intel_ringbuffer.c 82 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <drm/drmP.h>
  30. #include "i915_drv.h"
  31. #include <drm/i915_drm.h>
  32. #include "i915_trace.h"
  33. #include "intel_drv.h"
  34. bool
  35. intel_ring_initialized(struct intel_engine_cs *ring)
  36. {
  37. struct drm_device *dev = ring->dev;
  38. if (!dev)
  39. return false;
  40. if (i915.enable_execlists) {
  41. struct intel_context *dctx = ring->default_context;
  42. struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
  43. return ringbuf->obj;
  44. } else
  45. return ring->buffer && ring->buffer->obj;
  46. }
  47. int __intel_ring_space(int head, int tail, int size)
  48. {
  49. int space = head - tail;
  50. if (space <= 0)
  51. space += size;
  52. return space - I915_RING_FREE_SPACE;
  53. }
  54. void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
  55. {
  56. if (ringbuf->last_retired_head != -1) {
  57. ringbuf->head = ringbuf->last_retired_head;
  58. ringbuf->last_retired_head = -1;
  59. }
  60. ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
  61. ringbuf->tail, ringbuf->size);
  62. }
  63. int intel_ring_space(struct intel_ringbuffer *ringbuf)
  64. {
  65. intel_ring_update_space(ringbuf);
  66. return ringbuf->space;
  67. }
  68. bool intel_ring_stopped(struct intel_engine_cs *ring)
  69. {
  70. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  71. return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
  72. }
  73. static void __intel_ring_advance(struct intel_engine_cs *ring)
  74. {
  75. struct intel_ringbuffer *ringbuf = ring->buffer;
  76. ringbuf->tail &= ringbuf->size - 1;
  77. if (intel_ring_stopped(ring))
  78. return;
  79. ring->write_tail(ring, ringbuf->tail);
  80. }
  81. static int
  82. gen2_render_ring_flush(struct drm_i915_gem_request *req,
  83. u32 invalidate_domains,
  84. u32 flush_domains)
  85. {
  86. struct intel_engine_cs *ring = req->ring;
  87. u32 cmd;
  88. int ret;
  89. cmd = MI_FLUSH;
  90. if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  91. cmd |= MI_NO_WRITE_FLUSH;
  92. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  93. cmd |= MI_READ_FLUSH;
  94. ret = intel_ring_begin(req, 2);
  95. if (ret)
  96. return ret;
  97. intel_ring_emit(ring, cmd);
  98. intel_ring_emit(ring, MI_NOOP);
  99. intel_ring_advance(ring);
  100. return 0;
  101. }
  102. static int
  103. gen4_render_ring_flush(struct drm_i915_gem_request *req,
  104. u32 invalidate_domains,
  105. u32 flush_domains)
  106. {
  107. struct intel_engine_cs *ring = req->ring;
  108. struct drm_device *dev = ring->dev;
  109. u32 cmd;
  110. int ret;
  111. /*
  112. * read/write caches:
  113. *
  114. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  115. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  116. * also flushed at 2d versus 3d pipeline switches.
  117. *
  118. * read-only caches:
  119. *
  120. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  121. * MI_READ_FLUSH is set, and is always flushed on 965.
  122. *
  123. * I915_GEM_DOMAIN_COMMAND may not exist?
  124. *
  125. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  126. * invalidated when MI_EXE_FLUSH is set.
  127. *
  128. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  129. * invalidated with every MI_FLUSH.
  130. *
  131. * TLBs:
  132. *
  133. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  134. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  135. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  136. * are flushed at any MI_FLUSH.
  137. */
  138. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  139. if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
  140. cmd &= ~MI_NO_WRITE_FLUSH;
  141. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  142. cmd |= MI_EXE_FLUSH;
  143. if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
  144. (IS_G4X(dev) || IS_GEN5(dev)))
  145. cmd |= MI_INVALIDATE_ISP;
  146. ret = intel_ring_begin(req, 2);
  147. if (ret)
  148. return ret;
  149. intel_ring_emit(ring, cmd);
  150. intel_ring_emit(ring, MI_NOOP);
  151. intel_ring_advance(ring);
  152. return 0;
  153. }
  154. /**
  155. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  156. * implementing two workarounds on gen6. From section 1.4.7.1
  157. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  158. *
  159. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  160. * produced by non-pipelined state commands), software needs to first
  161. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  162. * 0.
  163. *
  164. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  165. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  166. *
  167. * And the workaround for these two requires this workaround first:
  168. *
  169. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  170. * BEFORE the pipe-control with a post-sync op and no write-cache
  171. * flushes.
  172. *
  173. * And this last workaround is tricky because of the requirements on
  174. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  175. * volume 2 part 1:
  176. *
  177. * "1 of the following must also be set:
  178. * - Render Target Cache Flush Enable ([12] of DW1)
  179. * - Depth Cache Flush Enable ([0] of DW1)
  180. * - Stall at Pixel Scoreboard ([1] of DW1)
  181. * - Depth Stall ([13] of DW1)
  182. * - Post-Sync Operation ([13] of DW1)
  183. * - Notify Enable ([8] of DW1)"
  184. *
  185. * The cache flushes require the workaround flush that triggered this
  186. * one, so we can't use it. Depth stall would trigger the same.
  187. * Post-sync nonzero is what triggered this second workaround, so we
  188. * can't use that one either. Notify enable is IRQs, which aren't
  189. * really our business. That leaves only stall at scoreboard.
  190. */
  191. static int
  192. intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
  193. {
  194. struct intel_engine_cs *ring = req->ring;
  195. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  196. int ret;
  197. ret = intel_ring_begin(req, 6);
  198. if (ret)
  199. return ret;
  200. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  201. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  202. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  203. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  204. intel_ring_emit(ring, 0); /* low dword */
  205. intel_ring_emit(ring, 0); /* high dword */
  206. intel_ring_emit(ring, MI_NOOP);
  207. intel_ring_advance(ring);
  208. ret = intel_ring_begin(req, 6);
  209. if (ret)
  210. return ret;
  211. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  212. intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
  213. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  214. intel_ring_emit(ring, 0);
  215. intel_ring_emit(ring, 0);
  216. intel_ring_emit(ring, MI_NOOP);
  217. intel_ring_advance(ring);
  218. return 0;
  219. }
  220. static int
  221. gen6_render_ring_flush(struct drm_i915_gem_request *req,
  222. u32 invalidate_domains, u32 flush_domains)
  223. {
  224. struct intel_engine_cs *ring = req->ring;
  225. u32 flags = 0;
  226. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  227. int ret;
  228. /* Force SNB workarounds for PIPE_CONTROL flushes */
  229. ret = intel_emit_post_sync_nonzero_flush(req);
  230. if (ret)
  231. return ret;
  232. /* Just flush everything. Experiments have shown that reducing the
  233. * number of bits based on the write domains has little performance
  234. * impact.
  235. */
  236. if (flush_domains) {
  237. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  238. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  239. /*
  240. * Ensure that any following seqno writes only happen
  241. * when the render cache is indeed flushed.
  242. */
  243. flags |= PIPE_CONTROL_CS_STALL;
  244. }
  245. if (invalidate_domains) {
  246. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  247. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  248. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  249. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  250. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  251. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  252. /*
  253. * TLB invalidate requires a post-sync write.
  254. */
  255. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  256. }
  257. ret = intel_ring_begin(req, 4);
  258. if (ret)
  259. return ret;
  260. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  261. intel_ring_emit(ring, flags);
  262. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  263. intel_ring_emit(ring, 0);
  264. intel_ring_advance(ring);
  265. return 0;
  266. }
  267. static int
  268. gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
  269. {
  270. struct intel_engine_cs *ring = req->ring;
  271. int ret;
  272. ret = intel_ring_begin(req, 4);
  273. if (ret)
  274. return ret;
  275. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  276. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  277. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  278. intel_ring_emit(ring, 0);
  279. intel_ring_emit(ring, 0);
  280. intel_ring_advance(ring);
  281. return 0;
  282. }
  283. static int
  284. gen7_render_ring_flush(struct drm_i915_gem_request *req,
  285. u32 invalidate_domains, u32 flush_domains)
  286. {
  287. struct intel_engine_cs *ring = req->ring;
  288. u32 flags = 0;
  289. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  290. int ret;
  291. /*
  292. * Ensure that any following seqno writes only happen when the render
  293. * cache is indeed flushed.
  294. *
  295. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  296. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  297. * don't try to be clever and just set it unconditionally.
  298. */
  299. flags |= PIPE_CONTROL_CS_STALL;
  300. /* Just flush everything. Experiments have shown that reducing the
  301. * number of bits based on the write domains has little performance
  302. * impact.
  303. */
  304. if (flush_domains) {
  305. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  306. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  307. }
  308. if (invalidate_domains) {
  309. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  310. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  311. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  312. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  313. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  314. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  315. flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
  316. /*
  317. * TLB invalidate requires a post-sync write.
