sunxi-mmc.c 31 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114
  1. /*
  2. * Driver for sunxi SD/MMC host controllers
  3. * (C) Copyright 2007-2011 Reuuimlla Technology Co., Ltd.
  4. * (C) Copyright 2007-2011 Aaron Maoye <leafy.myeh@reuuimllatech.com>
  5. * (C) Copyright 2013-2014 O2S GmbH <www.o2s.ch>
  6. * (C) Copyright 2013-2014 David Lanzend�rfer <david.lanzendoerfer@o2s.ch>
  7. * (C) Copyright 2013-2014 Hans de Goede <hdegoede@redhat.com>
  8. *
  9. * This program is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU General Public License as
  11. * published by the Free Software Foundation; either version 2 of
  12. * the License, or (at your option) any later version.
  13. */
  14. #include <linux/kernel.h>
  15. #include <linux/module.h>
  16. #include <linux/io.h>
  17. #include <linux/device.h>
  18. #include <linux/interrupt.h>
  19. #include <linux/delay.h>
  20. #include <linux/err.h>
  21. #include <linux/clk.h>
  22. #include <linux/gpio.h>
  23. #include <linux/platform_device.h>
  24. #include <linux/spinlock.h>
  25. #include <linux/scatterlist.h>
  26. #include <linux/dma-mapping.h>
  27. #include <linux/slab.h>
  28. #include <linux/reset.h>
  29. #include <linux/of_address.h>
  30. #include <linux/of_gpio.h>
  31. #include <linux/of_platform.h>
  32. #include <linux/mmc/host.h>
  33. #include <linux/mmc/sd.h>
  34. #include <linux/mmc/sdio.h>
  35. #include <linux/mmc/mmc.h>
  36. #include <linux/mmc/core.h>
  37. #include <linux/mmc/card.h>
  38. #include <linux/mmc/slot-gpio.h>
  39. /* register offset definitions */
  40. #define SDXC_REG_GCTRL (0x00) /* SMC Global Control Register */
  41. #define SDXC_REG_CLKCR (0x04) /* SMC Clock Control Register */
  42. #define SDXC_REG_TMOUT (0x08) /* SMC Time Out Register */
  43. #define SDXC_REG_WIDTH (0x0C) /* SMC Bus Width Register */
  44. #define SDXC_REG_BLKSZ (0x10) /* SMC Block Size Register */
  45. #define SDXC_REG_BCNTR (0x14) /* SMC Byte Count Register */
  46. #define SDXC_REG_CMDR (0x18) /* SMC Command Register */
  47. #define SDXC_REG_CARG (0x1C) /* SMC Argument Register */
  48. #define SDXC_REG_RESP0 (0x20) /* SMC Response Register 0 */
  49. #define SDXC_REG_RESP1 (0x24) /* SMC Response Register 1 */
  50. #define SDXC_REG_RESP2 (0x28) /* SMC Response Register 2 */
  51. #define SDXC_REG_RESP3 (0x2C) /* SMC Response Register 3 */
  52. #define SDXC_REG_IMASK (0x30) /* SMC Interrupt Mask Register */
  53. #define SDXC_REG_MISTA (0x34) /* SMC Masked Interrupt Status Register */
  54. #define SDXC_REG_RINTR (0x38) /* SMC Raw Interrupt Status Register */
  55. #define SDXC_REG_STAS (0x3C) /* SMC Status Register */
  56. #define SDXC_REG_FTRGL (0x40) /* SMC FIFO Threshold Watermark Registe */
  57. #define SDXC_REG_FUNS (0x44) /* SMC Function Select Register */
  58. #define SDXC_REG_CBCR (0x48) /* SMC CIU Byte Count Register */
  59. #define SDXC_REG_BBCR (0x4C) /* SMC BIU Byte Count Register */
  60. #define SDXC_REG_DBGC (0x50) /* SMC Debug Enable Register */
  61. #define SDXC_REG_HWRST (0x78) /* SMC Card Hardware Reset for Register */
  62. #define SDXC_REG_DMAC (0x80) /* SMC IDMAC Control Register */
  63. #define SDXC_REG_DLBA (0x84) /* SMC IDMAC Descriptor List Base Addre */
  64. #define SDXC_REG_IDST (0x88) /* SMC IDMAC Status Register */
  65. #define SDXC_REG_IDIE (0x8C) /* SMC IDMAC Interrupt Enable Register */
  66. #define SDXC_REG_CHDA (0x90)
  67. #define SDXC_REG_CBDA (0x94)
  68. #define mmc_readl(host, reg) \
  69. readl((host)->reg_base + SDXC_##reg)
  70. #define mmc_writel(host, reg, value) \
  71. writel((value), (host)->reg_base + SDXC_##reg)
  72. /* global control register bits */
  73. #define SDXC_SOFT_RESET BIT(0)
  74. #define SDXC_FIFO_RESET BIT(1)
  75. #define SDXC_DMA_RESET BIT(2)
  76. #define SDXC_INTERRUPT_ENABLE_BIT BIT(4)
  77. #define SDXC_DMA_ENABLE_BIT BIT(5)
  78. #define SDXC_DEBOUNCE_ENABLE_BIT BIT(8)
  79. #define SDXC_POSEDGE_LATCH_DATA BIT(9)
  80. #define SDXC_DDR_MODE BIT(10)
  81. #define SDXC_MEMORY_ACCESS_DONE BIT(29)
  82. #define SDXC_ACCESS_DONE_DIRECT BIT(30)
  83. #define SDXC_ACCESS_BY_AHB BIT(31)
  84. #define SDXC_ACCESS_BY_DMA (0 << 31)
  85. #define SDXC_HARDWARE_RESET \
  86. (SDXC_SOFT_RESET | SDXC_FIFO_RESET | SDXC_DMA_RESET)
  87. /* clock control bits */
