mtdcore.c 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311
  1. /*
  2. * Core registration and callback routines for MTD
  3. * drivers and users.
  4. *
  5. * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
  6. * Copyright © 2006 Red Hat UK Limited
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  21. *
  22. */
  23. #include <linux/module.h>
  24. #include <linux/kernel.h>
  25. #include <linux/ptrace.h>
  26. #include <linux/seq_file.h>
  27. #include <linux/string.h>
  28. #include <linux/timer.h>
  29. #include <linux/major.h>
  30. #include <linux/fs.h>
  31. #include <linux/err.h>
  32. #include <linux/ioctl.h>
  33. #include <linux/init.h>
  34. #include <linux/proc_fs.h>
  35. #include <linux/idr.h>
  36. #include <linux/backing-dev.h>
  37. #include <linux/gfp.h>
  38. #include <linux/slab.h>
  39. #include <linux/reboot.h>
  40. #include <linux/kconfig.h>
  41. #include <linux/mtd/mtd.h>
  42. #include <linux/mtd/partitions.h>
  43. #include "mtdcore.h"
  44. static struct backing_dev_info mtd_bdi = {
  45. };
  46. #ifdef CONFIG_PM_SLEEP
  47. static int mtd_cls_suspend(struct device *dev)
  48. {
  49. struct mtd_info *mtd = dev_get_drvdata(dev);
  50. return mtd ? mtd_suspend(mtd) : 0;
  51. }
  52. static int mtd_cls_resume(struct device *dev)
  53. {
  54. struct mtd_info *mtd = dev_get_drvdata(dev);
  55. if (mtd)
  56. mtd_resume(mtd);
  57. return 0;
  58. }
  59. static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
  60. #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
  61. #else
  62. #define MTD_CLS_PM_OPS NULL
  63. #endif
  64. static struct class mtd_class = {
  65. .name = "mtd",
  66. .owner = THIS_MODULE,
  67. .pm = MTD_CLS_PM_OPS,
  68. };
  69. static DEFINE_IDR(mtd_idr);
  70. /* These are exported solely for the purpose of mtd_blkdevs.c. You
  71. should not use them for _anything_ else */
  72. DEFINE_MUTEX(mtd_table_mutex);
  73. EXPORT_SYMBOL_GPL(mtd_table_mutex);
  74. struct mtd_info *__mtd_next_device(int i)
  75. {
  76. return idr_get_next(&mtd_idr, &i);
  77. }
  78. EXPORT_SYMBOL_GPL(__mtd_next_device);
  79. static LIST_HEAD(mtd_notifiers);
  80. #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
  81. /* REVISIT once MTD uses the driver model better, whoever allocates
  82. * the mtd_info will probably want to use the release() hook...
  83. */
  84. static void mtd_release(struct device *dev)
  85. {
  86. struct mtd_info *mtd = dev_get_drvdata(dev);
  87. dev_t index = MTD_DEVT(mtd->index);
  88. /* remove /dev/mtdXro node */
  89. device_destroy(&mtd_class, index + 1);
  90. }
  91. static ssize_t mtd_type_show(struct device *dev,
  92. struct device_attribute *attr, char *buf)
  93. {
  94. struct mtd_info *mtd = dev_get_drvdata(dev);
  95. char *type;
  96. switch (mtd->type) {
  97. case MTD_ABSENT:
  98. type = "absent";
  99. break;
  100. case MTD_RAM:
  101. type = "ram";
  102. break;
  103. case MTD_ROM:
  104. type = "rom";
  105. break;
  106. case MTD_NORFLASH:
  107. type = "nor";
  108. break;
  109. case MTD_NANDFLASH:
  110. type = "nand";
  111. break;
  112. case MTD_DATAFLASH:
  113. type = "dataflash";
  114. break;
  115. case MTD_UBIVOLUME:
  116. type = "ubi";
  117. break;
  118. case MTD_MLCNANDFLASH:
  119. type = "mlc-nand";
  120. break;
  121. default:
  122. type = "unknown";
  123. }
  124. return snprintf(buf, PAGE_SIZE, "%s\n", type);
  125. }
  126. static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
  127. static ssize_t mtd_flags_show(struct device *dev,
  128. struct device_attribute *attr, char *buf)
  129. {
  130. struct mtd_info *mtd = dev_get_drvdata(dev);
  131. return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
  132. }
  133. static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
  134. static ssize_t mtd_size_show(struct device *dev,
  135. struct device_attribute *attr, char *buf)
  136. {
  137. struct mtd_info *mtd = dev_get_drvdata(dev);
  138. return snprintf(buf, PAGE_SIZE, "%llu\n",
  139. (unsigned long long)mtd->size);
  140. }
  141. static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
  142. static ssize_t mtd_erasesize_show(struct device *dev,
  143. struct device_attribute *attr, char *buf)
  144. {
  145. struct mtd_info *mtd = dev_get_drvdata(dev);
  146. return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
  147. }
  148. static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
  149. static ssize_t mtd_writesize_show(struct device *dev,
  150. struct device_attribute *attr, char *buf)
  151. {
  152. struct mtd_info *mtd = dev_get_drvdata(dev);
  153. return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
  154. }
  155. static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
  156. static ssize_t mtd_subpagesize_show(struct device *dev,
  157. struct device_attribute *attr, char *buf)
  158. {
  159. struct mtd_info *mtd = dev_get_drvdata(dev);
  160. unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
  161. return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
  162. }
  163. static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
  164. static ssize_t mtd_oobsize_show(struct device *dev,
  165. struct device_attribute *attr, char *buf)
  166. {
  167. struct mtd_info *mtd = dev_get_drvdata(dev);
  168. return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
  169. }
  170. static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
  171. static ssize_t mtd_numeraseregions_show(struct device *dev,