  318. */
  319. flags |= PIPE_CONTROL_QW_WRITE;
  320. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  321. flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
  322. /* Workaround: we must issue a pipe_control with CS-stall bit
  323. * set before a pipe_control command that has the state cache
  324. * invalidate bit set. */
  325. gen7_render_ring_cs_stall_wa(req);
  326. }
  327. ret = intel_ring_begin(req, 4);
  328. if (ret)
  329. return ret;
  330. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  331. intel_ring_emit(ring, flags);
  332. intel_ring_emit(ring, scratch_addr);
  333. intel_ring_emit(ring, 0);
  334. intel_ring_advance(ring);
  335. return 0;
  336. }
  337. static int
  338. gen8_emit_pipe_control(struct drm_i915_gem_request *req,
  339. u32 flags, u32 scratch_addr)
  340. {
  341. struct intel_engine_cs *ring = req->ring;
  342. int ret;
  343. ret = intel_ring_begin(req, 6);
  344. if (ret)
  345. return ret;
  346. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
  347. intel_ring_emit(ring, flags);
  348. intel_ring_emit(ring, scratch_addr);
  349. intel_ring_emit(ring, 0);
  350. intel_ring_emit(ring, 0);
  351. intel_ring_emit(ring, 0);
  352. intel_ring_advance(ring);
  353. return 0;
  354. }
  355. static int
  356. gen8_render_ring_flush(struct drm_i915_gem_request *req,
  357. u32 invalidate_domains, u32 flush_domains)
  358. {
  359. u32 flags = 0;
  360. u32 scratch_addr = req->ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  361. int ret;
  362. flags |= PIPE_CONTROL_CS_STALL;
  363. if (flush_domains) {
  364. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  365. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  366. }
  367. if (invalidate_domains) {
  368. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  369. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  370. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  371. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  372. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  373. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  374. flags |= PIPE_CONTROL_QW_WRITE;
  375. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  376. /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
  377. ret = gen8_emit_pipe_control(req,
  378. PIPE_CONTROL_CS_STALL |
  379. PIPE_CONTROL_STALL_AT_SCOREBOARD,
  380. 0);
  381. if (ret)
  382. return ret;
  383. }
  384. return gen8_emit_pipe_control(req, flags, scratch_addr);
  385. }
  386. static void ring_write_tail(struct intel_engine_cs *ring,
  387. u32 value)
  388. {
  389. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  390. I915_WRITE_TAIL(ring, value);
  391. }
  392. u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
  393. {
  394. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  395. u64 acthd;
  396. if (INTEL_INFO(ring->dev)->gen >= 8)
  397. acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
  398. RING_ACTHD_UDW(ring->mmio_base));
  399. else if (INTEL_INFO(ring->dev)->gen >= 4)
  400. acthd = I915_READ(RING_ACTHD(ring->mmio_base));
  401. else
  402. acthd = I915_READ(ACTHD);
  403. return acthd;
  404. }
  405. static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
  406. {
  407. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  408. u32 addr;
  409. addr = dev_priv->status_page_dmah->busaddr;
  410. if (INTEL_INFO(ring->dev)->gen >= 4)
  411. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  412. I915_WRITE(HWS_PGA, addr);
  413. }
  414. static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
  415. {
  416. struct drm_device *dev = ring->dev;
  417. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  418. u32 mmio = 0;
  419. /* The ring status page addresses are no longer next to the rest of
  420. * the ring registers as of gen7.
  421. */
  422. if (IS_GEN7(dev)) {
  423. switch (ring->id) {
  424. case RCS:
  425. mmio = RENDER_HWS_PGA_GEN7;
  426. break;
  427. case BCS:
  428. mmio = BLT_HWS_PGA_GEN7;
  429. break;
  430. /*
  431. * VCS2 actually doesn't exist on Gen7. Only shut up
  432. * gcc switch check warning
  433. */
  434. case VCS2:
  435. case VCS:
  436. mmio = BSD_HWS_PGA_GEN7;
  437. break;
  438. case VECS:
  439. mmio = VEBOX_HWS_PGA_GEN7;
  440. break;
  441. }
  442. } else if (IS_GEN6(ring->dev)) {
  443. mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
  444. } else {
  445. /* XXX: gen8 returns to sanity */
  446. mmio = RING_HWS_PGA(ring->mmio_base);
  447. }
  448. I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
  449. POSTING_READ(mmio);
  450. /*
  451. * Flush the TLB for this page
  452. *
  453. * FIXME: These two bits have disappeared on gen8, so a question
  454. * arises: do we still need this and if so how should we go about
  455. * invalidating the TLB?
  456. */
  457. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
  458. u32 reg = RING_INSTPM(ring->mmio_base);
  459. /* ring should be idle before issuing a sync flush*/
  460. WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
  461. I915_WRITE(reg,
  462. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  463. INSTPM_SYNC_FLUSH));
  464. if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
  465. 1000))
  466. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  467. ring->name);
  468. }
  469. }
  470. static bool stop_ring(struct intel_engine_cs *ring)
  471. {
  472. struct drm_i915_private *dev_priv = to_i915(ring->dev);
  473. if (!IS_GEN2(ring->dev)) {
  474. I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
  475. if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
  476. DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
  477. /* Sometimes we observe that the idle flag is not
  478. * set even though the ring is empty. So double
  479. * check before giving up.
  480. */
  481. if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
  482. return false;
  483. }
  484. }
  485. I915_WRITE_CTL(ring, 0);
  486. I915_WRITE_HEAD(ring, 0);
  487. ring->write_tail(ring, 0);
  488. if (!IS_GEN2(ring->dev)) {
  489. (void)I915_READ_CTL(ring);
  490. I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
  491. }
  492. return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
  493. }
  494. static int init_ring_common(struct intel_engine_cs *ring)
  495. {
  496. struct drm_device *dev = ring->dev;
  497. struct drm_i915_private *dev_priv = dev->dev_private;
  498. struct intel_ringbuffer *ringbuf = ring->buffer;
  499. struct drm_i915_gem_object *obj = ringbuf->obj;
  500. int ret = 0;
  501. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  502. if (!stop_ring(ring)) {
  503. /* G45 ring initialization often fails to reset head to zero */
  504. DRM_DEBUG_KMS("%s head not reset to zero "
  505. "ctl %08x head %08x tail %08x start %08x\n",
  506. ring->name,
  507. I915_READ_CTL(ring),
  508. I915_READ_HEAD(ring),
  509. I915_READ_TAIL(ring),
  510. I915_READ_START(ring));
  511. if (!stop_ring(ring)) {
  512. DRM_ERROR("failed to set %s head to zero "
  513. "ctl %08x head %08x tail %08x start %08x\n",
  514. ring->name,
  515. I915_READ_CTL(ring),
  516. I915_READ_HEAD(ring),
  517. I915_READ_TAIL(ring),
  518. I915_READ_START(ring));
  519. ret = -EIO;
  520. goto out;
  521. }
  522. }
  523. if (I915_NEED_GFX_HWS(dev))
  524. intel_ring_setup_status_page(ring);
  525. else
  526. ring_setup_phys_status_page(ring);
  527. /* Enforce ordering by reading HEAD register back */
  528. I915_READ_HEAD(ring);
  529. /* Initialize the ring. This must happen _after_ we've cleared the ring
  530. * registers with the above sequence (the readback of the HEAD registers
  531. * also enforces ordering), otherwise the hw might lose the new ring
  532. * register values. */
  533. I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
  534. /* WaClearRingBufHeadRegAtInit:ctg,elk */
  535. if (I915_READ_HEAD(ring))
  536. DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
  537. ring->name, I915_READ_HEAD(ring));
  538. I915_WRITE_HEAD(ring, 0);
  539. (void)I915_READ_HEAD(ring);
  540. I915_WRITE_CTL(ring,
  541. ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
  542. | RING_VALID);
  543. /* If the head is still not zero, the ring is dead */
  544. if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
  545. I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
  546. (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
  547. DRM_ERROR("%s initialization failed "
  548. "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
  549. ring->name,
  550. I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