  88. #define SDXC_CARD_CLOCK_ON BIT(16)
  89. #define SDXC_LOW_POWER_ON BIT(17)
  90. /* bus width */
  91. #define SDXC_WIDTH1 0
  92. #define SDXC_WIDTH4 1
  93. #define SDXC_WIDTH8 2
  94. /* smc command bits */
  95. #define SDXC_RESP_EXPIRE BIT(6)
  96. #define SDXC_LONG_RESPONSE BIT(7)
  97. #define SDXC_CHECK_RESPONSE_CRC BIT(8)
  98. #define SDXC_DATA_EXPIRE BIT(9)
  99. #define SDXC_WRITE BIT(10)
  100. #define SDXC_SEQUENCE_MODE BIT(11)
  101. #define SDXC_SEND_AUTO_STOP BIT(12)
  102. #define SDXC_WAIT_PRE_OVER BIT(13)
  103. #define SDXC_STOP_ABORT_CMD BIT(14)
  104. #define SDXC_SEND_INIT_SEQUENCE BIT(15)
  105. #define SDXC_UPCLK_ONLY BIT(21)
  106. #define SDXC_READ_CEATA_DEV BIT(22)
  107. #define SDXC_CCS_EXPIRE BIT(23)
  108. #define SDXC_ENABLE_BIT_BOOT BIT(24)
  109. #define SDXC_ALT_BOOT_OPTIONS BIT(25)
  110. #define SDXC_BOOT_ACK_EXPIRE BIT(26)
  111. #define SDXC_BOOT_ABORT BIT(27)
  112. #define SDXC_VOLTAGE_SWITCH BIT(28)
  113. #define SDXC_USE_HOLD_REGISTER BIT(29)
  114. #define SDXC_START BIT(31)
  115. /* interrupt bits */
  116. #define SDXC_RESP_ERROR BIT(1)
  117. #define SDXC_COMMAND_DONE BIT(2)
  118. #define SDXC_DATA_OVER BIT(3)
  119. #define SDXC_TX_DATA_REQUEST BIT(4)
  120. #define SDXC_RX_DATA_REQUEST BIT(5)
  121. #define SDXC_RESP_CRC_ERROR BIT(6)
  122. #define SDXC_DATA_CRC_ERROR BIT(7)
  123. #define SDXC_RESP_TIMEOUT BIT(8)
  124. #define SDXC_DATA_TIMEOUT BIT(9)
  125. #define SDXC_VOLTAGE_CHANGE_DONE BIT(10)
  126. #define SDXC_FIFO_RUN_ERROR BIT(11)
  127. #define SDXC_HARD_WARE_LOCKED BIT(12)
  128. #define SDXC_START_BIT_ERROR BIT(13)
  129. #define SDXC_AUTO_COMMAND_DONE BIT(14)
  130. #define SDXC_END_BIT_ERROR BIT(15)
  131. #define SDXC_SDIO_INTERRUPT BIT(16)
  132. #define SDXC_CARD_INSERT BIT(30)
  133. #define SDXC_CARD_REMOVE BIT(31)
  134. #define SDXC_INTERRUPT_ERROR_BIT \
  135. (SDXC_RESP_ERROR | SDXC_RESP_CRC_ERROR | SDXC_DATA_CRC_ERROR | \
  136. SDXC_RESP_TIMEOUT | SDXC_DATA_TIMEOUT | SDXC_FIFO_RUN_ERROR | \
  137. SDXC_HARD_WARE_LOCKED | SDXC_START_BIT_ERROR | SDXC_END_BIT_ERROR)
  138. #define SDXC_INTERRUPT_DONE_BIT \
  139. (SDXC_AUTO_COMMAND_DONE | SDXC_DATA_OVER | \
  140. SDXC_COMMAND_DONE | SDXC_VOLTAGE_CHANGE_DONE)
  141. /* status */
  142. #define SDXC_RXWL_FLAG BIT(0)
  143. #define SDXC_TXWL_FLAG BIT(1)
  144. #define SDXC_FIFO_EMPTY BIT(2)
  145. #define SDXC_FIFO_FULL BIT(3)
  146. #define SDXC_CARD_PRESENT BIT(8)
  147. #define SDXC_CARD_DATA_BUSY BIT(9)
  148. #define SDXC_DATA_FSM_BUSY BIT(10)
  149. #define SDXC_DMA_REQUEST BIT(31)
  150. #define SDXC_FIFO_SIZE 16
  151. /* Function select */
  152. #define SDXC_CEATA_ON (0xceaa << 16)
  153. #define SDXC_SEND_IRQ_RESPONSE BIT(0)
  154. #define SDXC_SDIO_READ_WAIT BIT(1)
  155. #define SDXC_ABORT_READ_DATA BIT(2)
  156. #define SDXC_SEND_CCSD BIT(8)
  157. #define SDXC_SEND_AUTO_STOPCCSD BIT(9)
  158. #define SDXC_CEATA_DEV_IRQ_ENABLE BIT(10)
  159. /* IDMA controller bus mod bit field */
  160. #define SDXC_IDMAC_SOFT_RESET BIT(0)
  161. #define SDXC_IDMAC_FIX_BURST BIT(1)
  162. #define SDXC_IDMAC_IDMA_ON BIT(7)
  163. #define SDXC_IDMAC_REFETCH_DES BIT(31)
  164. /* IDMA status bit field */
  165. #define SDXC_IDMAC_TRANSMIT_INTERRUPT BIT(0)
  166. #define SDXC_IDMAC_RECEIVE_INTERRUPT BIT(1)
  167. #define SDXC_IDMAC_FATAL_BUS_ERROR BIT(2)
  168. #define SDXC_IDMAC_DESTINATION_INVALID BIT(4)
  169. #define SDXC_IDMAC_CARD_ERROR_SUM BIT(5)
  170. #define SDXC_IDMAC_NORMAL_INTERRUPT_SUM BIT(8)
  171. #define SDXC_IDMAC_ABNORMAL_INTERRUPT_SUM BIT(9)
  172. #define SDXC_IDMAC_HOST_ABORT_INTERRUPT BIT(10)
  173. #define SDXC_IDMAC_IDLE (0 << 13)
  174. #define SDXC_IDMAC_SUSPEND (1 << 13)
  175. #define SDXC_IDMAC_DESC_READ (2 << 13)
  176. #define SDXC_IDMAC_DESC_CHECK (3 << 13)
  177. #define SDXC_IDMAC_READ_REQUEST_WAIT (4 << 13)
  178. #define SDXC_IDMAC_WRITE_REQUEST_WAIT (5 << 13)
  179. #define SDXC_IDMAC_READ (6 << 13)
  180. #define SDXC_IDMAC_WRITE (7 << 13)
  181. #define SDXC_IDMAC_DESC_CLOSE (8 << 13)
  182. /*
  183. * If the idma-des-size-bits of property is ie 13, bufsize bits are:
  184. * Bits 0-12: buf1 size
  185. * Bits 13-25: buf2 size
  186. * Bits 26-31: not used
  187. * Since we only ever set buf1 size, we can simply store it directly.
