bmc150-accel.c 46 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867
  1. /*
  2. * 3-axis accelerometer driver supporting following Bosch-Sensortec chips:
  3. * - BMC150
  4. * - BMI055
  5. * - BMA255
  6. * - BMA250E
  7. * - BMA222E
  8. * - BMA280
  9. *
  10. * Copyright (c) 2014, Intel Corporation.
  11. *
  12. * This program is free software; you can redistribute it and/or modify it
  13. * under the terms and conditions of the GNU General Public License,
  14. * version 2, as published by the Free Software Foundation.
  15. *
  16. * This program is distributed in the hope it will be useful, but WITHOUT
  17. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  18. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  19. * more details.
  20. */
  21. #include <linux/module.h>
  22. #include <linux/i2c.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/delay.h>
  25. #include <linux/slab.h>
  26. #include <linux/acpi.h>
  27. #include <linux/gpio/consumer.h>
  28. #include <linux/pm.h>
  29. #include <linux/pm_runtime.h>
  30. #include <linux/iio/iio.h>
  31. #include <linux/iio/sysfs.h>
  32. #include <linux/iio/buffer.h>
  33. #include <linux/iio/events.h>
  34. #include <linux/iio/trigger.h>
  35. #include <linux/iio/trigger_consumer.h>
  36. #include <linux/iio/triggered_buffer.h>
  37. #define BMC150_ACCEL_DRV_NAME "bmc150_accel"
  38. #define BMC150_ACCEL_IRQ_NAME "bmc150_accel_event"
  39. #define BMC150_ACCEL_GPIO_NAME "bmc150_accel_int"
  40. #define BMC150_ACCEL_REG_CHIP_ID 0x00
  41. #define BMC150_ACCEL_REG_INT_STATUS_2 0x0B
  42. #define BMC150_ACCEL_ANY_MOTION_MASK 0x07
  43. #define BMC150_ACCEL_ANY_MOTION_BIT_X BIT(0)
  44. #define BMC150_ACCEL_ANY_MOTION_BIT_Y BIT(1)
  45. #define BMC150_ACCEL_ANY_MOTION_BIT_Z BIT(2)
  46. #define BMC150_ACCEL_ANY_MOTION_BIT_SIGN BIT(3)
  47. #define BMC150_ACCEL_REG_PMU_LPW 0x11
  48. #define BMC150_ACCEL_PMU_MODE_MASK 0xE0
  49. #define BMC150_ACCEL_PMU_MODE_SHIFT 5
  50. #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK 0x17
  51. #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT 1
  52. #define BMC150_ACCEL_REG_PMU_RANGE 0x0F
  53. #define BMC150_ACCEL_DEF_RANGE_2G 0x03
  54. #define BMC150_ACCEL_DEF_RANGE_4G 0x05
  55. #define BMC150_ACCEL_DEF_RANGE_8G 0x08
  56. #define BMC150_ACCEL_DEF_RANGE_16G 0x0C
  57. /* Default BW: 125Hz */
  58. #define BMC150_ACCEL_REG_PMU_BW 0x10
  59. #define BMC150_ACCEL_DEF_BW 125
  60. #define BMC150_ACCEL_REG_INT_MAP_0 0x19
  61. #define BMC150_ACCEL_INT_MAP_0_BIT_SLOPE BIT(2)
  62. #define BMC150_ACCEL_REG_INT_MAP_1 0x1A
  63. #define BMC150_ACCEL_INT_MAP_1_BIT_DATA BIT(0)
  64. #define BMC150_ACCEL_INT_MAP_1_BIT_FWM BIT(1)
  65. #define BMC150_ACCEL_INT_MAP_1_BIT_FFULL BIT(2)
  66. #define BMC150_ACCEL_REG_INT_RST_LATCH 0x21
  67. #define BMC150_ACCEL_INT_MODE_LATCH_RESET 0x80
  68. #define BMC150_ACCEL_INT_MODE_LATCH_INT 0x0F
  69. #define BMC150_ACCEL_INT_MODE_NON_LATCH_INT 0x00
  70. #define BMC150_ACCEL_REG_INT_EN_0 0x16
  71. #define BMC150_ACCEL_INT_EN_BIT_SLP_X BIT(0)
  72. #define BMC150_ACCEL_INT_EN_BIT_SLP_Y BIT(1)
  73. #define BMC150_ACCEL_INT_EN_BIT_SLP_Z BIT(2)
  74. #define BMC150_ACCEL_REG_INT_EN_1 0x17
  75. #define BMC150_ACCEL_INT_EN_BIT_DATA_EN BIT(4)
  76. #define BMC150_ACCEL_INT_EN_BIT_FFULL_EN BIT(5)
  77. #define BMC150_ACCEL_INT_EN_BIT_FWM_EN BIT(6)
  78. #define BMC150_ACCEL_REG_INT_OUT_CTRL 0x20
  79. #define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL BIT(0)
  80. #define BMC150_ACCEL_REG_INT_5 0x27
  81. #define BMC150_ACCEL_SLOPE_DUR_MASK 0x03
  82. #define BMC150_ACCEL_REG_INT_6 0x28
  83. #define BMC150_ACCEL_SLOPE_THRES_MASK 0xFF
  84. /* Slope duration in terms of number of samples */
  85. #define BMC150_ACCEL_DEF_SLOPE_DURATION 1
  86. /* in terms of multiples of g's/LSB, based on range */
  87. #define BMC150_ACCEL_DEF_SLOPE_THRESHOLD 1
  88. #define BMC150_ACCEL_REG_XOUT_L 0x02
  89. #define BMC150_ACCEL_MAX_STARTUP_TIME_MS 100
  90. /* Sleep Duration values */
  91. #define BMC150_ACCEL_SLEEP_500_MICRO 0x05
  92. #define BMC150_ACCEL_SLEEP_1_MS 0x06
  93. #define BMC150_ACCEL_SLEEP_2_MS 0x07
  94. #define BMC150_ACCEL_SLEEP_4_MS 0x08
  95. #define BMC150_ACCEL_SLEEP_6_MS 0x09
  96. #define BMC150_ACCEL_SLEEP_10_MS 0x0A
  97. #define BMC150_ACCEL_SLEEP_25_MS 0x0B
  98. #define BMC150_ACCEL_SLEEP_50_MS 0x0C
  99. #define BMC150_ACCEL_SLEEP_100_MS 0x0D
  100. #define BMC150_ACCEL_SLEEP_500_MS 0x0E
  101. #define BMC150_ACCEL_SLEEP_1_SEC 0x0F
  102. #define BMC150_ACCEL_REG_TEMP 0x08
  103. #define BMC150_ACCEL_TEMP_CENTER_VAL 24
  104. #define BMC150_ACCEL_AXIS_TO_REG(axis) (BMC150_ACCEL_REG_XOUT_L + (axis * 2))
  105. #define BMC150_AUTO_SUSPEND_DELAY_MS 2000
  106. #define BMC150_ACCEL_REG_FIFO_STATUS 0x0E
  107. #define BMC150_ACCEL_REG_FIFO_CONFIG0 0x30
  108. #define BMC150_ACCEL_REG_FIFO_CONFIG1 0x3E
  109. #define BMC150_ACCEL_REG_FIFO_DATA 0x3F
  110. #define BMC150_ACCEL_FIFO_LENGTH 32
  111. enum bmc150_accel_axis {
  112. AXIS_X,
  113. AXIS_Y,
  114. AXIS_Z,
  115. };
  116. enum bmc150_power_modes {
  117. BMC150_ACCEL_SLEEP_MODE_NORMAL,
  118. BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND,
  119. BMC150_ACCEL_SLEEP_MODE_LPM,
  120. BMC150_ACCEL_SLEEP_MODE_SUSPEND = 0x04,
  121. };
  122. struct bmc150_scale_info {
  123. int scale;
  124. u8 reg_range;
  125. };
  126. struct bmc150_accel_chip_info {
  127. const char *name;
  128. u8 chip_id;
  129. const struct iio_chan_spec *channels;
  130. int num_channels;
  131. const struct bmc150_scale_info scale_table[4];
  132. };
  133. struct bmc150_accel_interrupt {
  134. const struct bmc150_accel_interrupt_info *info;
  135. atomic_t users;
  136. };
  137. struct bmc150_accel_trigger {
  138. struct bmc150_accel_data *data;
  139. struct iio_trigger *indio_trig;
  140. int (*setup)(struct bmc150_accel_trigger *t, bool state);
  141. int intr;
  142. bool enabled;
  143. };
  144. enum bmc150_accel_interrupt_id {
  145. BMC150_ACCEL_INT_DATA_READY,
  146. BMC150_ACCEL_INT_ANY_MOTION,
  147. BMC150_ACCEL_INT_WATERMARK,
  148. BMC150_ACCEL_INTERRUPTS,
  149. };
  150. enum bmc150_accel_trigger_id {
  151. BMC150_ACCEL_TRIGGER_DATA_READY,
  152. BMC150_ACCEL_TRIGGER_ANY_MOTION,
  153. BMC150_ACCEL_TRIGGERS,
  154. };
  155. struct bmc150_accel_data {
  156. struct i2c_client *client;
  157. struct bmc150_accel_interrupt interrupts[BMC150_ACCEL_INTERRUPTS];
  158. atomic_t active_intr;
  159. struct bmc150_accel_trigger triggers[BMC150_ACCEL_TRIGGERS];
  160. struct mutex mutex;
  161. u8 fifo_mode, watermark;
  162. s16 buffer[8];
  163. u8 bw_bits;
  164. u32 slope_dur;
  165. u32 slope_thres;
  166. u32 range;
  167. int ev_enable_state;
  168. int64_t timestamp, old_timestamp; /* Only used in hw fifo mode. */
  169. const struct bmc150_accel_chip_info *chip_info;
  170. };
  171. static const struct {
  172. int val;
  173. int val2;
  174. u8 bw_bits;
  175. } bmc150_accel_samp_freq_table[] = { {15, 620000, 0x08},
  176. {31, 260000, 0x09},
  177. {62, 500000, 0x0A},
  178. {125, 0, 0x0B},
  179. {250, 0, 0x0C},
  180. {500, 0, 0x0D},
  181. {1000, 0, 0x0E},
  182. {2000, 0, 0x0F} };