  551. I915_READ_HEAD(ring), I915_READ_TAIL(ring),
  552. I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
  553. ret = -EIO;
  554. goto out;
  555. }
  556. ringbuf->last_retired_head = -1;
  557. ringbuf->head = I915_READ_HEAD(ring);
  558. ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
  559. intel_ring_update_space(ringbuf);
  560. memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
  561. out:
  562. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  563. return ret;
  564. }
  565. void
  566. intel_fini_pipe_control(struct intel_engine_cs *ring)
  567. {
  568. struct drm_device *dev = ring->dev;
  569. if (ring->scratch.obj == NULL)
  570. return;
  571. if (INTEL_INFO(dev)->gen >= 5) {
  572. kunmap(sg_page(ring->scratch.obj->pages->sgl));
  573. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  574. }
  575. drm_gem_object_unreference(&ring->scratch.obj->base);
  576. ring->scratch.obj = NULL;
  577. }
  578. int
  579. intel_init_pipe_control(struct intel_engine_cs *ring)
  580. {
  581. int ret;
  582. WARN_ON(ring->scratch.obj);
  583. ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
  584. if (ring->scratch.obj == NULL) {
  585. DRM_ERROR("Failed to allocate seqno page\n");
  586. ret = -ENOMEM;
  587. goto err;
  588. }
  589. ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
  590. if (ret)
  591. goto err_unref;
  592. ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
  593. if (ret)
  594. goto err_unref;
  595. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
  596. ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
  597. if (ring->scratch.cpu_page == NULL) {
  598. ret = -ENOMEM;
  599. goto err_unpin;
  600. }
  601. DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
  602. ring->name, ring->scratch.gtt_offset);
  603. return 0;
  604. err_unpin:
  605. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  606. err_unref:
  607. drm_gem_object_unreference(&ring->scratch.obj->base);
  608. err:
  609. return ret;
  610. }
  611. static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
  612. {
  613. int ret, i;
  614. struct intel_engine_cs *ring = req->ring;
  615. struct drm_device *dev = ring->dev;
  616. struct drm_i915_private *dev_priv = dev->dev_private;
  617. struct i915_workarounds *w = &dev_priv->workarounds;
  618. if (WARN_ON_ONCE(w->count == 0))
  619. return 0;
  620. ring->gpu_caches_dirty = true;
  621. ret = intel_ring_flush_all_caches(req);
  622. if (ret)
  623. return ret;
  624. ret = intel_ring_begin(req, (w->count * 2 + 2));
  625. if (ret)
  626. return ret;
  627. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
  628. for (i = 0; i < w->count; i++) {
  629. intel_ring_emit(ring, w->reg[i].addr);
  630. intel_ring_emit(ring, w->reg[i].value);
  631. }
  632. intel_ring_emit(ring, MI_NOOP);
  633. intel_ring_advance(ring);
  634. ring->gpu_caches_dirty = true;
  635. ret = intel_ring_flush_all_caches(req);
  636. if (ret)
  637. return ret;
  638. DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
  639. return 0;
  640. }
  641. static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
  642. {
  643. int ret;
  644. ret = intel_ring_workarounds_emit(req);
  645. if (ret != 0)
  646. return ret;
  647. ret = i915_gem_render_state_init(req);
  648. if (ret)
  649. DRM_ERROR("init render state: %d\n", ret);
  650. return ret;
  651. }
  652. static int wa_add(struct drm_i915_private *dev_priv,
  653. const u32 addr, const u32 mask, const u32 val)
  654. {
  655. const u32 idx = dev_priv->workarounds.count;
  656. if (WARN_ON(idx >= I915_MAX_WA_REGS))
  657. return -ENOSPC;
  658. dev_priv->workarounds.reg[idx].addr = addr;
  659. dev_priv->workarounds.reg[idx].value = val;
  660. dev_priv->workarounds.reg[idx].mask = mask;
  661. dev_priv->workarounds.count++;
  662. return 0;
  663. }
  664. #define WA_REG(addr, mask, val) do { \
  665. const int r = wa_add(dev_priv, (addr), (mask), (val)); \
  666. if (r) \
  667. return r; \
  668. } while (0)
  669. #define WA_SET_BIT_MASKED(addr, mask) \
  670. WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
  671. #define WA_CLR_BIT_MASKED(addr, mask) \
  672. WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
  673. #define WA_SET_FIELD_MASKED(addr, mask, value) \
  674. WA_REG(addr, mask, _MASKED_FIELD(mask, value))
  675. #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
  676. #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
  677. #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
  678. static int bdw_init_workarounds(struct intel_engine_cs *ring)
  679. {
  680. struct drm_device *dev = ring->dev;
  681. struct drm_i915_private *dev_priv = dev->dev_private;
  682. WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
  683. /* WaDisableAsyncFlipPerfMode:bdw */
  684. WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
  685. /* WaDisablePartialInstShootdown:bdw */
  686. /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
  687. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  688. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
  689. STALL_DOP_GATING_DISABLE);
  690. /* WaDisableDopClockGating:bdw */
  691. WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
  692. DOP_CLOCK_GATING_DISABLE);
  693. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  694. GEN8_SAMPLER_POWER_BYPASS_DIS);
  695. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  696. * workaround for for a possible hang in the unlikely event a TLB
  697. * invalidation occurs during a PSD flush.
  698. */
  699. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  700. /* WaForceEnableNonCoherent:bdw */
  701. HDC_FORCE_NON_COHERENT |
  702. /* WaForceContextSaveRestoreNonCoherent:bdw */
  703. HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
  704. /* WaHdcDisableFetchWhenMasked:bdw */
  705. HDC_DONOT_FETCH_MEM_WHEN_MASKED |
  706. /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
  707. (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
  708. /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
  709. * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
  710. * polygons in the same 8x4 pixel/sample area to be processed without
  711. * stalling waiting for the earlier ones to write to Hierarchical Z
  712. * buffer."
  713. *
  714. * This optimization is off by default for Broadwell; turn it on.
  715. */
  716. WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
  717. /* Wa4x4STCOptimizationDisable:bdw */
  718. WA_SET_BIT_MASKED(CACHE_MODE_1,
  719. GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  720. /*
  721. * BSpec recommends 8x4 when MSAA is used,
  722. * however in practice 16x4 seems fastest.
  723. *
  724. * Note that PS/WM thread counts depend on the WIZ hashing
  725. * disable bit, which we don't touch here, but it's good
  726. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  727. */
  728. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  729. GEN6_WIZ_HASHING_MASK,
  730. GEN6_WIZ_HASHING_16x4);
  731. return 0;
  732. }
  733. static int chv_init_workarounds(struct intel_engine_cs *ring)
  734. {
  735. struct drm_device *dev = ring->dev;
  736. struct drm_i915_private *dev_priv = dev->dev_private;
  737. WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
  738. /* WaDisableAsyncFlipPerfMode:chv */
  739. WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
  740. /* WaDisablePartialInstShootdown:chv */
  741. /* WaDisableThreadStallDopClockGating:chv */
  742. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  743. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
  744. STALL_DOP_GATING_DISABLE);
  745. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  746. * workaround for a possible hang in the unlikely event a TLB
  747. * invalidation occurs during a PSD flush.
  748. */
  749. /* WaForceEnableNonCoherent:chv */
  750. /* WaHdcDisableFetchWhenMasked:chv */
  751. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  752. HDC_FORCE_NON_COHERENT |
  753. HDC_DONOT_FETCH_MEM_WHEN_MASKED);
  754. /* According to the CACHE_MODE_0 default value documentation, some
  755. * CHV platforms disable this optimization by default. Turn it on.
  756. */
  757. WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
  758. /* Wa4x4STCOptimizationDisable:chv */
  759. WA_SET_BIT_MASKED(CACHE_MODE_1,
  760. GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  761. /* Improve HiZ throughput on CHV. */
  762. WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
  763. /*
  764. * BSpec recommends 8x4 when MSAA is used,
  765. * however in practice 16x4 seems fastest.
