addr.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558
  1. /*
  2. * Copyright (c) 2005 Voltaire Inc. All rights reserved.
  3. * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved.
  4. * Copyright (c) 1999-2005, Mellanox Technologies, Inc. All rights reserved.
  5. * Copyright (c) 2005 Intel Corporation. All rights reserved.
  6. *
  7. * This software is available to you under a choice of one of two
  8. * licenses. You may choose to be licensed under the terms of the GNU
  9. * General Public License (GPL) Version 2, available from the file
  10. * COPYING in the main directory of this source tree, or the
  11. * OpenIB.org BSD license below:
  12. *
  13. * Redistribution and use in source and binary forms, with or
  14. * without modification, are permitted provided that the following
  15. * conditions are met:
  16. *
  17. * - Redistributions of source code must retain the above
  18. * copyright notice, this list of conditions and the following
  19. * disclaimer.
  20. *
  21. * - Redistributions in binary form must reproduce the above
  22. * copyright notice, this list of conditions and the following
  23. * disclaimer in the documentation and/or other materials
  24. * provided with the distribution.
  25. *
  26. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  27. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  28. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  29. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  30. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  31. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  32. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  33. * SOFTWARE.
  34. */
  35. #include <linux/mutex.h>
  36. #include <linux/inetdevice.h>
  37. #include <linux/slab.h>
  38. #include <linux/workqueue.h>
  39. #include <linux/module.h>
  40. #include <net/arp.h>
  41. #include <net/neighbour.h>
  42. #include <net/route.h>
  43. #include <net/netevent.h>
  44. #include <net/addrconf.h>
  45. #include <net/ip6_route.h>
  46. #include <rdma/ib_addr.h>
  47. #include <rdma/ib.h>
  48. MODULE_AUTHOR("Sean Hefty");
  49. MODULE_DESCRIPTION("IB Address Translation");
  50. MODULE_LICENSE("Dual BSD/GPL");
  51. struct addr_req {
  52. struct list_head list;
  53. struct sockaddr_storage src_addr;
  54. struct sockaddr_storage dst_addr;
  55. struct rdma_dev_addr *addr;
  56. struct rdma_addr_client *client;
  57. void *context;
  58. void (*callback)(int status, struct sockaddr *src_addr,
  59. struct rdma_dev_addr *addr, void *context);
  60. unsigned long timeout;
  61. int status;
  62. };
  63. static void process_req(struct work_struct *work);
  64. static DEFINE_MUTEX(lock);
  65. static LIST_HEAD(req_list);
  66. static DECLARE_DELAYED_WORK(work, process_req);
  67. static struct workqueue_struct *addr_wq;
  68. int rdma_addr_size(struct sockaddr *addr)
  69. {
  70. switch (addr->sa_family) {
  71. case AF_INET:
  72. return sizeof(struct sockaddr_in);
  73. case AF_INET6:
  74. return sizeof(struct sockaddr_in6);
  75. case AF_IB:
  76. return sizeof(struct sockaddr_ib);
  77. default:
  78. return 0;
  79. }
  80. }
  81. EXPORT_SYMBOL(rdma_addr_size);
  82. static struct rdma_addr_client self;