  188. */
  189. #define SDXC_IDMAC_DES0_DIC BIT(1) /* disable interrupt on completion */
  190. #define SDXC_IDMAC_DES0_LD BIT(2) /* last descriptor */
  191. #define SDXC_IDMAC_DES0_FD BIT(3) /* first descriptor */
  192. #define SDXC_IDMAC_DES0_CH BIT(4) /* chain mode */
  193. #define SDXC_IDMAC_DES0_ER BIT(5) /* end of ring */
  194. #define SDXC_IDMAC_DES0_CES BIT(30) /* card error summary */
  195. #define SDXC_IDMAC_DES0_OWN BIT(31) /* 1-idma owns it, 0-host owns it */
  196. #define SDXC_CLK_400K 0
  197. #define SDXC_CLK_25M 1
  198. #define SDXC_CLK_50M 2
  199. #define SDXC_CLK_50M_DDR 3
  200. struct sunxi_mmc_clk_delay {
  201. u32 output;
  202. u32 sample;
  203. };
  204. struct sunxi_idma_des {
  205. u32 config;
  206. u32 buf_size;
  207. u32 buf_addr_ptr1;
  208. u32 buf_addr_ptr2;
  209. };
  210. struct sunxi_mmc_host {
  211. struct mmc_host *mmc;
  212. struct reset_control *reset;
  213. /* IO mapping base */
  214. void __iomem *reg_base;
  215. /* clock management */
  216. struct clk *clk_ahb;
  217. struct clk *clk_mmc;
  218. struct clk *clk_sample;
  219. struct clk *clk_output;
  220. const struct sunxi_mmc_clk_delay *clk_delays;
  221. /* irq */
  222. spinlock_t lock;
  223. int irq;
  224. u32 int_sum;
  225. u32 sdio_imask;
  226. /* dma */
  227. u32 idma_des_size_bits;
  228. dma_addr_t sg_dma;
  229. void *sg_cpu;
  230. bool wait_dma;
  231. struct mmc_request *mrq;
  232. struct mmc_request *manual_stop_mrq;
  233. int ferror;
  234. };
  235. static int sunxi_mmc_reset_host(struct sunxi_mmc_host *host)
  236. {
  237. unsigned long expire = jiffies + msecs_to_jiffies(250);
  238. u32 rval;
  239. mmc_writel(host, REG_GCTRL, SDXC_HARDWARE_RESET);
  240. do {
  241. rval = mmc_readl(host, REG_GCTRL);
  242. } while (time_before(jiffies, expire) && (rval & SDXC_HARDWARE_RESET));
  243. if (rval & SDXC_HARDWARE_RESET) {
  244. dev_err(mmc_dev(host->mmc), "fatal err reset timeout\n");
  245. return -EIO;
  246. }
  247. return 0;
  248. }
  249. static int sunxi_mmc_init_host(struct mmc_host *mmc)
  250. {
  251. u32 rval;
  252. struct sunxi_mmc_host *host = mmc_priv(mmc);
  253. if (sunxi_mmc_reset_host(host))
  254. return -EIO;
  255. mmc_writel(host, REG_FTRGL, 0x20070008);
  256. mmc_writel(host, REG_TMOUT, 0xffffffff);
  257. mmc_writel(host, REG_IMASK, host->sdio_imask);
  258. mmc_writel(host, REG_RINTR, 0xffffffff);
  259. mmc_writel(host, REG_DBGC, 0xdeb);
  260. mmc_writel(host, REG_FUNS, SDXC_CEATA_ON);
  261. mmc_writel(host, REG_DLBA, host->sg_dma);
  262. rval = mmc_readl(host, REG_GCTRL);
  263. rval |= SDXC_INTERRUPT_ENABLE_BIT;
  264. rval &= ~SDXC_ACCESS_DONE_DIRECT;
  265. mmc_writel(host, REG_GCTRL, rval);
  266. return 0;
  267. }
  268. static void sunxi_mmc_init_idma_des(struct sunxi_mmc_host *host,
  269. struct mmc_data *data)
  270. {
  271. struct sunxi_idma_des *pdes = (struct sunxi_idma_des *)host->sg_cpu;
  272. dma_addr_t next_desc = host->sg_dma;
  273. int i, max_len = (1 << host->idma_des_size_bits);
  274. for (i = 0; i < data->sg_len; i++) {
  275. pdes[i].config = SDXC_IDMAC_DES0_CH | SDXC_IDMAC_DES0_OWN |
  276. SDXC_IDMAC_DES0_DIC;
  277. if (data->sg[i].length == max_len)
  278. pdes[i].buf_size = 0; /* 0 == max_len */
  279. else
  280. pdes[i].buf_size = data->sg[i].length;
  281. next_desc += sizeof(struct sunxi_idma_des);
  282. pdes[i].buf_addr_ptr1 = sg_dma_address(&data->sg[i]);
  283. pdes[i].buf_addr_ptr2 = (u32)next_desc;
  284. }
  285. pdes[0].config |= SDXC_IDMAC_DES0_FD;
  286. pdes[i - 1].config |= SDXC_IDMAC_DES0_LD | SDXC_IDMAC_DES0_ER;
  287. pdes[i - 1].config &= ~SDXC_IDMAC_DES0_DIC;
  288. pdes[i - 1].buf_addr_ptr2 = 0;
  289. /*
  290. * Avoid the io-store starting the idmac hitting io-mem before the
  291. * descriptors hit the main-mem.