  766. *
  767. * Note that PS/WM thread counts depend on the WIZ hashing
  768. * disable bit, which we don't touch here, but it's good
  769. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  770. */
  771. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  772. GEN6_WIZ_HASHING_MASK,
  773. GEN6_WIZ_HASHING_16x4);
  774. return 0;
  775. }
  776. static int gen9_init_workarounds(struct intel_engine_cs *ring)
  777. {
  778. struct drm_device *dev = ring->dev;
  779. struct drm_i915_private *dev_priv = dev->dev_private;
  780. uint32_t tmp;
  781. /* WaDisablePartialInstShootdown:skl,bxt */
  782. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  783. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  784. /* Syncing dependencies between camera and graphics:skl,bxt */
  785. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  786. GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
  787. if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) == SKL_REVID_A0 ||
  788. INTEL_REVID(dev) == SKL_REVID_B0)) ||
  789. (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
  790. /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
  791. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  792. GEN9_DG_MIRROR_FIX_ENABLE);
  793. }
  794. if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0) ||
  795. (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
  796. /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
  797. WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
  798. GEN9_RHWO_OPTIMIZATION_DISABLE);
  799. /*
  800. * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
  801. * but we do that in per ctx batchbuffer as there is an issue
  802. * with this register not getting restored on ctx restore
  803. */
  804. }
  805. if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) >= SKL_REVID_C0) ||
  806. IS_BROXTON(dev)) {
  807. /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
  808. WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
  809. GEN9_ENABLE_YV12_BUGFIX);
  810. }
  811. /* Wa4x4STCOptimizationDisable:skl,bxt */
  812. WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  813. /* WaDisablePartialResolveInVc:skl,bxt */
  814. WA_SET_BIT_MASKED(CACHE_MODE_1, GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE);
  815. /* WaCcsTlbPrefetchDisable:skl,bxt */
  816. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  817. GEN9_CCS_TLB_PREFETCH_ENABLE);
  818. /* WaDisableMaskBasedCammingInRCC:skl,bxt */
  819. if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_C0) ||
  820. (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0))
  821. WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
  822. PIXEL_MASK_CAMMING_DISABLE);
  823. /* WaForceContextSaveRestoreNonCoherent:skl,bxt */
  824. tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
  825. if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_F0) ||
  826. (IS_BROXTON(dev) && INTEL_REVID(dev) >= BXT_REVID_B0))
  827. tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
  828. WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
  829. return 0;
  830. }
  831. static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
  832. {
  833. struct drm_device *dev = ring->dev;
  834. struct drm_i915_private *dev_priv = dev->dev_private;
  835. u8 vals[3] = { 0, 0, 0 };
  836. unsigned int i;
  837. for (i = 0; i < 3; i++) {
  838. u8 ss;
  839. /*
  840. * Only consider slices where one, and only one, subslice has 7
  841. * EUs
  842. */
  843. if (hweight8(dev_priv->info.subslice_7eu[i]) != 1)
  844. continue;
  845. /*
  846. * subslice_7eu[i] != 0 (because of the check above) and
  847. * ss_max == 4 (maximum number of subslices possible per slice)
  848. *
  849. * -> 0 <= ss <= 3;
  850. */
  851. ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
  852. vals[i] = 3 - ss;
  853. }
  854. if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
  855. return 0;
  856. /* Tune IZ hashing. See intel_device_info_runtime_init() */
  857. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  858. GEN9_IZ_HASHING_MASK(2) |
  859. GEN9_IZ_HASHING_MASK(1) |
  860. GEN9_IZ_HASHING_MASK(0),
  861. GEN9_IZ_HASHING(2, vals[2]) |
  862. GEN9_IZ_HASHING(1, vals[1]) |
  863. GEN9_IZ_HASHING(0, vals[0]));
  864. return 0;
  865. }
  866. static int skl_init_workarounds(struct intel_engine_cs *ring)
  867. {
  868. struct drm_device *dev = ring->dev;
  869. struct drm_i915_private *dev_priv = dev->dev_private;
  870. gen9_init_workarounds(ring);
  871. /* WaDisablePowerCompilerClockGating:skl */
  872. if (INTEL_REVID(dev) == SKL_REVID_B0)
  873. WA_SET_BIT_MASKED(HIZ_CHICKEN,
  874. BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
  875. if (INTEL_REVID(dev) <= SKL_REVID_D0) {
  876. /*
  877. *Use Force Non-Coherent whenever executing a 3D context. This
  878. * is a workaround for a possible hang in the unlikely event
  879. * a TLB invalidation occurs during a PSD flush.
  880. */
  881. /* WaForceEnableNonCoherent:skl */
  882. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  883. HDC_FORCE_NON_COHERENT);
  884. }
  885. if (INTEL_REVID(dev) == SKL_REVID_C0 ||
  886. INTEL_REVID(dev) == SKL_REVID_D0)
  887. /* WaBarrierPerformanceFixDisable:skl */
  888. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  889. HDC_FENCE_DEST_SLM_DISABLE |
  890. HDC_BARRIER_PERFORMANCE_DISABLE);
  891. /* WaDisableSbeCacheDispatchPortSharing:skl */
  892. if (INTEL_REVID(dev) <= SKL_REVID_F0) {
  893. WA_SET_BIT_MASKED(
  894. GEN7_HALF_SLICE_CHICKEN1,
  895. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  896. }
  897. return skl_tune_iz_hashing(ring);
  898. }
  899. static int bxt_init_workarounds(struct intel_engine_cs *ring)
  900. {
  901. struct drm_device *dev = ring->dev;
  902. struct drm_i915_private *dev_priv = dev->dev_private;
  903. gen9_init_workarounds(ring);
  904. /* WaDisableThreadStallDopClockGating:bxt */
  905. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  906. STALL_DOP_GATING_DISABLE);
  907. /* WaDisableSbeCacheDispatchPortSharing:bxt */
  908. if (INTEL_REVID(dev) <= BXT_REVID_B0) {
  909. WA_SET_BIT_MASKED(
  910. GEN7_HALF_SLICE_CHICKEN1,
  911. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  912. }
  913. return 0;
  914. }
  915. int init_workarounds_ring(struct intel_engine_cs *ring)
  916. {
  917. struct drm_device *dev = ring->dev;
  918. struct drm_i915_private *dev_priv = dev->dev_private;
  919. WARN_ON(ring->id != RCS);
  920. dev_priv->workarounds.count = 0;
  921. if (IS_BROADWELL(dev))
  922. return bdw_init_workarounds(ring);
  923. if (IS_CHERRYVIEW(dev))
  924. return chv_init_workarounds(ring);
  925. if (IS_SKYLAKE(dev))
  926. return skl_init_workarounds(ring);
  927. if (IS_BROXTON(dev))
  928. return bxt_init_workarounds(ring);
  929. return 0;
  930. }
  931. static int init_render_ring(struct intel_engine_cs *ring)
  932. {
  933. struct drm_device *dev = ring->dev;
  934. struct drm_i915_private *dev_priv = dev->dev_private;
  935. int ret = init_ring_common(ring);
  936. if (ret)
  937. return ret;
  938. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  939. if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
  940. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  941. /* We need to disable the AsyncFlip performance optimisations in order
  942. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  943. * programmed to '1' on all products.
  944. *
  945. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
  946. */
  947. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
  948. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  949. /* Required for the hardware to program scanline values for waiting */
  950. /* WaEnableFlushTlbInvalidationMode:snb */
  951. if (INTEL_INFO(dev)->gen == 6)
  952. I915_WRITE(GFX_MODE,
  953. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
  954. /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
  955. if (IS_GEN7(dev))
  956. I915_WRITE(GFX_MODE_GEN7,
  957. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
  958. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  959. if (IS_GEN6(dev)) {
  960. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  961. * "If this bit is set, STCunit will have LRA as replacement
  962. * policy. [...] This bit must be reset. LRA replacement
  963. * policy is not supported."
  964. */
  965. I915_WRITE(CACHE_MODE_0,
  966. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  967. }
  968. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
  969. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  970. if (HAS_L3_DPF(dev))
  971. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  972. return init_workarounds_ring(ring);
  973. }
  974. static void render_ring_cleanup(struct intel_engine_cs *ring)
  975. {
  976. struct drm_device *dev = ring->dev;
  977. struct drm_i915_private *dev_priv = dev->dev_private;
  978. if (dev_priv->semaphore_obj) {
  979. i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
  980. drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
  981. dev_priv->semaphore_obj = NULL;
  982. }
  983. intel_fini_pipe_control(ring);
  984. }
  985. static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
  986. unsigned int num_dwords)
  987. {
  988. #define MBOX_UPDATE_DWORDS 8
  989. struct intel_engine_cs *signaller = signaller_req->ring;
  990. struct drm_device *dev = signaller->dev;
  991. struct drm_i915_private *dev_priv = dev->dev_private;
  992. struct intel_engine_cs *waiter;
  993. int i, ret, num_rings;
  994. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  995. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  996. #undef MBOX_UPDATE_DWORDS
  997. ret = intel_ring_begin(signaller_req, num_dwords);
  998. if (ret)
  999. return ret;
  1000. for_each_ring(waiter, dev_priv, i) {
  1001. u32 seqno;
  1002. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  1003. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1004. continue;
  1005. seqno = i915_gem_request_get_seqno(signaller_req);
  1006. intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
  1007. intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
  1008. PIPE_CONTROL_QW_WRITE |
  1009. PIPE_CONTROL_FLUSH_ENABLE);
  1010. intel_ring_emit(signaller, lower_32_bits(gtt_offset));
  1011. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1012. intel_ring_emit(signaller, seqno);
  1013. intel_ring_emit(signaller, 0);
  1014. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  1015. MI_SEMAPHORE_TARGET(waiter->id));
  1016. intel_ring_emit(signaller, 0);
  1017. }
  1018. return 0;
  1019. }
  1020. static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
  1021. unsigned int num_dwords)
  1022. {
  1023. #define MBOX_UPDATE_DWORDS 6
  1024. struct intel_engine_cs *signaller = signaller_req->ring;
  1025. struct drm_device *dev = signaller->dev;
  1026. struct drm_i915_private *dev_priv = dev->dev_private;
  1027. struct intel_engine_cs *waiter;
  1028. int i, ret, num_rings;
  1029. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  1030. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  1031. #undef MBOX_UPDATE_DWORDS
  1032. ret = intel_ring_begin(signaller_req, num_dwords);
  1033. if (ret)
  1034. return ret;
  1035. for_each_ring(waiter, dev_priv, i) {
  1036. u32 seqno;
  1037. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  1038. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1039. continue;
  1040. seqno = i915_gem_request_get_seqno(signaller_req);
  1041. intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
  1042. MI_FLUSH_DW_OP_STOREDW);
  1043. intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
  1044. MI_FLUSH_DW_USE_GTT);
  1045. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1046. intel_ring_emit(signaller, seqno);
  1047. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  1048. MI_SEMAPHORE_TARGET(waiter->id));
  1049. intel_ring_emit(signaller, 0);
  1050. }
  1051. return 0;
  1052. }
  1053. static int gen6_signal(struct drm_i915_gem_request *signaller_req,
  1054. unsigned int num_dwords)
  1055. {
  1056. struct intel_engine_cs *signaller = signaller_req->ring;
  1057. struct drm_device *dev = signaller->dev;
  1058. struct drm_i915_private *dev_priv = dev->dev_private;
  1059. struct intel_engine_cs *useless;
  1060. int i, ret, num_rings;
  1061. #define MBOX_UPDATE_DWORDS 3
  1062. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  1063. num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
  1064. #undef MBOX_UPDATE_DWORDS
  1065. ret = intel_ring_begin(signaller_req, num_dwords);
  1066. if (ret)
  1067. return ret;
  1068. for_each_ring(useless, dev_priv, i) {
  1069. u32 mbox_reg = signaller->semaphore.mbox.signal[i];
  1070. if (mbox_reg != GEN6_NOSYNC) {
  1071. u32 seqno = i915_gem_request_get_seqno(signaller_req);
  1072. intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
  1073. intel_ring_emit(signaller, mbox_reg);
  1074. intel_ring_emit(signaller, seqno);
  1075. }
  1076. }
  1077. /* If num_dwords was rounded, make sure the tail pointer is correct */
  1078. if (num_rings % 2 == 0)
  1079. intel_ring_emit(signaller, MI_NOOP);
  1080. return 0;
  1081. }
  1082. /**
  1083. * gen6_add_request - Update the semaphore mailbox registers
  1084. *
  1085. * @request - request to write to the ring
  1086. *
  1087. * Update the mailbox registers in the *other* rings with the current seqno.
