dm-table.c 39 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686
  1. /*
  2. * Copyright (C) 2001 Sistina Software (UK) Limited.
  3. * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
  4. *
  5. * This file is released under the GPL.
  6. */
  7. #include "dm.h"
  8. #include <linux/module.h>
  9. #include <linux/vmalloc.h>
  10. #include <linux/blkdev.h>
  11. #include <linux/namei.h>
  12. #include <linux/ctype.h>
  13. #include <linux/string.h>
  14. #include <linux/slab.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/mutex.h>
  17. #include <linux/delay.h>
  18. #include <linux/atomic.h>
  19. #include <linux/blk-mq.h>
  20. #include <linux/mount.h>
  21. #define DM_MSG_PREFIX "table"
  22. #define MAX_DEPTH 16
  23. #define NODE_SIZE L1_CACHE_BYTES
  24. #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
  25. #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
  26. struct dm_table {
  27. struct mapped_device *md;
  28. unsigned type;
  29. /* btree table */
  30. unsigned int depth;
  31. unsigned int counts[MAX_DEPTH]; /* in nodes */
  32. sector_t *index[MAX_DEPTH];
  33. unsigned int num_targets;
  34. unsigned int num_allocated;
  35. sector_t *highs;
  36. struct dm_target *targets;
  37. struct target_type *immutable_target_type;
  38. unsigned integrity_supported:1;
  39. unsigned singleton:1;
  40. /*
  41. * Indicates the rw permissions for the new logical
  42. * device. This should be a combination of FMODE_READ
  43. * and FMODE_WRITE.
  44. */
  45. fmode_t mode;
  46. /* a list of devices used by this table */
  47. struct list_head devices;
  48. /* events get handed up using this callback */
  49. void (*event_fn)(void *);
  50. void *event_context;
  51. struct dm_md_mempools *mempools;
  52. struct list_head target_callbacks;
  53. };
  54. /*
  55. * Similar to ceiling(log_size(n))
  56. */
  57. static unsigned int int_log(unsigned int n, unsigned int base)
  58. {
  59. int result = 0;
  60. while (n > 1) {
  61. n = dm_div_up(n, base);
  62. result++;
  63. }
  64. return result;
  65. }
  66. /*
  67. * Calculate the index of the child node of the n'th node k'th key.
  68. */
  69. static inline unsigned int get_child(unsigned int n, unsigned int k)
  70. {
  71. return (n * CHILDREN_PER_NODE) + k;
  72. }
  73. /*
  74. * Return the n'th node of level l from table t.
  75. */
  76. static inline sector_t *get_node(struct dm_table *t,
  77. unsigned int l, unsigned int n)
  78. {
  79. return t->index[l] + (n * KEYS_PER_NODE);
  80. }
  81. /*
  82. * Return the highest key that you could lookup from the n'th
  83. * node on level l of the btree.
  84. */
  85. static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
  86. {
  87. for (; l < t->depth - 1; l++)
  88. n = get_child(n, CHILDREN_PER_NODE - 1);
  89. if (n >= t->counts[l])
  90. return (sector_t) - 1;
  91. return get_node(t, l, n)[KEYS_PER_NODE - 1];
  92. }
  93. /*
  94. * Fills in a level of the btree based on the highs of the level
  95. * below it.
  96. */
  97. static int setup_btree_index(unsigned int l, struct dm_table *t)
  98. {
  99. unsigned int n, k;
  100. sector_t *node;
  101. for (n = 0U; n < t->counts[l]; n++) {
  102. node = get_node(t, l, n);
  103. for (k = 0U; k < KEYS_PER_NODE; k++)
  104. node[k] = high(t, l + 1, get_child(n, k));
  105. }
  106. return 0;
  107. }
  108. void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
  109. {
  110. unsigned long size;
  111. void *addr;
  112. /*
  113. * Check that we're not going to overflow.
  114. */
  115. if (nmemb > (ULONG_MAX / elem_size))
  116. return NULL;
  117. size = nmemb * elem_size;
  118. addr = vzalloc(size);
  119. return addr;
  120. }
  121. EXPORT_SYMBOL(dm_vcalloc);
  122. /*
  123. * highs, and targets are managed as dynamic arrays during a
  124. * table load.
  125. */
  126. static int alloc_targets(struct dm_table *t, unsigned int num)
  127. {
  128. sector_t *n_highs;
  129. struct dm_target *n_targets;
  130. /*
  131. * Allocate both the target array and offset array at once.
  132. * Append an empty entry to catch sectors beyond the end of
  133. * the device.
  134. */
  135. n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
  136. sizeof(sector_t));
  137. if (!n_highs)
  138. return -ENOMEM;
  139. n_targets = (struct dm_target *) (n_highs + num);
  140. memset(n_highs, -1, sizeof(*n_highs) * num);
  141. vfree(t->highs);
  142. t->num_allocated = num;
  143. t->highs = n_highs;
  144. t->targets = n_targets;
  145. return 0;
  146. }
  147. int dm_table_create(struct dm_table **result, fmode_t mode,
  148. unsigned num_targets, struct mapped_device *md)
  149. {
  150. struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
  151. if (!t)
  152. return -ENOMEM;
  153. INIT_LIST_HEAD(&t->devices);
  154. INIT_LIST_HEAD(&t->target_callbacks);
  155. if (!num_targets)
  156. num_targets = KEYS_PER_NODE;
  157. num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
  158. if (!num_targets) {
  159. kfree(t);
  160. return -ENOMEM;
  161. }
  162. if (alloc_targets(t, num_targets)) {
  163. kfree(t);
  164. return -ENOMEM;
  165. }
  166. t->mode = mode;
  167. t->md = md;
  168. *result = t;
  169. return 0;
  170. }
  171. static void free_devices(struct list_head *devices, struct mapped_device *md)
  172. {
  173. struct list_head *tmp, *next;
  174. list_for_each_safe(tmp, next, devices) {
  175. struct dm_dev_internal *dd =
  176. list_entry(tmp, struct dm_dev_internal, list);
  177. DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
  178. dm_device_name(md), dd->dm_dev->name);
  179. dm_put_table_device(md, dd->dm_dev);
  180. kfree(dd);
  181. }
  182. }
  183. void dm_table_destroy(struct dm_table *t)
  184. {
  185. unsigned int i;
  186. if (!t)
  187. return;
  188. /* free the indexes */
  189. if (t->depth >= 2)
  190. vfree(t->index[t->depth - 2]);
  191. /* free the targets */
  192. for (i = 0; i < t->num_targets; i++) {
  193. struct dm_target *tgt = t->targets + i;
  194. if (tgt->type->dtr)
  195. tgt->type->dtr(tgt);
  196. dm_put_target_type(tgt->type);
  197. }
  198. vfree(t->highs);
  199. /* free the device list */
  200. free_devices(&t->devices, t->md);
  201. dm_free_md_mempools(t->mempools);
  202. kfree(t);
  203. }
  204. /*
  205. * See if we've already got a device in the list.