  183. static const struct {
  184. int bw_bits;
  185. int msec;
  186. } bmc150_accel_sample_upd_time[] = { {0x08, 64},
  187. {0x09, 32},
  188. {0x0A, 16},
  189. {0x0B, 8},
  190. {0x0C, 4},
  191. {0x0D, 2},
  192. {0x0E, 1},
  193. {0x0F, 1} };
  194. static const struct {
  195. int sleep_dur;
  196. u8 reg_value;
  197. } bmc150_accel_sleep_value_table[] = { {0, 0},
  198. {500, BMC150_ACCEL_SLEEP_500_MICRO},
  199. {1000, BMC150_ACCEL_SLEEP_1_MS},
  200. {2000, BMC150_ACCEL_SLEEP_2_MS},
  201. {4000, BMC150_ACCEL_SLEEP_4_MS},
  202. {6000, BMC150_ACCEL_SLEEP_6_MS},
  203. {10000, BMC150_ACCEL_SLEEP_10_MS},
  204. {25000, BMC150_ACCEL_SLEEP_25_MS},
  205. {50000, BMC150_ACCEL_SLEEP_50_MS},
  206. {100000, BMC150_ACCEL_SLEEP_100_MS},
  207. {500000, BMC150_ACCEL_SLEEP_500_MS},
  208. {1000000, BMC150_ACCEL_SLEEP_1_SEC} };
  209. static int bmc150_accel_set_mode(struct bmc150_accel_data *data,
  210. enum bmc150_power_modes mode,
  211. int dur_us)
  212. {
  213. int i;
  214. int ret;
  215. u8 lpw_bits;
  216. int dur_val = -1;
  217. if (dur_us > 0) {
  218. for (i = 0; i < ARRAY_SIZE(bmc150_accel_sleep_value_table);
  219. ++i) {
  220. if (bmc150_accel_sleep_value_table[i].sleep_dur ==
  221. dur_us)
  222. dur_val =
  223. bmc150_accel_sleep_value_table[i].reg_value;
  224. }
  225. } else {
  226. dur_val = 0;
  227. }
  228. if (dur_val < 0)
  229. return -EINVAL;
  230. lpw_bits = mode << BMC150_ACCEL_PMU_MODE_SHIFT;
  231. lpw_bits |= (dur_val << BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT);
  232. dev_dbg(&data->client->dev, "Set Mode bits %x\n", lpw_bits);
  233. ret = i2c_smbus_write_byte_data(data->client,
  234. BMC150_ACCEL_REG_PMU_LPW, lpw_bits);
  235. if (ret < 0) {
  236. dev_err(&data->client->dev, "Error writing reg_pmu_lpw\n");
  237. return ret;
  238. }
  239. return 0;
  240. }
  241. static int bmc150_accel_set_bw(struct bmc150_accel_data *data, int val,
  242. int val2)
  243. {
  244. int i;
  245. int ret;
  246. for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
  247. if (bmc150_accel_samp_freq_table[i].val == val &&
  248. bmc150_accel_samp_freq_table[i].val2 == val2) {
  249. ret = i2c_smbus_write_byte_data(
  250. data->client,
  251. BMC150_ACCEL_REG_PMU_BW,
  252. bmc150_accel_samp_freq_table[i].bw_bits);
  253. if (ret < 0)
  254. return ret;
  255. data->bw_bits =
  256. bmc150_accel_samp_freq_table[i].bw_bits;
  257. return 0;
  258. }
  259. }
  260. return -EINVAL;
  261. }
  262. static int bmc150_accel_update_slope(struct bmc150_accel_data *data)
  263. {
  264. int ret, val;
  265. ret = i2c_smbus_write_byte_data(data->client, BMC150_ACCEL_REG_INT_6,
  266. data->slope_thres);
  267. if (ret < 0) {
  268. dev_err(&data->client->dev, "Error writing reg_int_6\n");
  269. return ret;
  270. }
  271. ret = i2c_smbus_read_byte_data(data->client, BMC150_ACCEL_REG_INT_5);
  272. if (ret < 0) {
  273. dev_err(&data->client->dev, "Error reading reg_int_5\n");
  274. return ret;
  275. }
  276. val = (ret & ~BMC150_ACCEL_SLOPE_DUR_MASK) | data->slope_dur;
  277. ret = i2c_smbus_write_byte_data(data->client, BMC150_ACCEL_REG_INT_5,
  278. val);
  279. if (ret < 0) {
  280. dev_err(&data->client->dev, "Error write reg_int_5\n");
  281. return ret;
  282. }
  283. dev_dbg(&data->client->dev, "%s: %x %x\n", __func__, data->slope_thres,
  284. data->slope_dur);
  285. return ret;
  286. }
  287. static int bmc150_accel_any_motion_setup(struct bmc150_accel_trigger *t,
  288. bool state)
  289. {
  290. if (state)
  291. return bmc150_accel_update_slope(t->data);
  292. return 0;
  293. }
  294. static int bmc150_accel_get_bw(struct bmc150_accel_data *data, int *val,
  295. int *val2)
  296. {
  297. int i;
  298. for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
  299. if (bmc150_accel_samp_freq_table[i].bw_bits == data->bw_bits) {
  300. *val = bmc150_accel_samp_freq_table[i].val;
  301. *val2 = bmc150_accel_samp_freq_table[i].val2;
  302. return IIO_VAL_INT_PLUS_MICRO;
  303. }
  304. }
  305. return -EINVAL;
  306. }
  307. #ifdef CONFIG_PM
  308. static int bmc150_accel_get_startup_times(struct bmc150_accel_data *data)
  309. {
  310. int i;
  311. for (i = 0; i < ARRAY_SIZE(bmc150_accel_sample_upd_time); ++i) {
  312. if (bmc150_accel_sample_upd_time[i].bw_bits == data->bw_bits)
  313. return bmc150_accel_sample_upd_time[i].msec;
  314. }
  315. return BMC150_ACCEL_MAX_STARTUP_TIME_MS;
  316. }
  317. static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
  318. {
  319. int ret;
  320. if (on) {
  321. ret = pm_runtime_get_sync(&data->client->dev);
  322. } else {
  323. pm_runtime_mark_last_busy(&data->client->dev);
  324. ret = pm_runtime_put_autosuspend(&data->client->dev);
  325. }
  326. if (ret < 0) {
  327. dev_err(&data->client->dev,
  328. "Failed: bmc150_accel_set_power_state for %d\n", on);
  329. if (on)
  330. pm_runtime_put_noidle(&data->client->dev);
  331. return ret;
  332. }
  333. return 0;
  334. }
  335. #else
  336. static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
  337. {
  338. return 0;
  339. }
  340. #endif
  341. static const struct bmc150_accel_interrupt_info {
  342. u8 map_reg;
  343. u8 map_bitmask;
  344. u8 en_reg;
  345. u8 en_bitmask;
  346. } bmc150_accel_interrupts[BMC150_ACCEL_INTERRUPTS] = {
  347. { /* data ready interrupt */
  348. .map_reg = BMC150_ACCEL_REG_INT_MAP_1,
  349. .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_DATA,
  350. .en_reg = BMC150_ACCEL_REG_INT_EN_1,
  351. .en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN,
  352. },
  353. { /* motion interrupt */
  354. .map_reg = BMC150_ACCEL_REG_INT_MAP_0,
  355. .map_bitmask = BMC150_ACCEL_INT_MAP_0_BIT_SLOPE,
  356. .en_reg = BMC150_ACCEL_REG_INT_EN_0,
  357. .en_bitmask = BMC150_ACCEL_INT_EN_BIT_SLP_X |
  358. BMC150_ACCEL_INT_EN_BIT_SLP_Y |
  359. BMC150_ACCEL_INT_EN_BIT_SLP_Z
  360. },
  361. { /* fifo watermark interrupt */
  362. .map_reg = BMC150_ACCEL_REG_INT_MAP_1,
  363. .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_FWM,
  364. .en_reg = BMC150_ACCEL_REG_INT_EN_1,
  365. .en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN,
  366. },
  367. };
  368. static void bmc150_accel_interrupts_setup(struct iio_dev *indio_dev,
  369. struct bmc150_accel_data *data)
  370. {
  371. int i;
  372. for (i = 0; i < BMC150_ACCEL_INTERRUPTS; i++)
  373. data->interrupts[i].info = &bmc150_accel_interrupts[i];
  374. }
  375. static int bmc150_accel_set_interrupt(struct bmc150_accel_data *data, int i,
  376. bool state)
  377. {
  378. struct bmc150_accel_interrupt *intr = &data->interrupts[i];
  379. const struct bmc150_accel_interrupt_info *info = intr->info;
  380. int ret;
  381. if (state) {
  382. if (atomic_inc_return(&intr->users) > 1)
  383. return 0;
  384. } else {
  385. if (atomic_dec_return(&intr->users) > 0)
  386. return 0;
  387. }
  388. /*
  389. * We will expect the enable and disable to do operation in reverse
  390. * order. This will happen here anyway, as our resume operation uses
  391. * sync mode runtime pm calls. The suspend operation will be delayed
  392. * by autosuspend delay.