  292. */
  293. wmb();
  294. }
  295. static enum dma_data_direction sunxi_mmc_get_dma_dir(struct mmc_data *data)
  296. {
  297. if (data->flags & MMC_DATA_WRITE)
  298. return DMA_TO_DEVICE;
  299. else
  300. return DMA_FROM_DEVICE;
  301. }
  302. static int sunxi_mmc_map_dma(struct sunxi_mmc_host *host,
  303. struct mmc_data *data)
  304. {
  305. u32 i, dma_len;
  306. struct scatterlist *sg;
  307. dma_len = dma_map_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
  308. sunxi_mmc_get_dma_dir(data));
  309. if (dma_len == 0) {
  310. dev_err(mmc_dev(host->mmc), "dma_map_sg failed\n");
  311. return -ENOMEM;
  312. }
  313. for_each_sg(data->sg, sg, data->sg_len, i) {
  314. if (sg->offset & 3 || sg->length & 3) {
  315. dev_err(mmc_dev(host->mmc),
  316. "unaligned scatterlist: os %x length %d\n",
  317. sg->offset, sg->length);
  318. return -EINVAL;
  319. }
  320. }
  321. return 0;
  322. }
  323. static void sunxi_mmc_start_dma(struct sunxi_mmc_host *host,
  324. struct mmc_data *data)
  325. {
  326. u32 rval;
  327. sunxi_mmc_init_idma_des(host, data);
  328. rval = mmc_readl(host, REG_GCTRL);
  329. rval |= SDXC_DMA_ENABLE_BIT;
  330. mmc_writel(host, REG_GCTRL, rval);
  331. rval |= SDXC_DMA_RESET;
  332. mmc_writel(host, REG_GCTRL, rval);
  333. mmc_writel(host, REG_DMAC, SDXC_IDMAC_SOFT_RESET);
  334. if (!(data->flags & MMC_DATA_WRITE))
  335. mmc_writel(host, REG_IDIE, SDXC_IDMAC_RECEIVE_INTERRUPT);
  336. mmc_writel(host, REG_DMAC,
  337. SDXC_IDMAC_FIX_BURST | SDXC_IDMAC_IDMA_ON);
  338. }
  339. static void sunxi_mmc_send_manual_stop(struct sunxi_mmc_host *host,
  340. struct mmc_request *req)
  341. {
  342. u32 arg, cmd_val, ri;
  343. unsigned long expire = jiffies + msecs_to_jiffies(1000);
  344. cmd_val = SDXC_START | SDXC_RESP_EXPIRE |
  345. SDXC_STOP_ABORT_CMD | SDXC_CHECK_RESPONSE_CRC;
  346. if (req->cmd->opcode == SD_IO_RW_EXTENDED) {
  347. cmd_val |= SD_IO_RW_DIRECT;
  348. arg = (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) |
  349. ((req->cmd->arg >> 28) & 0x7);
  350. } else {
  351. cmd_val |= MMC_STOP_TRANSMISSION;
  352. arg = 0;
  353. }
  354. mmc_writel(host, REG_CARG, arg);
  355. mmc_writel(host, REG_CMDR, cmd_val);
  356. do {
  357. ri = mmc_readl(host, REG_RINTR);
  358. } while (!(ri & (SDXC_COMMAND_DONE | SDXC_INTERRUPT_ERROR_BIT)) &&
  359. time_before(jiffies, expire));
  360. if (!(ri & SDXC_COMMAND_DONE) || (ri & SDXC_INTERRUPT_ERROR_BIT)) {
  361. dev_err(mmc_dev(host->mmc), "send stop command failed\n");
  362. if (req->stop)
  363. req->stop->resp[0] = -ETIMEDOUT;
  364. } else {
  365. if (req->stop)
  366. req->stop->resp[0] = mmc_readl(host, REG_RESP0);
  367. }
  368. mmc_writel(host, REG_RINTR, 0xffff);
  369. }
  370. static void sunxi_mmc_dump_errinfo(struct sunxi_mmc_host *host)
  371. {
  372. struct mmc_command *cmd = host->mrq->cmd;
  373. struct mmc_data *data = host->mrq->data;
  374. /* For some cmds timeout is normal with sd/mmc cards */
  375. if ((host->int_sum & SDXC_INTERRUPT_ERROR_BIT) ==
  376. SDXC_RESP_TIMEOUT && (cmd->opcode == SD_IO_SEND_OP_COND ||
  377. cmd->opcode == SD_IO_RW_DIRECT))
  378. return;
  379. dev_err(mmc_dev(host->mmc),
  380. "smc %d err, cmd %d,%s%s%s%s%s%s%s%s%s%s !!\n",
  381. host->mmc->index, cmd->opcode,
  382. data ? (data->flags & MMC_DATA_WRITE ? " WR" : " RD") : "",
  383. host->int_sum & SDXC_RESP_ERROR ? " RE" : "",
  384. host->int_sum & SDXC_RESP_CRC_ERROR ? " RCE" : "",
  385. host->int_sum & SDXC_DATA_CRC_ERROR ? " DCE" : "",
  386. host->int_sum & SDXC_RESP_TIMEOUT ? " RTO" : "",
  387. host->int_sum & SDXC_DATA_TIMEOUT ? " DTO" : "",
  388. host->int_sum & SDXC_FIFO_RUN_ERROR ? " FE" : "",
  389. host->int_sum & SDXC_HARD_WARE_LOCKED ? " HL" : "",
  390. host->int_sum & SDXC_START_BIT_ERROR ? " SBE" : "",
  391. host->int_sum & SDXC_END_BIT_ERROR ? " EBE" : ""
  392. );
  393. }
  394. /* Called in interrupt context! */
  395. static irqreturn_t sunxi_mmc_finalize_request(struct sunxi_mmc_host *host)
  396. {
  397. struct mmc_request *mrq = host->mrq;
  398. struct mmc_data *data = mrq->data;
  399. u32 rval;
  400. mmc_writel(host, REG_IMASK, host->sdio_imask);
  401. mmc_writel(host, REG_IDIE, 0);
  402. if (host->int_sum & SDXC_INTERRUPT_ERROR_BIT) {
  403. sunxi_mmc_dump_errinfo(host);
  404. mrq->cmd->error = -ETIMEDOUT;
  405. if (data) {
  406. data->error = -ETIMEDOUT;
  407. host->manual_stop_mrq = mrq;
  408. }
  409. if (mrq->stop)
  410. mrq->stop->error = -ETIMEDOUT;
  411. } else {
  412. if (mrq->cmd->flags & MMC_RSP_136) {
  413. mrq->cmd->resp[0] = mmc_readl(host, REG_RESP3);
  414. mrq->cmd->resp[1] = mmc_readl(host, REG_RESP2);
  415. mrq->cmd->resp[2] = mmc_readl(host, REG_RESP1);
  416. mrq->cmd->resp[3] = mmc_readl(host, REG_RESP0);
  417. } else {
  418. mrq->cmd->resp[0] = mmc_readl(host, REG_RESP0);
  419. }
  420. if (data)
  421. data->bytes_xfered = data->blocks * data->blksz;
  422. }
  423. if (data) {
  424. mmc_writel(host, REG_IDST, 0x337);
  425. mmc_writel(host, REG_DMAC, 0);
  426. rval = mmc_readl(host, REG_GCTRL);