  206. */
  207. static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
  208. {
  209. struct dm_dev_internal *dd;
  210. list_for_each_entry (dd, l, list)
  211. if (dd->dm_dev->bdev->bd_dev == dev)
  212. return dd;
  213. return NULL;
  214. }
  215. /*
  216. * If possible, this checks an area of a destination device is invalid.
  217. */
  218. static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
  219. sector_t start, sector_t len, void *data)
  220. {
  221. struct request_queue *q;
  222. struct queue_limits *limits = data;
  223. struct block_device *bdev = dev->bdev;
  224. sector_t dev_size =
  225. i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
  226. unsigned short logical_block_size_sectors =
  227. limits->logical_block_size >> SECTOR_SHIFT;
  228. char b[BDEVNAME_SIZE];
  229. /*
  230. * Some devices exist without request functions,
  231. * such as loop devices not yet bound to backing files.
  232. * Forbid the use of such devices.
  233. */
  234. q = bdev_get_queue(bdev);
  235. if (!q || !q->make_request_fn) {
  236. DMWARN("%s: %s is not yet initialised: "
  237. "start=%llu, len=%llu, dev_size=%llu",
  238. dm_device_name(ti->table->md), bdevname(bdev, b),
  239. (unsigned long long)start,
  240. (unsigned long long)len,
  241. (unsigned long long)dev_size);
  242. return 1;
  243. }
  244. if (!dev_size)
  245. return 0;
  246. if ((start >= dev_size) || (start + len > dev_size)) {
  247. DMWARN("%s: %s too small for target: "
  248. "start=%llu, len=%llu, dev_size=%llu",
  249. dm_device_name(ti->table->md), bdevname(bdev, b),
  250. (unsigned long long)start,
  251. (unsigned long long)len,
  252. (unsigned long long)dev_size);
  253. return 1;
  254. }
  255. if (logical_block_size_sectors <= 1)
  256. return 0;
  257. if (start & (logical_block_size_sectors - 1)) {
  258. DMWARN("%s: start=%llu not aligned to h/w "
  259. "logical block size %u of %s",
  260. dm_device_name(ti->table->md),
  261. (unsigned long long)start,
  262. limits->logical_block_size, bdevname(bdev, b));
  263. return 1;
  264. }
  265. if (len & (logical_block_size_sectors - 1)) {
  266. DMWARN("%s: len=%llu not aligned to h/w "
  267. "logical block size %u of %s",
  268. dm_device_name(ti->table->md),
  269. (unsigned long long)len,
  270. limits->logical_block_size, bdevname(bdev, b));
  271. return 1;
  272. }
  273. return 0;
  274. }
  275. /*
  276. * This upgrades the mode on an already open dm_dev, being
  277. * careful to leave things as they were if we fail to reopen the
  278. * device and not to touch the existing bdev field in case
  279. * it is accessed concurrently inside dm_table_any_congested().
  280. */
  281. static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
  282. struct mapped_device *md)
  283. {
  284. int r;
  285. struct dm_dev *old_dev, *new_dev;
  286. old_dev = dd->dm_dev;
  287. r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
  288. dd->dm_dev->mode | new_mode, &new_dev);
  289. if (r)
  290. return r;
  291. dd->dm_dev = new_dev;
  292. dm_put_table_device(md, old_dev);
  293. return 0;
  294. }
  295. /*
  296. * Add a device to the list, or just increment the usage count if
  297. * it's already present.
  298. */
  299. int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
  300. struct dm_dev **result)
  301. {
  302. int r;
  303. dev_t uninitialized_var(dev);
  304. struct dm_dev_internal *dd;
  305. struct dm_table *t = ti->table;
  306. struct block_device *bdev;
  307. BUG_ON(!t);
  308. /* convert the path to a device */
  309. bdev = lookup_bdev(path);
  310. if (IS_ERR(bdev)) {
  311. dev = name_to_dev_t(path);
  312. if (!dev)
  313. return -ENODEV;
  314. } else {
  315. dev = bdev->bd_dev;
  316. bdput(bdev);
  317. }
  318. dd = find_device(&t->devices, dev);
  319. if (!dd) {
  320. dd = kmalloc(sizeof(*dd), GFP_KERNEL);
  321. if (!dd)
  322. return -ENOMEM;
  323. if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
  324. kfree(dd);
  325. return r;
  326. }
  327. atomic_set(&dd->count, 0);
  328. list_add(&dd->list, &t->devices);
  329. } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
  330. r = upgrade_mode(dd, mode, t->md);
  331. if (r)
  332. return r;
  333. }
  334. atomic_inc(&dd->count);
  335. *result = dd->dm_dev;
  336. return 0;
  337. }
  338. EXPORT_SYMBOL(dm_get_device);
  339. static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
  340. sector_t start, sector_t len, void *data)
  341. {
  342. struct queue_limits *limits = data;
  343. struct block_device *bdev = dev->bdev;
  344. struct request_queue *q = bdev_get_queue(bdev);
  345. char b[BDEVNAME_SIZE];
  346. if (unlikely(!q)) {
  347. DMWARN("%s: Cannot set limits for nonexistent device %s",
  348. dm_device_name(ti->table->md), bdevname(bdev, b));
  349. return 0;
  350. }
  351. if (bdev_stack_limits(limits, bdev, start) < 0)
  352. DMWARN("%s: adding target device %s caused an alignment inconsistency: "
  353. "physical_block_size=%u, logical_block_size=%u, "
  354. "alignment_offset=%u, start=%llu",
  355. dm_device_name(ti->table->md), bdevname(bdev, b),
  356. q->limits.physical_block_size,
  357. q->limits.logical_block_size,
  358. q->limits.alignment_offset,
  359. (unsigned long long) start << SECTOR_SHIFT);
  360. return 0;
  361. }
  362. /*
  363. * Decrement a device's use count and remove it if necessary.