  1088. * This acts like a signal in the canonical semaphore.
  1089. */
  1090. static int
  1091. gen6_add_request(struct drm_i915_gem_request *req)
  1092. {
  1093. struct intel_engine_cs *ring = req->ring;
  1094. int ret;
  1095. if (ring->semaphore.signal)
  1096. ret = ring->semaphore.signal(req, 4);
  1097. else
  1098. ret = intel_ring_begin(req, 4);
  1099. if (ret)
  1100. return ret;
  1101. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  1102. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1103. intel_ring_emit(ring, i915_gem_request_get_seqno(req));
  1104. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1105. __intel_ring_advance(ring);
  1106. return 0;
  1107. }
  1108. static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
  1109. u32 seqno)
  1110. {
  1111. struct drm_i915_private *dev_priv = dev->dev_private;
  1112. return dev_priv->last_seqno < seqno;
  1113. }
  1114. /**
  1115. * intel_ring_sync - sync the waiter to the signaller on seqno
  1116. *
  1117. * @waiter - ring that is waiting
  1118. * @signaller - ring which has, or will signal
  1119. * @seqno - seqno which the waiter will block on
  1120. */
  1121. static int
  1122. gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
  1123. struct intel_engine_cs *signaller,
  1124. u32 seqno)
  1125. {
  1126. struct intel_engine_cs *waiter = waiter_req->ring;
  1127. struct drm_i915_private *dev_priv = waiter->dev->dev_private;
  1128. int ret;
  1129. ret = intel_ring_begin(waiter_req, 4);
  1130. if (ret)
  1131. return ret;
  1132. intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
  1133. MI_SEMAPHORE_GLOBAL_GTT |
  1134. MI_SEMAPHORE_POLL |
  1135. MI_SEMAPHORE_SAD_GTE_SDD);
  1136. intel_ring_emit(waiter, seqno);
  1137. intel_ring_emit(waiter,
  1138. lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  1139. intel_ring_emit(waiter,
  1140. upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  1141. intel_ring_advance(waiter);
  1142. return 0;
  1143. }
  1144. static int
  1145. gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
  1146. struct intel_engine_cs *signaller,
  1147. u32 seqno)
  1148. {
  1149. struct intel_engine_cs *waiter = waiter_req->ring;
  1150. u32 dw1 = MI_SEMAPHORE_MBOX |
  1151. MI_SEMAPHORE_COMPARE |
  1152. MI_SEMAPHORE_REGISTER;
  1153. u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
  1154. int ret;
  1155. /* Throughout all of the GEM code, seqno passed implies our current
  1156. * seqno is >= the last seqno executed. However for hardware the
  1157. * comparison is strictly greater than.
  1158. */
  1159. seqno -= 1;
  1160. WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
  1161. ret = intel_ring_begin(waiter_req, 4);
  1162. if (ret)
  1163. return ret;
  1164. /* If seqno wrap happened, omit the wait with no-ops */
  1165. if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
  1166. intel_ring_emit(waiter, dw1 | wait_mbox);
  1167. intel_ring_emit(waiter, seqno);
  1168. intel_ring_emit(waiter, 0);
  1169. intel_ring_emit(waiter, MI_NOOP);
  1170. } else {
  1171. intel_ring_emit(waiter, MI_NOOP);
  1172. intel_ring_emit(waiter, MI_NOOP);
  1173. intel_ring_emit(waiter, MI_NOOP);
  1174. intel_ring_emit(waiter, MI_NOOP);
  1175. }
  1176. intel_ring_advance(waiter);
  1177. return 0;
  1178. }
  1179. #define PIPE_CONTROL_FLUSH(ring__, addr__) \
  1180. do { \
  1181. intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
  1182. PIPE_CONTROL_DEPTH_STALL); \
  1183. intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
  1184. intel_ring_emit(ring__, 0); \
  1185. intel_ring_emit(ring__, 0); \
  1186. } while (0)
  1187. static int
  1188. pc_render_add_request(struct drm_i915_gem_request *req)
  1189. {
  1190. struct intel_engine_cs *ring = req->ring;
  1191. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  1192. int ret;
  1193. /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
  1194. * incoherent with writes to memory, i.e. completely fubar,
  1195. * so we need to use PIPE_NOTIFY instead.
  1196. *
  1197. * However, we also need to workaround the qword write
  1198. * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
  1199. * memory before requesting an interrupt.