  83. void rdma_addr_register_client(struct rdma_addr_client *client)
  84. {
  85. atomic_set(&client->refcount, 1);
  86. init_completion(&client->comp);
  87. }
  88. EXPORT_SYMBOL(rdma_addr_register_client);
  89. static inline void put_client(struct rdma_addr_client *client)
  90. {
  91. if (atomic_dec_and_test(&client->refcount))
  92. complete(&client->comp);
  93. }
  94. void rdma_addr_unregister_client(struct rdma_addr_client *client)
  95. {
  96. put_client(client);
  97. wait_for_completion(&client->comp);
  98. }
  99. EXPORT_SYMBOL(rdma_addr_unregister_client);
  100. int rdma_copy_addr(struct rdma_dev_addr *dev_addr, struct net_device *dev,
  101. const unsigned char *dst_dev_addr)
  102. {
  103. dev_addr->dev_type = dev->type;
  104. memcpy(dev_addr->src_dev_addr, dev->dev_addr, MAX_ADDR_LEN);
  105. memcpy(dev_addr->broadcast, dev->broadcast, MAX_ADDR_LEN);
  106. if (dst_dev_addr)
  107. memcpy(dev_addr->dst_dev_addr, dst_dev_addr, MAX_ADDR_LEN);
  108. dev_addr->bound_dev_if = dev->ifindex;
  109. return 0;
  110. }
  111. EXPORT_SYMBOL(rdma_copy_addr);
  112. int rdma_translate_ip(struct sockaddr *addr, struct rdma_dev_addr *dev_addr,
  113. u16 *vlan_id)
  114. {
  115. struct net_device *dev;
  116. int ret = -EADDRNOTAVAIL;
  117. if (dev_addr->bound_dev_if) {
  118. dev = dev_get_by_index(&init_net, dev_addr->bound_dev_if);
  119. if (!dev)
  120. return -ENODEV;
  121. ret = rdma_copy_addr(dev_addr, dev, NULL);
  122. dev_put(dev);
  123. return ret;
  124. }
  125. switch (addr->sa_family) {
  126. case AF_INET:
  127. dev = ip_dev_find(&init_net,
  128. ((struct sockaddr_in *) addr)->sin_addr.s_addr);
  129. if (!dev)
  130. return ret;
  131. ret = rdma_copy_addr(dev_addr, dev, NULL);
  132. if (vlan_id)
  133. *vlan_id = rdma_vlan_dev_vlan_id(dev);
  134. dev_put(dev);
  135. break;
  136. #if IS_ENABLED(CONFIG_IPV6)
  137. case AF_INET6:
  138. rcu_read_lock();
  139. for_each_netdev_rcu(&init_net, dev) {
  140. if (ipv6_chk_addr(&init_net,
  141. &((struct sockaddr_in6 *) addr)->sin6_addr,
  142. dev, 1)) {
  143. ret = rdma_copy_addr(dev_addr, dev, NULL);
  144. if (vlan_id)
  145. *vlan_id = rdma_vlan_dev_vlan_id(dev);
  146. break;
  147. }
  148. }
  149. rcu_read_unlock();
  150. break;
  151. #endif
  152. }
  153. return ret;
  154. }
  155. EXPORT_SYMBOL(rdma_translate_ip);
  156. static void set_timeout(unsigned long time)
  157. {
  158. unsigned long delay;
  159. delay = time - jiffies;
  160. if ((long)delay < 0)
  161. delay = 0;
  162. mod_delayed_work(addr_wq, &work, delay);
  163. }
  164. static void queue_req(struct addr_req *req)
  165. {
  166. struct addr_req *temp_req;
  167. mutex_lock(&lock);
  168. list_for_each_entry_reverse(temp_req, &req_list, list) {
  169. if (time_after_eq(req->timeout, temp_req->timeout))
  170. break;
  171. }
  172. list_add(&req->list, &temp_req->list);
  173. if (req_list.next == &req->list)
  174. set_timeout(req->timeout);
  175. mutex_unlock(&lock);
  176. }
  177. static int dst_fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr, void *daddr)
  178. {
  179. struct neighbour *n;
  180. int ret;
  181. n = dst_neigh_lookup(dst, daddr);
  182. rcu_read_lock();
  183. if (!n || !(n->nud_state & NUD_VALID)) {