  364. */
  365. void dm_put_device(struct dm_target *ti, struct dm_dev *d)
  366. {
  367. int found = 0;
  368. struct list_head *devices = &ti->table->devices;
  369. struct dm_dev_internal *dd;
  370. list_for_each_entry(dd, devices, list) {
  371. if (dd->dm_dev == d) {
  372. found = 1;
  373. break;
  374. }
  375. }
  376. if (!found) {
  377. DMWARN("%s: device %s not in table devices list",
  378. dm_device_name(ti->table->md), d->name);
  379. return;
  380. }
  381. if (atomic_dec_and_test(&dd->count)) {
  382. dm_put_table_device(ti->table->md, d);
  383. list_del(&dd->list);
  384. kfree(dd);
  385. }
  386. }
  387. EXPORT_SYMBOL(dm_put_device);
  388. /*
  389. * Checks to see if the target joins onto the end of the table.
  390. */
  391. static int adjoin(struct dm_table *table, struct dm_target *ti)
  392. {
  393. struct dm_target *prev;
  394. if (!table->num_targets)
  395. return !ti->begin;
  396. prev = &table->targets[table->num_targets - 1];
  397. return (ti->begin == (prev->begin + prev->len));
  398. }
  399. /*
  400. * Used to dynamically allocate the arg array.
  401. *
  402. * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
  403. * process messages even if some device is suspended. These messages have a
  404. * small fixed number of arguments.
  405. *
  406. * On the other hand, dm-switch needs to process bulk data using messages and
  407. * excessive use of GFP_NOIO could cause trouble.
  408. */
  409. static char **realloc_argv(unsigned *array_size, char **old_argv)
  410. {
  411. char **argv;
  412. unsigned new_size;
  413. gfp_t gfp;
  414. if (*array_size) {
  415. new_size = *array_size * 2;
  416. gfp = GFP_KERNEL;
  417. } else {
  418. new_size = 8;
  419. gfp = GFP_NOIO;
  420. }
  421. argv = kmalloc(new_size * sizeof(*argv), gfp);
  422. if (argv) {
  423. memcpy(argv, old_argv, *array_size * sizeof(*argv));
  424. *array_size = new_size;
  425. }
  426. kfree(old_argv);
  427. return argv;
  428. }
  429. /*
  430. * Destructively splits up the argument list to pass to ctr.
  431. */
  432. int dm_split_args(int *argc, char ***argvp, char *input)
  433. {
  434. char *start, *end = input, *out, **argv = NULL;
  435. unsigned array_size = 0;
  436. *argc = 0;
  437. if (!input) {
  438. *argvp = NULL;
  439. return 0;
  440. }
  441. argv = realloc_argv(&array_size, argv);
  442. if (!argv)
  443. return -ENOMEM;
  444. while (1) {
  445. /* Skip whitespace */
  446. start = skip_spaces(end);
  447. if (!*start)
  448. break; /* success, we hit the end */
  449. /* 'out' is used to remove any back-quotes */
  450. end = out = start;
  451. while (*end) {
  452. /* Everything apart from '\0' can be quoted */
  453. if (*end == '\\' && *(end + 1)) {
  454. *out++ = *(end + 1);
  455. end += 2;
  456. continue;
  457. }
  458. if (isspace(*end))
  459. break; /* end of token */
  460. *out++ = *end++;
  461. }
  462. /* have we already filled the array ? */
  463. if ((*argc + 1) > array_size) {
  464. argv = realloc_argv(&array_size, argv);
  465. if (!argv)
  466. return -ENOMEM;
  467. }
  468. /* we know this is whitespace */
  469. if (*end)
  470. end++;
  471. /* terminate the string and put it in the array */
  472. *out = '\0';
  473. argv[*argc] = start;
  474. (*argc)++;
  475. }
  476. *argvp = argv;
  477. return 0;
  478. }
  479. /*
  480. * Impose necessary and sufficient conditions on a devices's table such
  481. * that any incoming bio which respects its logical_block_size can be
  482. * processed successfully. If it falls across the boundary between
  483. * two or more targets, the size of each piece it gets split into must
  484. * be compatible with the logical_block_size of the target processing it.
  485. */
  486. static int validate_hardware_logical_block_alignment(struct dm_table *table,
  487. struct queue_limits *limits)
  488. {
  489. /*
  490. * This function uses arithmetic modulo the logical_block_size
  491. * (in units of 512-byte sectors).
  492. */
  493. unsigned short device_logical_block_size_sects =
  494. limits->logical_block_size >> SECTOR_SHIFT;
  495. /*
  496. * Offset of the start of the next table entry, mod logical_block_size.
  497. */
  498. unsigned short next_target_start = 0;
  499. /*
  500. * Given an aligned bio that extends beyond the end of a
  501. * target, how many sectors must the next target handle?
  502. */
  503. unsigned short remaining = 0;
  504. struct dm_target *uninitialized_var(ti);
  505. struct queue_limits ti_limits;
  506. unsigned i = 0;
  507. /*
  508. * Check each entry in the table in turn.
  509. */
  510. while (i < dm_table_get_num_targets(table)) {
  511. ti = dm_table_get_target(table, i++);
  512. blk_set_stacking_limits(&ti_limits);
  513. /* combine all target devices' limits */
  514. if (ti->type->iterate_devices)
  515. ti->type->iterate_devices(ti, dm_set_device_limits,
  516. &ti_limits);
  517. /*
  518. * If the remaining sectors fall entirely within this
  519. * table entry are they compatible with its logical_block_size?
  520. */
  521. if (remaining < ti->len &&
  522. remaining & ((ti_limits.logical_block_size >>
  523. SECTOR_SHIFT) - 1))
  524. break; /* Error */
  525. next_target_start =
  526. (unsigned short) ((next_target_start + ti->len) &
  527. (device_logical_block_size_sects - 1));
  528. remaining = next_target_start ?
