems. This means we also can't do
  1568. * delayed inode refs
  1569. */
  1570. if (BTRFS_I(inode)->root->fs_info->log_root_recovering)
  1571. return -EAGAIN;
  1572. delayed_node = btrfs_get_or_create_delayed_node(inode);
  1573. if (IS_ERR(delayed_node))
  1574. return PTR_ERR(delayed_node);
  1575. /*
  1576. * We don't reserve space for inode ref deletion is because:
  1577. * - We ONLY do async inode ref deletion for the inode who has only
  1578. * one link(i_nlink == 1), it means there is only one inode ref.
  1579. * And in most case, the inode ref and the inode item are in the
  1580. * same leaf, and we will deal with them at the same time.
  1581. * Since we are sure we will reserve the space for the inode item,
  1582. * it is unnecessary to reserve space for inode ref deletion.
  1583. * - If the inode ref and the inode item are not in the same leaf,
  1584. * We also needn't worry about enospc problem, because we reserve
  1585. * much more space for the inode update than it needs.
  1586. * - At the worst, we can steal some space from the global reservation.
  1587. * It is very rare.
  1588. */
  1589. mutex_lock(&delayed_node->mutex);
  1590. if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
  1591. goto release_node;
  1592. set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
  1593. delayed_node->count++;
  1594. atomic_inc(&BTRFS_I(inode)->root->fs_info->delayed_root->items);
  1595. release_node:
  1596. mutex_unlock(&delayed_node->mutex);
  1597. btrfs_release_delayed_node(delayed_node);
  1598. return 0;
  1599. }
  1600. static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
  1601. {
  1602. struct btrfs_root *root = delayed_node->root;
  1603. struct btrfs_delayed_item *curr_item, *prev_item;
  1604. mutex_lock(&delayed_node->mutex);
  1605. curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
  1606. while (curr_item) {
  1607. btrfs_delayed_item_release_metadata(root, curr_item);
  1608. prev_item = curr_item;
  1609. curr_item = __btrfs_next_delayed_item(prev_item);
  1610. btrfs_release_delayed_item(prev_item);
  1611. }
  1612. curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
  1613. while (curr_item) {
  1614. btrfs_delayed_item_release_metadata(root, curr_item);
  1615. prev_item = curr_item;
  1616. curr_item = __btrfs_next_delayed_item(prev_item);
  1617. btrfs_release_delayed_item(prev_item);
  1618. }
  1619. if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
  1620. btrfs_release_delayed_iref(delayed_node);
  1621. if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1622. btrfs_delayed_inode_release_metadata(root, delayed_node);
  1623. btrfs_release_delayed_inode(delayed_node);
  1624. }
  1625. mutex_unlock(&delayed_node->mutex);
  1626. }
  1627. void btrfs_kill_delayed_inode_items(struct inode *inode)
  1628. {
  1629. struct btrfs_delayed_node *delayed_node;
  1630. delayed_node = btrfs_get_delayed_node(inode);
  1631. if (!delayed_node)
  1632. return;
  1633. __btrfs_kill_delayed_node(delayed_node);
  1634. btrfs_release_delayed_node(delayed_node);
  1635. }
  1636. void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
  1637. {
  1638. u64 inode_id = 0;
  1639. struct btrfs_delayed_node *delayed_nodes[8];
  1640. int i, n;
  1641. while (1) {
  1642. spin_lock(&root->inode_lock);
  1643. n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
  1644. (void **)delayed_nodes, inode_id,
  1645. ARRAY_SIZE(delayed_nodes));
  1646. if (!n) {
  1647. spin_unlock(&root->inode_lock);
  1648. break;
  1649. }
  1650. inode_id = delayed_nodes[n - 1]->inode_id + 1;
  1651. for (i = 0; i < n; i++)
  1652. atomic_inc(&delayed_nodes[i]->refs);
  1653. spin_unlock(&root->inode_lock);
  1654. for (i = 0; i < n; i++) {
  1655. __btrfs_kill_delayed_node(delayed_nodes[i]);
  1656. btrfs_release_delayed_node(delayed_nodes[i]);
  1657. }
  1658. }
  1659. }
  1660. void btrfs_destroy_delayed_inodes(struct btrfs_root *root)
  1661. {
  1662. struct btrfs_delayed_root *delayed_root;
  1663. struct btrfs_delayed_node *curr_node, *prev_node;
  1664. delayed_root = btrfs_get_delayed_root(root);
  1665. curr_node = btrfs_first_delayed_node(delayed_root);
  1666. while (curr_node) {
  1667. __btrfs_kill_delayed_node(curr_node);
  1668. prev_node = curr_node;
  1669. curr_node = btrfs_next_delayed_node(curr_node);
  1670. btrfs_release_delayed_node(prev_node);
  1671. }
  1672. }