  393. * So the disable operation will still happen in reverse order of
  394. * enable operation. When runtime pm is disabled the mode is always on,
  395. * so sequence doesn't matter.
  396. */
  397. ret = bmc150_accel_set_power_state(data, state);
  398. if (ret < 0)
  399. return ret;
  400. /* map the interrupt to the appropriate pins */
  401. ret = i2c_smbus_read_byte_data(data->client, info->map_reg);
  402. if (ret < 0) {
  403. dev_err(&data->client->dev, "Error reading reg_int_map\n");
  404. goto out_fix_power_state;
  405. }
  406. if (state)
  407. ret |= info->map_bitmask;
  408. else
  409. ret &= ~info->map_bitmask;
  410. ret = i2c_smbus_write_byte_data(data->client, info->map_reg,
  411. ret);
  412. if (ret < 0) {
  413. dev_err(&data->client->dev, "Error writing reg_int_map\n");
  414. goto out_fix_power_state;
  415. }
  416. /* enable/disable the interrupt */
  417. ret = i2c_smbus_read_byte_data(data->client, info->en_reg);
  418. if (ret < 0) {
  419. dev_err(&data->client->dev, "Error reading reg_int_en\n");
  420. goto out_fix_power_state;
  421. }
  422. if (state)
  423. ret |= info->en_bitmask;
  424. else
  425. ret &= ~info->en_bitmask;
  426. ret = i2c_smbus_write_byte_data(data->client, info->en_reg, ret);
  427. if (ret < 0) {
  428. dev_err(&data->client->dev, "Error writing reg_int_en\n");
  429. goto out_fix_power_state;
  430. }
  431. if (state)
  432. atomic_inc(&data->active_intr);
  433. else
  434. atomic_dec(&data->active_intr);
  435. return 0;
  436. out_fix_power_state:
  437. bmc150_accel_set_power_state(data, false);
  438. return ret;
  439. }
  440. static int bmc150_accel_set_scale(struct bmc150_accel_data *data, int val)
  441. {
  442. int ret, i;
  443. for (i = 0; i < ARRAY_SIZE(data->chip_info->scale_table); ++i) {
  444. if (data->chip_info->scale_table[i].scale == val) {
  445. ret = i2c_smbus_write_byte_data(
  446. data->client,
  447. BMC150_ACCEL_REG_PMU_RANGE,
  448. data->chip_info->scale_table[i].reg_range);
  449. if (ret < 0) {
  450. dev_err(&data->client->dev,
  451. "Error writing pmu_range\n");
  452. return ret;
  453. }
  454. data->range = data->chip_info->scale_table[i].reg_range;
  455. return 0;
  456. }
  457. }
  458. return -EINVAL;
  459. }
  460. static int bmc150_accel_get_temp(struct bmc150_accel_data *data, int *val)
  461. {
  462. int ret;
  463. mutex_lock(&data->mutex);
  464. ret = i2c_smbus_read_byte_data(data->client, BMC150_ACCEL_REG_TEMP);
  465. if (ret < 0) {
  466. dev_err(&data->client->dev, "Error reading reg_temp\n");
  467. mutex_unlock(&data->mutex);
  468. return ret;
  469. }
  470. *val = sign_extend32(ret, 7);
  471. mutex_unlock(&data->mutex);
  472. return IIO_VAL_INT;
  473. }
  474. static int bmc150_accel_get_axis(struct bmc150_accel_data *data,
  475. struct iio_chan_spec const *chan,
  476. int *val)
  477. {
  478. int ret;
  479. int axis = chan->scan_index;
  480. mutex_lock(&data->mutex);
  481. ret = bmc150_accel_set_power_state(data, true);
  482. if (ret < 0) {
  483. mutex_unlock(&data->mutex);
  484. return ret;
  485. }
  486. ret = i2c_smbus_read_word_data(data->client,
  487. BMC150_ACCEL_AXIS_TO_REG(axis));
  488. if (ret < 0) {
  489. dev_err(&data->client->dev, "Error reading axis %d\n", axis);
  490. bmc150_accel_set_power_state(data, false);
  491. mutex_unlock(&data->mutex);
  492. return ret;
  493. }
  494. *val = sign_extend32(ret >> chan->scan_type.shift,
  495. chan->scan_type.realbits - 1);
  496. ret = bmc150_accel_set_power_state(data, false);
  497. mutex_unlock(&data->mutex);
  498. if (ret < 0)
  499. return ret;
  500. return IIO_VAL_INT;
  501. }
  502. static int bmc150_accel_read_raw(struct iio_dev *indio_dev,
  503. struct iio_chan_spec const *chan,
  504. int *val, int *val2, long mask)
  505. {
  506. struct bmc150_accel_data *data = iio_priv(indio_dev);
  507. int ret;
  508. switch (mask) {
  509. case IIO_CHAN_INFO_RAW:
  510. switch (chan->type) {
  511. case IIO_TEMP:
  512. return bmc150_accel_get_temp(data, val);
  513. case IIO_ACCEL:
  514. if (iio_buffer_enabled(indio_dev))
  515. return -EBUSY;
  516. else
  517. return bmc150_accel_get_axis(data, chan, val);
  518. default:
  519. return -EINVAL;
  520. }
  521. case IIO_CHAN_INFO_OFFSET:
  522. if (chan->type == IIO_TEMP) {
  523. *val = BMC150_ACCEL_TEMP_CENTER_VAL;
  524. return IIO_VAL_INT;
  525. } else {
  526. return -EINVAL;
  527. }
  528. case IIO_CHAN_INFO_SCALE:
  529. *val = 0;
  530. switch (chan->type) {
  531. case IIO_TEMP:
  532. *val2 = 500000;
  533. return IIO_VAL_INT_PLUS_MICRO;
  534. case IIO_ACCEL:
  535. {
  536. int i;
  537. const struct bmc150_scale_info *si;
  538. int st_size = ARRAY_SIZE(data->chip_info->scale_table);
  539. for (i = 0; i < st_size; ++i) {
  540. si = &data->chip_info->scale_table[i];
  541. if (si->reg_range == data->range) {
  542. *val2 = si->scale;
  543. return IIO_VAL_INT_PLUS_MICRO;
  544. }
  545. }
  546. return -EINVAL;
  547. }
  548. default:
  549. return -EINVAL;
  550. }
  551. case IIO_CHAN_INFO_SAMP_FREQ:
  552. mutex_lock(&data->mutex);
  553. ret = bmc150_accel_get_bw(data, val, val2);
  554. mutex_unlock(&data->mutex);
  555. return ret;
  556. default:
  557. return -EINVAL;
  558. }
  559. }
  560. static int bmc150_accel_write_raw(struct iio_dev *indio_dev,
  561. struct iio_chan_spec const *chan,
  562. int val, int val2, long mask)
  563. {
  564. struct bmc150_accel_data *data = iio_priv(indio_dev);
  565. int ret;
  566. switch (mask) {
  567. case IIO_CHAN_INFO_SAMP_FREQ:
  568. mutex_lock(&data->mutex);
  569. ret = bmc150_accel_set_bw(data, val, val2);
  570. mutex_unlock(&data->mutex);
  571. break;
  572. case IIO_CHAN_INFO_SCALE:
  573. if (val)
  574. return -EINVAL;
  575. mutex_lock(&data->mutex);
  576. ret = bmc150_accel_set_scale(data, val2);
  577. mutex_unlock(&data->mutex);
  578. return ret;
  579. default:
  580. ret = -EINVAL;
  581. }
  582. return ret;
  583. }
  584. static int bmc150_accel_read_event(struct iio_dev *indio_dev,
  585. const struct iio_chan_spec *chan,
  586. enum iio_event_type type,
  587. enum iio_event_direction dir,
  588. enum iio_event_info info,
  589. int *val, int *val2)
  590. {
  591. struct bmc150_accel_data *data = iio_priv(indio_dev);
  592. *val2 = 0;
  593. switch (info) {
  594. case IIO_EV_INFO_VALUE:
  595. *val = data->slope_thres;