  529. device_logical_block_size_sects - next_target_start : 0;
  530. }
  531. if (remaining) {
  532. DMWARN("%s: table line %u (start sect %llu len %llu) "
  533. "not aligned to h/w logical block size %u",
  534. dm_device_name(table->md), i,
  535. (unsigned long long) ti->begin,
  536. (unsigned long long) ti->len,
  537. limits->logical_block_size);
  538. return -EINVAL;
  539. }
  540. return 0;
  541. }
  542. int dm_table_add_target(struct dm_table *t, const char *type,
  543. sector_t start, sector_t len, char *params)
  544. {
  545. int r = -EINVAL, argc;
  546. char **argv;
  547. struct dm_target *tgt;
  548. if (t->singleton) {
  549. DMERR("%s: target type %s must appear alone in table",
  550. dm_device_name(t->md), t->targets->type->name);
  551. return -EINVAL;
  552. }
  553. BUG_ON(t->num_targets >= t->num_allocated);
  554. tgt = t->targets + t->num_targets;
  555. memset(tgt, 0, sizeof(*tgt));
  556. if (!len) {
  557. DMERR("%s: zero-length target", dm_device_name(t->md));
  558. return -EINVAL;
  559. }
  560. tgt->type = dm_get_target_type(type);
  561. if (!tgt->type) {
  562. DMERR("%s: %s: unknown target type", dm_device_name(t->md),
  563. type);
  564. return -EINVAL;
  565. }
  566. if (dm_target_needs_singleton(tgt->type)) {
  567. if (t->num_targets) {
  568. DMERR("%s: target type %s must appear alone in table",
  569. dm_device_name(t->md), type);
  570. return -EINVAL;
  571. }
  572. t->singleton = 1;
  573. }
  574. if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
  575. DMERR("%s: target type %s may not be included in read-only tables",
  576. dm_device_name(t->md), type);
  577. return -EINVAL;
  578. }
  579. if (t->immutable_target_type) {
  580. if (t->immutable_target_type != tgt->type) {
  581. DMERR("%s: immutable target type %s cannot be mixed with other target types",
  582. dm_device_name(t->md), t->immutable_target_type->name);
  583. return -EINVAL;
  584. }
  585. } else if (dm_target_is_immutable(tgt->type)) {
  586. if (t->num_targets) {
  587. DMERR("%s: immutable target type %s cannot be mixed with other target types",
  588. dm_device_name(t->md), tgt->type->name);
  589. return -EINVAL;
  590. }
  591. t->immutable_target_type = tgt->type;
  592. }
  593. tgt->table = t;
  594. tgt->begin = start;
  595. tgt->len = len;
  596. tgt->error = "Unknown error";
  597. /*
  598. * Does this target adjoin the previous one ?
  599. */
  600. if (!adjoin(t, tgt)) {
  601. tgt->error = "Gap in table";
  602. r = -EINVAL;
  603. goto bad;
  604. }
  605. r = dm_split_args(&argc, &argv, params);
  606. if (r) {
  607. tgt->error = "couldn't split parameters (insufficient memory)";
  608. goto bad;
  609. }
  610. r = tgt->type->ctr(tgt, argc, argv);
  611. kfree(argv);
  612. if (r)
  613. goto bad;
  614. t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
  615. if (!tgt->num_discard_bios && tgt->discards_supported)
  616. DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
  617. dm_device_name(t->md), type);
  618. return 0;
  619. bad:
  620. DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
  621. dm_put_target_type(tgt->type);
  622. return r;
  623. }
  624. /*
  625. * Target argument parsing helpers.
  626. */
  627. static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
  628. unsigned *value, char **error, unsigned grouped)
  629. {
  630. const char *arg_str = dm_shift_arg(arg_set);
  631. char dummy;
  632. if (!arg_str ||
  633. (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
  634. (*value < arg->min) ||
  635. (*value > arg->max) ||
  636. (grouped && arg_set->argc < *value)) {
  637. *error = arg->error;
  638. return -EINVAL;
  639. }
  640. return 0;
  641. }
  642. int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
  643. unsigned *value, char **error)
  644. {
  645. return validate_next_arg(arg, arg_set, value, error, 0);
  646. }
  647. EXPORT_SYMBOL(dm_read_arg);
  648. int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
  649. unsigned *value, char **error)
  650. {
  651. return validate_next_arg(arg, arg_set, value, error, 1);
  652. }
  653. EXPORT_SYMBOL(dm_read_arg_group);
  654. const char *dm_shift_arg(struct dm_arg_set *as)
  655. {
  656. char *r;
  657. if (as->argc) {
  658. as->argc--;
  659. r = *as->argv;
  660. as->argv++;
  661. return r;
  662. }
  663. return NULL;
  664. }
  665. EXPORT_SYMBOL(dm_shift_arg);
  666. void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
  667. {
  668. BUG_ON(as->argc < num_args);
  669. as->argc -= num_args;
  670. as->argv += num_args;
  671. }
  672. EXPORT_SYMBOL(dm_consume_args);
  673. static bool __table_type_request_based(unsigned table_type)
  674. {
  675. return (table_type == DM_TYPE_REQUEST_BASED ||
  676. table_type == DM_TYPE_MQ_REQUEST_BASED);
  677. }
  678. static int dm_table_set_type(struct dm_table *t)
  679. {
  680. unsigned i;
  681. unsigned bio_based = 0, request_based = 0, hybrid = 0;
  682. bool use_blk_mq = false;
  683. struct dm_target *tgt;
  684. struct dm_dev_internal *dd;
  685. struct list_head *devices;
  686. unsigned live_md_type = dm_get_md_type(t->md);
  687. for (i = 0; i < t->num_targets; i++) {
  688. tgt = t->targets + i;
  689. if (dm_target_hybrid(tgt))
  690. hybrid = 1;
  691. else if (dm_target_request_based(tgt))
  692. request_based = 1;
  693. else
  694. bio_based = 1;
  695. if (bio_based && request_based) {
  696. DMWARN("Inconsistent table: different target types"
  697. " can't be mixed up");
  698. return -EINVAL;
  699. }
  700. }
  701. if (hybrid && !bio_based && !request_based) {
  702. /*
  703. * The targets can work either way.
  704. * Determine the type from the live device.
  705. * Default to bio-based if device is new.
  706. */
  707. if (__table_type_request_based(live_md_type))
  708. request_based = 1;
  709. else
  710. bio_based = 1;
  711. }
  712. if (bio_based) {
  713. /* We must use this table as bio-based */
  714. t->type = DM_TYPE_BIO_BASED;
  715. return 0;
  716. }
  717. BUG_ON(!request_based); /* No targets in this table */
  718. /*
  719. * Request-based dm supports only tables that have a single target now.
