dc.c 54 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102
  1. /*
  2. * Copyright (C) 2012 Avionic Design GmbH
  3. * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License version 2 as
  7. * published by the Free Software Foundation.
  8. */
  9. #include <linux/clk.h>
  10. #include <linux/debugfs.h>
  11. #include <linux/iommu.h>
  12. #include <linux/reset.h>
  13. #include <soc/tegra/pmc.h>
  14. #include "dc.h"
  15. #include "drm.h"
  16. #include "gem.h"
  17. #include <drm/drm_atomic.h>
  18. #include <drm/drm_atomic_helper.h>
  19. #include <drm/drm_plane_helper.h>
  20. struct tegra_dc_soc_info {
  21. bool supports_border_color;
  22. bool supports_interlacing;
  23. bool supports_cursor;
  24. bool supports_block_linear;
  25. unsigned int pitch_align;
  26. bool has_powergate;
  27. };
  28. struct tegra_plane {
  29. struct drm_plane base;
  30. unsigned int index;
  31. };
  32. static inline struct tegra_plane *to_tegra_plane(struct drm_plane *plane)
  33. {
  34. return container_of(plane, struct tegra_plane, base);
  35. }
  36. struct tegra_dc_state {
  37. struct drm_crtc_state base;
  38. struct clk *clk;
  39. unsigned long pclk;
  40. unsigned int div;
  41. u32 planes;
  42. };
  43. static inline struct tegra_dc_state *to_dc_state(struct drm_crtc_state *state)
  44. {
  45. if (state)
  46. return container_of(state, struct tegra_dc_state, base);
  47. return NULL;
  48. }
  49. struct tegra_plane_state {
  50. struct drm_plane_state base;
  51. struct tegra_bo_tiling tiling;
  52. u32 format;
  53. u32 swap;
  54. };
  55. static inline struct tegra_plane_state *
  56. to_tegra_plane_state(struct drm_plane_state *state)
  57. {
  58. if (state)
  59. return container_of(state, struct tegra_plane_state, base);
  60. return NULL;
  61. }
  62. static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
  63. {
  64. stats->frames = 0;
  65. stats->vblank = 0;
  66. stats->underflow = 0;
  67. stats->overflow = 0;
  68. }
  69. /*
  70. * Reads the active copy of a register. This takes the dc->lock spinlock to
  71. * prevent races with the VBLANK processing which also needs access to the
  72. * active copy of some registers.
  73. */
  74. static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
  75. {
  76. unsigned long flags;
  77. u32 value;
  78. spin_lock_irqsave(&dc->lock, flags);
  79. tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
  80. value = tegra_dc_readl(dc, offset);
  81. tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
  82. spin_unlock_irqrestore(&dc->lock, flags);
  83. return value;
  84. }
  85. /*
  86. * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
  87. * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
  88. * Latching happens mmediately if the display controller is in STOP mode or
  89. * on the next frame boundary otherwise.
  90. *
  91. * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
  92. * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
  93. * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
  94. * into the ACTIVE copy, either immediately if the display controller is in
  95. * STOP mode, or at the next frame boundary otherwise.
  96. */
  97. void tegra_dc_commit(struct tegra_dc *dc)
  98. {
  99. tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
  100. tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
  101. }
  102. static int tegra_dc_format(u32 fourcc, u32 *format, u32 *swap)
  103. {
  104. /* assume no swapping of fetched data */
  105. if (swap)
  106. *swap = BYTE_SWAP_NOSWAP;
  107. switch (fourcc) {
  108. case DRM_FORMAT_XBGR8888:
  109. *format = WIN_COLOR_DEPTH_R8G8B8A8;
  110. break;
  111. case DRM_FORMAT_XRGB8888:
  112. *format = WIN_COLOR_DEPTH_B8G8R8A8;
  113. break;
  114. case DRM_FORMAT_RGB565:
  115. *format = WIN_COLOR_DEPTH_B5G6R5;
  116. break;
  117. case DRM_FORMAT_UYVY:
  118. *format = WIN_COLOR_DEPTH_YCbCr422;
  119. break;
  120. case DRM_FORMAT_YUYV:
  121. if (swap)
  122. *swap = BYTE_SWAP_SWAP2;
  123. *format = WIN_COLOR_DEPTH_YCbCr422;
  124. break;
  125. case DRM_FORMAT_YUV420:
  126. *format = WIN_COLOR_DEPTH_YCbCr420P;
  127. break;
  128. case DRM_FORMAT_YUV422:
  129. *format = WIN_COLOR_DEPTH_YCbCr422P;
  130. break;
  131. default:
  132. return -EINVAL;
  133. }
  134. return 0;
  135. }
  136. static bool tegra_dc_format_is_yuv(unsigned int format, bool *planar)
  137. {
  138. switch (format) {
  139. case WIN_COLOR_DEPTH_YCbCr422:
  140. case WIN_COLOR_DEPTH_YUV422:
  141. if (planar)
  142. *planar = false;
  143. return true;
  144. case WIN_COLOR_DEPTH_YCbCr420P:
  145. case WIN_COLOR_DEPTH_YUV420P:
  146. case WIN_COLOR_DEPTH_YCbCr422P:
  147. case WIN_COLOR_DEPTH_YUV422P:
  148. case WIN_COLOR_DEPTH_YCbCr422R:
  149. case WIN_COLOR_DEPTH_YUV422R:
  150. case WIN_COLOR_DEPTH_YCbCr422RA:
  151. case WIN_COLOR_DEPTH_YUV422RA:
  152. if (planar)
  153. *planar = true;
  154. return true;
  155. }
  156. if (planar)
  157. *planar = false;
  158. return false;
  159. }
  160. static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
  161. unsigned int bpp)
  162. {
  163. fixed20_12 outf = dfixed_init(out);
  164. fixed20_12 inf = dfixed_init(in);
  165. u32 dda_inc;
  166. int max;
  167. if (v)
  168. max = 15;
  169. else {
  170. switch (bpp) {
  171. case 2:
  172. max = 8;
  173. break;
  174. default:
  175. WARN_ON_ONCE(1);
  176. /* fallthrough */
  177. case 4:
  178. max = 4;
  179. break;
  180. }
  181. }
  182. outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
  183. inf.full -= dfixed_const(1);
  184. dda_inc = dfixed_div(inf, outf);
  185. dda_inc = min_t(u32, dda_inc, dfixed_const(max));
  186. return dda_inc;
  187. }
  188. static inline u32 compute_initial_dda(unsigned int in)
  189. {
  190. fixed20_12 inf = dfixed_init(in);
  191. return dfixed_frac(inf);
  192. }
  193. static void tegra_dc_setup_window(struct tegra_dc *dc, unsigned int index,
  194. const struct tegra_dc_window *window)
  195. {
  196. unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
  197. unsigned long value, flags;
  198. bool yuv, planar;
  199. /*
  200. * For YUV planar modes, the number of bytes per pixel takes into
  201. * account only the luma component and therefore is 1.
  202. */
  203. yuv = tegra_dc_format_is_yuv(window->format, &planar);
  204. if (!yuv)
  205. bpp = window->bits_per_pixel / 8;
  206. else
  207. bpp = planar ? 1 : 2;
  208. spin_lock_irqsave(&dc->lock, flags);
  209. value = WINDOW_A_SELECT << index;
  210. tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
  211. tegra_dc_writel(dc, window->format, DC_WIN_COLOR_DEPTH);
  212. tegra_dc_writel(dc, window->swap, DC_WIN_BYTE_SWAP);
  213. value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
  214. tegra_dc_writel(dc, value, DC_WIN_POSITION);
  215. value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
  216. tegra_dc_writel(dc, value, DC_WIN_SIZE);
  217. h_offset = window->src.x * bpp;
  218. v_offset = window->src.y;
  219. h_size = window->src.w * bpp;
  220. v_size = window->src.h;
  221. value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
  222. tegra_dc_writel(dc, value, DC_WIN_PRESCALED_SIZE);
  223. /*
  224. * For DDA computations the number of bytes per pixel for YUV planar
  225. * modes needs to take into account all Y, U and V components.