  1200. */
  1201. ret = intel_ring_begin(req, 32);
  1202. if (ret)
  1203. return ret;
  1204. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1205. PIPE_CONTROL_WRITE_FLUSH |
  1206. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
  1207. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1208. intel_ring_emit(ring, i915_gem_request_get_seqno(req));
  1209. intel_ring_emit(ring, 0);
  1210. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1211. scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
  1212. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1213. scratch_addr += 2 * CACHELINE_BYTES;
  1214. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1215. scratch_addr += 2 * CACHELINE_BYTES;
  1216. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1217. scratch_addr += 2 * CACHELINE_BYTES;
  1218. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1219. scratch_addr += 2 * CACHELINE_BYTES;
  1220. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1221. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1222. PIPE_CONTROL_WRITE_FLUSH |
  1223. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
  1224. PIPE_CONTROL_NOTIFY);
  1225. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1226. intel_ring_emit(ring, i915_gem_request_get_seqno(req));
  1227. intel_ring_emit(ring, 0);
  1228. __intel_ring_advance(ring);
  1229. return 0;
  1230. }
  1231. static u32
  1232. gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1233. {
  1234. /* Workaround to force correct ordering between irq and seqno writes on
  1235. * ivb (and maybe also on snb) by reading from a CS register (like
  1236. * ACTHD) before reading the status page. */
  1237. if (!lazy_coherency) {
  1238. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1239. POSTING_READ(RING_ACTHD(ring->mmio_base));
  1240. }
  1241. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  1242. }
  1243. static u32
  1244. ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1245. {
  1246. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  1247. }
  1248. static void
  1249. ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  1250. {
  1251. intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
  1252. }
  1253. static u32
  1254. pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1255. {
  1256. return ring->scratch.cpu_page[0];
  1257. }
  1258. static void
  1259. pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  1260. {
  1261. ring->scratch.cpu_page[0] = seqno;
  1262. }
  1263. static bool
  1264. gen5_ring_get_irq(struct intel_engine_cs *ring)
  1265. {
  1266. struct drm_device *dev = ring->dev;
  1267. struct drm_i915_private *dev_priv = dev->dev_private;
  1268. unsigned long flags;
  1269. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1270. return false;
  1271. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1272. if (ring->irq_refcount++ == 0)
  1273. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1274. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1275. return true;
  1276. }
  1277. static void
  1278. gen5_ring_put_irq(struct intel_engine_cs *ring)
  1279. {
  1280. struct drm_device *dev = ring->dev;
  1281. struct drm_i915_private *dev_priv = dev->dev_private;
  1282. unsigned long flags;
  1283. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1284. if (--ring->irq_refcount == 0)
  1285. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1286. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1287. }
  1288. static bool
  1289. i9xx_ring_get_irq(struct intel_engine_cs *ring)
  1290. {
  1291. struct drm_device *dev = ring->dev;
  1292. struct drm_i915_private *dev_priv = dev->dev_private;
  1293. unsigned long flags;
  1294. if (!intel_irqs_enabled(dev_priv))
  1295. return false;
  1296. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1297. if (ring->irq_refcount++ == 0) {
  1298. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  1299. I915_WRITE(IMR, dev_priv->irq_mask);
  1300. POSTING_READ(IMR);
  1301. }
  1302. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1303. return true;
  1304. }
  1305. static void
  1306. i9xx_ring_put_irq(struct intel_engine_cs *ring)
  1307. {
  1308. struct drm_device *dev = ring->dev;
  1309. struct drm_i915_private *dev_priv = dev->dev_private;
  1310. unsigned long flags;
  1311. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1312. if (--ring->irq_refcount == 0) {
  1313. dev_priv->irq_mask |= ring->irq_enable_mask;
  1314. I915_WRITE(IMR, dev_priv->irq_mask);
  1315. POSTING_READ(IMR);
  1316. }
  1317. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1318. }
  1319. static bool
  1320. i8xx_ring_get_irq(struct intel_engine_cs *ring)
  1321. {
  1322. struct drm_device *dev = ring->dev;
  1323. struct drm_i915_private *dev_priv = dev->dev_private;
  1324. unsigned long flags;
  1325. if (!intel_irqs_enabled(dev_priv))
  1326. return false;
  1327. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1328. if (ring->irq_refcount++ == 0) {
  1329. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  1330. I915_WRITE16(IMR, dev_priv->irq_mask);
  1331. POSTING_READ16(IMR);
  1332. }
  1333. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1334. return true;
  1335. }
  1336. static void
  1337. i8xx_ring_put_irq(struct intel_engine_cs *ring)
  1338. {
  1339. struct drm_device *dev = ring->dev;
  1340. struct drm_i915_private *dev_priv = dev->dev_private;
  1341. unsigned long flags;
  1342. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1343. if (--ring->irq_refcount == 0) {
  1344. dev_priv->irq_mask |= ring->irq_enable_mask;
  1345. I915_WRITE16(IMR, dev_priv->irq_mask);
  1346. POSTING_READ16(IMR);
  1347. }
  1348. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1349. }
  1350. static int
  1351. bsd_ring_flush(struct drm_i915_gem_request *req,
  1352. u32 invalidate_domains,
  1353. u32 flush_domains)
  1354. {
  1355. struct intel_engine_cs *ring = req->ring;
  1356. int ret;
  1357. ret = intel_ring_begin(req, 2);
  1358. if (ret)
  1359. return ret;
  1360. intel_ring_emit(ring, MI_FLUSH);
  1361. intel_ring_emit(ring, MI_NOOP);
  1362. intel_ring_advance(ring);
  1363. return 0;
  1364. }
  1365. static int
  1366. i9xx_add_request(struct drm_i915_gem_request *req)
  1367. {
  1368. struct intel_engine_cs *ring = req->ring;
  1369. int ret;
  1370. ret = intel_ring_begin(req, 4);
  1371. if (ret)
  1372. return ret;
  1373. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  1374. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1375. intel_ring_emit(ring, i915_gem_request_get_seqno(req));
  1376. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1377. __intel_ring_advance(ring);
  1378. return 0;
  1379. }
  1380. static bool
  1381. gen6_ring_get_irq(struct intel_engine_cs *ring)
  1382. {
  1383. struct drm_device *dev = ring->dev;
  1384. struct drm_i915_private *dev_priv = dev->dev_private;
  1385. unsigned long flags;
  1386. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1387. return false;
  1388. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1389. if (ring->irq_refcount++ == 0) {
  1390. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1391. I915_WRITE_IMR(ring,
  1392. ~(ring->irq_enable_mask |
  1393. GT_PARITY_ERROR(dev)));
  1394. else
  1395. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1396. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1397. }
  1398. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1399. return true;
  1400. }
  1401. static void
  1402. gen6_ring_put_irq(struct intel_engine_cs *ring)
  1403. {
  1404. struct drm_device *dev = ring->dev;
  1405. struct drm_i915_private *dev_priv = dev->dev_private;
  1406. unsigned long flags;
  1407. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1408. if (--ring->irq_refcount == 0) {
  1409. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1410. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  1411. else
  1412. I915_WRITE_IMR(ring, ~0);
  1413. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1414. }
  1415. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1416. }
  1417. static bool
  1418. hsw_vebox_get_irq(struct intel_engine_cs *ring)
  1419. {
  1420. struct drm_device *dev = ring->dev;
  1421. struct drm_i915_private *dev_priv = dev->dev_private;
  1422. unsigned long flags;
  1423. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1424. return false;
  1425. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1426. if (ring->irq_refcount++ == 0) {
  1427. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1428. gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
  1429. }
  1430. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1431. return true;
  1432. }
  1433. static void
  1434. hsw_vebox_put_irq(struct intel_engine_cs *ring)
  1435. {
  1436. struct drm_device *dev = ring->dev;
  1437. struct drm_i915_private *dev_priv = dev->dev_private;
  1438. unsigned long flags;
  1439. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1440. if (--ring->irq_refcount == 0) {
  1441. I915_WRITE_IMR(ring, ~0);
  1442. gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
  1443. }
  1444. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1445. }
  1446. static bool
  1447. gen8_ring_get_irq(struct intel_engine_cs *ring)
  1448. {
  1449. struct drm_device *dev = ring->dev;
  1450. struct drm_i915_private *dev_priv = dev->dev_private;
  1451. unsigned long flags;
  1452. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1453. return false;
  1454. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1455. if (ring->irq_refcount++ == 0) {
  1456. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1457. I915_WRITE_IMR(ring,
  1458. ~(ring->irq_enable_mask |
  1459. GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
  1460. } else {
  1461. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1462. }
  1463. POSTING_READ(RING_IMR(ring->mmio_base));
  1464. }
  1465. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1466. return true;
  1467. }
  1468. static void
  1469. gen8_ring_put_irq(struct intel_engine_cs *ring)
  1470. {
  1471. struct drm_device *dev = ring->dev;
  1472. struct drm_i915_private *dev_priv = dev->dev_private;
  1473. unsigned long flags;
  1474. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1475. if (--ring->irq_refcount == 0) {
  1476. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1477. I915_WRITE_IMR(ring,
  1478. ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
  1479. } else {
  1480. I915_WRITE_IMR(ring, ~0);
  1481. }
  1482. POSTING_READ(RING_IMR(ring->mmio_base));
  1483. }
  1484. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1485. }
  1486. static int
  1487. i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1488. u64 offset, u32 length,
  1489. unsigned dispatch_flags)
  1490. {
  1491. struct intel_engine_cs *ring = req->ring;
  1492. int ret;
  1493. ret = intel_ring_begin(req, 2);
  1494. if (ret)
  1495. return ret;
  1496. intel_ring_emit(ring,
  1497. MI_BATCH_BUFFER_START |
  1498. MI_BATCH_GTT |
  1499. (dispatch_flags & I915_DISPATCH_SECURE ?
  1500. 0 : MI_BATCH_NON_SECURE_I965));
  1501. intel_ring_emit(ring, offset);
  1502. intel_ring_advance(ring);
  1503. return 0;
  1504. }
  1505. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1506. #define I830_BATCH_LIMIT (256*1024)
  1507. #define I830_TLB_ENTRIES (2)
  1508. #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
  1509. static int
  1510. i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1511. u64 offset, u32 len,
  1512. unsigned dispatch_flags)
  1513. {
  1514. struct intel_engine_cs *ring = req->ring;
  1515. u32 cs_offset = ring->scratch.gtt_offset;
  1516. int ret;
  1517. ret = intel_ring_begin(req, 6);
  1518. if (ret)
  1519. return ret;
  1520. /* Evict the invalid PTE TLBs */
  1521. intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
  1522. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
  1523. intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
  1524. intel_ring_emit(ring, cs_offset);
  1525. intel_ring_emit(ring, 0xdeadbeef);
  1526. intel_ring_emit(ring, MI_NOOP);
  1527. intel_ring_advance(ring);
  1528. if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
  1529. if (len > I830_BATCH_LIMIT)
  1530. return -ENOSPC;
  1531. ret = intel_ring_begin(req, 6 + 2);
  1532. if (ret)
  1533. return ret;
  1534. /* Blit the batch (which has now all relocs applied) to the
  1535. * stable batch scratch bo area (so that the CS never
  1536. * stumbles over its tlb invalidation bug) ...