  172. struct device_attribute *attr, char *buf)
  173. {
  174. struct mtd_info *mtd = dev_get_drvdata(dev);
  175. return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
  176. }
  177. static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
  178. NULL);
  179. static ssize_t mtd_name_show(struct device *dev,
  180. struct device_attribute *attr, char *buf)
  181. {
  182. struct mtd_info *mtd = dev_get_drvdata(dev);
  183. return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
  184. }
  185. static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
  186. static ssize_t mtd_ecc_strength_show(struct device *dev,
  187. struct device_attribute *attr, char *buf)
  188. {
  189. struct mtd_info *mtd = dev_get_drvdata(dev);
  190. return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
  191. }
  192. static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
  193. static ssize_t mtd_bitflip_threshold_show(struct device *dev,
  194. struct device_attribute *attr,
  195. char *buf)
  196. {
  197. struct mtd_info *mtd = dev_get_drvdata(dev);
  198. return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
  199. }
  200. static ssize_t mtd_bitflip_threshold_store(struct device *dev,
  201. struct device_attribute *attr,
  202. const char *buf, size_t count)
  203. {
  204. struct mtd_info *mtd = dev_get_drvdata(dev);
  205. unsigned int bitflip_threshold;
  206. int retval;
  207. retval = kstrtouint(buf, 0, &bitflip_threshold);
  208. if (retval)
  209. return retval;
  210. mtd->bitflip_threshold = bitflip_threshold;
  211. return count;
  212. }
  213. static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
  214. mtd_bitflip_threshold_show,
  215. mtd_bitflip_threshold_store);
  216. static ssize_t mtd_ecc_step_size_show(struct device *dev,
  217. struct device_attribute *attr, char *buf)
  218. {
  219. struct mtd_info *mtd = dev_get_drvdata(dev);
  220. return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
  221. }
  222. static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
  223. static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
  224. struct device_attribute *attr, char *buf)
  225. {
  226. struct mtd_info *mtd = dev_get_drvdata(dev);
  227. struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
  228. return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
  229. }
  230. static DEVICE_ATTR(corrected_bits, S_IRUGO,
  231. mtd_ecc_stats_corrected_show, NULL);
  232. static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
  233. struct device_attribute *attr, char *buf)
  234. {
  235. struct mtd_info *mtd = dev_get_drvdata(dev);
  236. struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
  237. return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
  238. }
  239. static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
  240. static ssize_t mtd_badblocks_show(struct device *dev,
  241. struct device_attribute *attr, char *buf)
  242. {
  243. struct mtd_info *mtd = dev_get_drvdata(dev);
  244. struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
  245. return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
  246. }
  247. static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
  248. static ssize_t mtd_bbtblocks_show(struct device *dev,
  249. struct device_attribute *attr, char *buf)
  250. {
  251. struct mtd_info *mtd = dev_get_drvdata(dev);
  252. struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
  253. return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
  254. }
  255. static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
  256. static struct attribute *mtd_attrs[] = {
  257. &dev_attr_type.attr,
  258. &dev_attr_flags.attr,
  259. &dev_attr_size.attr,
  260. &dev_attr_erasesize.attr,
  261. &dev_attr_writesize.attr,
  262. &dev_attr_subpagesize.attr,
  263. &dev_attr_oobsize.attr,
  264. &dev_attr_numeraseregions.attr,
  265. &dev_attr_name.attr,
  266. &dev_attr_ecc_strength.attr,
  267. &dev_attr_ecc_step_size.attr,
  268. &dev_attr_corrected_bits.attr,
  269. &dev_attr_ecc_failures.attr,
  270. &dev_attr_bad_blocks.attr,
  271. &dev_attr_bbt_blocks.attr,
  272. &dev_attr_bitflip_threshold.attr,
  273. NULL,
  274. };
  275. ATTRIBUTE_GROUPS(mtd);
  276. static struct device_type mtd_devtype = {
  277. .name = "mtd",
  278. .groups = mtd_groups,
  279. .release = mtd_release,
  280. };
  281. #ifndef CONFIG_MMU
  282. unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
  283. {
  284. switch (mtd->type) {
  285. case MTD_RAM:
  286. return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
  287. NOMMU_MAP_READ | NOMMU_MAP_WRITE;
  288. case MTD_ROM:
  289. return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
  290. NOMMU_MAP_READ;
  291. default:
  292. return NOMMU_MAP_COPY;
  293. }
  294. }
  295. EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
  296. #endif
  297. static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
  298. void *cmd)
  299. {
  300. struct mtd_info *mtd;
  301. mtd = container_of(n, struct mtd_info, reboot_notifier);
  302. mtd->_reboot(mtd);
  303. return NOTIFY_DONE;
  304. }
  305. /**
  306. * add_mtd_device - register an MTD device
  307. * @mtd: pointer to new MTD device info structure
  308. *
  309. * Add a device to the list of MTD devices present in the system, and
  310. * notify each currently active MTD 'user' of its arrival. Returns
  311. * zero on success or non-zero on failure.