  427. rval |= SDXC_DMA_RESET;
  428. mmc_writel(host, REG_GCTRL, rval);
  429. rval &= ~SDXC_DMA_ENABLE_BIT;
  430. mmc_writel(host, REG_GCTRL, rval);
  431. rval |= SDXC_FIFO_RESET;
  432. mmc_writel(host, REG_GCTRL, rval);
  433. dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
  434. sunxi_mmc_get_dma_dir(data));
  435. }
  436. mmc_writel(host, REG_RINTR, 0xffff);
  437. host->mrq = NULL;
  438. host->int_sum = 0;
  439. host->wait_dma = false;
  440. return host->manual_stop_mrq ? IRQ_WAKE_THREAD : IRQ_HANDLED;
  441. }
  442. static irqreturn_t sunxi_mmc_irq(int irq, void *dev_id)
  443. {
  444. struct sunxi_mmc_host *host = dev_id;
  445. struct mmc_request *mrq;
  446. u32 msk_int, idma_int;
  447. bool finalize = false;
  448. bool sdio_int = false;
  449. irqreturn_t ret = IRQ_HANDLED;
  450. spin_lock(&host->lock);
  451. idma_int = mmc_readl(host, REG_IDST);
  452. msk_int = mmc_readl(host, REG_MISTA);
  453. dev_dbg(mmc_dev(host->mmc), "irq: rq %p mi %08x idi %08x\n",
  454. host->mrq, msk_int, idma_int);
  455. mrq = host->mrq;
  456. if (mrq) {
  457. if (idma_int & SDXC_IDMAC_RECEIVE_INTERRUPT)
  458. host->wait_dma = false;
  459. host->int_sum |= msk_int;
  460. /* Wait for COMMAND_DONE on RESPONSE_TIMEOUT before finalize */
  461. if ((host->int_sum & SDXC_RESP_TIMEOUT) &&
  462. !(host->int_sum & SDXC_COMMAND_DONE))
  463. mmc_writel(host, REG_IMASK,
  464. host->sdio_imask | SDXC_COMMAND_DONE);
  465. /* Don't wait for dma on error */
  466. else if (host->int_sum & SDXC_INTERRUPT_ERROR_BIT)
  467. finalize = true;
  468. else if ((host->int_sum & SDXC_INTERRUPT_DONE_BIT) &&
  469. !host->wait_dma)
  470. finalize = true;
  471. }
  472. if (msk_int & SDXC_SDIO_INTERRUPT)
  473. sdio_int = true;
  474. mmc_writel(host, REG_RINTR, msk_int);
  475. mmc_writel(host, REG_IDST, idma_int);
  476. if (finalize)
  477. ret = sunxi_mmc_finalize_request(host);
  478. spin_unlock(&host->lock);
  479. if (finalize && ret == IRQ_HANDLED)
  480. mmc_request_done(host->mmc, mrq);
  481. if (sdio_int)
  482. mmc_signal_sdio_irq(host->mmc);
  483. return ret;
  484. }
  485. static irqreturn_t sunxi_mmc_handle_manual_stop(int irq, void *dev_id)
  486. {
  487. struct sunxi_mmc_host *host = dev_id;
  488. struct mmc_request *mrq;
  489. unsigned long iflags;
  490. spin_lock_irqsave(&host->lock, iflags);
  491. mrq = host->manual_stop_mrq;
  492. spin_unlock_irqrestore(&host->lock, iflags);
  493. if (!mrq) {
  494. dev_err(mmc_dev(host->mmc), "no request for manual stop\n");
  495. return IRQ_HANDLED;
  496. }
  497. dev_err(mmc_dev(host->mmc), "data error, sending stop command\n");
  498. /*
  499. * We will never have more than one outstanding request,
  500. * and we do not complete the request until after
  501. * we've cleared host->manual_stop_mrq so we do not need to
  502. * spin lock this function.
  503. * Additionally we have wait states within this function
  504. * so having it in a lock is a very bad idea.
  505. */
  506. sunxi_mmc_send_manual_stop(host, mrq);
  507. spin_lock_irqsave(&host->lock, iflags);
  508. host->manual_stop_mrq = NULL;
  509. spin_unlock_irqrestore(&host->lock, iflags);
  510. mmc_request_done(host->mmc, mrq);
  511. return IRQ_HANDLED;
  512. }
  513. static int sunxi_mmc_oclk_onoff(struct sunxi_mmc_host *host, u32 oclk_en)
  514. {
  515. unsigned long expire = jiffies + msecs_to_jiffies(750);
  516. u32 rval;
  517. rval = mmc_readl(host, REG_CLKCR);
  518. rval &= ~(SDXC_CARD_CLOCK_ON | SDXC_LOW_POWER_ON);
  519. if (oclk_en)
  520. rval |= SDXC_CARD_CLOCK_ON;
  521. mmc_writel(host, REG_CLKCR, rval);
  522. rval = SDXC_START | SDXC_UPCLK_ONLY | SDXC_WAIT_PRE_OVER;
  523. mmc_writel(host, REG_CMDR, rval);
  524. do {
  525. rval = mmc_readl(host, REG_CMDR);
  526. } while (time_before(jiffies, expire) && (rval & SDXC_START));
  527. /* clear irq status bits set by the command */
  528. mmc_writel(host, REG_RINTR,
  529. mmc_readl(host, REG_RINTR) & ~SDXC_SDIO_INTERRUPT);
  530. if (rval & SDXC_START) {
  531. dev_err(mmc_dev(host->mmc), "fatal err update clk timeout\n");
  532. return -EIO;
  533. }
  534. return 0;
  535. }
  536. static int sunxi_mmc_clk_set_rate(struct sunxi_mmc_host *host,
  537. struct mmc_ios *ios)
  538. {
  539. u32 rate, oclk_dly, rval, sclk_dly;
  540. int ret;
  541. rate = clk_round_rate(host->clk_mmc, ios->clock);
  542. dev_dbg(mmc_dev(host->mmc), "setting clk to %d, rounded %d\n",
  543. ios->clock, rate);
  544. /* setting clock rate */
  545. ret = clk_set_rate(host->clk_mmc, rate);
  546. if (ret) {
  547. dev_err(mmc_dev(host->mmc), "error setting clk to %d: %d\n",
  548. rate, ret);
  549. return ret;
  550. }
  551. ret = sunxi_mmc_oclk_onoff(host, 0);
  552. if (ret)
  553. return ret;
  554. /* clear internal divider */
  555. rval = mmc_readl(host, REG_CLKCR);
  556. rval &= ~0xff;
  557. mmc_writel(host, REG_CLKCR, rval);
  558. /* determine delays */
  559. if (rate <= 400000) {
  560. oclk_dly = host->clk_delays[SDXC_CLK_400K].output;
  561. sclk_dly = host->clk_delays[SDXC_CLK_400K].sample;