  720. * To support multiple targets, request splitting support is needed,
  721. * and that needs lots of changes in the block-layer.
  722. * (e.g. request completion process for partial completion.)
  723. */
  724. if (t->num_targets > 1) {
  725. DMWARN("Request-based dm doesn't support multiple targets yet");
  726. return -EINVAL;
  727. }
  728. /* Non-request-stackable devices can't be used for request-based dm */
  729. devices = dm_table_get_devices(t);
  730. list_for_each_entry(dd, devices, list) {
  731. struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
  732. if (!blk_queue_stackable(q)) {
  733. DMERR("table load rejected: including"
  734. " non-request-stackable devices");
  735. return -EINVAL;
  736. }
  737. if (q->mq_ops)
  738. use_blk_mq = true;
  739. }
  740. if (use_blk_mq) {
  741. /* verify _all_ devices in the table are blk-mq devices */
  742. list_for_each_entry(dd, devices, list)
  743. if (!bdev_get_queue(dd->dm_dev->bdev)->mq_ops) {
  744. DMERR("table load rejected: not all devices"
  745. " are blk-mq request-stackable");
  746. return -EINVAL;
  747. }
  748. t->type = DM_TYPE_MQ_REQUEST_BASED;
  749. } else if (list_empty(devices) && __table_type_request_based(live_md_type)) {
  750. /* inherit live MD type */
  751. t->type = live_md_type;
  752. } else
  753. t->type = DM_TYPE_REQUEST_BASED;
  754. return 0;
  755. }
  756. unsigned dm_table_get_type(struct dm_table *t)
  757. {
  758. return t->type;
  759. }
  760. struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
  761. {
  762. return t->immutable_target_type;
  763. }
  764. bool dm_table_request_based(struct dm_table *t)
  765. {
  766. return __table_type_request_based(dm_table_get_type(t));
  767. }
  768. bool dm_table_mq_request_based(struct dm_table *t)
  769. {
  770. return dm_table_get_type(t) == DM_TYPE_MQ_REQUEST_BASED;
  771. }
  772. static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
  773. {
  774. unsigned type = dm_table_get_type(t);
  775. unsigned per_bio_data_size = 0;
  776. struct dm_target *tgt;
  777. unsigned i;
  778. if (unlikely(type == DM_TYPE_NONE)) {
  779. DMWARN("no table type is set, can't allocate mempools");
  780. return -EINVAL;
  781. }
  782. if (type == DM_TYPE_BIO_BASED)
  783. for (i = 0; i < t->num_targets; i++) {
  784. tgt = t->targets + i;
  785. per_bio_data_size = max(per_bio_data_size, tgt->per_bio_data_size);
  786. }
  787. t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, per_bio_data_size);
  788. if (!t->mempools)
  789. return -ENOMEM;
  790. return 0;
  791. }
  792. void dm_table_free_md_mempools(struct dm_table *t)
  793. {
  794. dm_free_md_mempools(t->mempools);
  795. t->mempools = NULL;
  796. }
  797. struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
  798. {
  799. return t->mempools;
  800. }
  801. static int setup_indexes(struct dm_table *t)
  802. {
  803. int i;
  804. unsigned int total = 0;
  805. sector_t *indexes;
  806. /* allocate the space for *all* the indexes */
  807. for (i = t->depth - 2; i >= 0; i--) {
  808. t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
  809. total += t->counts[i];
  810. }
  811. indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
  812. if (!indexes)
  813. return -ENOMEM;
  814. /* set up internal nodes, bottom-up */
  815. for (i = t->depth - 2; i >= 0; i--) {
  816. t->index[i] = indexes;
  817. indexes += (KEYS_PER_NODE * t->counts[i]);
  818. setup_btree_index(i, t);
  819. }
  820. return 0;
  821. }
  822. /*
  823. * Builds the btree to index the map.
  824. */
  825. static int dm_table_build_index(struct dm_table *t)
  826. {
  827. int r = 0;
  828. unsigned int leaf_nodes;
  829. /* how many indexes will the btree have ? */
  830. leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
  831. t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
  832. /* leaf layer has already been set up */
  833. t->counts[t->depth - 1] = leaf_nodes;
  834. t->index[t->depth - 1] = t->highs;
  835. if (t->depth >= 2)
  836. r = setup_indexes(t);
  837. return r;
  838. }
  839. /*
  840. * Get a disk whose integrity profile reflects the table's profile.
  841. * If %match_all is true, all devices' profiles must match.
  842. * If %match_all is false, all devices must at least have an
  843. * allocated integrity profile; but uninitialized is ok.
  844. * Returns NULL if integrity support was inconsistent or unavailable.
  845. */
  846. static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t,
  847. bool match_all)
  848. {
  849. struct list_head *devices = dm_table_get_devices(t);
  850. struct dm_dev_internal *dd = NULL;
  851. struct gendisk *prev_disk = NULL, *template_disk = NULL;
  852. list_for_each_entry(dd, devices, list) {
  853. template_disk = dd->dm_dev->bdev->bd_disk;
  854. if (!blk_get_integrity(template_disk))
  855. goto no_integrity;
  856. if (!match_all && !blk_integrity_is_initialized(template_disk))
  857. continue; /* skip uninitialized profiles */
  858. else if (prev_disk &&
  859. blk_integrity_compare(prev_disk, template_disk) < 0)
  860. goto no_integrity;
  861. prev_disk = template_disk;
  862. }
  863. return template_disk;
  864. no_integrity:
  865. if (prev_disk)
  866. DMWARN("%s: integrity not set: %s and %s profile mismatch",
  867. dm_device_name(t->md),
  868. prev_disk->disk_name,
  869. template_disk->disk_name);
  870. return NULL;
  871. }
  872. /*
  873. * Register the mapped device for blk_integrity support if
  874. * the underlying devices have an integrity profile. But all devices
  875. * may not have matching profiles (checking all devices isn't reliable
  876. * during table load because this table may use other DM device(s) which
  877. * must be resumed before they will have an initialized integity profile).