  312. */
  313. int add_mtd_device(struct mtd_info *mtd)
  314. {
  315. struct mtd_notifier *not;
  316. int i, error;
  317. mtd->backing_dev_info = &mtd_bdi;
  318. BUG_ON(mtd->writesize == 0);
  319. mutex_lock(&mtd_table_mutex);
  320. i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
  321. if (i < 0) {
  322. error = i;
  323. goto fail_locked;
  324. }
  325. mtd->index = i;
  326. mtd->usecount = 0;
  327. /* default value if not set by driver */
  328. if (mtd->bitflip_threshold == 0)
  329. mtd->bitflip_threshold = mtd->ecc_strength;
  330. if (is_power_of_2(mtd->erasesize))
  331. mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
  332. else
  333. mtd->erasesize_shift = 0;
  334. if (is_power_of_2(mtd->writesize))
  335. mtd->writesize_shift = ffs(mtd->writesize) - 1;
  336. else
  337. mtd->writesize_shift = 0;
  338. mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
  339. mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
  340. /* Some chips always power up locked. Unlock them now */
  341. if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
  342. error = mtd_unlock(mtd, 0, mtd->size);
  343. if (error && error != -EOPNOTSUPP)
  344. printk(KERN_WARNING
  345. "%s: unlock failed, writes may not work\n",
  346. mtd->name);
  347. /* Ignore unlock failures? */
  348. error = 0;
  349. }
  350. /* Caller should have set dev.parent to match the
  351. * physical device.
  352. */
  353. mtd->dev.type = &mtd_devtype;
  354. mtd->dev.class = &mtd_class;
  355. mtd->dev.devt = MTD_DEVT(i);
  356. dev_set_name(&mtd->dev, "mtd%d", i);
  357. dev_set_drvdata(&mtd->dev, mtd);
  358. error = device_register(&mtd->dev);
  359. if (error)
  360. goto fail_added;
  361. device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
  362. "mtd%dro", i);
  363. pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
  364. /* No need to get a refcount on the module containing
  365. the notifier, since we hold the mtd_table_mutex */
  366. list_for_each_entry(not, &mtd_notifiers, list)
  367. not->add(mtd);
  368. mutex_unlock(&mtd_table_mutex);
  369. /* We _know_ we aren't being removed, because
  370. our caller is still holding us here. So none
  371. of this try_ nonsense, and no bitching about it
  372. either. :) */
  373. __module_get(THIS_MODULE);
  374. return 0;
  375. fail_added:
  376. idr_remove(&mtd_idr, i);
  377. fail_locked:
  378. mutex_unlock(&mtd_table_mutex);
  379. return error;
  380. }
  381. /**
  382. * del_mtd_device - unregister an MTD device
  383. * @mtd: pointer to MTD device info structure
  384. *
  385. * Remove a device from the list of MTD devices present in the system,
  386. * and notify each currently active MTD 'user' of its departure.
  387. * Returns zero on success or 1 on failure, which currently will happen
  388. * if the requested device does not appear to be present in the list.
  389. */
  390. int del_mtd_device(struct mtd_info *mtd)
  391. {
  392. int ret;
  393. struct mtd_notifier *not;
  394. mutex_lock(&mtd_table_mutex);
  395. if (idr_find(&mtd_idr, mtd->index) != mtd) {
  396. ret = -ENODEV;
  397. goto out_error;
  398. }
  399. /* No need to get a refcount on the module containing
  400. the notifier, since we hold the mtd_table_mutex */
  401. list_for_each_entry(not, &mtd_notifiers, list)
  402. not->remove(mtd);
  403. if (mtd->usecount) {
  404. printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
  405. mtd->index, mtd->name, mtd->usecount);
  406. ret = -EBUSY;
  407. } else {
  408. device_unregister(&mtd->dev);
  409. idr_remove(&mtd_idr, mtd->index);
  410. module_put(THIS_MODULE);
  411. ret = 0;
  412. }
  413. out_error:
  414. mutex_unlock(&mtd_table_mutex);
  415. return ret;
  416. }
  417. static int mtd_add_device_partitions(struct mtd_info *mtd,
  418. struct mtd_partition *real_parts,
  419. int nbparts)
  420. {
  421. int ret;
  422. if (nbparts == 0 || IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
  423. ret = add_mtd_device(mtd);
  424. if (ret)
  425. return ret;
  426. }
  427. if (nbparts > 0) {
  428. ret = add_mtd_partitions(mtd, real_parts, nbparts);
  429. if (ret && IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
  430. del_mtd_device(mtd);
  431. return ret;
  432. }
  433. return 0;
  434. }
  435. /**
  436. * mtd_device_parse_register - parse partitions and register an MTD device.