  226. */
  227. if (yuv && planar)
  228. bpp = 2;
  229. h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
  230. v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
  231. value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
  232. tegra_dc_writel(dc, value, DC_WIN_DDA_INC);
  233. h_dda = compute_initial_dda(window->src.x);
  234. v_dda = compute_initial_dda(window->src.y);
  235. tegra_dc_writel(dc, h_dda, DC_WIN_H_INITIAL_DDA);
  236. tegra_dc_writel(dc, v_dda, DC_WIN_V_INITIAL_DDA);
  237. tegra_dc_writel(dc, 0, DC_WIN_UV_BUF_STRIDE);
  238. tegra_dc_writel(dc, 0, DC_WIN_BUF_STRIDE);
  239. tegra_dc_writel(dc, window->base[0], DC_WINBUF_START_ADDR);
  240. if (yuv && planar) {
  241. tegra_dc_writel(dc, window->base[1], DC_WINBUF_START_ADDR_U);
  242. tegra_dc_writel(dc, window->base[2], DC_WINBUF_START_ADDR_V);
  243. value = window->stride[1] << 16 | window->stride[0];
  244. tegra_dc_writel(dc, value, DC_WIN_LINE_STRIDE);
  245. } else {
  246. tegra_dc_writel(dc, window->stride[0], DC_WIN_LINE_STRIDE);
  247. }
  248. if (window->bottom_up)
  249. v_offset += window->src.h - 1;
  250. tegra_dc_writel(dc, h_offset, DC_WINBUF_ADDR_H_OFFSET);
  251. tegra_dc_writel(dc, v_offset, DC_WINBUF_ADDR_V_OFFSET);
  252. if (dc->soc->supports_block_linear) {
  253. unsigned long height = window->tiling.value;
  254. switch (window->tiling.mode) {
  255. case TEGRA_BO_TILING_MODE_PITCH:
  256. value = DC_WINBUF_SURFACE_KIND_PITCH;
  257. break;
  258. case TEGRA_BO_TILING_MODE_TILED:
  259. value = DC_WINBUF_SURFACE_KIND_TILED;
  260. break;
  261. case TEGRA_BO_TILING_MODE_BLOCK:
  262. value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
  263. DC_WINBUF_SURFACE_KIND_BLOCK;
  264. break;
  265. }
  266. tegra_dc_writel(dc, value, DC_WINBUF_SURFACE_KIND);
  267. } else {
  268. switch (window->tiling.mode) {
  269. case TEGRA_BO_TILING_MODE_PITCH:
  270. value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
  271. DC_WIN_BUFFER_ADDR_MODE_LINEAR;
  272. break;
  273. case TEGRA_BO_TILING_MODE_TILED:
  274. value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
  275. DC_WIN_BUFFER_ADDR_MODE_TILE;
  276. break;
  277. case TEGRA_BO_TILING_MODE_BLOCK:
  278. /*
  279. * No need to handle this here because ->atomic_check
  280. * will already have filtered it out.
  281. */
  282. break;
  283. }
  284. tegra_dc_writel(dc, value, DC_WIN_BUFFER_ADDR_MODE);
  285. }
  286. value = WIN_ENABLE;
  287. if (yuv) {
  288. /* setup default colorspace conversion coefficients */
  289. tegra_dc_writel(dc, 0x00f0, DC_WIN_CSC_YOF);
  290. tegra_dc_writel(dc, 0x012a, DC_WIN_CSC_KYRGB);
  291. tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KUR);
  292. tegra_dc_writel(dc, 0x0198, DC_WIN_CSC_KVR);
  293. tegra_dc_writel(dc, 0x039b, DC_WIN_CSC_KUG);
  294. tegra_dc_writel(dc, 0x032f, DC_WIN_CSC_KVG);
  295. tegra_dc_writel(dc, 0x0204, DC_WIN_CSC_KUB);
  296. tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KVB);
  297. value |= CSC_ENABLE;
  298. } else if (window->bits_per_pixel < 24) {
  299. value |= COLOR_EXPAND;
  300. }
  301. if (window->bottom_up)
  302. value |= V_DIRECTION;
  303. tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
  304. /*
  305. * Disable blending and assume Window A is the bottom-most window,
  306. * Window C is the top-most window and Window B is in the middle.
  307. */
  308. tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_NOKEY);
  309. tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_1WIN);
  310. switch (index) {
  311. case 0:
  312. tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_X);
  313. tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
  314. tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
  315. break;
  316. case 1:
  317. tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
  318. tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
  319. tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
  320. break;
  321. case 2:
  322. tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
  323. tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_Y);
  324. tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_3WIN_XY);
  325. break;
  326. }
  327. spin_unlock_irqrestore(&dc->lock, flags);
  328. }
  329. static void tegra_plane_destroy(struct drm_plane *plane)
  330. {
  331. struct tegra_plane *p = to_tegra_plane(plane);
  332. drm_plane_cleanup(plane);
  333. kfree(p);
  334. }
  335. static const u32 tegra_primary_plane_formats[] = {
  336. DRM_FORMAT_XBGR8888,
  337. DRM_FORMAT_XRGB8888,
  338. DRM_FORMAT_RGB565,
  339. };
  340. static void tegra_primary_plane_destroy(struct drm_plane *plane)
  341. {
  342. tegra_plane_destroy(plane);
  343. }
  344. static void tegra_plane_reset(struct drm_plane *plane)
  345. {
  346. struct tegra_plane_state *state;
  347. if (plane->state)
  348. __drm_atomic_helper_plane_destroy_state(plane, plane->state);
  349. kfree(plane->state);
  350. plane->state = NULL;
  351. state = kzalloc(sizeof(*state), GFP_KERNEL);
  352. if (state) {
  353. plane->state = &state->base;
  354. plane->state->plane = plane;
  355. }
  356. }
  357. static struct drm_plane_state *tegra_plane_atomic_duplicate_state(struct drm_plane *plane)
  358. {
  359. struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
  360. struct tegra_plane_state *copy;
  361. copy = kmalloc(sizeof(*copy), GFP_KERNEL);
  362. if (!copy)
  363. return NULL;
  364. __drm_atomic_helper_plane_duplicate_state(plane, &copy->base);
  365. copy->tiling = state->tiling;
  366. copy->format = state->format;
  367. copy->swap = state->swap;
  368. return &copy->base;
  369. }
  370. static void tegra_plane_atomic_destroy_state(struct drm_plane *plane,
  371. struct drm_plane_state *state)
  372. {
  373. __drm_atomic_helper_plane_destroy_state(plane, state);
  374. kfree(state);
  375. }
  376. static const struct drm_plane_funcs tegra_primary_plane_funcs = {
  377. .update_plane = drm_atomic_helper_update_plane,
  378. .disable_plane = drm_atomic_helper_disable_plane,
  379. .destroy = tegra_primary_plane_destroy,
  380. .reset = tegra_plane_reset,
  381. .atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
  382. .atomic_destroy_state = tegra_plane_atomic_destroy_state,
  383. };
  384. static int tegra_plane_prepare_fb(struct drm_plane *plane,
  385. struct drm_framebuffer *fb,
  386. const struct drm_plane_state *new_state)
  387. {
  388. return 0;
  389. }
  390. static void tegra_plane_cleanup_fb(struct drm_plane *plane,
  391. struct drm_framebuffer *fb,
  392. const struct drm_plane_state *old_fb)
  393. {
  394. }
  395. static int tegra_plane_state_add(struct tegra_plane *plane,
  396. struct drm_plane_state *state)
  397. {
  398. struct drm_crtc_state *crtc_state;
  399. struct tegra_dc_state *tegra;
  400. /* Propagate errors from allocation or locking failures. */
  401. crtc_state = drm_atomic_get_crtc_state(state->state, state->crtc);
  402. if (IS_ERR(crtc_state))
  403. return PTR_ERR(crtc_state);
  404. tegra = to_dc_state(crtc_state);
  405. tegra->planes |= WIN_A_ACT_REQ << plane->index;
  406. return 0;
  407. }
  408. static int tegra_plane_atomic_check(struct drm_plane *plane,
  409. struct drm_plane_state *state)
  410. {
  411. struct tegra_plane_state *plane_state = to_tegra_plane_state(state);
  412. struct tegra_bo_tiling *tiling = &plane_state->tiling;
  413. struct tegra_plane *tegra = to_tegra_plane(plane);
  414. struct tegra_dc *dc = to_tegra_dc(state->crtc);
  415. int err;
  416. /* no need for further checks if the plane is being disabled */
  417. if (!state->crtc)
  418. return 0;
  419. err = tegra_dc_format(state->fb->pixel_format, &plane_state->format,
  420. &plane_state->swap);
  421. if (err < 0)
  422. return err;
  423. err = tegra_fb_get_tiling(state->fb, tiling);
  424. if (err < 0)
  425. return err;
  426. if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
  427. !dc->soc->supports_block_linear) {
  428. DRM_ERROR("hardware doesn't support block linear mode\n");
  429. return -EINVAL;
  430. }
  431. /*
  432. * Tegra doesn't support different strides for U and V planes so we
  433. * error out if the user tries to display a framebuffer with such a
  434. * configuration.