  562. } else if (rate <= 25000000) {
  563. oclk_dly = host->clk_delays[SDXC_CLK_25M].output;
  564. sclk_dly = host->clk_delays[SDXC_CLK_25M].sample;
  565. } else if (rate <= 50000000) {
  566. if (ios->timing == MMC_TIMING_UHS_DDR50) {
  567. oclk_dly = host->clk_delays[SDXC_CLK_50M_DDR].output;
  568. sclk_dly = host->clk_delays[SDXC_CLK_50M_DDR].sample;
  569. } else {
  570. oclk_dly = host->clk_delays[SDXC_CLK_50M].output;
  571. sclk_dly = host->clk_delays[SDXC_CLK_50M].sample;
  572. }
  573. } else {
  574. return -EINVAL;
  575. }
  576. clk_set_phase(host->clk_sample, sclk_dly);
  577. clk_set_phase(host->clk_output, oclk_dly);
  578. return sunxi_mmc_oclk_onoff(host, 1);
  579. }
  580. static void sunxi_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
  581. {
  582. struct sunxi_mmc_host *host = mmc_priv(mmc);
  583. u32 rval;
  584. /* Set the power state */
  585. switch (ios->power_mode) {
  586. case MMC_POWER_ON:
  587. break;
  588. case MMC_POWER_UP:
  589. mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
  590. host->ferror = sunxi_mmc_init_host(mmc);
  591. if (host->ferror)
  592. return;
  593. dev_dbg(mmc_dev(mmc), "power on!\n");
  594. break;
  595. case MMC_POWER_OFF:
  596. dev_dbg(mmc_dev(mmc), "power off!\n");
  597. sunxi_mmc_reset_host(host);
  598. mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
  599. break;
  600. }
  601. /* set bus width */
  602. switch (ios->bus_width) {
  603. case MMC_BUS_WIDTH_1:
  604. mmc_writel(host, REG_WIDTH, SDXC_WIDTH1);
  605. break;
  606. case MMC_BUS_WIDTH_4:
  607. mmc_writel(host, REG_WIDTH, SDXC_WIDTH4);
  608. break;
  609. case MMC_BUS_WIDTH_8:
  610. mmc_writel(host, REG_WIDTH, SDXC_WIDTH8);
  611. break;
  612. }
  613. /* set ddr mode */
  614. rval = mmc_readl(host, REG_GCTRL);
  615. if (ios->timing == MMC_TIMING_UHS_DDR50)
  616. rval |= SDXC_DDR_MODE;
  617. else
  618. rval &= ~SDXC_DDR_MODE;
  619. mmc_writel(host, REG_GCTRL, rval);
  620. /* set up clock */
  621. if (ios->clock && ios->power_mode) {
  622. host->ferror = sunxi_mmc_clk_set_rate(host, ios);
  623. /* Android code had a usleep_range(50000, 55000); here */
  624. }
  625. }
  626. static void sunxi_mmc_enable_sdio_irq(struct mmc_host *mmc, int enable)
  627. {
  628. struct sunxi_mmc_host *host = mmc_priv(mmc);
  629. unsigned long flags;
  630. u32 imask;
  631. spin_lock_irqsave(&host->lock, flags);
  632. imask = mmc_readl(host, REG_IMASK);
  633. if (enable) {
  634. host->sdio_imask = SDXC_SDIO_INTERRUPT;
  635. imask |= SDXC_SDIO_INTERRUPT;
  636. } else {
  637. host->sdio_imask = 0;
  638. imask &= ~SDXC_SDIO_INTERRUPT;
  639. }
  640. mmc_writel(host, REG_IMASK, imask);
  641. spin_unlock_irqrestore(&host->lock, flags);
  642. }
  643. static void sunxi_mmc_hw_reset(struct mmc_host *mmc)
  644. {
  645. struct sunxi_mmc_host *host = mmc_priv(mmc);
  646. mmc_writel(host, REG_HWRST, 0);
  647. udelay(10);
  648. mmc_writel(host, REG_HWRST, 1);
  649. udelay(300);
  650. }
  651. static void sunxi_mmc_request(struct mmc_host *mmc, struct mmc_request *mrq)
  652. {
  653. struct sunxi_mmc_host *host = mmc_priv(mmc);
  654. struct mmc_command *cmd = mrq->cmd;
  655. struct mmc_data *data = mrq->data;
  656. unsigned long iflags;
  657. u32 imask = SDXC_INTERRUPT_ERROR_BIT;
  658. u32 cmd_val = SDXC_START | (cmd->opcode & 0x3f);
  659. bool wait_dma = host->wait_dma;
  660. int ret;
  661. /* Check for set_ios errors (should never happen) */
  662. if (host->ferror) {
  663. mrq->cmd->error = host->ferror;
  664. mmc_request_done(mmc, mrq);
  665. return;
  666. }
  667. if (data) {
  668. ret = sunxi_mmc_map_dma(host, data);
  669. if (ret < 0) {
  670. dev_err(mmc_dev(mmc), "map DMA failed\n");
  671. cmd->error = ret;
  672. data->error = ret;
  673. mmc_request_done(mmc, mrq);
  674. return;
  675. }
  676. }
  677. if (cmd->opcode == MMC_GO_IDLE_STATE) {
  678. cmd_val |= SDXC_SEND_INIT_SEQUENCE;
  679. imask |= SDXC_COMMAND_DONE;
  680. }
  681. if (cmd->flags & MMC_RSP_PRESENT) {
  682. cmd_val |= SDXC_RESP_EXPIRE;
  683. if (cmd->flags & MMC_RSP_136)
  684. cmd_val |= SDXC_LONG_RESPONSE;
  685. if (cmd->flags & MMC_RSP_CRC)
  686. cmd_val |= SDXC_CHECK_RESPONSE_CRC;
  687. if ((cmd->flags & MMC_CMD_MASK) == MMC_CMD_ADTC) {
  688. cmd_val |= SDXC_DATA_EXPIRE | SDXC_WAIT_PRE_OVER;
  689. if (cmd->data->flags & MMC_DATA_STREAM) {
  690. imask |= SDXC_AUTO_COMMAND_DONE;
  691. cmd_val |= SDXC_SEQUENCE_MODE |
  692. SDXC_SEND_AUTO_STOP;
  693. }
  694. if (cmd->data->stop) {
  695. imask |= SDXC_AUTO_COMMAND_DONE;
  696. cmd_val |= SDXC_SEND_AUTO_STOP;
  697. } else {
  698. imask |= SDXC_DATA_OVER;
  699. }
  700. if (cmd->data->flags & MMC_DATA_WRITE)
  701. cmd_val |= SDXC_WRITE;
  702. else
  703. wait_dma = true;
  704. } else {
  705. imask |= SDXC_COMMAND_DONE;
  706. }
  707. } else {
  708. imask |= SDXC_COMMAND_DONE;
  709. }
  710. dev_dbg(mmc_dev(mmc), "cmd %d(%08x) arg %x ie 0x%08x len %d\n",
  711. cmd_val & 0x3f, cmd_val, cmd->arg, imask,