  437. *
  438. * @mtd: the MTD device to register
  439. * @types: the list of MTD partition probes to try, see
  440. * 'parse_mtd_partitions()' for more information
  441. * @parser_data: MTD partition parser-specific data
  442. * @parts: fallback partition information to register, if parsing fails;
  443. * only valid if %nr_parts > %0
  444. * @nr_parts: the number of partitions in parts, if zero then the full
  445. * MTD device is registered if no partition info is found
  446. *
  447. * This function aggregates MTD partitions parsing (done by
  448. * 'parse_mtd_partitions()') and MTD device and partitions registering. It
  449. * basically follows the most common pattern found in many MTD drivers:
  450. *
  451. * * It first tries to probe partitions on MTD device @mtd using parsers
  452. * specified in @types (if @types is %NULL, then the default list of parsers
  453. * is used, see 'parse_mtd_partitions()' for more information). If none are
  454. * found this functions tries to fallback to information specified in
  455. * @parts/@nr_parts.
  456. * * If any partitioning info was found, this function registers the found
  457. * partitions. If the MTD_PARTITIONED_MASTER option is set, then the device
  458. * as a whole is registered first.
  459. * * If no partitions were found this function just registers the MTD device
  460. * @mtd and exits.
  461. *
  462. * Returns zero in case of success and a negative error code in case of failure.
  463. */
  464. int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
  465. struct mtd_part_parser_data *parser_data,
  466. const struct mtd_partition *parts,
  467. int nr_parts)
  468. {
  469. int ret;
  470. struct mtd_partition *real_parts = NULL;
  471. ret = parse_mtd_partitions(mtd, types, &real_parts, parser_data);
  472. if (ret <= 0 && nr_parts && parts) {
  473. real_parts = kmemdup(parts, sizeof(*parts) * nr_parts,
  474. GFP_KERNEL);
  475. if (!real_parts)
  476. ret = -ENOMEM;
  477. else
  478. ret = nr_parts;
  479. }
  480. if (ret >= 0)
  481. ret = mtd_add_device_partitions(mtd, real_parts, ret);
  482. /*
  483. * FIXME: some drivers unfortunately call this function more than once.
  484. * So we have to check if we've already assigned the reboot notifier.
  485. *
  486. * Generally, we can make multiple calls work for most cases, but it
  487. * does cause problems with parse_mtd_partitions() above (e.g.,
  488. * cmdlineparts will register partitions more than once).
  489. */
  490. if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
  491. mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
  492. register_reboot_notifier(&mtd->reboot_notifier);
  493. }
  494. kfree(real_parts);
  495. return ret;
  496. }
  497. EXPORT_SYMBOL_GPL(mtd_device_parse_register);
  498. /**
  499. * mtd_device_unregister - unregister an existing MTD device.
  500. *
  501. * @master: the MTD device to unregister. This will unregister both the master
  502. * and any partitions if registered.
  503. */
  504. int mtd_device_unregister(struct mtd_info *master)
  505. {
  506. int err;
  507. if (master->_reboot)
  508. unregister_reboot_notifier(&master->reboot_notifier);
  509. err = del_mtd_partitions(master);
  510. if (err)
  511. return err;
  512. if (!device_is_registered(&master->dev))
  513. return 0;
  514. return del_mtd_device(master);
  515. }
  516. EXPORT_SYMBOL_GPL(mtd_device_unregister);
  517. /**
  518. * register_mtd_user - register a 'user' of MTD devices.
  519. * @new: pointer to notifier info structure
  520. *
  521. * Registers a pair of callbacks function to be called upon addition
  522. * or removal of MTD devices. Causes the 'add' callback to be immediately
  523. * invoked for each MTD device currently present in the system.
  524. */
  525. void register_mtd_user (struct mtd_notifier *new)
  526. {
  527. struct mtd_info *mtd;
  528. mutex_lock(&mtd_table_mutex);
  529. list_add(&new->list, &mtd_notifiers);
  530. __module_get(THIS_MODULE);
  531. mtd_for_each_device(mtd)
  532. new->add(mtd);
  533. mutex_unlock(&mtd_table_mutex);
  534. }
  535. EXPORT_SYMBOL_GPL(register_mtd_user);
  536. /**
  537. * unregister_mtd_user - unregister a 'user' of MTD devices.
  538. * @old: pointer to notifier info structure
  539. *
  540. * Removes a callback function pair from the list of 'users' to be
  541. * notified upon addition or removal of MTD devices. Causes the
  542. * 'remove' callback to be immediately invoked for each MTD device
  543. * currently present in the system.