  596. break;
  597. case IIO_EV_INFO_PERIOD:
  598. *val = data->slope_dur;
  599. break;
  600. default:
  601. return -EINVAL;
  602. }
  603. return IIO_VAL_INT;
  604. }
  605. static int bmc150_accel_write_event(struct iio_dev *indio_dev,
  606. const struct iio_chan_spec *chan,
  607. enum iio_event_type type,
  608. enum iio_event_direction dir,
  609. enum iio_event_info info,
  610. int val, int val2)
  611. {
  612. struct bmc150_accel_data *data = iio_priv(indio_dev);
  613. if (data->ev_enable_state)
  614. return -EBUSY;
  615. switch (info) {
  616. case IIO_EV_INFO_VALUE:
  617. data->slope_thres = val & BMC150_ACCEL_SLOPE_THRES_MASK;
  618. break;
  619. case IIO_EV_INFO_PERIOD:
  620. data->slope_dur = val & BMC150_ACCEL_SLOPE_DUR_MASK;
  621. break;
  622. default:
  623. return -EINVAL;
  624. }
  625. return 0;
  626. }
  627. static int bmc150_accel_read_event_config(struct iio_dev *indio_dev,
  628. const struct iio_chan_spec *chan,
  629. enum iio_event_type type,
  630. enum iio_event_direction dir)
  631. {
  632. struct bmc150_accel_data *data = iio_priv(indio_dev);
  633. return data->ev_enable_state;
  634. }
  635. static int bmc150_accel_write_event_config(struct iio_dev *indio_dev,
  636. const struct iio_chan_spec *chan,
  637. enum iio_event_type type,
  638. enum iio_event_direction dir,
  639. int state)
  640. {
  641. struct bmc150_accel_data *data = iio_priv(indio_dev);
  642. int ret;
  643. if (state == data->ev_enable_state)
  644. return 0;
  645. mutex_lock(&data->mutex);
  646. ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_ANY_MOTION,
  647. state);
  648. if (ret < 0) {
  649. mutex_unlock(&data->mutex);
  650. return ret;
  651. }
  652. data->ev_enable_state = state;
  653. mutex_unlock(&data->mutex);
  654. return 0;
  655. }
  656. static int bmc150_accel_validate_trigger(struct iio_dev *indio_dev,
  657. struct iio_trigger *trig)
  658. {
  659. struct bmc150_accel_data *data = iio_priv(indio_dev);
  660. int i;
  661. for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
  662. if (data->triggers[i].indio_trig == trig)
  663. return 0;
  664. }
  665. return -EINVAL;
  666. }
  667. static ssize_t bmc150_accel_get_fifo_watermark(struct device *dev,
  668. struct device_attribute *attr,
  669. char *buf)
  670. {
  671. struct iio_dev *indio_dev = dev_to_iio_dev(dev);
  672. struct bmc150_accel_data *data = iio_priv(indio_dev);
  673. int wm;
  674. mutex_lock(&data->mutex);
  675. wm = data->watermark;
  676. mutex_unlock(&data->mutex);
  677. return sprintf(buf, "%d\n", wm);
  678. }
  679. static ssize_t bmc150_accel_get_fifo_state(struct device *dev,
  680. struct device_attribute *attr,
  681. char *buf)
  682. {
  683. struct iio_dev *indio_dev = dev_to_iio_dev(dev);
  684. struct bmc150_accel_data *data = iio_priv(indio_dev);
  685. bool state;
  686. mutex_lock(&data->mutex);
  687. state = data->fifo_mode;
  688. mutex_unlock(&data->mutex);
  689. return sprintf(buf, "%d\n", state);
  690. }
  691. static IIO_CONST_ATTR(hwfifo_watermark_min, "1");
  692. static IIO_CONST_ATTR(hwfifo_watermark_max,
  693. __stringify(BMC150_ACCEL_FIFO_LENGTH));
  694. static IIO_DEVICE_ATTR(hwfifo_enabled, S_IRUGO,
  695. bmc150_accel_get_fifo_state, NULL, 0);
  696. static IIO_DEVICE_ATTR(hwfifo_watermark, S_IRUGO,
  697. bmc150_accel_get_fifo_watermark, NULL, 0);
  698. static const struct attribute *bmc150_accel_fifo_attributes[] = {
  699. &iio_const_attr_hwfifo_watermark_min.dev_attr.attr,
  700. &iio_const_attr_hwfifo_watermark_max.dev_attr.attr,
  701. &iio_dev_attr_hwfifo_watermark.dev_attr.attr,
  702. &iio_dev_attr_hwfifo_enabled.dev_attr.attr,
  703. NULL,
  704. };
  705. static int bmc150_accel_set_watermark(struct iio_dev *indio_dev, unsigned val)
  706. {
  707. struct bmc150_accel_data *data = iio_priv(indio_dev);
  708. if (val > BMC150_ACCEL_FIFO_LENGTH)
  709. val = BMC150_ACCEL_FIFO_LENGTH;
  710. mutex_lock(&data->mutex);
  711. data->watermark = val;
  712. mutex_unlock(&data->mutex);
  713. return 0;
  714. }
  715. /*
  716. * We must read at least one full frame in one burst, otherwise the rest of the
  717. * frame data is discarded.
  718. */
  719. static int bmc150_accel_fifo_transfer(const struct i2c_client *client,
  720. char *buffer, int samples)
  721. {
  722. int sample_length = 3 * 2;
  723. u8 reg_fifo_data = BMC150_ACCEL_REG_FIFO_DATA;
  724. int ret = -EIO;
  725. if (i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
  726. struct i2c_msg msg[2] = {
  727. {
  728. .addr = client->addr,
  729. .flags = 0,
  730. .buf = &reg_fifo_data,
  731. .len = sizeof(reg_fifo_data),
  732. },
  733. {
  734. .addr = client->addr,
  735. .flags = I2C_M_RD,
  736. .buf = (u8 *)buffer,
  737. .len = samples * sample_length,
  738. }
  739. };
  740. ret = i2c_transfer(client->adapter, msg, 2);
  741. if (ret != 2)
  742. ret = -EIO;
  743. else
  744. ret = 0;
  745. } else {
  746. int i, step = I2C_SMBUS_BLOCK_MAX / sample_length;
  747. for (i = 0; i < samples * sample_length; i += step) {
  748. ret = i2c_smbus_read_i2c_block_data(client,
  749. reg_fifo_data, step,
  750. &buffer[i]);
  751. if (ret != step) {
  752. ret = -EIO;
  753. break;
  754. }
  755. ret = 0;
  756. }
  757. }
  758. if (ret)
  759. dev_err(&client->dev, "Error transferring data from fifo\n");
  760. return ret;
  761. }
  762. static int __bmc150_accel_fifo_flush(struct iio_dev *indio_dev,
  763. unsigned samples, bool irq)
  764. {
  765. struct bmc150_accel_data *data = iio_priv(indio_dev);
  766. int ret, i;
  767. u8 count;
  768. u16 buffer[BMC150_ACCEL_FIFO_LENGTH * 3];
  769. int64_t tstamp;
  770. uint64_t sample_period;
  771. ret = i2c_smbus_read_byte_data(data->client,
  772. BMC150_ACCEL_REG_FIFO_STATUS);
  773. if (ret < 0) {
  774. dev_err(&data->client->dev, "Error reading reg_fifo_status\n");
  775. return ret;
  776. }
  777. count = ret & 0x7F;
  778. if (!count)
  779. return 0;
  780. /*
  781. * If we getting called from IRQ handler we know the stored timestamp is
  782. * fairly accurate for the last stored sample. Otherwise, if we are
  783. * called as a result of a read operation from userspace and hence
  784. * before the watermark interrupt was triggered, take a timestamp
  785. * now. We can fall anywhere in between two samples so the error in this
  786. * case is at most one sample period.