  712. mrq->data ? mrq->data->blksz * mrq->data->blocks : 0);
  713. spin_lock_irqsave(&host->lock, iflags);
  714. if (host->mrq || host->manual_stop_mrq) {
  715. spin_unlock_irqrestore(&host->lock, iflags);
  716. if (data)
  717. dma_unmap_sg(mmc_dev(mmc), data->sg, data->sg_len,
  718. sunxi_mmc_get_dma_dir(data));
  719. dev_err(mmc_dev(mmc), "request already pending\n");
  720. mrq->cmd->error = -EBUSY;
  721. mmc_request_done(mmc, mrq);
  722. return;
  723. }
  724. if (data) {
  725. mmc_writel(host, REG_BLKSZ, data->blksz);
  726. mmc_writel(host, REG_BCNTR, data->blksz * data->blocks);
  727. sunxi_mmc_start_dma(host, data);
  728. }
  729. host->mrq = mrq;
  730. host->wait_dma = wait_dma;
  731. mmc_writel(host, REG_IMASK, host->sdio_imask | imask);
  732. mmc_writel(host, REG_CARG, cmd->arg);
  733. mmc_writel(host, REG_CMDR, cmd_val);
  734. spin_unlock_irqrestore(&host->lock, iflags);
  735. }
  736. static const struct of_device_id sunxi_mmc_of_match[] = {
  737. { .compatible = "allwinner,sun4i-a10-mmc", },
  738. { .compatible = "allwinner,sun5i-a13-mmc", },
  739. { .compatible = "allwinner,sun9i-a80-mmc", },
  740. { /* sentinel */ }
  741. };
  742. MODULE_DEVICE_TABLE(of, sunxi_mmc_of_match);
  743. static struct mmc_host_ops sunxi_mmc_ops = {
  744. .request = sunxi_mmc_request,
  745. .set_ios = sunxi_mmc_set_ios,
  746. .get_ro = mmc_gpio_get_ro,
  747. .get_cd = mmc_gpio_get_cd,
  748. .enable_sdio_irq = sunxi_mmc_enable_sdio_irq,
  749. .hw_reset = sunxi_mmc_hw_reset,
  750. };
  751. static const struct sunxi_mmc_clk_delay sunxi_mmc_clk_delays[] = {
  752. [SDXC_CLK_400K] = { .output = 180, .sample = 180 },
  753. [SDXC_CLK_25M] = { .output = 180, .sample = 75 },
  754. [SDXC_CLK_50M] = { .output = 90, .sample = 120 },
  755. [SDXC_CLK_50M_DDR] = { .output = 60, .sample = 120 },
  756. };
  757. static const struct sunxi_mmc_clk_delay sun9i_mmc_clk_delays[] = {
  758. [SDXC_CLK_400K] = { .output = 180, .sample = 180 },
  759. [SDXC_CLK_25M] = { .output = 180, .sample = 75 },
  760. [SDXC_CLK_50M] = { .output = 150, .sample = 120 },
  761. [SDXC_CLK_50M_DDR] = { .output = 90, .sample = 120 },
  762. };
  763. static int sunxi_mmc_resource_request(struct sunxi_mmc_host *host,
  764. struct platform_device *pdev)
  765. {
  766. struct device_node *np = pdev->dev.of_node;
  767. int ret;
  768. if (of_device_is_compatible(np, "allwinner,sun4i-a10-mmc"))
  769. host->idma_des_size_bits = 13;
  770. else
  771. host->idma_des_size_bits = 16;
  772. if (of_device_is_compatible(np, "allwinner,sun9i-a80-mmc"))
  773. host->clk_delays = sun9i_mmc_clk_delays;
  774. else
  775. host->clk_delays = sunxi_mmc_clk_delays;
  776. ret = mmc_regulator_get_supply(host->mmc);
  777. if (ret) {
  778. if (ret != -EPROBE_DEFER)
  779. dev_err(&pdev->dev, "Could not get vmmc supply\n");
  780. return ret;
  781. }
  782. host->reg_base = devm_ioremap_resource(&pdev->dev,
  783. platform_get_resource(pdev, IORESOURCE_MEM, 0));
  784. if (IS_ERR(host->reg_base))
  785. return PTR_ERR(host->reg_base);
  786. host->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
  787. if (IS_ERR(host->clk_ahb)) {
  788. dev_err(&pdev->dev, "Could not get ahb clock\n");
  789. return PTR_ERR(host->clk_ahb);
  790. }
  791. host->clk_mmc = devm_clk_get(&pdev->dev, "mmc");
  792. if (IS_ERR(host->clk_mmc)) {
  793. dev_err(&pdev->dev, "Could not get mmc clock\n");
  794. return PTR_ERR(host->clk_mmc);
  795. }
  796. host->clk_output = devm_clk_get(&pdev->dev, "output");
  797. if (IS_ERR(host->clk_output)) {
  798. dev_err(&pdev->dev, "Could not get output clock\n");
  799. return PTR_ERR(host->clk_output);
  800. }
  801. host->clk_sample = devm_clk_get(&pdev->dev, "sample");
  802. if (IS_ERR(host->clk_sample)) {
  803. dev_err(&pdev->dev, "Could not get sample clock\n");
  804. return PTR_ERR(host->clk_sample);
  805. }
  806. host->reset = devm_reset_control_get_optional(&pdev->dev, "ahb");
  807. if (PTR_ERR(host->reset) == -EPROBE_DEFER)
  808. return PTR_ERR(host->reset);
  809. ret = clk_prepare_enable(host->clk_ahb);
  810. if (ret) {
  811. dev_err(&pdev->dev, "Enable ahb clk err %d\n", ret);
  812. return ret;
  813. }
  814. ret = clk_prepare_enable(host->clk_mmc);
  815. if (ret) {
  816. dev_err(&pdev->dev, "Enable mmc clk err %d\n", ret);
  817. goto error_disable_clk_ahb;
  818. }
  819. ret = clk_prepare_enable(host->clk_output);
  820. if (ret) {
  821. dev_err(&pdev->dev, "Enable output clk err %d\n", ret);
  822. goto error_disable_clk_mmc;
  823. }
  824. ret = clk_prepare_enable(host->clk_sample);
  825. if (ret) {
  826. dev_err(&pdev->dev, "Enable sample clk err %d\n", ret);
  827. goto error_disable_clk_output;
  828. }
  829. if (!IS_ERR(host->reset)) {
  830. ret = reset_control_deassert(host->reset);
  831. if (ret) {
  832. dev_err(&pdev->dev, "reset err %d\n", ret);
  833. goto error_disable_clk_sample;
  834. }
  835. }
  836. /*
  837. * Sometimes the controller asserts the irq on boot for some reason,
  838. * make sure the controller is in a sane state before enabling irqs.