  544. */
  545. int unregister_mtd_user (struct mtd_notifier *old)
  546. {
  547. struct mtd_info *mtd;
  548. mutex_lock(&mtd_table_mutex);
  549. module_put(THIS_MODULE);
  550. mtd_for_each_device(mtd)
  551. old->remove(mtd);
  552. list_del(&old->list);
  553. mutex_unlock(&mtd_table_mutex);
  554. return 0;
  555. }
  556. EXPORT_SYMBOL_GPL(unregister_mtd_user);
  557. /**
  558. * get_mtd_device - obtain a validated handle for an MTD device
  559. * @mtd: last known address of the required MTD device
  560. * @num: internal device number of the required MTD device
  561. *
  562. * Given a number and NULL address, return the num'th entry in the device
  563. * table, if any. Given an address and num == -1, search the device table
  564. * for a device with that address and return if it's still present. Given
  565. * both, return the num'th driver only if its address matches. Return
  566. * error code if not.
  567. */
  568. struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
  569. {
  570. struct mtd_info *ret = NULL, *other;
  571. int err = -ENODEV;
  572. mutex_lock(&mtd_table_mutex);
  573. if (num == -1) {
  574. mtd_for_each_device(other) {
  575. if (other == mtd) {
  576. ret = mtd;
  577. break;
  578. }
  579. }
  580. } else if (num >= 0) {
  581. ret = idr_find(&mtd_idr, num);
  582. if (mtd && mtd != ret)
  583. ret = NULL;
  584. }
  585. if (!ret) {
  586. ret = ERR_PTR(err);
  587. goto out;
  588. }
  589. err = __get_mtd_device(ret);
  590. if (err)
  591. ret = ERR_PTR(err);
  592. out:
  593. mutex_unlock(&mtd_table_mutex);
  594. return ret;
  595. }
  596. EXPORT_SYMBOL_GPL(get_mtd_device);
  597. int __get_mtd_device(struct mtd_info *mtd)
  598. {
  599. int err;
  600. if (!try_module_get(mtd->owner))
  601. return -ENODEV;
  602. if (mtd->_get_device) {
  603. err = mtd->_get_device(mtd);
  604. if (err) {
  605. module_put(mtd->owner);
  606. return err;
  607. }
  608. }
  609. mtd->usecount++;
  610. return 0;
  611. }
  612. EXPORT_SYMBOL_GPL(__get_mtd_device);
  613. /**
  614. * get_mtd_device_nm - obtain a validated handle for an MTD device by
  615. * device name
  616. * @name: MTD device name to open
  617. *
  618. * This function returns MTD device description structure in case of
  619. * success and an error code in case of failure.
  620. */
  621. struct mtd_info *get_mtd_device_nm(const char *name)
  622. {
  623. int err = -ENODEV;
  624. struct mtd_info *mtd = NULL, *other;
  625. mutex_lock(&mtd_table_mutex);
  626. mtd_for_each_device(other) {
  627. if (!strcmp(name, other->name)) {
  628. mtd = other;
  629. break;
  630. }
  631. }
  632. if (!mtd)
  633. goto out_unlock;
  634. err = __get_mtd_device(mtd);
  635. if (err)
  636. goto out_unlock;
  637. mutex_unlock(&mtd_table_mutex);
  638. return mtd;
  639. out_unlock:
  640. mutex_unlock(&mtd_table_mutex);
  641. return ERR_PTR(err);
  642. }
  643. EXPORT_SYMBOL_GPL(get_mtd_device_nm);
  644. void put_mtd_device(struct mtd_info *mtd)
  645. {
  646. mutex_lock(&mtd_table_mutex);
  647. __put_mtd_device(mtd);
  648. mutex_unlock(&mtd_table_mutex);
  649. }
  650. EXPORT_SYMBOL_GPL(put_mtd_device);
  651. void __put_mtd_device(struct mtd_info *mtd)
  652. {
  653. --mtd->usecount;
  654. BUG_ON(mtd->usecount < 0);
  655. if (mtd->_put_device)
  656. mtd->_put_device(mtd);
  657. module_put(mtd->owner);
  658. }
  659. EXPORT_SYMBOL_GPL(__put_mtd_device);
  660. /*
  661. * Erase is an asynchronous operation. Device drivers are supposed
  662. * to call instr->callback() whenever the operation completes, even
  663. * if it completes with a failure.
  664. * Callers are supposed to pass a callback function and wait for it
  665. * to be called before writing to the block.