  184. if (n)
  185. neigh_event_send(n, NULL);
  186. ret = -ENODATA;
  187. } else {
  188. ret = rdma_copy_addr(dev_addr, dst->dev, n->ha);
  189. }
  190. rcu_read_unlock();
  191. if (n)
  192. neigh_release(n);
  193. return ret;
  194. }
  195. static int addr4_resolve(struct sockaddr_in *src_in,
  196. struct sockaddr_in *dst_in,
  197. struct rdma_dev_addr *addr)
  198. {
  199. __be32 src_ip = src_in->sin_addr.s_addr;
  200. __be32 dst_ip = dst_in->sin_addr.s_addr;
  201. struct rtable *rt;
  202. struct flowi4 fl4;
  203. int ret;
  204. memset(&fl4, 0, sizeof(fl4));
  205. fl4.daddr = dst_ip;
  206. fl4.saddr = src_ip;
  207. fl4.flowi4_oif = addr->bound_dev_if;
  208. rt = ip_route_output_key(&init_net, &fl4);
  209. if (IS_ERR(rt)) {
  210. ret = PTR_ERR(rt);
  211. goto out;
  212. }
  213. src_in->sin_family = AF_INET;
  214. src_in->sin_addr.s_addr = fl4.saddr;
  215. if (rt->dst.dev->flags & IFF_LOOPBACK) {
  216. ret = rdma_translate_ip((struct sockaddr *)dst_in, addr, NULL);
  217. if (!ret)
  218. memcpy(addr->dst_dev_addr, addr->src_dev_addr, MAX_ADDR_LEN);
  219. goto put;
  220. }
  221. /* If the device does ARP internally, return 'done' */
  222. if (rt->dst.dev->flags & IFF_NOARP) {
  223. ret = rdma_copy_addr(addr, rt->dst.dev, NULL);
  224. goto put;
  225. }
  226. ret = dst_fetch_ha(&rt->dst, addr, &fl4.daddr);
  227. put:
  228. ip_rt_put(rt);
  229. out:
  230. return ret;
  231. }
  232. #if IS_ENABLED(CONFIG_IPV6)
  233. static int addr6_resolve(struct sockaddr_in6 *src_in,
  234. struct sockaddr_in6 *dst_in,
  235. struct rdma_dev_addr *addr)
  236. {
  237. struct flowi6 fl6;
  238. struct dst_entry *dst;
  239. int ret;
  240. memset(&fl6, 0, sizeof fl6);
  241. fl6.daddr = dst_in->sin6_addr;
  242. fl6.saddr = src_in->sin6_addr;
  243. fl6.flowi6_oif = addr->bound_dev_if;
  244. dst = ip6_route_output(&init_net, NULL, &fl6);
  245. if ((ret = dst->error))
  246. goto put;
  247. if (ipv6_addr_any(&fl6.saddr)) {
  248. ret = ipv6_dev_get_saddr(&init_net, ip6_dst_idev(dst)->dev,
  249. &fl6.daddr, 0, &fl6.saddr);
  250. if (ret)
  251. goto put;
  252. src_in->sin6_family = AF_INET6;
  253. src_in->sin6_addr = fl6.saddr;
  254. }
  255. if (dst->dev->flags & IFF_LOOPBACK) {
  256. ret = rdma_translate_ip((struct sockaddr *)dst_in, addr, NULL);
  257. if (!ret)
  258. memcpy(addr->dst_dev_addr, addr->src_dev_addr, MAX_ADDR_LEN);
  259. goto put;
  260. }
  261. /* If the device does ARP internally, return 'done' */
  262. if (dst->dev->flags & IFF_NOARP) {
  263. ret = rdma_copy_addr(addr, dst->dev, NULL);
  264. goto put;
  265. }
  266. ret = dst_fetch_ha(dst, addr, &fl6.daddr);
  267. put:
  268. dst_release(dst);
  269. return ret;
  270. }
  271. #else
  272. static int addr6_resolve(struct sockaddr_in6 *src_in,
  273. struct sockaddr_in6 *dst_in,
  274. struct rdma_dev_addr *addr)
  275. {
  276. return -EADDRNOTAVAIL;
  277. }
  278. #endif
  279. static int addr_resolve(struct sockaddr *src_in,
  280. struct sockaddr *dst_in,
  281. struct rdma_dev_addr *addr)
  282. {
  283. if (src_in->sa_family == AF_INET) {
  284. return addr4_resolve((struct sockaddr_in *) src_in,
  285. (struct sockaddr_in *) dst_in, addr);