  787. */
  788. if (!irq) {
  789. data->old_timestamp = data->timestamp;
  790. data->timestamp = iio_get_time_ns();
  791. }
  792. /*
  793. * Approximate timestamps for each of the sample based on the sampling
  794. * frequency, timestamp for last sample and number of samples.
  795. *
  796. * Note that we can't use the current bandwidth settings to compute the
  797. * sample period because the sample rate varies with the device
  798. * (e.g. between 31.70ms to 32.20ms for a bandwidth of 15.63HZ). That
  799. * small variation adds when we store a large number of samples and
  800. * creates significant jitter between the last and first samples in
  801. * different batches (e.g. 32ms vs 21ms).
  802. *
  803. * To avoid this issue we compute the actual sample period ourselves
  804. * based on the timestamp delta between the last two flush operations.
  805. */
  806. sample_period = (data->timestamp - data->old_timestamp);
  807. do_div(sample_period, count);
  808. tstamp = data->timestamp - (count - 1) * sample_period;
  809. if (samples && count > samples)
  810. count = samples;
  811. ret = bmc150_accel_fifo_transfer(data->client, (u8 *)buffer, count);
  812. if (ret)
  813. return ret;
  814. /*
  815. * Ideally we want the IIO core to handle the demux when running in fifo
  816. * mode but not when running in triggered buffer mode. Unfortunately
  817. * this does not seem to be possible, so stick with driver demux for
  818. * now.
  819. */
  820. for (i = 0; i < count; i++) {
  821. u16 sample[8];
  822. int j, bit;
  823. j = 0;
  824. for_each_set_bit(bit, indio_dev->active_scan_mask,
  825. indio_dev->masklength)
  826. memcpy(&sample[j++], &buffer[i * 3 + bit], 2);
  827. iio_push_to_buffers_with_timestamp(indio_dev, sample, tstamp);
  828. tstamp += sample_period;
  829. }
  830. return count;
  831. }
  832. static int bmc150_accel_fifo_flush(struct iio_dev *indio_dev, unsigned samples)
  833. {
  834. struct bmc150_accel_data *data = iio_priv(indio_dev);
  835. int ret;
  836. mutex_lock(&data->mutex);
  837. ret = __bmc150_accel_fifo_flush(indio_dev, samples, false);
  838. mutex_unlock(&data->mutex);
  839. return ret;
  840. }
  841. static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
  842. "15.620000 31.260000 62.50000 125 250 500 1000 2000");
  843. static struct attribute *bmc150_accel_attributes[] = {
  844. &iio_const_attr_sampling_frequency_available.dev_attr.attr,
  845. NULL,
  846. };
  847. static const struct attribute_group bmc150_accel_attrs_group = {
  848. .attrs = bmc150_accel_attributes,
  849. };
  850. static const struct iio_event_spec bmc150_accel_event = {
  851. .type = IIO_EV_TYPE_ROC,
  852. .dir = IIO_EV_DIR_EITHER,
  853. .mask_separate = BIT(IIO_EV_INFO_VALUE) |
  854. BIT(IIO_EV_INFO_ENABLE) |
  855. BIT(IIO_EV_INFO_PERIOD)
  856. };
  857. #define BMC150_ACCEL_CHANNEL(_axis, bits) { \
  858. .type = IIO_ACCEL, \
  859. .modified = 1, \
  860. .channel2 = IIO_MOD_##_axis, \
  861. .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
  862. .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
  863. BIT(IIO_CHAN_INFO_SAMP_FREQ), \
  864. .scan_index = AXIS_##_axis, \
  865. .scan_type = { \
  866. .sign = 's', \
  867. .realbits = (bits), \
  868. .storagebits = 16, \
  869. .shift = 16 - (bits), \
  870. }, \
  871. .event_spec = &bmc150_accel_event, \
  872. .num_event_specs = 1 \
  873. }
  874. #define BMC150_ACCEL_CHANNELS(bits) { \
  875. { \
  876. .type = IIO_TEMP, \
  877. .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
  878. BIT(IIO_CHAN_INFO_SCALE) | \
  879. BIT(IIO_CHAN_INFO_OFFSET), \
  880. .scan_index = -1, \
  881. }, \
  882. BMC150_ACCEL_CHANNEL(X, bits), \
  883. BMC150_ACCEL_CHANNEL(Y, bits), \
  884. BMC150_ACCEL_CHANNEL(Z, bits), \
  885. IIO_CHAN_SOFT_TIMESTAMP(3), \
  886. }
  887. static const struct iio_chan_spec bma222e_accel_channels[] =
  888. BMC150_ACCEL_CHANNELS(8);
  889. static const struct iio_chan_spec bma250e_accel_channels[] =
  890. BMC150_ACCEL_CHANNELS(10);
  891. static const struct iio_chan_spec bmc150_accel_channels[] =
  892. BMC150_ACCEL_CHANNELS(12);
  893. static const struct iio_chan_spec bma280_accel_channels[] =
  894. BMC150_ACCEL_CHANNELS(14);
  895. enum {
  896. bmc150,
  897. bmi055,
  898. bma255,
  899. bma250e,
  900. bma222e,
  901. bma280,
  902. };
  903. static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl[] = {
  904. [bmc150] = {
  905. .name = "BMC150A",
  906. .chip_id = 0xFA,
  907. .channels = bmc150_accel_channels,
  908. .num_channels = ARRAY_SIZE(bmc150_accel_channels),
  909. .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
  910. {19122, BMC150_ACCEL_DEF_RANGE_4G},
  911. {38344, BMC150_ACCEL_DEF_RANGE_8G},
  912. {76590, BMC150_ACCEL_DEF_RANGE_16G} },
  913. },
  914. [bmi055] = {
  915. .name = "BMI055A",
  916. .chip_id = 0xFA,
  917. .channels = bmc150_accel_channels,
  918. .num_channels = ARRAY_SIZE(bmc150_accel_channels),
  919. .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
  920. {19122, BMC150_ACCEL_DEF_RANGE_4G},
  921. {38344, BMC150_ACCEL_DEF_RANGE_8G},
  922. {76590, BMC150_ACCEL_DEF_RANGE_16G} },
  923. },
  924. [bma255] = {
  925. .name = "BMA0255",
  926. .chip_id = 0xFA,
  927. .channels = bmc150_accel_channels,
  928. .num_channels = ARRAY_SIZE(bmc150_accel_channels),
  929. .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
  930. {19122, BMC150_ACCEL_DEF_RANGE_4G},
  931. {38344, BMC150_ACCEL_DEF_RANGE_8G},
  932. {76590, BMC150_ACCEL_DEF_RANGE_16G} },
  933. },
  934. [bma250e] = {
  935. .name = "BMA250E",
  936. .chip_id = 0xF9,
  937. .channels = bma250e_accel_channels,
  938. .num_channels = ARRAY_SIZE(bma250e_accel_channels),
  939. .scale_table = { {38344, BMC150_ACCEL_DEF_RANGE_2G},
  940. {76590, BMC150_ACCEL_DEF_RANGE_4G},
  941. {153277, BMC150_ACCEL_DEF_RANGE_8G},
  942. {306457, BMC150_ACCEL_DEF_RANGE_16G} },
  943. },
  944. [bma222e] = {
  945. .name = "BMA222E",
  946. .chip_id = 0xF8,
  947. .channels = bma222e_accel_channels,
  948. .num_channels = ARRAY_SIZE(bma222e_accel_channels),
  949. .scale_table = { {153277, BMC150_ACCEL_DEF_RANGE_2G},
  950. {306457, BMC150_ACCEL_DEF_RANGE_4G},
  951. {612915, BMC150_ACCEL_DEF_RANGE_8G},
  952. {1225831, BMC150_ACCEL_DEF_RANGE_16G} },
  953. },
  954. [bma280] = {
  955. .name = "BMA0280",
  956. .chip_id = 0xFB,
  957. .channels = bma280_accel_channels,
  958. .num_channels = ARRAY_SIZE(bma280_accel_channels),
  959. .scale_table = { {2392, BMC150_ACCEL_DEF_RANGE_2G},
  960. {4785, BMC150_ACCEL_DEF_RANGE_4G},
  961. {9581, BMC150_ACCEL_DEF_RANGE_8G},
  962. {19152, BMC150_ACCEL_DEF_RANGE_16G} },
  963. },
  964. };
  965. static const struct iio_info bmc150_accel_info = {
  966. .attrs = &bmc150_accel_attrs_group,
  967. .read_raw = bmc150_accel_read_raw,
  968. .write_raw = bmc150_accel_write_raw,
  969. .read_event_value = bmc150_accel_read_event,
  970. .write_event_value = bmc150_accel_write_event,
  971. .write_event_config = bmc150_accel_write_event_config,
  972. .read_event_config = bmc150_accel_read_event_config,
  973. .driver_module = THIS_MODULE,
  974. };
  975. static const struct iio_info bmc150_accel_info_fifo = {
  976. .attrs = &bmc150_accel_attrs_group,
  977. .read_raw = bmc150_accel_read_raw,
  978. .write_raw = bmc150_accel_write_raw,
  979. .read_event_value = bmc150_accel_read_event,
  980. .write_event_value = bmc150_accel_write_event,
  981. .write_event_config = bmc150_accel_write_event_config,