  666. */
  667. int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
  668. {
  669. if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
  670. return -EINVAL;
  671. if (!(mtd->flags & MTD_WRITEABLE))
  672. return -EROFS;
  673. instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
  674. if (!instr->len) {
  675. instr->state = MTD_ERASE_DONE;
  676. mtd_erase_callback(instr);
  677. return 0;
  678. }
  679. return mtd->_erase(mtd, instr);
  680. }
  681. EXPORT_SYMBOL_GPL(mtd_erase);
  682. /*
  683. * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
  684. */
  685. int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
  686. void **virt, resource_size_t *phys)
  687. {
  688. *retlen = 0;
  689. *virt = NULL;
  690. if (phys)
  691. *phys = 0;
  692. if (!mtd->_point)
  693. return -EOPNOTSUPP;
  694. if (from < 0 || from >= mtd->size || len > mtd->size - from)
  695. return -EINVAL;
  696. if (!len)
  697. return 0;
  698. return mtd->_point(mtd, from, len, retlen, virt, phys);
  699. }
  700. EXPORT_SYMBOL_GPL(mtd_point);
  701. /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
  702. int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
  703. {
  704. if (!mtd->_point)
  705. return -EOPNOTSUPP;
  706. if (from < 0 || from >= mtd->size || len > mtd->size - from)
  707. return -EINVAL;
  708. if (!len)
  709. return 0;
  710. return mtd->_unpoint(mtd, from, len);
  711. }
  712. EXPORT_SYMBOL_GPL(mtd_unpoint);
  713. /*
  714. * Allow NOMMU mmap() to directly map the device (if not NULL)
  715. * - return the address to which the offset maps
  716. * - return -ENOSYS to indicate refusal to do the mapping
  717. */
  718. unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
  719. unsigned long offset, unsigned long flags)
  720. {
  721. if (!mtd->_get_unmapped_area)
  722. return -EOPNOTSUPP;
  723. if (offset >= mtd->size || len > mtd->size - offset)
  724. return -EINVAL;
  725. return mtd->_get_unmapped_area(mtd, len, offset, flags);
  726. }
  727. EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
  728. int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
  729. u_char *buf)
  730. {
  731. int ret_code;
  732. *retlen = 0;
  733. if (from < 0 || from >= mtd->size || len > mtd->size - from)
  734. return -EINVAL;
  735. if (!len)
  736. return 0;
  737. /*
  738. * In the absence of an error, drivers return a non-negative integer
  739. * representing the maximum number of bitflips that were corrected on
  740. * any one ecc region (if applicable; zero otherwise).
  741. */
  742. ret_code = mtd->_read(mtd, from, len, retlen, buf);
  743. if (unlikely(ret_code < 0))
  744. return ret_code;
  745. if (mtd->ecc_strength == 0)
  746. return 0; /* device lacks ecc */
  747. return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
  748. }
  749. EXPORT_SYMBOL_GPL(mtd_read);
  750. int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
  751. const u_char *buf)
  752. {
  753. *retlen = 0;
  754. if (to < 0 || to >= mtd->size || len > mtd->size - to)
  755. return -EINVAL;
  756. if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
  757. return -EROFS;
  758. if (!len)
  759. return 0;
  760. return mtd->_write(mtd, to, len, retlen, buf);
  761. }
  762. EXPORT_SYMBOL_GPL(mtd_write);
  763. /*
  764. * In blackbox flight recorder like scenarios we want to make successful writes
  765. * in interrupt context. panic_write() is only intended to be called when its
  766. * known the kernel is about to panic and we need the write to succeed. Since
  767. * the kernel is not going to be running for much longer, this function can
  768. * break locks and delay to ensure the write succeeds (but not sleep).
  769. */
  770. int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
  771. const u_char *buf)
  772. {
  773. *retlen = 0;
  774. if (!mtd->_panic_write)
  775. return -EOPNOTSUPP;
  776. if (to < 0 || to >= mtd->size || len > mtd->size - to)
  777. return -EINVAL;
  778. if (!(mtd->flags & MTD_WRITEABLE))
  779. return -EROFS;
  780. if (!len)
  781. return 0;
  782. return mtd->_panic_write(mtd, to, len, retlen, buf);
  783. }
  784. EXPORT_SYMBOL_GPL(mtd_panic_write);
  785. int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
  786. {
  787. int ret_code;
  788. ops->retlen = ops->oobretlen = 0;
  789. if (!mtd->_read_oob)
  790. return -EOPNOTSUPP;
  791. /*
  792. * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
  793. * similar to mtd->_read(), returning a non-negative integer
  794. * representing max bitflips. In other cases, mtd->_read_oob() may
  795. * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
  796. */
  797. ret_code = mtd->_read_oob(mtd, from, ops);
  798. if (unlikely(ret_code < 0))
  799. return ret_code;
  800. if (mtd->ecc_strength == 0)
  801. return 0; /* device lacks ecc */
  802. return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
  803. }
  804. EXPORT_SYMBOL_GPL(mtd_read_oob);
  805. /*
  806. * Method to access the protection register area, present in some flash
  807. * devices. The user data is one time programmable but the factory data is read
  808. * only.