  286. } else
  287. return addr6_resolve((struct sockaddr_in6 *) src_in,
  288. (struct sockaddr_in6 *) dst_in, addr);
  289. }
  290. static void process_req(struct work_struct *work)
  291. {
  292. struct addr_req *req, *temp_req;
  293. struct sockaddr *src_in, *dst_in;
  294. struct list_head done_list;
  295. INIT_LIST_HEAD(&done_list);
  296. mutex_lock(&lock);
  297. list_for_each_entry_safe(req, temp_req, &req_list, list) {
  298. if (req->status == -ENODATA) {
  299. src_in = (struct sockaddr *) &req->src_addr;
  300. dst_in = (struct sockaddr *) &req->dst_addr;
  301. req->status = addr_resolve(src_in, dst_in, req->addr);
  302. if (req->status && time_after_eq(jiffies, req->timeout))
  303. req->status = -ETIMEDOUT;
  304. else if (req->status == -ENODATA)
  305. continue;
  306. }
  307. list_move_tail(&req->list, &done_list);
  308. }
  309. if (!list_empty(&req_list)) {
  310. req = list_entry(req_list.next, struct addr_req, list);
  311. set_timeout(req->timeout);
  312. }
  313. mutex_unlock(&lock);
  314. list_for_each_entry_safe(req, temp_req, &done_list, list) {
  315. list_del(&req->list);
  316. req->callback(req->status, (struct sockaddr *) &req->src_addr,
  317. req->addr, req->context);
  318. put_client(req->client);
  319. kfree(req);
  320. }
  321. }
  322. int rdma_resolve_ip(struct rdma_addr_client *client,
  323. struct sockaddr *src_addr, struct sockaddr *dst_addr,
  324. struct rdma_dev_addr *addr, int timeout_ms,
  325. void (*callback)(int status, struct sockaddr *src_addr,
  326. struct rdma_dev_addr *addr, void *context),
  327. void *context)
  328. {
  329. struct sockaddr *src_in, *dst_in;
  330. struct addr_req *req;
  331. int ret = 0;
  332. req = kzalloc(sizeof *req, GFP_KERNEL);
  333. if (!req)
  334. return -ENOMEM;
  335. src_in = (struct sockaddr *) &req->src_addr;
  336. dst_in = (struct sockaddr *) &req->dst_addr;
  337. if (src_addr) {
  338. if (src_addr->sa_family != dst_addr->sa_family) {
  339. ret = -EINVAL;
  340. goto err;
  341. }
  342. memcpy(src_in, src_addr, rdma_addr_size(src_addr));
  343. } else {
  344. src_in->sa_family = dst_addr->sa_family;
  345. }
  346. memcpy(dst_in, dst_addr, rdma_addr_size(dst_addr));
  347. req->addr = addr;
  348. req->callback = callback;
  349. req->context = context;
  350. req->client = client;
  351. atomic_inc(&client->refcount);
  352. req->status = addr_resolve(src_in, dst_in, addr);
  353. switch (req->status) {
  354. case 0:
  355. req->timeout = jiffies;
  356. queue_req(req);
  357. break;
  358. case -ENODATA:
  359. req->timeout = msecs_to_jiffies(timeout_ms) + jiffies;
  360. queue_req(req);
  361. break;
  362. default:
  363. ret = req->status;
  364. atomic_dec(&client->refcount);
  365. goto err;
  366. }
  367. return ret;
  368. err:
  369. kfree(req);
  370. return ret;
  371. }
  372. EXPORT_SYMBOL(rdma_resolve_ip);
  373. void rdma_addr_cancel(struct rdma_dev_addr *addr)
  374. {
  375. struct addr_req *req, *temp_req;
  376. mutex_lock(&lock);
  377. list_for_each_entry_safe(req, temp_req, &req_list, list) {
  378. if (req->addr == addr) {
  379. req->status = -ECANCELED;
  380. req->timeout = jiffies;
  381. list_move(&req->list, &req_list);