  435. */
  436. if (drm_format_num_planes(state->fb->pixel_format) > 2) {
  437. if (state->fb->pitches[2] != state->fb->pitches[1]) {
  438. DRM_ERROR("unsupported UV-plane configuration\n");
  439. return -EINVAL;
  440. }
  441. }
  442. err = tegra_plane_state_add(tegra, state);
  443. if (err < 0)
  444. return err;
  445. return 0;
  446. }
  447. static void tegra_plane_atomic_update(struct drm_plane *plane,
  448. struct drm_plane_state *old_state)
  449. {
  450. struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
  451. struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
  452. struct drm_framebuffer *fb = plane->state->fb;
  453. struct tegra_plane *p = to_tegra_plane(plane);
  454. struct tegra_dc_window window;
  455. unsigned int i;
  456. /* rien ne va plus */
  457. if (!plane->state->crtc || !plane->state->fb)
  458. return;
  459. memset(&window, 0, sizeof(window));
  460. window.src.x = plane->state->src_x >> 16;
  461. window.src.y = plane->state->src_y >> 16;
  462. window.src.w = plane->state->src_w >> 16;
  463. window.src.h = plane->state->src_h >> 16;
  464. window.dst.x = plane->state->crtc_x;
  465. window.dst.y = plane->state->crtc_y;
  466. window.dst.w = plane->state->crtc_w;
  467. window.dst.h = plane->state->crtc_h;
  468. window.bits_per_pixel = fb->bits_per_pixel;
  469. window.bottom_up = tegra_fb_is_bottom_up(fb);
  470. /* copy from state */
  471. window.tiling = state->tiling;
  472. window.format = state->format;
  473. window.swap = state->swap;
  474. for (i = 0; i < drm_format_num_planes(fb->pixel_format); i++) {
  475. struct tegra_bo *bo = tegra_fb_get_plane(fb, i);
  476. window.base[i] = bo->paddr + fb->offsets[i];
  477. window.stride[i] = fb->pitches[i];
  478. }
  479. tegra_dc_setup_window(dc, p->index, &window);
  480. }
  481. static void tegra_plane_atomic_disable(struct drm_plane *plane,
  482. struct drm_plane_state *old_state)
  483. {
  484. struct tegra_plane *p = to_tegra_plane(plane);
  485. struct tegra_dc *dc;
  486. unsigned long flags;
  487. u32 value;
  488. /* rien ne va plus */
  489. if (!old_state || !old_state->crtc)
  490. return;
  491. dc = to_tegra_dc(old_state->crtc);
  492. spin_lock_irqsave(&dc->lock, flags);
  493. value = WINDOW_A_SELECT << p->index;
  494. tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
  495. value = tegra_dc_readl(dc, DC_WIN_WIN_OPTIONS);
  496. value &= ~WIN_ENABLE;
  497. tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
  498. spin_unlock_irqrestore(&dc->lock, flags);
  499. }
  500. static const struct drm_plane_helper_funcs tegra_primary_plane_helper_funcs = {
  501. .prepare_fb = tegra_plane_prepare_fb,
  502. .cleanup_fb = tegra_plane_cleanup_fb,
  503. .atomic_check = tegra_plane_atomic_check,
  504. .atomic_update = tegra_plane_atomic_update,
  505. .atomic_disable = tegra_plane_atomic_disable,
  506. };
  507. static struct drm_plane *tegra_dc_primary_plane_create(struct drm_device *drm,
  508. struct tegra_dc *dc)
  509. {
  510. /*
  511. * Ideally this would use drm_crtc_mask(), but that would require the
  512. * CRTC to already be in the mode_config's list of CRTCs. However, it
  513. * will only be added to that list in the drm_crtc_init_with_planes()
  514. * (in tegra_dc_init()), which in turn requires registration of these
  515. * planes. So we have ourselves a nice little chicken and egg problem
  516. * here.
  517. *
  518. * We work around this by manually creating the mask from the number
  519. * of CRTCs that have been registered, and should therefore always be
  520. * the same as drm_crtc_index() after registration.
  521. */
  522. unsigned long possible_crtcs = 1 << drm->mode_config.num_crtc;
  523. struct tegra_plane *plane;
  524. unsigned int num_formats;
  525. const u32 *formats;
  526. int err;
  527. plane = kzalloc(sizeof(*plane), GFP_KERNEL);
  528. if (!plane)
  529. return ERR_PTR(-ENOMEM);
  530. num_formats = ARRAY_SIZE(tegra_primary_plane_formats);
  531. formats = tegra_primary_plane_formats;
  532. err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
  533. &tegra_primary_plane_funcs, formats,
  534. num_formats, DRM_PLANE_TYPE_PRIMARY);
  535. if (err < 0) {
  536. kfree(plane);
  537. return ERR_PTR(err);
  538. }
  539. drm_plane_helper_add(&plane->base, &tegra_primary_plane_helper_funcs);
  540. return &plane->base;
  541. }
  542. static const u32 tegra_cursor_plane_formats[] = {
  543. DRM_FORMAT_RGBA8888,
  544. };
  545. static int tegra_cursor_atomic_check(struct drm_plane *plane,
  546. struct drm_plane_state *state)
  547. {
  548. struct tegra_plane *tegra = to_tegra_plane(plane);
  549. int err;
  550. /* no need for further checks if the plane is being disabled */
  551. if (!state->crtc)
  552. return 0;
  553. /* scaling not supported for cursor */
  554. if ((state->src_w >> 16 != state->crtc_w) ||
  555. (state->src_h >> 16 != state->crtc_h))
  556. return -EINVAL;
  557. /* only square cursors supported */
  558. if (state->src_w != state->src_h)
  559. return -EINVAL;
  560. if (state->crtc_w != 32 && state->crtc_w != 64 &&
  561. state->crtc_w != 128 && state->crtc_w != 256)
  562. return -EINVAL;
  563. err = tegra_plane_state_add(tegra, state);
  564. if (err < 0)
  565. return err;
  566. return 0;
  567. }
  568. static void tegra_cursor_atomic_update(struct drm_plane *plane,
  569. struct drm_plane_state *old_state)
  570. {
  571. struct tegra_bo *bo = tegra_fb_get_plane(plane->state->fb, 0);
  572. struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
  573. struct drm_plane_state *state = plane->state;
  574. u32 value = CURSOR_CLIP_DISPLAY;
  575. /* rien ne va plus */
  576. if (!plane->state->crtc || !plane->state->fb)
  577. return;
  578. switch (state->crtc_w) {
  579. case 32:
  580. value |= CURSOR_SIZE_32x32;
  581. break;
  582. case 64:
  583. value |= CURSOR_SIZE_64x64;
  584. break;
  585. case 128:
  586. value |= CURSOR_SIZE_128x128;
  587. break;
  588. case 256:
  589. value |= CURSOR_SIZE_256x256;
  590. break;
  591. default:
  592. WARN(1, "cursor size %ux%u not supported\n", state->crtc_w,
  593. state->crtc_h);
  594. return;
  595. }
  596. value |= (bo->paddr >> 10) & 0x3fffff;
  597. tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
  598. #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
  599. value = (bo->paddr >> 32) & 0x3;
  600. tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
  601. #endif
  602. /* enable cursor and set blend mode */
  603. value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
  604. value |= CURSOR_ENABLE;
  605. tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
  606. value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
  607. value &= ~CURSOR_DST_BLEND_MASK;
  608. value &= ~CURSOR_SRC_BLEND_MASK;
  609. value |= CURSOR_MODE_NORMAL;
  610. value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
  611. value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
  612. value |= CURSOR_ALPHA;
  613. tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
  614. /* position the cursor */
  615. value = (state->crtc_y & 0x3fff) << 16 | (state->crtc_x & 0x3fff);
  616. tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
  617. }
  618. static void tegra_cursor_atomic_disable(struct drm_plane *plane,
  619. struct drm_plane_state *old_state)
  620. {
  621. struct tegra_dc *dc;
  622. u32 value;
  623. /* rien ne va plus */
  624. if (!old_state || !old_state->crtc)
  625. return;
  626. dc = to_tegra_dc(old_state->crtc);
  627. value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
  628. value &= ~CURSOR_ENABLE;
  629. tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
  630. }
  631. static const struct drm_plane_funcs tegra_cursor_plane_funcs = {
  632. .update_plane = drm_atomic_helper_update_plane,
  633. .disable_plane = drm_atomic_helper_disable_plane,
  634. .destroy = tegra_plane_destroy,
  635. .reset = tegra_plane_reset,
  636. .atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
  637. .atomic_destroy_state = tegra_plane_atomic_destroy_state,
  638. };
  639. static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
  640. .prepare_fb = tegra_plane_prepare_fb,
  641. .cleanup_fb = tegra_plane_cleanup_fb,
  642. .atomic_check = tegra_cursor_atomic_check,
  643. .atomic_update = tegra_cursor_atomic_update,
  644. .atomic_disable = tegra_cursor_atomic_disable,
  645. };
  646. static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
  647. struct tegra_dc *dc)
  648. {
  649. struct tegra_plane *plane;
  650. unsigned int num_formats;
  651. const u32 *formats;
  652. int err;
  653. plane = kzalloc(sizeof(*plane), GFP_KERNEL);
  654. if (!plane)
  655. return ERR_PTR(-ENOMEM);
  656. /*
  657. * This index is kind of fake. The cursor isn't a regular plane, but
  658. * its update and activation request bits in DC_CMD_STATE_CONTROL do
  659. * use the same programming. Setting this fake index here allows the
  660. * code in tegra_add_plane_state() to do the right thing without the
  661. * need to special-casing the cursor plane.