  982. .read_event_config = bmc150_accel_read_event_config,
  983. .validate_trigger = bmc150_accel_validate_trigger,
  984. .hwfifo_set_watermark = bmc150_accel_set_watermark,
  985. .hwfifo_flush_to_buffer = bmc150_accel_fifo_flush,
  986. .driver_module = THIS_MODULE,
  987. };
  988. static irqreturn_t bmc150_accel_trigger_handler(int irq, void *p)
  989. {
  990. struct iio_poll_func *pf = p;
  991. struct iio_dev *indio_dev = pf->indio_dev;
  992. struct bmc150_accel_data *data = iio_priv(indio_dev);
  993. int bit, ret, i = 0;
  994. mutex_lock(&data->mutex);
  995. for_each_set_bit(bit, indio_dev->active_scan_mask,
  996. indio_dev->masklength) {
  997. ret = i2c_smbus_read_word_data(data->client,
  998. BMC150_ACCEL_AXIS_TO_REG(bit));
  999. if (ret < 0) {
  1000. mutex_unlock(&data->mutex);
  1001. goto err_read;
  1002. }
  1003. data->buffer[i++] = ret;
  1004. }
  1005. mutex_unlock(&data->mutex);
  1006. iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
  1007. pf->timestamp);
  1008. err_read:
  1009. iio_trigger_notify_done(indio_dev->trig);
  1010. return IRQ_HANDLED;
  1011. }
  1012. static int bmc150_accel_trig_try_reen(struct iio_trigger *trig)
  1013. {
  1014. struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
  1015. struct bmc150_accel_data *data = t->data;
  1016. int ret;
  1017. /* new data interrupts don't need ack */
  1018. if (t == &t->data->triggers[BMC150_ACCEL_TRIGGER_DATA_READY])
  1019. return 0;
  1020. mutex_lock(&data->mutex);
  1021. /* clear any latched interrupt */
  1022. ret = i2c_smbus_write_byte_data(data->client,
  1023. BMC150_ACCEL_REG_INT_RST_LATCH,
  1024. BMC150_ACCEL_INT_MODE_LATCH_INT |
  1025. BMC150_ACCEL_INT_MODE_LATCH_RESET);
  1026. mutex_unlock(&data->mutex);
  1027. if (ret < 0) {
  1028. dev_err(&data->client->dev,
  1029. "Error writing reg_int_rst_latch\n");
  1030. return ret;
  1031. }
  1032. return 0;
  1033. }
  1034. static int bmc150_accel_trigger_set_state(struct iio_trigger *trig,
  1035. bool state)
  1036. {
  1037. struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
  1038. struct bmc150_accel_data *data = t->data;
  1039. int ret;
  1040. mutex_lock(&data->mutex);
  1041. if (t->enabled == state) {
  1042. mutex_unlock(&data->mutex);
  1043. return 0;
  1044. }
  1045. if (t->setup) {
  1046. ret = t->setup(t, state);
  1047. if (ret < 0) {
  1048. mutex_unlock(&data->mutex);
  1049. return ret;
  1050. }
  1051. }
  1052. ret = bmc150_accel_set_interrupt(data, t->intr, state);
  1053. if (ret < 0) {
  1054. mutex_unlock(&data->mutex);
  1055. return ret;
  1056. }
  1057. t->enabled = state;
  1058. mutex_unlock(&data->mutex);
  1059. return ret;
  1060. }
  1061. static const struct iio_trigger_ops bmc150_accel_trigger_ops = {
  1062. .set_trigger_state = bmc150_accel_trigger_set_state,
  1063. .try_reenable = bmc150_accel_trig_try_reen,
  1064. .owner = THIS_MODULE,
  1065. };
  1066. static int bmc150_accel_handle_roc_event(struct iio_dev *indio_dev)
  1067. {
  1068. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1069. int dir;
  1070. int ret;
  1071. ret = i2c_smbus_read_byte_data(data->client,
  1072. BMC150_ACCEL_REG_INT_STATUS_2);
  1073. if (ret < 0) {
  1074. dev_err(&data->client->dev, "Error reading reg_int_status_2\n");
  1075. return ret;
  1076. }
  1077. if (ret & BMC150_ACCEL_ANY_MOTION_BIT_SIGN)
  1078. dir = IIO_EV_DIR_FALLING;
  1079. else
  1080. dir = IIO_EV_DIR_RISING;
  1081. if (ret & BMC150_ACCEL_ANY_MOTION_BIT_X)
  1082. iio_push_event(indio_dev,
  1083. IIO_MOD_EVENT_CODE(IIO_ACCEL,
  1084. 0,
  1085. IIO_MOD_X,
  1086. IIO_EV_TYPE_ROC,
  1087. dir),
  1088. data->timestamp);
  1089. if (ret & BMC150_ACCEL_ANY_MOTION_BIT_Y)
  1090. iio_push_event(indio_dev,
  1091. IIO_MOD_EVENT_CODE(IIO_ACCEL,
  1092. 0,
  1093. IIO_MOD_Y,
  1094. IIO_EV_TYPE_ROC,
  1095. dir),
  1096. data->timestamp);
  1097. if (ret & BMC150_ACCEL_ANY_MOTION_BIT_Z)
  1098. iio_push_event(indio_dev,
  1099. IIO_MOD_EVENT_CODE(IIO_ACCEL,
  1100. 0,
  1101. IIO_MOD_Z,
  1102. IIO_EV_TYPE_ROC,
  1103. dir),
  1104. data->timestamp);
  1105. return ret;
  1106. }
  1107. static irqreturn_t bmc150_accel_irq_thread_handler(int irq, void *private)
  1108. {
  1109. struct iio_dev *indio_dev = private;
  1110. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1111. bool ack = false;
  1112. int ret;
  1113. mutex_lock(&data->mutex);
  1114. if (data->fifo_mode) {
  1115. ret = __bmc150_accel_fifo_flush(indio_dev,
  1116. BMC150_ACCEL_FIFO_LENGTH, true);
  1117. if (ret > 0)
  1118. ack = true;
  1119. }
  1120. if (data->ev_enable_state) {
  1121. ret = bmc150_accel_handle_roc_event(indio_dev);
  1122. if (ret > 0)
  1123. ack = true;
  1124. }
  1125. if (ack) {
  1126. ret = i2c_smbus_write_byte_data(data->client,
  1127. BMC150_ACCEL_REG_INT_RST_LATCH,
  1128. BMC150_ACCEL_INT_MODE_LATCH_INT |
  1129. BMC150_ACCEL_INT_MODE_LATCH_RESET);
  1130. if (ret)
  1131. dev_err(&data->client->dev,
  1132. "Error writing reg_int_rst_latch\n");
  1133. ret = IRQ_HANDLED;
  1134. } else {
  1135. ret = IRQ_NONE;
  1136. }
  1137. mutex_unlock(&data->mutex);
  1138. return ret;
  1139. }
  1140. static irqreturn_t bmc150_accel_irq_handler(int irq, void *private)
  1141. {
  1142. struct iio_dev *indio_dev = private;
  1143. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1144. bool ack = false;
  1145. int i;
  1146. data->old_timestamp = data->timestamp;
  1147. data->timestamp = iio_get_time_ns();
  1148. for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
  1149. if (data->triggers[i].enabled) {
  1150. iio_trigger_poll(data->triggers[i].indio_trig);
  1151. ack = true;
  1152. break;
  1153. }
  1154. }
  1155. if (data->ev_enable_state || data->fifo_mode)
  1156. return IRQ_WAKE_THREAD;
  1157. if (ack)
  1158. return IRQ_HANDLED;
  1159. return IRQ_NONE;
  1160. }
  1161. static int bmc150_accel_gpio_probe(struct i2c_client *client,
  1162. struct bmc150_accel_data *data)
  1163. {
  1164. struct device *dev;
  1165. struct gpio_desc *gpio;
  1166. int ret;
  1167. if (!client)
  1168. return -EINVAL;
  1169. dev = &client->dev;
  1170. /* data ready gpio interrupt pin */
  1171. gpio = devm_gpiod_get_index(dev, BMC150_ACCEL_GPIO_NAME, 0, GPIOD_IN);
  1172. if (IS_ERR(gpio)) {
  1173. dev_err(dev, "Failed: gpio get index\n");
  1174. return PTR_ERR(gpio);
  1175. }
  1176. ret = gpiod_to_irq(gpio);
  1177. dev_dbg(dev, "GPIO resource, no:%d irq:%d\n", desc_to_gpio(gpio), ret);
  1178. return ret;
  1179. }
  1180. static const struct {
  1181. int intr;
  1182. const char *name;
  1183. int (*setup)(struct bmc150_accel_trigger *t, bool state);
  1184. } bmc150_accel_triggers[BMC150_ACCEL_TRIGGERS] = {
  1185. {
  1186. .intr = 0,
  1187. .name = "%s-dev%d",
  1188. },
  1189. {
  1190. .intr = 1,
  1191. .name = "%s-any-motion-dev%d",
  1192. .setup = bmc150_accel_any_motion_setup,
  1193. },
  1194. };
  1195. static void bmc150_accel_unregister_triggers(struct bmc150_accel_data *data,
  1196. int from)
  1197. {
  1198. int i;
  1199. for (i = from; i >= 0; i--) {
  1200. if (data->triggers[i].indio_trig) {
  1201. iio_trigger_unregister(data->triggers[i].indio_trig);
  1202. data->triggers[i].indio_trig = NULL;
  1203. }
  1204. }
  1205. }
  1206. static int bmc150_accel_triggers_setup(struct iio_dev *indio_dev,
  1207. struct bmc150_accel_data *data)
  1208. {
  1209. int i, ret;
  1210. for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
  1211. struct bmc150_accel_trigger *t = &data->triggers[i];