  382. set_timeout(req->timeout);
  383. break;
  384. }
  385. }
  386. mutex_unlock(&lock);
  387. }
  388. EXPORT_SYMBOL(rdma_addr_cancel);
  389. struct resolve_cb_context {
  390. struct rdma_dev_addr *addr;
  391. struct completion comp;
  392. };
  393. static void resolve_cb(int status, struct sockaddr *src_addr,
  394. struct rdma_dev_addr *addr, void *context)
  395. {
  396. memcpy(((struct resolve_cb_context *)context)->addr, addr, sizeof(struct
  397. rdma_dev_addr));
  398. complete(&((struct resolve_cb_context *)context)->comp);
  399. }
  400. int rdma_addr_find_dmac_by_grh(const union ib_gid *sgid, const union ib_gid *dgid,
  401. u8 *dmac, u16 *vlan_id)
  402. {
  403. int ret = 0;
  404. struct rdma_dev_addr dev_addr;
  405. struct resolve_cb_context ctx;
  406. struct net_device *dev;
  407. union {
  408. struct sockaddr _sockaddr;
  409. struct sockaddr_in _sockaddr_in;
  410. struct sockaddr_in6 _sockaddr_in6;
  411. } sgid_addr, dgid_addr;
  412. rdma_gid2ip(&sgid_addr._sockaddr, sgid);
  413. rdma_gid2ip(&dgid_addr._sockaddr, dgid);
  414. memset(&dev_addr, 0, sizeof(dev_addr));
  415. ctx.addr = &dev_addr;
  416. init_completion(&ctx.comp);
  417. ret = rdma_resolve_ip(&self, &sgid_addr._sockaddr, &dgid_addr._sockaddr,
  418. &dev_addr, 1000, resolve_cb, &ctx);
  419. if (ret)
  420. return ret;
  421. wait_for_completion(&ctx.comp);
  422. memcpy(dmac, dev_addr.dst_dev_addr, ETH_ALEN);
  423. dev = dev_get_by_index(&init_net, dev_addr.bound_dev_if);
  424. if (!dev)
  425. return -ENODEV;
  426. if (vlan_id)
  427. *vlan_id = rdma_vlan_dev_vlan_id(dev);
  428. dev_put(dev);
  429. return ret;
  430. }
  431. EXPORT_SYMBOL(rdma_addr_find_dmac_by_grh);
  432. int rdma_addr_find_smac_by_sgid(union ib_gid *sgid, u8 *smac, u16 *vlan_id)
  433. {
  434. int ret = 0;
  435. struct rdma_dev_addr dev_addr;
  436. union {
  437. struct sockaddr _sockaddr;
  438. struct sockaddr_in _sockaddr_in;
  439. struct sockaddr_in6 _sockaddr_in6;
  440. } gid_addr;
  441. rdma_gid2ip(&gid_addr._sockaddr, sgid);
  442. memset(&dev_addr, 0, sizeof(dev_addr));
  443. ret = rdma_translate_ip(&gid_addr._sockaddr, &dev_addr, vlan_id);
  444. if (ret)
  445. return ret;
  446. memcpy(smac, dev_addr.src_dev_addr, ETH_ALEN);
  447. return ret;
  448. }
  449. EXPORT_SYMBOL(rdma_addr_find_smac_by_sgid);
  450. static int netevent_callback(struct notifier_block *self, unsigned long event,
  451. void *ctx)
  452. {
  453. if (event == NETEVENT_NEIGH_UPDATE) {
  454. struct neighbour *neigh = ctx;
  455. if (neigh->nud_state & NUD_VALID) {
  456. set_timeout(jiffies);
  457. }
  458. }
  459. return 0;
  460. }
  461. static struct notifier_block nb = {
  462. .notifier_call = netevent_callback
  463. };
  464. static int __init addr_init(void)
  465. {
  466. addr_wq = create_singlethread_workqueue("ib_addr");
  467. if (!addr_wq)
  468. return -ENOMEM;
  469. register_netevent_notifier(&nb);
  470. rdma_addr_register_client(&self);
  471. return 0;
  472. }
  473. static void __exit addr_cleanup(void)
  474. {
  475. rdma_addr_unregister_client(&self);
  476. unregister_netevent_notifier(&nb);
  477. destroy_workqueue(addr_wq);
  478. }
  479. module_init(addr_init);
  480. module_exit(addr_cleanup);