  662. */
  663. plane->index = 6;
  664. num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
  665. formats = tegra_cursor_plane_formats;
  666. err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
  667. &tegra_cursor_plane_funcs, formats,
  668. num_formats, DRM_PLANE_TYPE_CURSOR);
  669. if (err < 0) {
  670. kfree(plane);
  671. return ERR_PTR(err);
  672. }
  673. drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
  674. return &plane->base;
  675. }
  676. static void tegra_overlay_plane_destroy(struct drm_plane *plane)
  677. {
  678. tegra_plane_destroy(plane);
  679. }
  680. static const struct drm_plane_funcs tegra_overlay_plane_funcs = {
  681. .update_plane = drm_atomic_helper_update_plane,
  682. .disable_plane = drm_atomic_helper_disable_plane,
  683. .destroy = tegra_overlay_plane_destroy,
  684. .reset = tegra_plane_reset,
  685. .atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
  686. .atomic_destroy_state = tegra_plane_atomic_destroy_state,
  687. };
  688. static const uint32_t tegra_overlay_plane_formats[] = {
  689. DRM_FORMAT_XBGR8888,
  690. DRM_FORMAT_XRGB8888,
  691. DRM_FORMAT_RGB565,
  692. DRM_FORMAT_UYVY,
  693. DRM_FORMAT_YUYV,
  694. DRM_FORMAT_YUV420,
  695. DRM_FORMAT_YUV422,
  696. };
  697. static const struct drm_plane_helper_funcs tegra_overlay_plane_helper_funcs = {
  698. .prepare_fb = tegra_plane_prepare_fb,
  699. .cleanup_fb = tegra_plane_cleanup_fb,
  700. .atomic_check = tegra_plane_atomic_check,
  701. .atomic_update = tegra_plane_atomic_update,
  702. .atomic_disable = tegra_plane_atomic_disable,
  703. };
  704. static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
  705. struct tegra_dc *dc,
  706. unsigned int index)
  707. {
  708. struct tegra_plane *plane;
  709. unsigned int num_formats;
  710. const u32 *formats;
  711. int err;
  712. plane = kzalloc(sizeof(*plane), GFP_KERNEL);
  713. if (!plane)
  714. return ERR_PTR(-ENOMEM);
  715. plane->index = index;
  716. num_formats = ARRAY_SIZE(tegra_overlay_plane_formats);
  717. formats = tegra_overlay_plane_formats;
  718. err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
  719. &tegra_overlay_plane_funcs, formats,
  720. num_formats, DRM_PLANE_TYPE_OVERLAY);
  721. if (err < 0) {
  722. kfree(plane);
  723. return ERR_PTR(err);
  724. }
  725. drm_plane_helper_add(&plane->base, &tegra_overlay_plane_helper_funcs);
  726. return &plane->base;
  727. }
  728. static int tegra_dc_add_planes(struct drm_device *drm, struct tegra_dc *dc)
  729. {
  730. struct drm_plane *plane;
  731. unsigned int i;
  732. for (i = 0; i < 2; i++) {
  733. plane = tegra_dc_overlay_plane_create(drm, dc, 1 + i);
  734. if (IS_ERR(plane))
  735. return PTR_ERR(plane);
  736. }
  737. return 0;
  738. }
  739. u32 tegra_dc_get_vblank_counter(struct tegra_dc *dc)
  740. {
  741. if (dc->syncpt)
  742. return host1x_syncpt_read(dc->syncpt);
  743. /* fallback to software emulated VBLANK counter */
  744. return drm_crtc_vblank_count(&dc->base);
  745. }
  746. void tegra_dc_enable_vblank(struct tegra_dc *dc)
  747. {
  748. unsigned long value, flags;
  749. spin_lock_irqsave(&dc->lock, flags);
  750. value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
  751. value |= VBLANK_INT;
  752. tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
  753. spin_unlock_irqrestore(&dc->lock, flags);
  754. }
  755. void tegra_dc_disable_vblank(struct tegra_dc *dc)
  756. {
  757. unsigned long value, flags;
  758. spin_lock_irqsave(&dc->lock, flags);
  759. value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
  760. value &= ~VBLANK_INT;
  761. tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
  762. spin_unlock_irqrestore(&dc->lock, flags);
  763. }
  764. static void tegra_dc_finish_page_flip(struct tegra_dc *dc)
  765. {
  766. struct drm_device *drm = dc->base.dev;
  767. struct drm_crtc *crtc = &dc->base;
  768. unsigned long flags, base;
  769. struct tegra_bo *bo;
  770. spin_lock_irqsave(&drm->event_lock, flags);
  771. if (!dc->event) {
  772. spin_unlock_irqrestore(&drm->event_lock, flags);
  773. return;
  774. }
  775. bo = tegra_fb_get_plane(crtc->primary->fb, 0);
  776. spin_lock(&dc->lock);
  777. /* check if new start address has been latched */
  778. tegra_dc_writel(dc, WINDOW_A_SELECT, DC_CMD_DISPLAY_WINDOW_HEADER);
  779. tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
  780. base = tegra_dc_readl(dc, DC_WINBUF_START_ADDR);
  781. tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
  782. spin_unlock(&dc->lock);
  783. if (base == bo->paddr + crtc->primary->fb->offsets[0]) {
  784. drm_crtc_send_vblank_event(crtc, dc->event);
  785. drm_crtc_vblank_put(crtc);
  786. dc->event = NULL;
  787. }
  788. spin_unlock_irqrestore(&drm->event_lock, flags);
  789. }
  790. void tegra_dc_cancel_page_flip(struct drm_crtc *crtc, struct drm_file *file)
  791. {
  792. struct tegra_dc *dc = to_tegra_dc(crtc);
  793. struct drm_device *drm = crtc->dev;
  794. unsigned long flags;
  795. spin_lock_irqsave(&drm->event_lock, flags);
  796. if (dc->event && dc->event->base.file_priv == file) {
  797. dc->event->base.destroy(&dc->event->base);
  798. drm_crtc_vblank_put(crtc);
  799. dc->event = NULL;
  800. }
  801. spin_unlock_irqrestore(&drm->event_lock, flags);
  802. }
  803. static void tegra_dc_destroy(struct drm_crtc *crtc)
  804. {
  805. drm_crtc_cleanup(crtc);
  806. }
  807. static void tegra_crtc_reset(struct drm_crtc *crtc)
  808. {
  809. struct tegra_dc_state *state;
  810. if (crtc->state)
  811. __drm_atomic_helper_crtc_destroy_state(crtc, crtc->state);
  812. kfree(crtc->state);
  813. crtc->state = NULL;
  814. state = kzalloc(sizeof(*state), GFP_KERNEL);
  815. if (state) {
  816. crtc->state = &state->base;
  817. crtc->state->crtc = crtc;
  818. }
  819. drm_crtc_vblank_reset(crtc);
  820. }
  821. static struct drm_crtc_state *
  822. tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
  823. {
  824. struct tegra_dc_state *state = to_dc_state(crtc->state);
  825. struct tegra_dc_state *copy;
  826. copy = kmalloc(sizeof(*copy), GFP_KERNEL);
  827. if (!copy)
  828. return NULL;
  829. __drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
  830. copy->clk = state->clk;
  831. copy->pclk = state->pclk;
  832. copy->div = state->div;
  833. copy->planes = state->planes;
  834. return &copy->base;
  835. }
  836. static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
  837. struct drm_crtc_state *state)
  838. {
  839. __drm_atomic_helper_crtc_destroy_state(crtc, state);
  840. kfree(state);
  841. }
  842. static const struct drm_crtc_funcs tegra_crtc_funcs = {
  843. .page_flip = drm_atomic_helper_page_flip,
  844. .set_config = drm_atomic_helper_set_config,
  845. .destroy = tegra_dc_destroy,
  846. .reset = tegra_crtc_reset,
  847. .atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
  848. .atomic_destroy_state = tegra_crtc_atomic_destroy_state,
  849. };
  850. static int tegra_dc_set_timings(struct tegra_dc *dc,
  851. struct drm_display_mode *mode)
  852. {
  853. unsigned int h_ref_to_sync = 1;
  854. unsigned int v_ref_to_sync = 1;
  855. unsigned long value;
  856. tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
  857. value = (v_ref_to_sync << 16) | h_ref_to_sync;
  858. tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
  859. value = ((mode->vsync_end - mode->vsync_start) << 16) |
  860. ((mode->hsync_end - mode->hsync_start) << 0);
  861. tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
  862. value = ((mode->vtotal - mode->vsync_end) << 16) |
  863. ((mode->htotal - mode->hsync_end) << 0);
  864. tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
  865. value = ((mode->vsync_start - mode->vdisplay) << 16) |
  866. ((mode->hsync_start - mode->hdisplay) << 0);
  867. tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
  868. value = (mode->vdisplay << 16) | mode->hdisplay;
  869. tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
  870. return 0;
  871. }
  872. /**
  873. * tegra_dc_state_setup_clock - check clock settings and store them in atomic
  874. * state
  875. * @dc: display controller
  876. * @crtc_state: CRTC atomic state
  877. * @clk: parent clock for display controller
  878. * @pclk: pixel clock
  879. * @div: shift clock divider
  880. *
  881. * Returns:
  882. * 0 on success or a negative error-code on failure.
  883. */
  884. int tegra_dc_state_setup_clock(struct tegra_dc *dc,
  885. struct drm_crtc_state *crtc_state,
  886. struct clk *clk, unsigned long pclk,
  887. unsigned int div)
  888. {
  889. struct tegra_dc_state *state = to_dc_state(crtc_state);
  890. if (!clk_has_parent(dc->clk, clk))
  891. return -EINVAL;
  892. state->clk = clk;
  893. state->pclk = pclk;
  894. state->div = div;
  895. return 0;
  896. }
  897. static void tegra_dc_commit_state(struct tegra_dc *dc,
  898. struct tegra_dc_state *state)
  899. {
  900. u32 value;
  901. int err;
  902. err = clk_set_parent(dc->clk, state->clk);
  903. if (err < 0)
  904. dev_err(dc->dev, "failed to set parent clock: %d\n", err);
  905. /*
  906. * Outputs may not want to change the parent clock rate. This is only
  907. * relevant to Tegra20 where only a single display PLL is available.
  908. * Since that PLL would typically be used for HDMI, an internal LVDS
  909. * panel would need to be driven by some other clock such as PLL_P
  910. * which is shared with other peripherals. Changing the clock rate
  911. * should therefore be avoided.