  1212. t->indio_trig = devm_iio_trigger_alloc(&data->client->dev,
  1213. bmc150_accel_triggers[i].name,
  1214. indio_dev->name,
  1215. indio_dev->id);
  1216. if (!t->indio_trig) {
  1217. ret = -ENOMEM;
  1218. break;
  1219. }
  1220. t->indio_trig->dev.parent = &data->client->dev;
  1221. t->indio_trig->ops = &bmc150_accel_trigger_ops;
  1222. t->intr = bmc150_accel_triggers[i].intr;
  1223. t->data = data;
  1224. t->setup = bmc150_accel_triggers[i].setup;
  1225. iio_trigger_set_drvdata(t->indio_trig, t);
  1226. ret = iio_trigger_register(t->indio_trig);
  1227. if (ret)
  1228. break;
  1229. }
  1230. if (ret)
  1231. bmc150_accel_unregister_triggers(data, i - 1);
  1232. return ret;
  1233. }
  1234. #define BMC150_ACCEL_FIFO_MODE_STREAM 0x80
  1235. #define BMC150_ACCEL_FIFO_MODE_FIFO 0x40
  1236. #define BMC150_ACCEL_FIFO_MODE_BYPASS 0x00
  1237. static int bmc150_accel_fifo_set_mode(struct bmc150_accel_data *data)
  1238. {
  1239. u8 reg = BMC150_ACCEL_REG_FIFO_CONFIG1;
  1240. int ret;
  1241. ret = i2c_smbus_write_byte_data(data->client, reg, data->fifo_mode);
  1242. if (ret < 0) {
  1243. dev_err(&data->client->dev, "Error writing reg_fifo_config1\n");
  1244. return ret;
  1245. }
  1246. if (!data->fifo_mode)
  1247. return 0;
  1248. ret = i2c_smbus_write_byte_data(data->client,
  1249. BMC150_ACCEL_REG_FIFO_CONFIG0,
  1250. data->watermark);
  1251. if (ret < 0)
  1252. dev_err(&data->client->dev, "Error writing reg_fifo_config0\n");
  1253. return ret;
  1254. }
  1255. static int bmc150_accel_buffer_preenable(struct iio_dev *indio_dev)
  1256. {
  1257. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1258. return bmc150_accel_set_power_state(data, true);
  1259. }
  1260. static int bmc150_accel_buffer_postenable(struct iio_dev *indio_dev)
  1261. {
  1262. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1263. int ret = 0;
  1264. if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
  1265. return iio_triggered_buffer_postenable(indio_dev);
  1266. mutex_lock(&data->mutex);
  1267. if (!data->watermark)
  1268. goto out;
  1269. ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
  1270. true);
  1271. if (ret)
  1272. goto out;
  1273. data->fifo_mode = BMC150_ACCEL_FIFO_MODE_FIFO;
  1274. ret = bmc150_accel_fifo_set_mode(data);
  1275. if (ret) {
  1276. data->fifo_mode = 0;
  1277. bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
  1278. false);
  1279. }
  1280. out:
  1281. mutex_unlock(&data->mutex);
  1282. return ret;
  1283. }
  1284. static int bmc150_accel_buffer_predisable(struct iio_dev *indio_dev)
  1285. {
  1286. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1287. if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
  1288. return iio_triggered_buffer_predisable(indio_dev);
  1289. mutex_lock(&data->mutex);
  1290. if (!data->fifo_mode)
  1291. goto out;
  1292. bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, false);
  1293. __bmc150_accel_fifo_flush(indio_dev, BMC150_ACCEL_FIFO_LENGTH, false);
  1294. data->fifo_mode = 0;
  1295. bmc150_accel_fifo_set_mode(data);
  1296. out:
  1297. mutex_unlock(&data->mutex);
  1298. return 0;
  1299. }
  1300. static int bmc150_accel_buffer_postdisable(struct iio_dev *indio_dev)
  1301. {
  1302. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1303. return bmc150_accel_set_power_state(data, false);
  1304. }
  1305. static const struct iio_buffer_setup_ops bmc150_accel_buffer_ops = {
  1306. .preenable = bmc150_accel_buffer_preenable,
  1307. .postenable = bmc150_accel_buffer_postenable,
  1308. .predisable = bmc150_accel_buffer_predisable,
  1309. .postdisable = bmc150_accel_buffer_postdisable,
  1310. };
  1311. static int bmc150_accel_chip_init(struct bmc150_accel_data *data)
  1312. {
  1313. int ret, i;
  1314. ret = i2c_smbus_read_byte_data(data->client, BMC150_ACCEL_REG_CHIP_ID);
  1315. if (ret < 0) {
  1316. dev_err(&data->client->dev, "Error: Reading chip id\n");
  1317. return ret;
  1318. }
  1319. dev_dbg(&data->client->dev, "Chip Id %x\n", ret);
  1320. for (i = 0; i < ARRAY_SIZE(bmc150_accel_chip_info_tbl); i++) {
  1321. if (bmc150_accel_chip_info_tbl[i].chip_id == ret) {
  1322. data->chip_info = &bmc150_accel_chip_info_tbl[i];
  1323. break;
  1324. }
  1325. }
  1326. if (!data->chip_info) {
  1327. dev_err(&data->client->dev, "Unsupported chip %x\n", ret);
  1328. return -ENODEV;
  1329. }
  1330. ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
  1331. if (ret < 0)
  1332. return ret;
  1333. /* Set Bandwidth */
  1334. ret = bmc150_accel_set_bw(data, BMC150_ACCEL_DEF_BW, 0);
  1335. if (ret < 0)
  1336. return ret;
  1337. /* Set Default Range */
  1338. ret = i2c_smbus_write_byte_data(data->client,
  1339. BMC150_ACCEL_REG_PMU_RANGE,
  1340. BMC150_ACCEL_DEF_RANGE_4G);
  1341. if (ret < 0) {
  1342. dev_err(&data->client->dev, "Error writing reg_pmu_range\n");
  1343. return ret;
  1344. }
  1345. data->range = BMC150_ACCEL_DEF_RANGE_4G;
  1346. /* Set default slope duration and thresholds */
  1347. data->slope_thres = BMC150_ACCEL_DEF_SLOPE_THRESHOLD;
  1348. data->slope_dur = BMC150_ACCEL_DEF_SLOPE_DURATION;
  1349. ret = bmc150_accel_update_slope(data);
  1350. if (ret < 0)
  1351. return ret;
  1352. /* Set default as latched interrupts */
  1353. ret = i2c_smbus_write_byte_data(data->client,
  1354. BMC150_ACCEL_REG_INT_RST_LATCH,
  1355. BMC150_ACCEL_INT_MODE_LATCH_INT |
  1356. BMC150_ACCEL_INT_MODE_LATCH_RESET);
  1357. if (ret < 0) {
  1358. dev_err(&data->client->dev,
  1359. "Error writing reg_int_rst_latch\n");
  1360. return ret;
  1361. }
  1362. return 0;
  1363. }
  1364. static int bmc150_accel_probe(struct i2c_client *client,
  1365. const struct i2c_device_id *id)
  1366. {
  1367. struct bmc150_accel_data *data;
  1368. struct iio_dev *indio_dev;
  1369. int ret;
  1370. const char *name = NULL;
  1371. indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
  1372. if (!indio_dev)
  1373. return -ENOMEM;
  1374. data = iio_priv(indio_dev);
  1375. i2c_set_clientdata(client, indio_dev);
  1376. data->client = client;
  1377. if (id)
  1378. name = id->name;
  1379. ret = bmc150_accel_chip_init(data);
  1380. if (ret < 0)
  1381. return ret;
  1382. mutex_init(&data->mutex);
  1383. indio_dev->dev.parent = &client->dev;
  1384. indio_dev->channels = data->chip_info->channels;
  1385. indio_dev->num_channels = data->chip_info->num_channels;
  1386. indio_dev->name = name ? name : data->chip_info->name;
  1387. indio_dev->modes = INDIO_DIRECT_MODE;
  1388. indio_dev->info = &bmc150_accel_info;
  1389. ret = iio_triggered_buffer_setup(indio_dev,
  1390. &iio_pollfunc_store_time,
  1391. bmc150_accel_trigger_handler,
  1392. &bmc150_accel_buffer_ops);
  1393. if (ret < 0) {
  1394. dev_err(&client->dev, "Failed: iio triggered buffer setup\n");
  1395. return ret;
  1396. }
  1397. if (client->irq < 0)
  1398. client->irq = bmc150_accel_gpio_probe(client, data);
  1399. if (client->irq > 0) {
  1400. ret = devm_request_threaded_irq(
  1401. &client->dev, client->irq,
  1402. bmc150_accel_irq_handler,
  1403. bmc150_accel_irq_thread_handler,
  1404. IRQF_TRIGGER_RISING,
  1405. BMC150_ACCEL_IRQ_NAME,
  1406. indio_dev);
  1407. if (ret)
  1408. goto err_buffer_cleanup;
  1409. /*
  1410. * Set latched mode interrupt. While certain interrupts are
  1411. * non-latched regardless of this settings (e.g. new data) we
  1412. * want to use latch mode when we can to prevent interrupt
  1413. * flooding.