  878. * Stacked DM devices force a 2 stage integrity profile validation:
  879. * 1 - during load, validate all initialized integrity profiles match
  880. * 2 - during resume, validate all integrity profiles match
  881. */
  882. static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md)
  883. {
  884. struct gendisk *template_disk = NULL;
  885. template_disk = dm_table_get_integrity_disk(t, false);
  886. if (!template_disk)
  887. return 0;
  888. if (!blk_integrity_is_initialized(dm_disk(md))) {
  889. t->integrity_supported = 1;
  890. return blk_integrity_register(dm_disk(md), NULL);
  891. }
  892. /*
  893. * If DM device already has an initalized integrity
  894. * profile the new profile should not conflict.
  895. */
  896. if (blk_integrity_is_initialized(template_disk) &&
  897. blk_integrity_compare(dm_disk(md), template_disk) < 0) {
  898. DMWARN("%s: conflict with existing integrity profile: "
  899. "%s profile mismatch",
  900. dm_device_name(t->md),
  901. template_disk->disk_name);
  902. return 1;
  903. }
  904. /* Preserve existing initialized integrity profile */
  905. t->integrity_supported = 1;
  906. return 0;
  907. }
  908. /*
  909. * Prepares the table for use by building the indices,
  910. * setting the type, and allocating mempools.
  911. */
  912. int dm_table_complete(struct dm_table *t)
  913. {
  914. int r;
  915. r = dm_table_set_type(t);
  916. if (r) {
  917. DMERR("unable to set table type");
  918. return r;
  919. }
  920. r = dm_table_build_index(t);
  921. if (r) {
  922. DMERR("unable to build btrees");
  923. return r;
  924. }
  925. r = dm_table_prealloc_integrity(t, t->md);
  926. if (r) {
  927. DMERR("could not register integrity profile.");
  928. return r;
  929. }
  930. r = dm_table_alloc_md_mempools(t, t->md);
  931. if (r)
  932. DMERR("unable to allocate mempools");
  933. return r;
  934. }
  935. static DEFINE_MUTEX(_event_lock);
  936. void dm_table_event_callback(struct dm_table *t,
  937. void (*fn)(void *), void *context)
  938. {
  939. mutex_lock(&_event_lock);
  940. t->event_fn = fn;
  941. t->event_context = context;
  942. mutex_unlock(&_event_lock);
  943. }
  944. void dm_table_event(struct dm_table *t)
  945. {
  946. /*
  947. * You can no longer call dm_table_event() from interrupt
  948. * context, use a bottom half instead.
  949. */
  950. BUG_ON(in_interrupt());
  951. mutex_lock(&_event_lock);
  952. if (t->event_fn)
  953. t->event_fn(t->event_context);
  954. mutex_unlock(&_event_lock);
  955. }
  956. EXPORT_SYMBOL(dm_table_event);
  957. sector_t dm_table_get_size(struct dm_table *t)
  958. {
  959. return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
  960. }
  961. EXPORT_SYMBOL(dm_table_get_size);
  962. struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
  963. {
  964. if (index >= t->num_targets)
  965. return NULL;
  966. return t->targets + index;
  967. }
  968. /*
  969. * Search the btree for the correct target.
  970. *
  971. * Caller should check returned pointer with dm_target_is_valid()
  972. * to trap I/O beyond end of device.
  973. */
  974. struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
  975. {
  976. unsigned int l, n = 0, k = 0;
  977. sector_t *node;
  978. for (l = 0; l < t->depth; l++) {
  979. n = get_child(n, k);
  980. node = get_node(t, l, n);
  981. for (k = 0; k < KEYS_PER_NODE; k++)
  982. if (node[k] >= sector)
  983. break;
  984. }
  985. return &t->targets[(KEYS_PER_NODE * n) + k];
  986. }
  987. static int count_device(struct dm_target *ti, struct dm_dev *dev,
  988. sector_t start, sector_t len, void *data)
  989. {
  990. unsigned *num_devices = data;
  991. (*num_devices)++;
  992. return 0;
  993. }
  994. /*
  995. * Check whether a table has no data devices attached using each
  996. * target's iterate_devices method.
  997. * Returns false if the result is unknown because a target doesn't
  998. * support iterate_devices.
  999. */
  1000. bool dm_table_has_no_data_devices(struct dm_table *table)
  1001. {
  1002. struct dm_target *uninitialized_var(ti);
  1003. unsigned i = 0, num_devices = 0;
  1004. while (i < dm_table_get_num_targets(table)) {
  1005. ti = dm_table_get_target(table, i++);
  1006. if (!ti->type->iterate_devices)
  1007. return false;
  1008. ti->type->iterate_devices(ti, count_device, &num_devices);
  1009. if (num_devices)
  1010. return false;
  1011. }
  1012. return true;
  1013. }
  1014. /*
  1015. * Establish the new table's queue_limits and validate them.
  1016. */
  1017. int dm_calculate_queue_limits(struct dm_table *table,
  1018. struct queue_limits *limits)
  1019. {
  1020. struct dm_target *uninitialized_var(ti);
  1021. struct queue_limits ti_limits;
  1022. unsigned i = 0;
  1023. blk_set_stacking_limits(limits);
  1024. while (i < dm_table_get_num_targets(table)) {
  1025. blk_set_stacking_limits(&ti_limits);
  1026. ti = dm_table_get_target(table, i++);
  1027. if (!ti->type->iterate_devices)
  1028. goto combine_limits;
  1029. /*
  1030. * Combine queue limits of all the devices this target uses.
  1031. */
  1032. ti->type->iterate_devices(ti, dm_set_device_limits,
  1033. &ti_limits);
  1034. /* Set I/O hints portion of queue limits */
  1035. if (ti->type->io_hints)
  1036. ti->type->io_hints(ti, &ti_limits);
  1037. /*
  1038. * Check each device area is consistent with the target's
  1039. * overall queue limits.
  1040. */
  1041. if (ti->type->iterate_devices(ti, device_area_is_invalid,
  1042. &ti_limits))
  1043. return -EINVAL;
  1044. combine_limits:
  1045. /*
  1046. * Merge this target's queue limits into the overall limits
  1047. * for the table.
  1048. */
  1049. if (blk_stack_limits(limits, &ti_limits, 0) < 0)
  1050. DMWARN("%s: adding target device "
  1051. "(start sect %llu len %llu) "
  1052. "caused an alignment inconsistency",
  1053. dm_device_name(table->md),
  1054. (unsigned long long) ti->begin,
  1055. (unsigned long long) ti->len);
  1056. }
  1057. return validate_hardware_logical_block_alignment(table, limits);
  1058. }
  1059. /*
  1060. * Set the integrity profile for this device if all devices used have
  1061. * matching profiles. We're quite deep in the resume path but still
  1062. * don't know if all devices (particularly DM devices this device
  1063. * may be stacked on) have matching profiles. Even if the profiles
  1064. * don't match we have no way to fail (to resume) at this point.