  912. */
  913. if (state->pclk > 0) {
  914. err = clk_set_rate(state->clk, state->pclk);
  915. if (err < 0)
  916. dev_err(dc->dev,
  917. "failed to set clock rate to %lu Hz\n",
  918. state->pclk);
  919. }
  920. DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
  921. state->div);
  922. DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
  923. value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
  924. tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
  925. }
  926. static void tegra_dc_stop(struct tegra_dc *dc)
  927. {
  928. u32 value;
  929. /* stop the display controller */
  930. value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
  931. value &= ~DISP_CTRL_MODE_MASK;
  932. tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
  933. tegra_dc_commit(dc);
  934. }
  935. static bool tegra_dc_idle(struct tegra_dc *dc)
  936. {
  937. u32 value;
  938. value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
  939. return (value & DISP_CTRL_MODE_MASK) == 0;
  940. }
  941. static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
  942. {
  943. timeout = jiffies + msecs_to_jiffies(timeout);
  944. while (time_before(jiffies, timeout)) {
  945. if (tegra_dc_idle(dc))
  946. return 0;
  947. usleep_range(1000, 2000);
  948. }
  949. dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
  950. return -ETIMEDOUT;
  951. }
  952. static void tegra_crtc_disable(struct drm_crtc *crtc)
  953. {
  954. struct tegra_dc *dc = to_tegra_dc(crtc);
  955. u32 value;
  956. if (!tegra_dc_idle(dc)) {
  957. tegra_dc_stop(dc);
  958. /*
  959. * Ignore the return value, there isn't anything useful to do
  960. * in case this fails.
  961. */
  962. tegra_dc_wait_idle(dc, 100);
  963. }
  964. /*
  965. * This should really be part of the RGB encoder driver, but clearing
  966. * these bits has the side-effect of stopping the display controller.
  967. * When that happens no VBLANK interrupts will be raised. At the same
  968. * time the encoder is disabled before the display controller, so the
  969. * above code is always going to timeout waiting for the controller
  970. * to go idle.
  971. *
  972. * Given the close coupling between the RGB encoder and the display
  973. * controller doing it here is still kind of okay. None of the other
  974. * encoder drivers require these bits to be cleared.
  975. *
  976. * XXX: Perhaps given that the display controller is switched off at
  977. * this point anyway maybe clearing these bits isn't even useful for
  978. * the RGB encoder?
  979. */
  980. if (dc->rgb) {
  981. value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
  982. value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
  983. PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
  984. tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
  985. }
  986. tegra_dc_stats_reset(&dc->stats);
  987. drm_crtc_vblank_off(crtc);
  988. }
  989. static void tegra_crtc_enable(struct drm_crtc *crtc)
  990. {
  991. struct drm_display_mode *mode = &crtc->state->adjusted_mode;
  992. struct tegra_dc_state *state = to_dc_state(crtc->state);
  993. struct tegra_dc *dc = to_tegra_dc(crtc);
  994. u32 value;
  995. tegra_dc_commit_state(dc, state);
  996. /* program display mode */
  997. tegra_dc_set_timings(dc, mode);
  998. /* interlacing isn't supported yet, so disable it */
  999. if (dc->soc->supports_interlacing) {
  1000. value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
  1001. value &= ~INTERLACE_ENABLE;
  1002. tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
  1003. }
  1004. value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
  1005. value &= ~DISP_CTRL_MODE_MASK;
  1006. value |= DISP_CTRL_MODE_C_DISPLAY;
  1007. tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
  1008. value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
  1009. value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
  1010. PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
  1011. tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
  1012. tegra_dc_commit(dc);
  1013. drm_crtc_vblank_on(crtc);
  1014. }
  1015. static int tegra_crtc_atomic_check(struct drm_crtc *crtc,
  1016. struct drm_crtc_state *state)
  1017. {
  1018. return 0;
  1019. }
  1020. static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
  1021. struct drm_crtc_state *old_crtc_state)
  1022. {
  1023. struct tegra_dc *dc = to_tegra_dc(crtc);
  1024. if (crtc->state->event) {
  1025. crtc->state->event->pipe = drm_crtc_index(crtc);
  1026. WARN_ON(drm_crtc_vblank_get(crtc) != 0);
  1027. dc->event = crtc->state->event;
  1028. crtc->state->event = NULL;
  1029. }
  1030. }
  1031. static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
  1032. struct drm_crtc_state *old_crtc_state)
  1033. {
  1034. struct tegra_dc_state *state = to_dc_state(crtc->state);
  1035. struct tegra_dc *dc = to_tegra_dc(crtc);
  1036. tegra_dc_writel(dc, state->planes << 8, DC_CMD_STATE_CONTROL);
  1037. tegra_dc_writel(dc, state->planes, DC_CMD_STATE_CONTROL);
  1038. }
  1039. static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
  1040. .disable = tegra_crtc_disable,
  1041. .enable = tegra_crtc_enable,
  1042. .atomic_check = tegra_crtc_atomic_check,
  1043. .atomic_begin = tegra_crtc_atomic_begin,
  1044. .atomic_flush = tegra_crtc_atomic_flush,
  1045. };
  1046. static irqreturn_t tegra_dc_irq(int irq, void *data)
  1047. {
  1048. struct tegra_dc *dc = data;
  1049. unsigned long status;
  1050. status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
  1051. tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
  1052. if (status & FRAME_END_INT) {
  1053. /*
  1054. dev_dbg(dc->dev, "%s(): frame end\n", __func__);
  1055. */
  1056. dc->stats.frames++;
  1057. }
  1058. if (status & VBLANK_INT) {
  1059. /*
  1060. dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
  1061. */
  1062. drm_crtc_handle_vblank(&dc->base);
  1063. tegra_dc_finish_page_flip(dc);
  1064. dc->stats.vblank++;
  1065. }
  1066. if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
  1067. /*
  1068. dev_dbg(dc->dev, "%s(): underflow\n", __func__);
  1069. */
  1070. dc->stats.underflow++;
  1071. }
  1072. if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
  1073. /*
  1074. dev_dbg(dc->dev, "%s(): overflow\n", __func__);
  1075. */
  1076. dc->stats.overflow++;
  1077. }
  1078. return IRQ_HANDLED;
  1079. }
  1080. static int tegra_dc_show_regs(struct seq_file *s, void *data)
  1081. {
  1082. struct drm_info_node *node = s->private;
  1083. struct tegra_dc *dc = node->info_ent->data;
  1084. int err = 0;
  1085. drm_modeset_lock_crtc(&dc->base, NULL);
  1086. if (!dc->base.state->active) {
  1087. err = -EBUSY;
  1088. goto unlock;
  1089. }
  1090. #define DUMP_REG(name) \
  1091. seq_printf(s, "%-40s %#05x %08x\n", #name, name, \
  1092. tegra_dc_readl(dc, name))
  1093. DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT);
  1094. DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