  809. */
  810. int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
  811. struct otp_info *buf)
  812. {
  813. if (!mtd->_get_fact_prot_info)
  814. return -EOPNOTSUPP;
  815. if (!len)
  816. return 0;
  817. return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
  818. }
  819. EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
  820. int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
  821. size_t *retlen, u_char *buf)
  822. {
  823. *retlen = 0;
  824. if (!mtd->_read_fact_prot_reg)
  825. return -EOPNOTSUPP;
  826. if (!len)
  827. return 0;
  828. return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
  829. }
  830. EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
  831. int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
  832. struct otp_info *buf)
  833. {
  834. if (!mtd->_get_user_prot_info)
  835. return -EOPNOTSUPP;
  836. if (!len)
  837. return 0;
  838. return mtd->_get_user_prot_info(mtd, len, retlen, buf);
  839. }
  840. EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
  841. int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
  842. size_t *retlen, u_char *buf)
  843. {
  844. *retlen = 0;
  845. if (!mtd->_read_user_prot_reg)
  846. return -EOPNOTSUPP;
  847. if (!len)
  848. return 0;
  849. return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
  850. }
  851. EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
  852. int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
  853. size_t *retlen, u_char *buf)
  854. {
  855. int ret;
  856. *retlen = 0;
  857. if (!mtd->_write_user_prot_reg)
  858. return -EOPNOTSUPP;
  859. if (!len)
  860. return 0;
  861. ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
  862. if (ret)
  863. return ret;
  864. /*
  865. * If no data could be written at all, we are out of memory and
  866. * must return -ENOSPC.
  867. */
  868. return (*retlen) ? 0 : -ENOSPC;
  869. }
  870. EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
  871. int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
  872. {
  873. if (!mtd->_lock_user_prot_reg)
  874. return -EOPNOTSUPP;
  875. if (!len)
  876. return 0;
  877. return mtd->_lock_user_prot_reg(mtd, from, len);
  878. }
  879. EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
  880. /* Chip-supported device locking */
  881. int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  882. {
  883. if (!mtd->_lock)
  884. return -EOPNOTSUPP;
  885. if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
  886. return -EINVAL;
  887. if (!len)
  888. return 0;
  889. return mtd->_lock(mtd, ofs, len);
  890. }
  891. EXPORT_SYMBOL_GPL(mtd_lock);
  892. int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  893. {
  894. if (!mtd->_unlock)
  895. return -EOPNOTSUPP;
  896. if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
  897. return -EINVAL;
  898. if (!len)
  899. return 0;
  900. return mtd->_unlock(mtd, ofs, len);
  901. }
  902. EXPORT_SYMBOL_GPL(mtd_unlock);
  903. int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  904. {
  905. if (!mtd->_is_locked)
  906. return -EOPNOTSUPP;
  907. if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
  908. return -EINVAL;
  909. if (!len)
  910. return 0;
  911. return mtd->_is_locked(mtd, ofs, len);
  912. }
  913. EXPORT_SYMBOL_GPL(mtd_is_locked);
  914. int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
  915. {
  916. if (ofs < 0 || ofs >= mtd->size)
  917. return -EINVAL;
  918. if (!mtd->_block_isreserved)
  919. return 0;
  920. return mtd->_block_isreserved(mtd, ofs);
  921. }
  922. EXPORT_SYMBOL_GPL(mtd_block_isreserved);
  923. int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
  924. {
  925. if (ofs < 0 || ofs >= mtd->size)
  926. return -EINVAL;
  927. if (!mtd->_block_isbad)
  928. return 0;
  929. return mtd->_block_isbad(mtd, ofs);
  930. }
  931. EXPORT_SYMBOL_GPL(mtd_block_isbad);
  932. int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
  933. {
  934. if (!mtd->_block_markbad)
  935. return -EOPNOTSUPP;
  936. if (ofs < 0 || ofs >= mtd->size)
  937. return -EINVAL;
  938. if (!(mtd->flags & MTD_WRITEABLE))
  939. return -EROFS;
  940. return mtd->_block_markbad(mtd, ofs);
  941. }
  942. EXPORT_SYMBOL_GPL(mtd_block_markbad);
  943. /*
  944. * default_mtd_writev - the default writev method
  945. * @mtd: mtd device description object pointer
  946. * @vecs: the vectors to write
  947. * @count: count of vectors in @vecs
  948. * @to: the MTD device offset to write to
  949. * @retlen: on exit contains the count of bytes written to the MTD device.
  950. *
  951. * This function returns zero in case of success and a negative error code in
  952. * case of failure.
  953. */
  954. static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
  955. unsigned long count, loff_t to, size_t *retlen)
  956. {
  957. unsigned long i;
  958. size_t totlen = 0, thislen;
  959. int ret = 0;
  960. for (i = 0; i < count; i++) {
  961. if (!vecs[i].iov_len)
  962. continue;
  963. ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
  964. vecs[i].iov_base);
  965. totlen += thislen;
  966. if (ret || thislen != vecs[i].iov_len)
  967. break;
  968. to += vecs[i].iov_len;
  969. }
  970. *retlen = totlen;
  971. return ret;
  972. }
  973. /*
  974. * mtd_writev - the vector-based MTD write method
  975. * @mtd: mtd device description object pointer
  976. * @vecs: the vectors to write
  977. * @count: count of vectors in @vecs
  978. * @to: the MTD device offset to write to
  979. * @retlen: on exit contains the count of bytes written to the MTD device.
  980. *
  981. * This function returns zero in case of success and a negative error code in
  982. * case of failure.