  839. */
  840. ret = sunxi_mmc_reset_host(host);
  841. if (ret)
  842. goto error_assert_reset;
  843. host->irq = platform_get_irq(pdev, 0);
  844. return devm_request_threaded_irq(&pdev->dev, host->irq, sunxi_mmc_irq,
  845. sunxi_mmc_handle_manual_stop, 0, "sunxi-mmc", host);
  846. error_assert_reset:
  847. if (!IS_ERR(host->reset))
  848. reset_control_assert(host->reset);
  849. error_disable_clk_sample:
  850. clk_disable_unprepare(host->clk_sample);
  851. error_disable_clk_output:
  852. clk_disable_unprepare(host->clk_output);
  853. error_disable_clk_mmc:
  854. clk_disable_unprepare(host->clk_mmc);
  855. error_disable_clk_ahb:
  856. clk_disable_unprepare(host->clk_ahb);
  857. return ret;
  858. }
  859. static int sunxi_mmc_probe(struct platform_device *pdev)
  860. {
  861. struct sunxi_mmc_host *host;
  862. struct mmc_host *mmc;
  863. int ret;
  864. mmc = mmc_alloc_host(sizeof(struct sunxi_mmc_host), &pdev->dev);
  865. if (!mmc) {
  866. dev_err(&pdev->dev, "mmc alloc host failed\n");
  867. return -ENOMEM;
  868. }
  869. host = mmc_priv(mmc);
  870. host->mmc = mmc;
  871. spin_lock_init(&host->lock);
  872. ret = sunxi_mmc_resource_request(host, pdev);
  873. if (ret)
  874. goto error_free_host;
  875. host->sg_cpu = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
  876. &host->sg_dma, GFP_KERNEL);
  877. if (!host->sg_cpu) {
  878. dev_err(&pdev->dev, "Failed to allocate DMA descriptor mem\n");
  879. ret = -ENOMEM;
  880. goto error_free_host;
  881. }
  882. mmc->ops = &sunxi_mmc_ops;
  883. mmc->max_blk_count = 8192;
  884. mmc->max_blk_size = 4096;
  885. mmc->max_segs = PAGE_SIZE / sizeof(struct sunxi_idma_des);
  886. mmc->max_seg_size = (1 << host->idma_des_size_bits);
  887. mmc->max_req_size = mmc->max_seg_size * mmc->max_segs;
  888. /* 400kHz ~ 50MHz */
  889. mmc->f_min = 400000;
  890. mmc->f_max = 50000000;
  891. mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED |
  892. MMC_CAP_ERASE | MMC_CAP_SDIO_IRQ;
  893. ret = mmc_of_parse(mmc);
  894. if (ret)
  895. goto error_free_dma;
  896. ret = mmc_add_host(mmc);
  897. if (ret)
  898. goto error_free_dma;
  899. dev_info(&pdev->dev, "base:0x%p irq:%u\n", host->reg_base, host->irq);
  900. platform_set_drvdata(pdev, mmc);
  901. return 0;
  902. error_free_dma:
  903. dma_free_coherent(&pdev->dev, PAGE_SIZE, host->sg_cpu, host->sg_dma);
  904. error_free_host:
  905. mmc_free_host(mmc);
  906. return ret;
  907. }
  908. static int sunxi_mmc_remove(struct platform_device *pdev)
  909. {
  910. struct mmc_host *mmc = platform_get_drvdata(pdev);
  911. struct sunxi_mmc_host *host = mmc_priv(mmc);
  912. mmc_remove_host(mmc);
  913. disable_irq(host->irq);
  914. sunxi_mmc_reset_host(host);
  915. if (!IS_ERR(host->reset))
  916. reset_control_assert(host->reset);
  917. clk_disable_unprepare(host->clk_mmc);
  918. clk_disable_unprepare(host->clk_ahb);
  919. dma_free_coherent(&pdev->dev, PAGE_SIZE, host->sg_cpu, host->sg_dma);
  920. mmc_free_host(mmc);
  921. return 0;
  922. }
  923. static struct platform_driver sunxi_mmc_driver = {
  924. .driver = {
  925. .name = "sunxi-mmc",
  926. .of_match_table = of_match_ptr(sunxi_mmc_of_match),
  927. },
  928. .probe = sunxi_mmc_probe,
  929. .remove = sunxi_mmc_remove,
  930. };
  931. module_platform_driver(sunxi_mmc_driver);
  932. MODULE_DESCRIPTION("Allwinner's SD/MMC Card Controller Driver");
  933. MODULE_LICENSE("GPL v2");
  934. MODULE_AUTHOR("David Lanzend�rfer <david.lanzendoerfer@o2s.ch>");
  935. MODULE_ALIAS("platform:sunxi-mmc");