  1095. DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_ERROR);
  1096. DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT);
  1097. DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL);
  1098. DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_ERROR);
  1099. DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT);
  1100. DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL);
  1101. DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_ERROR);
  1102. DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT);
  1103. DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL);
  1104. DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_ERROR);
  1105. DUMP_REG(DC_CMD_CONT_SYNCPT_VSYNC);
  1106. DUMP_REG(DC_CMD_DISPLAY_COMMAND_OPTION0);
  1107. DUMP_REG(DC_CMD_DISPLAY_COMMAND);
  1108. DUMP_REG(DC_CMD_SIGNAL_RAISE);
  1109. DUMP_REG(DC_CMD_DISPLAY_POWER_CONTROL);
  1110. DUMP_REG(DC_CMD_INT_STATUS);
  1111. DUMP_REG(DC_CMD_INT_MASK);
  1112. DUMP_REG(DC_CMD_INT_ENABLE);
  1113. DUMP_REG(DC_CMD_INT_TYPE);
  1114. DUMP_REG(DC_CMD_INT_POLARITY);
  1115. DUMP_REG(DC_CMD_SIGNAL_RAISE1);
  1116. DUMP_REG(DC_CMD_SIGNAL_RAISE2);
  1117. DUMP_REG(DC_CMD_SIGNAL_RAISE3);
  1118. DUMP_REG(DC_CMD_STATE_ACCESS);
  1119. DUMP_REG(DC_CMD_STATE_CONTROL);
  1120. DUMP_REG(DC_CMD_DISPLAY_WINDOW_HEADER);
  1121. DUMP_REG(DC_CMD_REG_ACT_CONTROL);
  1122. DUMP_REG(DC_COM_CRC_CONTROL);
  1123. DUMP_REG(DC_COM_CRC_CHECKSUM);
  1124. DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(0));
  1125. DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(1));
  1126. DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(2));
  1127. DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(3));
  1128. DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(0));
  1129. DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(1));
  1130. DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(2));
  1131. DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(3));
  1132. DUMP_REG(DC_COM_PIN_OUTPUT_DATA(0));
  1133. DUMP_REG(DC_COM_PIN_OUTPUT_DATA(1));
  1134. DUMP_REG(DC_COM_PIN_OUTPUT_DATA(2));
  1135. DUMP_REG(DC_COM_PIN_OUTPUT_DATA(3));
  1136. DUMP_REG(DC_COM_PIN_INPUT_ENABLE(0));
  1137. DUMP_REG(DC_COM_PIN_INPUT_ENABLE(1));
  1138. DUMP_REG(DC_COM_PIN_INPUT_ENABLE(2));
  1139. DUMP_REG(DC_COM_PIN_INPUT_ENABLE(3));
  1140. DUMP_REG(DC_COM_PIN_INPUT_DATA(0));
  1141. DUMP_REG(DC_COM_PIN_INPUT_DATA(1));
  1142. DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(0));
  1143. DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(1));
  1144. DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(2));
  1145. DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(3));
  1146. DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(4));
  1147. DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(5));
  1148. DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(6));
  1149. DUMP_REG(DC_COM_PIN_MISC_CONTROL);
  1150. DUMP_REG(DC_COM_PIN_PM0_CONTROL);
  1151. DUMP_REG(DC_COM_PIN_PM0_DUTY_CYCLE);
  1152. DUMP_REG(DC_COM_PIN_PM1_CONTROL);
  1153. DUMP_REG(DC_COM_PIN_PM1_DUTY_CYCLE);
  1154. DUMP_REG(DC_COM_SPI_CONTROL);
  1155. DUMP_REG(DC_COM_SPI_START_BYTE);
  1156. DUMP_REG(DC_COM_HSPI_WRITE_DATA_AB);
  1157. DUMP_REG(DC_COM_HSPI_WRITE_DATA_CD);
  1158. DUMP_REG(DC_COM_HSPI_CS_DC);
  1159. DUMP_REG(DC_COM_SCRATCH_REGISTER_A);
  1160. DUMP_REG(DC_COM_SCRATCH_REGISTER_B);
  1161. DUMP_REG(DC_COM_GPIO_CTRL);
  1162. DUMP_REG(DC_COM_GPIO_DEBOUNCE_COUNTER);
  1163. DUMP_REG(DC_COM_CRC_CHECKSUM_LATCHED);
  1164. DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS0);
  1165. DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS1);
  1166. DUMP_REG(DC_DISP_DISP_WIN_OPTIONS);
  1167. DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY);
  1168. DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
  1169. DUMP_REG(DC_DISP_DISP_TIMING_OPTIONS);
  1170. DUMP_REG(DC_DISP_REF_TO_SYNC);
  1171. DUMP_REG(DC_DISP_SYNC_WIDTH);
  1172. DUMP_REG(DC_DISP_BACK_PORCH);
  1173. DUMP_REG(DC_DISP_ACTIVE);
  1174. DUMP_REG(DC_DISP_FRONT_PORCH);
  1175. DUMP_REG(DC_DISP_H_PULSE0_CONTROL);
  1176. DUMP_REG(DC_DISP_H_PULSE0_POSITION_A);
  1177. DUMP_REG(DC_DISP_H_PULSE0_POSITION_B);
  1178. DUMP_REG(DC_DISP_H_PULSE0_POSITION_C);
  1179. DUMP_REG(DC_DISP_H_PULSE0_POSITION_D);
  1180. DUMP_REG(DC_DISP_H_PULSE1_CONTROL);
  1181. DUMP_REG(DC_DISP_H_PULSE1_POSITION_A);
  1182. DUMP_REG(DC_DISP_H_PULSE1_POSITION_B);
  1183. DUMP_REG(DC_DISP_H_PULSE1_POSITION_C);
  1184. DUMP_REG(DC_DISP_H_PULSE1_POSITION_D);
  1185. DUMP_REG(DC_DISP_H_PULSE2_CONTROL);
  1186. DUMP_REG(DC_DISP_H_PULSE2_POSITION_A);
  1187. DUMP_REG(DC_DISP_H_PULSE2_POSITION_B);
  1188. DUMP_REG(DC_DISP_H_PULSE2_POSITION_C);
  1189. DUMP_REG(DC_DISP_H_PULSE2_POSITION_D);
  1190. DUMP_REG(DC_DISP_V_PULSE0_CONTROL);
  1191. DUMP_REG(DC_DISP_V_PULSE0_POSITION_A);
  1192. DUMP_REG(DC_DISP_V_PULSE0_POSITION_B);
  1193. DUMP_REG(DC_DISP_V_PULSE0_POSITION_C);
  1194. DUMP_REG(DC_DISP_V_PULSE1_CONTROL);
  1195. DUMP_REG(DC_DISP_V_PULSE1_POSITION_A);
  1196. DUMP_REG(DC_DISP_V_PULSE1_POSITION_B);
  1197. DUMP_REG(DC_DISP_V_PULSE1_POSITION_C);
  1198. DUMP_REG(DC_DISP_V_PULSE2_CONTROL);
  1199. DUMP_REG(DC_DISP_V_PULSE2_POSITION_A);
  1200. DUMP_REG(DC_DISP_V_PULSE3_CONTROL);
  1201. DUMP_REG(DC_DISP_V_PULSE3_POSITION_A);
  1202. DUMP_REG(DC_DISP_M0_CONTROL);
  1203. DUMP_REG(DC_DISP_M1_CONTROL);
  1204. DUMP_REG(DC_DISP_DI_CONTROL);
  1205. DUMP_REG(DC_DISP_PP_CONTROL);
  1206. DUMP_REG(DC_DISP_PP_SELECT_A);
  1207. DUMP_REG(DC_DISP_PP_SELECT_B);
  1208. DUMP_REG(DC_DISP_PP_SELECT_C);
  1209. DUMP_REG(DC_DISP_PP_SELECT_D);
  1210. DUMP_REG(DC_DISP_DISP_CLOCK_CONTROL);
  1211. DUMP_REG(DC_DISP_DISP_INTERFACE_CONTROL);
  1212. DUMP_REG(DC_DISP_DISP_COLOR_CONTROL);
  1213. DUMP_REG(DC_DISP_SHIFT_CLOCK_OPTIONS);
  1214. DUMP_REG(DC_DISP_DATA_ENABLE_OPTIONS);
  1215. DUMP_REG(DC_DISP_SERIAL_INTERFACE_OPTIONS);
  1216. DUMP_REG(DC_DISP_LCD_SPI_OPTIONS);
  1217. DUMP_REG(DC_DISP_BORDER_COLOR);
  1218. DUMP_REG(DC_DISP_COLOR_KEY0_LOWER);
  1219. DUMP_REG(DC_DISP_COLOR_KEY0_UPPER);
  1220. DUMP_REG(DC_DISP_COLOR_KEY1_LOWER);
  1221. DUMP_REG(DC_DISP_COLOR_KEY1_UPPER);
  1222. DUMP_REG(DC_DISP_CURSOR_FOREGROUND);
  1223. DUMP_REG(DC_DISP_CURSOR_BACKGROUND);
  1224. DUMP_REG(DC_DISP_CURSOR_START_ADDR);
  1225. DUMP_REG(DC_DISP_CURSOR_START_ADDR_NS);
  1226. DUMP_REG(DC_DISP_CURSOR_POSITION);
  1227. DUMP_REG(DC_DISP_CURSOR_POSITION_NS);
  1228. DUMP_REG(DC_DISP_INIT_SEQ_CONTROL);
  1229. DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_A);
  1230. DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_B);
  1231. DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_C);
  1232. DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_D);
  1233. DUMP_REG(DC_DISP_DC_MCCIF_FIFOCTRL);
  1234. DUMP_REG(DC_DISP_MCCIF_DISPLAY0A_HYST);
  1235. DUMP_REG(DC_DISP_MCCIF_DISPLAY0B_HYST);
  1236. DUMP_REG(DC_DISP_MCCIF_DISPLAY1A_HYST);
  1237. DUMP_REG(DC_DISP_MCCIF_DISPLAY1B_HYST);
  1238. DUMP_REG(DC_DISP_DAC_CRT_CTRL);