  983. */
  984. int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
  985. unsigned long count, loff_t to, size_t *retlen)
  986. {
  987. *retlen = 0;
  988. if (!(mtd->flags & MTD_WRITEABLE))
  989. return -EROFS;
  990. if (!mtd->_writev)
  991. return default_mtd_writev(mtd, vecs, count, to, retlen);
  992. return mtd->_writev(mtd, vecs, count, to, retlen);
  993. }
  994. EXPORT_SYMBOL_GPL(mtd_writev);
  995. /**
  996. * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
  997. * @mtd: mtd device description object pointer
  998. * @size: a pointer to the ideal or maximum size of the allocation, points
  999. * to the actual allocation size on success.
  1000. *
  1001. * This routine attempts to allocate a contiguous kernel buffer up to
  1002. * the specified size, backing off the size of the request exponentially
  1003. * until the request succeeds or until the allocation size falls below
  1004. * the system page size. This attempts to make sure it does not adversely
  1005. * impact system performance, so when allocating more than one page, we
  1006. * ask the memory allocator to avoid re-trying, swapping, writing back
  1007. * or performing I/O.
  1008. *
  1009. * Note, this function also makes sure that the allocated buffer is aligned to
  1010. * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
  1011. *
  1012. * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
  1013. * to handle smaller (i.e. degraded) buffer allocations under low- or
  1014. * fragmented-memory situations where such reduced allocations, from a
  1015. * requested ideal, are allowed.
  1016. *
  1017. * Returns a pointer to the allocated buffer on success; otherwise, NULL.
  1018. */
  1019. void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
  1020. {
  1021. gfp_t flags = __GFP_NOWARN | __GFP_WAIT |
  1022. __GFP_NORETRY | __GFP_NO_KSWAPD;
  1023. size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
  1024. void *kbuf;
  1025. *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
  1026. while (*size > min_alloc) {
  1027. kbuf = kmalloc(*size, flags);
  1028. if (kbuf)
  1029. return kbuf;
  1030. *size >>= 1;
  1031. *size = ALIGN(*size, mtd->writesize);
  1032. }
  1033. /*
  1034. * For the last resort allocation allow 'kmalloc()' to do all sorts of
  1035. * things (write-back, dropping caches, etc) by using GFP_KERNEL.
  1036. */
  1037. return kmalloc(*size, GFP_KERNEL);
  1038. }
  1039. EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
  1040. #ifdef CONFIG_PROC_FS
  1041. /*====================================================================*/
  1042. /* Support for /proc/mtd */
  1043. static int mtd_proc_show(struct seq_file *m, void *v)
  1044. {
  1045. struct mtd_info *mtd;
  1046. seq_puts(m, "dev: size erasesize name\n");
  1047. mutex_lock(&mtd_table_mutex);
  1048. mtd_for_each_device(mtd) {
  1049. seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
  1050. mtd->index, (unsigned long long)mtd->size,
  1051. mtd->erasesize, mtd->name);
  1052. }
  1053. mutex_unlock(&mtd_table_mutex);
  1054. return 0;
  1055. }
  1056. static int mtd_proc_open(struct inode *inode, struct file *file)
  1057. {
  1058. return single_open(file, mtd_proc_show, NULL);
  1059. }
  1060. static const struct file_operations mtd_proc_ops = {
  1061. .open = mtd_proc_open,
  1062. .read = seq_read,
  1063. .llseek = seq_lseek,
  1064. .release = single_release,
  1065. };
  1066. #endif /* CONFIG_PROC_FS */
  1067. /*====================================================================*/
  1068. /* Init code */
  1069. static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
  1070. {
  1071. int ret;
  1072. ret = bdi_init(bdi);
  1073. if (!ret)
  1074. ret = bdi_register(bdi, NULL, "%s", name);
  1075. if (ret)
  1076. bdi_destroy(bdi);
  1077. return ret;
  1078. }
  1079. static struct proc_dir_entry *proc_mtd;
  1080. static int __init init_mtd(void)
  1081. {
  1082. int ret;
  1083. ret = class_register(&mtd_class);
  1084. if (ret)
  1085. goto err_reg;
  1086. ret = mtd_bdi_init(&mtd_bdi, "mtd");
  1087. if (ret)
  1088. goto err_bdi;
  1089. proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
  1090. ret = init_mtdchar();
  1091. if (ret)
  1092. goto out_procfs;
  1093. return 0;
  1094. out_procfs:
  1095. if (proc_mtd)
  1096. remove_proc_entry("mtd", NULL);
  1097. err_bdi:
  1098. class_unregister(&mtd_class);
  1099. err_reg:
  1100. pr_err("Error registering mtd class or bdi: %d\n", ret);
  1101. return ret;
  1102. }
  1103. static void __exit cleanup_mtd(void)
  1104. {
  1105. cleanup_mtdchar();
  1106. if (proc_mtd)
  1107. remove_proc_entry("mtd", NULL);
  1108. class_unregister(&mtd_class);
  1109. bdi_destroy(&mtd_bdi);
  1110. }
  1111. module_init(init_mtd);
  1112. module_exit(cleanup_mtd);
  1113. MODULE_LICENSE("GPL");
  1114. MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
  1115. MODULE_DESCRIPTION("Core MTD registration and access routines");