  1537. */
  1538. intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
  1539. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
  1540. intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
  1541. intel_ring_emit(ring, cs_offset);
  1542. intel_ring_emit(ring, 4096);
  1543. intel_ring_emit(ring, offset);
  1544. intel_ring_emit(ring, MI_FLUSH);
  1545. intel_ring_emit(ring, MI_NOOP);
  1546. intel_ring_advance(ring);
  1547. /* ... and execute it. */
  1548. offset = cs_offset;
  1549. }
  1550. ret = intel_ring_begin(req, 4);
  1551. if (ret)
  1552. return ret;
  1553. intel_ring_emit(ring, MI_BATCH_BUFFER);
  1554. intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1555. 0 : MI_BATCH_NON_SECURE));
  1556. intel_ring_emit(ring, offset + len - 8);
  1557. intel_ring_emit(ring, MI_NOOP);
  1558. intel_ring_advance(ring);
  1559. return 0;
  1560. }
  1561. static int
  1562. i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1563. u64 offset, u32 len,
  1564. unsigned dispatch_flags)
  1565. {
  1566. struct intel_engine_cs *ring = req->ring;
  1567. int ret;
  1568. ret = intel_ring_begin(req, 2);
  1569. if (ret)
  1570. return ret;
  1571. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1572. intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1573. 0 : MI_BATCH_NON_SECURE));
  1574. intel_ring_advance(ring);
  1575. return 0;
  1576. }
  1577. static void cleanup_status_page(struct intel_engine_cs *ring)
  1578. {
  1579. struct drm_i915_gem_object *obj;
  1580. obj = ring->status_page.obj;
  1581. if (obj == NULL)
  1582. return;
  1583. kunmap(sg_page(obj->pages->sgl));
  1584. i915_gem_object_ggtt_unpin(obj);
  1585. drm_gem_object_unreference(&obj->base);
  1586. ring->status_page.obj = NULL;
  1587. }
  1588. static int init_status_page(struct intel_engine_cs *ring)
  1589. {
  1590. struct drm_i915_gem_object *obj;
  1591. if ((obj = ring->status_page.obj) == NULL) {
  1592. unsigned flags;
  1593. int ret;
  1594. obj = i915_gem_alloc_object(ring->dev, 4096);
  1595. if (obj == NULL) {
  1596. DRM_ERROR("Failed to allocate status page\n");
  1597. return -ENOMEM;
  1598. }
  1599. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1600. if (ret)
  1601. goto err_unref;
  1602. flags = 0;
  1603. if (!HAS_LLC(ring->dev))
  1604. /* On g33, we cannot place HWS above 256MiB, so
  1605. * restrict its pinning to the low mappable arena.
  1606. * Though this restriction is not documented for
  1607. * gen4, gen5, or byt, they also behave similarly
  1608. * and hang if the HWS is placed at the top of the
  1609. * GTT. To generalise, it appears that all !llc
  1610. * platforms have issues with us placing the HWS
  1611. * above the mappable region (even though we never
  1612. * actualy map it).
  1613. */
  1614. flags |= PIN_MAPPABLE;
  1615. ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
  1616. if (ret) {
  1617. err_unref:
  1618. drm_gem_object_unreference(&obj->base);
  1619. return ret;
  1620. }
  1621. ring->status_page.obj = obj;
  1622. }
  1623. ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
  1624. ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
  1625. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1626. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1627. ring->name, ring->status_page.gfx_addr);
  1628. return 0;
  1629. }
  1630. static int init_phys_status_page(struct intel_engine_cs *ring)
  1631. {
  1632. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1633. if (!dev_priv->status_page_dmah) {
  1634. dev_priv->status_page_dmah =
  1635. drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
  1636. if (!dev_priv->status_page_dmah)
  1637. return -ENOMEM;
  1638. }
  1639. ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1640. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1641. return 0;
  1642. }
  1643. void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1644. {
  1645. iounmap(ringbuf->virtual_start);
  1646. ringbuf->virtual_start = NULL;
  1647. i915_gem_object_ggtt_unpin(ringbuf->obj);
  1648. }
  1649. int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
  1650. struct intel_ringbuffer *ringbuf)
  1651. {
  1652. struct drm_i915_private *dev_priv = to_i915(dev);
  1653. struct drm_i915_gem_object *obj = ringbuf->obj;
  1654. int ret;
  1655. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
  1656. if (ret)
  1657. return ret;
  1658. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  1659. if (ret) {
  1660. i915_gem_object_ggtt_unpin(obj);
  1661. return ret;
  1662. }
  1663. ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
  1664. i915_gem_obj_ggtt_offset(obj), ringbuf->size);
  1665. if (ringbuf->virtual_start == NULL) {
  1666. i915_gem_object_ggtt_unpin(obj);
  1667. return -EINVAL;
  1668. }
  1669. return 0;
  1670. }
  1671. void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1672. {
  1673. drm_gem_object_unreference(&ringbuf->obj->base);
  1674. ringbuf->obj = NULL;
  1675. }
  1676. int intel_alloc_ringbuffer_obj(struct drm_device *dev,
  1677. struct intel_ringbuffer *ringbuf)
  1678. {
  1679. struct drm_i915_gem_object *obj;
  1680. obj = NULL;
  1681. if (!HAS_LLC(dev))
  1682. obj = i915_gem_object_create_stolen(dev, ringbuf->size);
  1683. if (obj == NULL)
  1684. obj = i915_gem_alloc_object(dev, ringbuf->size);
  1685. if (obj == NULL)
  1686. return -ENOMEM;
  1687. /* mark ring buffers as read-only from GPU side by default */
  1688. obj->gt_ro = 1;
  1689. ringbuf->obj = obj;
  1690. return 0;
  1691. }
  1692. static int intel_init_ring_buffer(struct drm_device *dev,
  1693. struct intel_engine_cs *ring)
  1694. {
  1695. struct intel_ringbuffer *ringbuf;
  1696. int ret;
  1697. WARN_ON(ring->buffer);
  1698. ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
  1699. if (!ringbuf)
  1700. return -ENOMEM;
  1701. ring->buffer = ringbuf;
  1702. ring->dev = dev;
  1703. INIT_LIST_HEAD(&ring->active_list);
  1704. INIT_LIST_HEAD(&ring->request_list);
  1705. INIT_LIST_HEAD(&ring->execlist_queue);
  1706. i915_gem_batch_pool_init(dev, &ring->batch_pool);
  1707. ringbuf->size = 32 * PAGE_SIZE;
  1708. ringbuf->ring = ring;
  1709. memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
  1710. init_waitqueue_head(&ring->irq_queue);
  1711. if (I915_NEED_GFX_HWS(dev)) {
  1712. ret = init_status_page(ring);
  1713. if (ret)
  1714. goto error;
  1715. } else {
  1716. BUG_ON(ring->id != RCS);
  1717. ret = init_phys_status_page(ring);
  1718. if (ret)
  1719. goto error;
  1720. }
  1721. WARN_ON(ringbuf->obj);
  1722. ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
  1723. if (ret) {
  1724. DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
  1725. ring->name, ret);
  1726. goto error;
  1727. }
  1728. ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
  1729. if (ret) {
  1730. DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
  1731. ring->name, ret);
  1732. intel_destroy_ringbuffer_obj(ringbuf);
  1733. goto error;
  1734. }
  1735. /* Workaround an erratum on the i830 which causes a hang if
  1736. * the TAIL pointer points to within the last 2 cachelines
  1737. * of the buffer.