  1239. DUMP_REG(DC_DISP_DISP_MISC_CONTROL);
  1240. DUMP_REG(DC_DISP_SD_CONTROL);
  1241. DUMP_REG(DC_DISP_SD_CSC_COEFF);
  1242. DUMP_REG(DC_DISP_SD_LUT(0));
  1243. DUMP_REG(DC_DISP_SD_LUT(1));
  1244. DUMP_REG(DC_DISP_SD_LUT(2));
  1245. DUMP_REG(DC_DISP_SD_LUT(3));
  1246. DUMP_REG(DC_DISP_SD_LUT(4));
  1247. DUMP_REG(DC_DISP_SD_LUT(5));
  1248. DUMP_REG(DC_DISP_SD_LUT(6));
  1249. DUMP_REG(DC_DISP_SD_LUT(7));
  1250. DUMP_REG(DC_DISP_SD_LUT(8));
  1251. DUMP_REG(DC_DISP_SD_FLICKER_CONTROL);
  1252. DUMP_REG(DC_DISP_DC_PIXEL_COUNT);
  1253. DUMP_REG(DC_DISP_SD_HISTOGRAM(0));
  1254. DUMP_REG(DC_DISP_SD_HISTOGRAM(1));
  1255. DUMP_REG(DC_DISP_SD_HISTOGRAM(2));
  1256. DUMP_REG(DC_DISP_SD_HISTOGRAM(3));
  1257. DUMP_REG(DC_DISP_SD_HISTOGRAM(4));
  1258. DUMP_REG(DC_DISP_SD_HISTOGRAM(5));
  1259. DUMP_REG(DC_DISP_SD_HISTOGRAM(6));
  1260. DUMP_REG(DC_DISP_SD_HISTOGRAM(7));
  1261. DUMP_REG(DC_DISP_SD_BL_TF(0));
  1262. DUMP_REG(DC_DISP_SD_BL_TF(1));
  1263. DUMP_REG(DC_DISP_SD_BL_TF(2));
  1264. DUMP_REG(DC_DISP_SD_BL_TF(3));
  1265. DUMP_REG(DC_DISP_SD_BL_CONTROL);
  1266. DUMP_REG(DC_DISP_SD_HW_K_VALUES);
  1267. DUMP_REG(DC_DISP_SD_MAN_K_VALUES);
  1268. DUMP_REG(DC_DISP_CURSOR_START_ADDR_HI);
  1269. DUMP_REG(DC_DISP_BLEND_CURSOR_CONTROL);
  1270. DUMP_REG(DC_WIN_WIN_OPTIONS);
  1271. DUMP_REG(DC_WIN_BYTE_SWAP);
  1272. DUMP_REG(DC_WIN_BUFFER_CONTROL);
  1273. DUMP_REG(DC_WIN_COLOR_DEPTH);
  1274. DUMP_REG(DC_WIN_POSITION);
  1275. DUMP_REG(DC_WIN_SIZE);
  1276. DUMP_REG(DC_WIN_PRESCALED_SIZE);
  1277. DUMP_REG(DC_WIN_H_INITIAL_DDA);
  1278. DUMP_REG(DC_WIN_V_INITIAL_DDA);
  1279. DUMP_REG(DC_WIN_DDA_INC);
  1280. DUMP_REG(DC_WIN_LINE_STRIDE);
  1281. DUMP_REG(DC_WIN_BUF_STRIDE);
  1282. DUMP_REG(DC_WIN_UV_BUF_STRIDE);
  1283. DUMP_REG(DC_WIN_BUFFER_ADDR_MODE);
  1284. DUMP_REG(DC_WIN_DV_CONTROL);
  1285. DUMP_REG(DC_WIN_BLEND_NOKEY);
  1286. DUMP_REG(DC_WIN_BLEND_1WIN);
  1287. DUMP_REG(DC_WIN_BLEND_2WIN_X);
  1288. DUMP_REG(DC_WIN_BLEND_2WIN_Y);
  1289. DUMP_REG(DC_WIN_BLEND_3WIN_XY);
  1290. DUMP_REG(DC_WIN_HP_FETCH_CONTROL);
  1291. DUMP_REG(DC_WINBUF_START_ADDR);
  1292. DUMP_REG(DC_WINBUF_START_ADDR_NS);
  1293. DUMP_REG(DC_WINBUF_START_ADDR_U);
  1294. DUMP_REG(DC_WINBUF_START_ADDR_U_NS);
  1295. DUMP_REG(DC_WINBUF_START_ADDR_V);
  1296. DUMP_REG(DC_WINBUF_START_ADDR_V_NS);
  1297. DUMP_REG(DC_WINBUF_ADDR_H_OFFSET);
  1298. DUMP_REG(DC_WINBUF_ADDR_H_OFFSET_NS);
  1299. DUMP_REG(DC_WINBUF_ADDR_V_OFFSET);
  1300. DUMP_REG(DC_WINBUF_ADDR_V_OFFSET_NS);
  1301. DUMP_REG(DC_WINBUF_UFLOW_STATUS);
  1302. DUMP_REG(DC_WINBUF_AD_UFLOW_STATUS);
  1303. DUMP_REG(DC_WINBUF_BD_UFLOW_STATUS);
  1304. DUMP_REG(DC_WINBUF_CD_UFLOW_STATUS);
  1305. #undef DUMP_REG
  1306. unlock:
  1307. drm_modeset_unlock_crtc(&dc->base);
  1308. return err;
  1309. }
  1310. static int tegra_dc_show_crc(struct seq_file *s, void *data)
  1311. {
  1312. struct drm_info_node *node = s->private;
  1313. struct tegra_dc *dc = node->info_ent->data;
  1314. int err = 0;
  1315. u32 value;
  1316. drm_modeset_lock_crtc(&dc->base, NULL);
  1317. if (!dc->base.state->active) {
  1318. err = -EBUSY;
  1319. goto unlock;
  1320. }
  1321. value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
  1322. tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
  1323. tegra_dc_commit(dc);
  1324. drm_crtc_wait_one_vblank(&dc->base);
  1325. drm_crtc_wait_one_vblank(&dc->base);
  1326. value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
  1327. seq_printf(s, "%08x\n", value);
  1328. tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
  1329. unlock:
  1330. drm_modeset_unlock_crtc(&dc->base);
  1331. return err;
  1332. }
  1333. static int tegra_dc_show_stats(struct seq_file *s, void *data)
  1334. {
  1335. struct drm_info_node *node = s->private;
  1336. struct tegra_dc *dc = node->info_ent->data;
  1337. seq_printf(s, "frames: %lu\n", dc->stats.frames);
  1338. seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
  1339. seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
  1340. seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
  1341. return 0;
  1342. }
  1343. static struct drm_info_list debugfs_files[] = {
  1344. { "regs", tegra_dc_show_regs, 0, NULL },
  1345. { "crc", tegra_dc_show_crc, 0, NULL },
  1346. { "stats", tegra_dc_show_stats, 0, NULL },
  1347. };
  1348. static int tegra_dc_debugfs_init(struct tegra_dc *dc, struct drm_minor *minor)
  1349. {
  1350. unsigned int i;
  1351. char *name;
  1352. int err;
  1353. name = kasprintf(GFP_KERNEL, "dc.%d", dc->pipe);
  1354. dc->debugfs = debugfs_create_dir(name, minor->debugfs_root);
  1355. kfree(name);
  1356. if (!dc->debugfs)
  1357. return -ENOMEM;
  1358. dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
  1359. GFP_KERNEL);
  1360. if (!dc->debugfs_files) {
  1361. err = -ENOMEM;
  1362. goto remove;
  1363. }
  1364. for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
  1365. dc->debugfs_files[i].data = dc;
  1366. err = drm_debugfs_create_files(dc->debugfs_files,
  1367. ARRAY_SIZE(debugfs_files),
  1368. dc->debugfs, minor);
  1369. if (err < 0)
  1370. goto free;
  1371. dc->minor = minor;
  1372. return 0;
  1373. free:
  1374. kfree(dc->debugfs_files);
  1375. dc->debugfs_files = NULL;
  1376. remove:
  1377. debugfs_remove(dc->debugfs);
  1378. dc->debugfs = NULL;
  1379. return err;
  1380. }
  1381. static int tegra_dc_debugfs_exit(struct tegra_dc *dc)
  1382. {
  1383. drm_debugfs_remove_files(dc->debugfs_files, ARRAY_SIZE(debugfs_files),
  1384. dc->minor);
  1385. dc->minor = NULL;
  1386. kfree(dc->debugfs_files);
  1387. dc->debugfs_files = NULL;
  1388. debugfs_remove(dc->debugfs);
  1389. dc->debugfs = NULL;
  1390. return 0;
  1391. }
  1392. static int tegra_dc_init(struct host1x_client *client)
  1393. {
  1394. struct drm_device *drm = dev_get_drvdata(client->parent);
  1395. struct tegra_dc *dc = host1x_client_to_dc(client);
  1396. struct tegra_drm *tegra = drm->dev_private;
  1397. struct drm_plane *primary = NULL;
  1398. struct drm_plane *cursor = NULL;
  1399. u32 value;
  1400. int err;
  1401. if (tegra->domain) {
  1402. err = iommu_attach_device(tegra->domain, dc->dev);
  1403. if (err < 0) {
  1404. dev_err(dc->dev, "failed to attach to domain: %d\n",
  1405. err);
  1406. return err;
  1407. }
  1408. dc->domain = tegra->domain;
  1409. }
  1410. primary = tegra_dc_primary_plane_create(drm, dc);
  1411. if (IS_ERR(primary)) {
  1412. err = PTR_ERR(primary);
  1413. goto cleanup;
  1414. }
  1415. if (dc->soc->supports_cursor) {
  1416. cursor = tegra_dc_cursor_plane_create(drm, dc);
  1417. if (IS_ERR(cursor)) {
  1418. err = PTR_ERR(cursor);
  1419. goto cleanup;
  1420. }
  1421. }
  1422. err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
  1423. &tegra_crtc_funcs);
  1424. if (err < 0)
  1425. goto cleanup;
  1426. drm_mode_crtc_set_gamma_size(&dc->base, 256);
  1427. drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
  1428. /*
  1429. * Keep track of the minimum pitch alignment across all display
  1430. * controllers.