  1065. */
  1066. static void dm_table_set_integrity(struct dm_table *t)
  1067. {
  1068. struct gendisk *template_disk = NULL;
  1069. if (!blk_get_integrity(dm_disk(t->md)))
  1070. return;
  1071. template_disk = dm_table_get_integrity_disk(t, true);
  1072. if (template_disk)
  1073. blk_integrity_register(dm_disk(t->md),
  1074. blk_get_integrity(template_disk));
  1075. else if (blk_integrity_is_initialized(dm_disk(t->md)))
  1076. DMWARN("%s: device no longer has a valid integrity profile",
  1077. dm_device_name(t->md));
  1078. else
  1079. DMWARN("%s: unable to establish an integrity profile",
  1080. dm_device_name(t->md));
  1081. }
  1082. static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
  1083. sector_t start, sector_t len, void *data)
  1084. {
  1085. unsigned flush = (*(unsigned *)data);
  1086. struct request_queue *q = bdev_get_queue(dev->bdev);
  1087. return q && (q->flush_flags & flush);
  1088. }
  1089. static bool dm_table_supports_flush(struct dm_table *t, unsigned flush)
  1090. {
  1091. struct dm_target *ti;
  1092. unsigned i = 0;
  1093. /*
  1094. * Require at least one underlying device to support flushes.
  1095. * t->devices includes internal dm devices such as mirror logs
  1096. * so we need to use iterate_devices here, which targets
  1097. * supporting flushes must provide.
  1098. */
  1099. while (i < dm_table_get_num_targets(t)) {
  1100. ti = dm_table_get_target(t, i++);
  1101. if (!ti->num_flush_bios)
  1102. continue;
  1103. if (ti->flush_supported)
  1104. return true;
  1105. if (ti->type->iterate_devices &&
  1106. ti->type->iterate_devices(ti, device_flush_capable, &flush))
  1107. return true;
  1108. }
  1109. return false;
  1110. }
  1111. static bool dm_table_discard_zeroes_data(struct dm_table *t)
  1112. {
  1113. struct dm_target *ti;
  1114. unsigned i = 0;
  1115. /* Ensure that all targets supports discard_zeroes_data. */
  1116. while (i < dm_table_get_num_targets(t)) {
  1117. ti = dm_table_get_target(t, i++);
  1118. if (ti->discard_zeroes_data_unsupported)
  1119. return false;
  1120. }
  1121. return true;
  1122. }
  1123. static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
  1124. sector_t start, sector_t len, void *data)
  1125. {
  1126. struct request_queue *q = bdev_get_queue(dev->bdev);
  1127. return q && blk_queue_nonrot(q);
  1128. }
  1129. static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
  1130. sector_t start, sector_t len, void *data)
  1131. {
  1132. struct request_queue *q = bdev_get_queue(dev->bdev);
  1133. return q && !blk_queue_add_random(q);
  1134. }
  1135. static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev,
  1136. sector_t start, sector_t len, void *data)
  1137. {
  1138. struct request_queue *q = bdev_get_queue(dev->bdev);
  1139. return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags);
  1140. }
  1141. static bool dm_table_all_devices_attribute(struct dm_table *t,
  1142. iterate_devices_callout_fn func)
  1143. {
  1144. struct dm_target *ti;
  1145. unsigned i = 0;
  1146. while (i < dm_table_get_num_targets(t)) {
  1147. ti = dm_table_get_target(t, i++);
  1148. if (!ti->type->iterate_devices ||
  1149. !ti->type->iterate_devices(ti, func, NULL))
  1150. return false;
  1151. }
  1152. return true;
  1153. }
  1154. static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
  1155. sector_t start, sector_t len, void *data)
  1156. {
  1157. struct request_queue *q = bdev_get_queue(dev->bdev);
  1158. return q && !q->limits.max_write_same_sectors;
  1159. }
  1160. static bool dm_table_supports_write_same(struct dm_table *t)
  1161. {
  1162. struct dm_target *ti;
  1163. unsigned i = 0;
  1164. while (i < dm_table_get_num_targets(t)) {
  1165. ti = dm_table_get_target(t, i++);
  1166. if (!ti->num_write_same_bios)
  1167. return false;
  1168. if (!ti->type->iterate_devices ||
  1169. ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
  1170. return false;
  1171. }
  1172. return true;
  1173. }
  1174. static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
  1175. sector_t start, sector_t len, void *data)
  1176. {
  1177. struct request_queue *q = bdev_get_queue(dev->bdev);
  1178. return q && blk_queue_discard(q);
  1179. }
  1180. static bool dm_table_supports_discards(struct dm_table *t)
  1181. {
  1182. struct dm_target *ti;
  1183. unsigned i = 0;
  1184. /*
  1185. * Unless any target used by the table set discards_supported,
  1186. * require at least one underlying device to support discards.
  1187. * t->devices includes internal dm devices such as mirror logs
  1188. * so we need to use iterate_devices here, which targets
  1189. * supporting discard selectively must provide.
  1190. */
  1191. while (i < dm_table_get_num_targets(t)) {
  1192. ti = dm_table_get_target(t, i++);
  1193. if (!ti->num_discard_bios)
  1194. continue;
  1195. if (ti->discards_supported)
  1196. return true;
  1197. if (ti->type->iterate_devices &&
  1198. ti->type->iterate_devices(ti, device_discard_capable, NULL))
  1199. return true;
  1200. }
  1201. return false;
  1202. }
  1203. void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
  1204. struct queue_limits *limits)
  1205. {
  1206. unsigned flush = 0;
  1207. /*
  1208. * Copy table's limits to the DM device's request_queue
  1209. */
  1210. q->limits = *limits;
  1211. if (!dm_table_supports_discards(t))
  1212. queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
  1213. else
  1214. queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
  1215. if (dm_table_supports_flush(t, REQ_FLUSH)) {
  1216. flush |= REQ_FLUSH;
  1217. if (dm_table_supports_flush(t, REQ_FUA))
  1218. flush |= REQ_FUA;
  1219. }
  1220. blk_queue_flush(q, flush);
  1221. if (!dm_table_discard_zeroes_data(t))
  1222. q->limits.discard_zeroes_data = 0;
  1223. /* Ensure that all underlying devices are non-rotational. */
  1224. if (dm_table_all_devices_attribute(t, device_is_nonrot))
  1225. queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
  1226. else
  1227. queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
  1228. if (!dm_table_supports_write_same(t))
  1229. q->limits.max_write_same_sectors = 0;
  1230. if (dm_table_all_devices_attribute(t, queue_supports_sg_merge))
  1231. queue_flag_clear_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
  1232. else
  1233. queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
  1234. dm_table_set_integrity(t);
  1235. /*
  1236. * Determine whether or not this queue's I/O timings contribute
  1237. * to the entropy pool, Only request-based targets use this.