  1414. */
  1415. ret = i2c_smbus_write_byte_data(data->client,
  1416. BMC150_ACCEL_REG_INT_RST_LATCH,
  1417. BMC150_ACCEL_INT_MODE_LATCH_RESET);
  1418. if (ret < 0) {
  1419. dev_err(&data->client->dev, "Error writing reg_int_rst_latch\n");
  1420. goto err_buffer_cleanup;
  1421. }
  1422. bmc150_accel_interrupts_setup(indio_dev, data);
  1423. ret = bmc150_accel_triggers_setup(indio_dev, data);
  1424. if (ret)
  1425. goto err_buffer_cleanup;
  1426. if (i2c_check_functionality(client->adapter, I2C_FUNC_I2C) ||
  1427. i2c_check_functionality(client->adapter,
  1428. I2C_FUNC_SMBUS_READ_I2C_BLOCK)) {
  1429. indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
  1430. indio_dev->info = &bmc150_accel_info_fifo;
  1431. indio_dev->buffer->attrs = bmc150_accel_fifo_attributes;
  1432. }
  1433. }
  1434. ret = iio_device_register(indio_dev);
  1435. if (ret < 0) {
  1436. dev_err(&client->dev, "Unable to register iio device\n");
  1437. goto err_trigger_unregister;
  1438. }
  1439. ret = pm_runtime_set_active(&client->dev);
  1440. if (ret)
  1441. goto err_iio_unregister;
  1442. pm_runtime_enable(&client->dev);
  1443. pm_runtime_set_autosuspend_delay(&client->dev,
  1444. BMC150_AUTO_SUSPEND_DELAY_MS);
  1445. pm_runtime_use_autosuspend(&client->dev);
  1446. return 0;
  1447. err_iio_unregister:
  1448. iio_device_unregister(indio_dev);
  1449. err_trigger_unregister:
  1450. bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
  1451. err_buffer_cleanup:
  1452. iio_triggered_buffer_cleanup(indio_dev);
  1453. return ret;
  1454. }
  1455. static int bmc150_accel_remove(struct i2c_client *client)
  1456. {
  1457. struct iio_dev *indio_dev = i2c_get_clientdata(client);
  1458. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1459. pm_runtime_disable(&client->dev);
  1460. pm_runtime_set_suspended(&client->dev);
  1461. pm_runtime_put_noidle(&client->dev);
  1462. iio_device_unregister(indio_dev);
  1463. bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
  1464. iio_triggered_buffer_cleanup(indio_dev);
  1465. mutex_lock(&data->mutex);
  1466. bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 0);
  1467. mutex_unlock(&data->mutex);
  1468. return 0;
  1469. }
  1470. #ifdef CONFIG_PM_SLEEP
  1471. static int bmc150_accel_suspend(struct device *dev)
  1472. {
  1473. struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
  1474. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1475. mutex_lock(&data->mutex);
  1476. bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
  1477. mutex_unlock(&data->mutex);
  1478. return 0;
  1479. }
  1480. static int bmc150_accel_resume(struct device *dev)
  1481. {
  1482. struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
  1483. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1484. mutex_lock(&data->mutex);
  1485. if (atomic_read(&data->active_intr))
  1486. bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
  1487. bmc150_accel_fifo_set_mode(data);
  1488. mutex_unlock(&data->mutex);
  1489. return 0;
  1490. }
  1491. #endif
  1492. #ifdef CONFIG_PM
  1493. static int bmc150_accel_runtime_suspend(struct device *dev)
  1494. {
  1495. struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
  1496. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1497. int ret;
  1498. dev_dbg(&data->client->dev, __func__);
  1499. ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
  1500. if (ret < 0)
  1501. return -EAGAIN;
  1502. return 0;
  1503. }
  1504. static int bmc150_accel_runtime_resume(struct device *dev)
  1505. {
  1506. struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
  1507. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1508. int ret;
  1509. int sleep_val;
  1510. dev_dbg(&data->client->dev, __func__);
  1511. ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
  1512. if (ret < 0)
  1513. return ret;
  1514. ret = bmc150_accel_fifo_set_mode(data);
  1515. if (ret < 0)
  1516. return ret;
  1517. sleep_val = bmc150_accel_get_startup_times(data);
  1518. if (sleep_val < 20)
  1519. usleep_range(sleep_val * 1000, 20000);
  1520. else
  1521. msleep_interruptible(sleep_val);
  1522. return 0;
  1523. }
  1524. #endif
  1525. static const struct dev_pm_ops bmc150_accel_pm_ops = {
  1526. SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend, bmc150_accel_resume)
  1527. SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend,
  1528. bmc150_accel_runtime_resume, NULL)
  1529. };
  1530. static const struct acpi_device_id bmc150_accel_acpi_match[] = {
  1531. {"BSBA0150", bmc150},
  1532. {"BMC150A", bmc150},
  1533. {"BMI055A", bmi055},
  1534. {"BMA0255", bma255},
  1535. {"BMA250E", bma250e},
  1536. {"BMA222E", bma222e},
  1537. {"BMA0280", bma280},
  1538. { },
  1539. };
  1540. MODULE_DEVICE_TABLE(acpi, bmc150_accel_acpi_match);
  1541. static const struct i2c_device_id bmc150_accel_id[] = {
  1542. {"bmc150_accel", bmc150},
  1543. {"bmi055_accel", bmi055},
  1544. {"bma255", bma255},
  1545. {"bma250e", bma250e},
  1546. {"bma222e", bma222e},
  1547. {"bma280", bma280},
  1548. {}
  1549. };
  1550. MODULE_DEVICE_TABLE(i2c, bmc150_accel_id);
  1551. static struct i2c_driver bmc150_accel_driver = {
  1552. .driver = {
  1553. .name = BMC150_ACCEL_DRV_NAME,
  1554. .acpi_match_table = ACPI_PTR(bmc150_accel_acpi_match),
  1555. .pm = &bmc150_accel_pm_ops,
  1556. },
  1557. .probe = bmc150_accel_probe,
  1558. .remove = bmc150_accel_remove,
  1559. .id_table = bmc150_accel_id,
  1560. };
  1561. module_i2c_driver(bmc150_accel_driver);
  1562. MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
  1563. MODULE_LICENSE("GPL v2");
  1564. MODULE_DESCRIPTION("BMC150 accelerometer driver");