  1431. */
  1432. if (dc->soc->pitch_align > tegra->pitch_align)
  1433. tegra->pitch_align = dc->soc->pitch_align;
  1434. err = tegra_dc_rgb_init(drm, dc);
  1435. if (err < 0 && err != -ENODEV) {
  1436. dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
  1437. goto cleanup;
  1438. }
  1439. err = tegra_dc_add_planes(drm, dc);
  1440. if (err < 0)
  1441. goto cleanup;
  1442. if (IS_ENABLED(CONFIG_DEBUG_FS)) {
  1443. err = tegra_dc_debugfs_init(dc, drm->primary);
  1444. if (err < 0)
  1445. dev_err(dc->dev, "debugfs setup failed: %d\n", err);
  1446. }
  1447. err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
  1448. dev_name(dc->dev), dc);
  1449. if (err < 0) {
  1450. dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
  1451. err);
  1452. goto cleanup;
  1453. }
  1454. /* initialize display controller */
  1455. if (dc->syncpt) {
  1456. u32 syncpt = host1x_syncpt_id(dc->syncpt);
  1457. value = SYNCPT_CNTRL_NO_STALL;
  1458. tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
  1459. value = SYNCPT_VSYNC_ENABLE | syncpt;
  1460. tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
  1461. }
  1462. value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
  1463. WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
  1464. tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
  1465. value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
  1466. WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
  1467. tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
  1468. /* initialize timer */
  1469. value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
  1470. WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
  1471. tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
  1472. value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
  1473. WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
  1474. tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
  1475. value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
  1476. WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
  1477. tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
  1478. value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
  1479. WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
  1480. tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
  1481. if (dc->soc->supports_border_color)
  1482. tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
  1483. tegra_dc_stats_reset(&dc->stats);
  1484. return 0;
  1485. cleanup:
  1486. if (cursor)
  1487. drm_plane_cleanup(cursor);
  1488. if (primary)
  1489. drm_plane_cleanup(primary);
  1490. if (tegra->domain) {
  1491. iommu_detach_device(tegra->domain, dc->dev);
  1492. dc->domain = NULL;
  1493. }
  1494. return err;
  1495. }
  1496. static int tegra_dc_exit(struct host1x_client *client)
  1497. {
  1498. struct tegra_dc *dc = host1x_client_to_dc(client);
  1499. int err;
  1500. devm_free_irq(dc->dev, dc->irq, dc);
  1501. if (IS_ENABLED(CONFIG_DEBUG_FS)) {
  1502. err = tegra_dc_debugfs_exit(dc);
  1503. if (err < 0)
  1504. dev_err(dc->dev, "debugfs cleanup failed: %d\n", err);
  1505. }
  1506. err = tegra_dc_rgb_exit(dc);
  1507. if (err) {
  1508. dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
  1509. return err;
  1510. }
  1511. if (dc->domain) {
  1512. iommu_detach_device(dc->domain, dc->dev);
  1513. dc->domain = NULL;
  1514. }
  1515. return 0;
  1516. }
  1517. static const struct host1x_client_ops dc_client_ops = {
  1518. .init = tegra_dc_init,
  1519. .exit = tegra_dc_exit,
  1520. };
  1521. static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
  1522. .supports_border_color = true,
  1523. .supports_interlacing = false,
  1524. .supports_cursor = false,
  1525. .supports_block_linear = false,
  1526. .pitch_align = 8,
  1527. .has_powergate = false,
  1528. };
  1529. static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
  1530. .supports_border_color = true,
  1531. .supports_interlacing = false,
  1532. .supports_cursor = false,
  1533. .supports_block_linear = false,
  1534. .pitch_align = 8,
  1535. .has_powergate = false,
  1536. };
  1537. static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
  1538. .supports_border_color = true,
  1539. .supports_interlacing = false,
  1540. .supports_cursor = false,
  1541. .supports_block_linear = false,
  1542. .pitch_align = 64,
  1543. .has_powergate = true,
  1544. };
  1545. static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
  1546. .supports_border_color = false,
  1547. .supports_interlacing = true,
  1548. .supports_cursor = true,
  1549. .supports_block_linear = true,
  1550. .pitch_align = 64,
  1551. .has_powergate = true,
  1552. };
  1553. static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
  1554. .supports_border_color = false,
  1555. .supports_interlacing = true,
  1556. .supports_cursor = true,
  1557. .supports_block_linear = true,
  1558. .pitch_align = 64,
  1559. .has_powergate = true,
  1560. };
  1561. static const struct of_device_id tegra_dc_of_match[] = {
  1562. {
  1563. .compatible = "nvidia,tegra210-dc",
  1564. .data = &tegra210_dc_soc_info,
  1565. }, {
  1566. .compatible = "nvidia,tegra124-dc",
  1567. .data = &tegra124_dc_soc_info,
  1568. }, {
  1569. .compatible = "nvidia,tegra114-dc",
  1570. .data = &tegra114_dc_soc_info,
  1571. }, {
  1572. .compatible = "nvidia,tegra30-dc",
  1573. .data = &tegra30_dc_soc_info,
  1574. }, {
  1575. .compatible = "nvidia,tegra20-dc",
  1576. .data = &tegra20_dc_soc_info,
  1577. }, {
  1578. /* sentinel */
  1579. }
  1580. };
  1581. MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
  1582. static int tegra_dc_parse_dt(struct tegra_dc *dc)
  1583. {
  1584. struct device_node *np;
  1585. u32 value = 0;
  1586. int err;
  1587. err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
  1588. if (err < 0) {
  1589. dev_err(dc->dev, "missing \"nvidia,head\" property\n");
  1590. /*
  1591. * If the nvidia,head property isn't present, try to find the
  1592. * correct head number by looking up the position of this
  1593. * display controller's node within the device tree. Assuming
  1594. * that the nodes are ordered properly in the DTS file and
  1595. * that the translation into a flattened device tree blob
  1596. * preserves that ordering this will actually yield the right
  1597. * head number.
  1598. *
  1599. * If those assumptions don't hold, this will still work for
  1600. * cases where only a single display controller is used.
  1601. */
  1602. for_each_matching_node(np, tegra_dc_of_match) {
  1603. if (np == dc->dev->of_node)
  1604. break;
  1605. value++;
  1606. }
  1607. }
  1608. dc->pipe = value;
  1609. return 0;
  1610. }
  1611. static int tegra_dc_probe(struct platform_device *pdev)
  1612. {
  1613. unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
  1614. const struct of_device_id *id;
  1615. struct resource *regs;
  1616. struct tegra_dc *dc;
  1617. int err;
  1618. dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
  1619. if (!dc)
  1620. return -ENOMEM;
  1621. id = of_match_node(tegra_dc_of_match, pdev->dev.of_node);
  1622. if (!id)
  1623. return -ENODEV;
  1624. spin_lock_init(&dc->lock);
  1625. INIT_LIST_HEAD(&dc->list);
  1626. dc->dev = &pdev->dev;
  1627. dc->soc = id->data;
  1628. err = tegra_dc_parse_dt(dc);
  1629. if (err < 0)
  1630. return err;
  1631. dc->clk = devm_clk_get(&pdev->dev, NULL);
  1632. if (IS_ERR(dc->clk)) {
  1633. dev_err(&pdev->dev, "failed to get clock\n");
  1634. return PTR_ERR(dc->clk);
  1635. }
  1636. dc->rst = devm_reset_control_get(&pdev->dev, "dc");
  1637. if (IS_ERR(dc->rst)) {
  1638. dev_err(&pdev->dev, "failed to get reset\n");
  1639. return PTR_ERR(dc->rst);
  1640. }
  1641. if (dc->soc->has_powergate) {
  1642. if (dc->pipe == 0)
  1643. dc->powergate = TEGRA_POWERGATE_DIS;
  1644. else
  1645. dc->powergate = TEGRA_POWERGATE_DISB;
  1646. err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
  1647. dc->rst);
  1648. if (err < 0) {
  1649. dev_err(&pdev->dev, "failed to power partition: %d\n",
  1650. err);
  1651. return err;
  1652. }
  1653. } else {
  1654. err = clk_prepare_enable(dc->clk);
  1655. if (err < 0) {
  1656. dev_err(&pdev->dev, "failed to enable clock: %d\n",
  1657. err);
  1658. return err;
  1659. }
  1660. err = reset_control_deassert(dc->rst);
  1661. if (err < 0) {
  1662. dev_err(&pdev->dev, "failed to deassert reset: %d\n",
  1663. err);
  1664. return err;
  1665. }
  1666. }
  1667. regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1668. dc->regs = devm_ioremap_resource(&pdev->dev, regs);
  1669. if (IS_ERR(dc->regs))
  1670. return PTR_ERR(dc->regs);
  1671. dc->irq = platform_get_irq(pdev, 0);
  1672. if (dc->irq < 0) {
  1673. dev_err(&pdev->dev, "failed to get IRQ\n");
  1674. return -ENXIO;
  1675. }
  1676. dc->syncpt = host1x_syncpt_request(&pdev->dev, flags);
  1677. if (!dc->syncpt)
  1678. dev_warn(&pdev->dev, "failed to allocate syncpoint\n");
  1679. INIT_LIST_HEAD(&dc->client.list);
  1680. dc->client.ops = &dc_client_ops;
  1681. dc->client.dev = &pdev->dev;
  1682. err = tegra_dc_rgb_probe(dc);
  1683. if (err < 0 && err != -ENODEV) {
  1684. dev_err(&pdev->dev, "failed to probe RGB output: %d\n", err);
  1685. return err;
  1686. }
  1687. err = host1x_client_register(&dc->client);
  1688. if (err < 0) {
  1689. dev_err(&pdev->dev, "failed to register host1x client: %d\n",
  1690. err);
  1691. return err;
  1692. }
  1693. platform_set_drvdata(pdev, dc);
  1694. return 0;
  1695. }
  1696. static int tegra_dc_remove(struct platform_device *pdev)
  1697. {
  1698. struct tegra_dc *dc = platform_get_drvdata(pdev);
  1699. int err;
  1700. host1x_syncpt_free(dc->syncpt);
  1701. err = host1x_client_unregister(&dc->client);
  1702. if (err < 0) {
  1703. dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
  1704. err);
  1705. return err;
  1706. }
  1707. err = tegra_dc_rgb_remove(dc);
  1708. if (err < 0) {
  1709. dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
  1710. return err;
  1711. }
  1712. reset_control_assert(dc->rst);
  1713. if (dc->soc->has_powergate)
  1714. tegra_powergate_power_off(dc->powergate);
  1715. clk_disable_unprepare(dc->clk);
  1716. return 0;
  1717. }
  1718. struct platform_driver tegra_dc_driver = {
  1719. .driver = {
  1720. .name = "tegra-dc",
  1721. .of_match_table = tegra_dc_of_match,
  1722. },
  1723. .probe = tegra_dc_probe,
  1724. .remove = tegra_dc_remove,
  1725. };