  1238. * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
  1239. * have it set.
  1240. */
  1241. if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
  1242. queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
  1243. /*
  1244. * QUEUE_FLAG_STACKABLE must be set after all queue settings are
  1245. * visible to other CPUs because, once the flag is set, incoming bios
  1246. * are processed by request-based dm, which refers to the queue
  1247. * settings.
  1248. * Until the flag set, bios are passed to bio-based dm and queued to
  1249. * md->deferred where queue settings are not needed yet.
  1250. * Those bios are passed to request-based dm at the resume time.
  1251. */
  1252. smp_mb();
  1253. if (dm_table_request_based(t))
  1254. queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
  1255. }
  1256. unsigned int dm_table_get_num_targets(struct dm_table *t)
  1257. {
  1258. return t->num_targets;
  1259. }
  1260. struct list_head *dm_table_get_devices(struct dm_table *t)
  1261. {
  1262. return &t->devices;
  1263. }
  1264. fmode_t dm_table_get_mode(struct dm_table *t)
  1265. {
  1266. return t->mode;
  1267. }
  1268. EXPORT_SYMBOL(dm_table_get_mode);
  1269. enum suspend_mode {
  1270. PRESUSPEND,
  1271. PRESUSPEND_UNDO,
  1272. POSTSUSPEND,
  1273. };
  1274. static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
  1275. {
  1276. int i = t->num_targets;
  1277. struct dm_target *ti = t->targets;
  1278. while (i--) {
  1279. switch (mode) {
  1280. case PRESUSPEND:
  1281. if (ti->type->presuspend)
  1282. ti->type->presuspend(ti);
  1283. break;
  1284. case PRESUSPEND_UNDO:
  1285. if (ti->type->presuspend_undo)
  1286. ti->type->presuspend_undo(ti);
  1287. break;
  1288. case POSTSUSPEND:
  1289. if (ti->type->postsuspend)
  1290. ti->type->postsuspend(ti);
  1291. break;
  1292. }
  1293. ti++;
  1294. }
  1295. }
  1296. void dm_table_presuspend_targets(struct dm_table *t)
  1297. {
  1298. if (!t)
  1299. return;
  1300. suspend_targets(t, PRESUSPEND);
  1301. }
  1302. void dm_table_presuspend_undo_targets(struct dm_table *t)
  1303. {
  1304. if (!t)
  1305. return;
  1306. suspend_targets(t, PRESUSPEND_UNDO);
  1307. }
  1308. void dm_table_postsuspend_targets(struct dm_table *t)
  1309. {
  1310. if (!t)
  1311. return;
  1312. suspend_targets(t, POSTSUSPEND);
  1313. }
  1314. int dm_table_resume_targets(struct dm_table *t)
  1315. {
  1316. int i, r = 0;
  1317. for (i = 0; i < t->num_targets; i++) {
  1318. struct dm_target *ti = t->targets + i;
  1319. if (!ti->type->preresume)
  1320. continue;
  1321. r = ti->type->preresume(ti);
  1322. if (r) {
  1323. DMERR("%s: %s: preresume failed, error = %d",
  1324. dm_device_name(t->md), ti->type->name, r);
  1325. return r;
  1326. }
  1327. }
  1328. for (i = 0; i < t->num_targets; i++) {
  1329. struct dm_target *ti = t->targets + i;
  1330. if (ti->type->resume)
  1331. ti->type->resume(ti);
  1332. }
  1333. return 0;
  1334. }
  1335. void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
  1336. {
  1337. list_add(&cb->list, &t->target_callbacks);
  1338. }
  1339. EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
  1340. int dm_table_any_congested(struct dm_table *t, int bdi_bits)
  1341. {
  1342. struct dm_dev_internal *dd;
  1343. struct list_head *devices = dm_table_get_devices(t);
  1344. struct dm_target_callbacks *cb;
  1345. int r = 0;
  1346. list_for_each_entry(dd, devices, list) {
  1347. struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
  1348. char b[BDEVNAME_SIZE];
  1349. if (likely(q))
  1350. r |= bdi_congested(&q->backing_dev_info, bdi_bits);
  1351. else
  1352. DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
  1353. dm_device_name(t->md),
  1354. bdevname(dd->dm_dev->bdev, b));
  1355. }
  1356. list_for_each_entry(cb, &t->target_callbacks, list)
  1357. if (cb->congested_fn)
  1358. r |= cb->congested_fn(cb, bdi_bits);
  1359. return r;
  1360. }
  1361. struct mapped_device *dm_table_get_md(struct dm_table *t)
  1362. {
  1363. return t->md;
  1364. }
  1365. EXPORT_SYMBOL(dm_table_get_md);
  1366. void dm_table_run_md_queue_async(struct dm_table *t)
  1367. {
  1368. struct mapped_device *md;
  1369. struct request_queue *queue;
  1370. unsigned long flags;
  1371. if (!dm_table_request_based(t))
  1372. return;
  1373. md = dm_table_get_md(t);
  1374. queue = dm_get_md_queue(md);
  1375. if (queue) {
  1376. if (queue->mq_ops)
  1377. blk_mq_run_hw_queues(queue, true);
  1378. else {
  1379. spin_lock_irqsave(queue->queue_lock, flags);
  1380. blk_run_queue_async(queue);
  1381. spin_unlock_irqrestore(queue->queue_lock, flags);
  1382. }
  1383. }
  1384. }
  1385. EXPORT_SYMBOL(dm_table_run_md_queue_async);