  1738. */
  1739. ringbuf->effective_size = ringbuf->size;
  1740. if (IS_I830(dev) || IS_845G(dev))
  1741. ringbuf->effective_size -= 2 * CACHELINE_BYTES;
  1742. ret = i915_cmd_parser_init_ring(ring);
  1743. if (ret)
  1744. goto error;
  1745. return 0;
  1746. error:
  1747. kfree(ringbuf);
  1748. ring->buffer = NULL;
  1749. return ret;
  1750. }
  1751. void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
  1752. {
  1753. struct drm_i915_private *dev_priv;
  1754. struct intel_ringbuffer *ringbuf;
  1755. if (!intel_ring_initialized(ring))
  1756. return;
  1757. dev_priv = to_i915(ring->dev);
  1758. ringbuf = ring->buffer;
  1759. intel_stop_ring_buffer(ring);
  1760. WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
  1761. intel_unpin_ringbuffer_obj(ringbuf);
  1762. intel_destroy_ringbuffer_obj(ringbuf);
  1763. if (ring->cleanup)
  1764. ring->cleanup(ring);
  1765. cleanup_status_page(ring);
  1766. i915_cmd_parser_fini_ring(ring);
  1767. i915_gem_batch_pool_fini(&ring->batch_pool);
  1768. kfree(ringbuf);
  1769. ring->buffer = NULL;
  1770. }
  1771. static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
  1772. {
  1773. struct intel_ringbuffer *ringbuf = ring->buffer;
  1774. struct drm_i915_gem_request *request;
  1775. unsigned space;
  1776. int ret;
  1777. if (intel_ring_space(ringbuf) >= n)
  1778. return 0;
  1779. /* The whole point of reserving space is to not wait! */
  1780. WARN_ON(ringbuf->reserved_in_use);
  1781. list_for_each_entry(request, &ring->request_list, list) {
  1782. space = __intel_ring_space(request->postfix, ringbuf->tail,
  1783. ringbuf->size);
  1784. if (space >= n)
  1785. break;
  1786. }
  1787. if (WARN_ON(&request->list == &ring->request_list))
  1788. return -ENOSPC;
  1789. ret = i915_wait_request(request);
  1790. if (ret)
  1791. return ret;
  1792. ringbuf->space = space;
  1793. return 0;
  1794. }
  1795. static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
  1796. {
  1797. uint32_t __iomem *virt;
  1798. int rem = ringbuf->size - ringbuf->tail;
  1799. virt = ringbuf->virtual_start + ringbuf->tail;
  1800. rem /= 4;
  1801. while (rem--)
  1802. iowrite32(MI_NOOP, virt++);
  1803. ringbuf->tail = 0;
  1804. intel_ring_update_space(ringbuf);
  1805. }
  1806. int intel_ring_idle(struct intel_engine_cs *ring)
  1807. {
  1808. struct drm_i915_gem_request *req;
  1809. /* Wait upon the last request to be completed */
  1810. if (list_empty(&ring->request_list))
  1811. return 0;
  1812. req = list_entry(ring->request_list.prev,
  1813. struct drm_i915_gem_request,
  1814. list);
  1815. /* Make sure we do not trigger any retires */
  1816. return __i915_wait_request(req,
  1817. atomic_read(&to_i915(ring->dev)->gpu_error.reset_counter),
  1818. to_i915(ring->dev)->mm.interruptible,
  1819. NULL, NULL);
  1820. }
  1821. int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
  1822. {
  1823. request->ringbuf = request->ring->buffer;
  1824. return 0;
  1825. }
  1826. int intel_ring_reserve_space(struct drm_i915_gem_request *request)
  1827. {
  1828. /*
  1829. * The first call merely notes the reserve request and is common for
  1830. * all back ends. The subsequent localised _begin() call actually
  1831. * ensures that the reservation is available. Without the begin, if
  1832. * the request creator immediately submitted the request without
  1833. * adding any commands to it then there might not actually be
  1834. * sufficient room for the submission commands.
  1835. */
  1836. intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
  1837. return intel_ring_begin(request, 0);
  1838. }
  1839. void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
  1840. {
  1841. WARN_ON(ringbuf->reserved_size);
  1842. WARN_ON(ringbuf->reserved_in_use);
  1843. ringbuf->reserved_size = size;
  1844. }
  1845. void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
  1846. {
  1847. WARN_ON(ringbuf->reserved_in_use);
  1848. ringbuf->reserved_size = 0;
  1849. ringbuf->reserved_in_use = false;
  1850. }
  1851. void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
  1852. {
  1853. WARN_ON(ringbuf->reserved_in_use);
  1854. ringbuf->reserved_in_use = true;
  1855. ringbuf->reserved_tail = ringbuf->tail;
  1856. }
  1857. void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
  1858. {
  1859. WARN_ON(!ringbuf->reserved_in_use);
  1860. if (ringbuf->tail > ringbuf->reserved_tail) {
  1861. WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
  1862. "request reserved size too small: %d vs %d!\n",
  1863. ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
  1864. } else {
  1865. /*
  1866. * The ring was wrapped while the reserved space was in use.
  1867. * That means that some unknown amount of the ring tail was
  1868. * no-op filled and skipped. Thus simply adding the ring size
  1869. * to the tail and doing the above space check will not work.
  1870. * Rather than attempt to track how much tail was skipped,
  1871. * it is much simpler to say that also skipping the sanity
  1872. * check every once in a while is not a big issue.
  1873. */
  1874. }
  1875. ringbuf->reserved_size = 0;
  1876. ringbuf->reserved_in_use = false;
  1877. }
  1878. static int __intel_ring_prepare(struct intel_engine_cs *ring, int bytes)
  1879. {
  1880. struct intel_ringbuffer *ringbuf = ring->buffer;
  1881. int remain_usable = ringbuf->effective_size - ringbuf->tail;
  1882. int remain_actual = ringbuf->size - ringbuf->tail;
  1883. int ret, total_bytes, wait_bytes = 0;
  1884. bool need_wrap = false;
  1885. if (ringbuf->reserved_in_use)
  1886. total_bytes = bytes;
  1887. else
  1888. total_bytes = bytes + ringbuf->reserved_size;
  1889. if (unlikely(bytes > remain_usable)) {
  1890. /*
  1891. * Not enough space for the basic request. So need to flush
  1892. * out the remainder and then wait for base + reserved.
  1893. */
  1894. wait_bytes = remain_actual + total_bytes;
  1895. need_wrap = true;
  1896. } else {
  1897. if (unlikely(total_bytes > remain_usable)) {
  1898. /*
  1899. * The base request will fit but the reserved space
  1900. * falls off the end. So only need to to wait for the
  1901. * reserved size after flushing out the remainder.
  1902. */
  1903. wait_bytes = remain_actual + ringbuf->reserved_size;
  1904. need_wrap = true;
  1905. } else if (total_bytes > ringbuf->space) {
  1906. /* No wrapping required, just waiting. */
  1907. wait_bytes = total_bytes;
  1908. }
  1909. }
  1910. if (wait_bytes) {
  1911. ret = ring_wait_for_space(ring, wait_bytes);
  1912. if (unlikely(ret))
  1913. return ret;
  1914. if (need_wrap)
  1915. __wrap_ring_buffer(ringbuf);
  1916. }
  1917. return 0;
  1918. }
  1919. int intel_ring_begin(struct drm_i915_gem_request *req,
  1920. int num_dwords)
  1921. {
  1922. struct intel_engine_cs *ring;
  1923. struct drm_i915_private *dev_priv;
  1924. int ret;
  1925. WARN_ON(req == NULL);
  1926. ring = req->ring;
  1927. dev_priv = ring->dev->dev_private;
  1928. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1929. dev_priv->mm.interruptible);
  1930. if (ret)
  1931. return ret;
  1932. ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
  1933. if (ret)
  1934. return ret;
  1935. ring->buffer->space -= num_dwords * sizeof(uint32_t);
  1936. return 0;
  1937. }
  1938. /* Align the ring tail to a cacheline boundary */
  1939. int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
  1940. {
  1941. struct intel_engine_cs *ring = req->ring;
  1942. int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
  1943. int ret;
  1944. if (num_dwords == 0)
  1945. return 0;
  1946. num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
  1947. ret = intel_ring_begin(req, num_dwords);
  1948. if (ret)
  1949. return ret;
  1950. while (num_dwords--)
  1951. intel_ring_emit(ring, MI_NOOP);
  1952. intel_ring_advance(ring);
  1953. return 0;
  1954. }
  1955. void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
  1956. {
  1957. struct drm_device *dev = ring->dev;
  1958. struct drm_i915_private *dev_priv = dev->dev_private;
  1959. if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
  1960. I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
  1961. I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
  1962. if (HAS_VEBOX(dev))
  1963. I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
  1964. }
  1965. ring->set_seqno(ring, seqno);
  1966. ring->hangcheck.seqno = seqno;
  1967. }
  1968. static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
  1969. u32 value)
  1970. {
  1971. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1972. /* Every tail move must follow the sequence below */
  1973. /* Disable notification that the ring is IDLE. The GT
  1974. * will then assume that it is busy and bring it out of rc6.
  1975. */
  1976. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1977. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1978. /* Clear the context id. Here be magic! */
  1979. I915_WRITE64(GEN6_BSD_RNCID, 0x0);
  1980. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  1981. if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
  1982. GEN6_BSD_SLEEP_INDICATOR) == 0,
  1983. 50))
  1984. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  1985. /* Now that the ring is fully powered up, update the tail */
  1986. I915_WRITE_TAIL(ring, value);
  1987. POSTING_READ(RING_TAIL(ring->mmio_base));
  1988. /* Let the ring send IDLE messages to the GT again,
  1989. * and so let it sleep to conserve power when idle.
  1990. */
  1991. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1992. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1993. }
  1994. static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
  1995. u32 invalidate, u32 flush)
  1996. {
  1997. struct intel_engine_cs *ring = req->ring;
  1998. uint32_t cmd;
  1999. int ret;
  2000. ret = intel_ring_begin(req, 4);
  2001. if (ret)
  2002. return ret;
  2003. cmd = MI_FLUSH_DW;
  2004. if (INTEL_INFO(ring->dev)->gen >= 8)
  2005. cmd += 1;
  2006. /* We always require a command barrier so that subsequent
  2007. * commands, such as breadcrumb interrupts, are strictly ordered
  2008. * wrt the contents of the write cache being flushed to memory
  2009. * (and thus being coherent from the CPU).
  2010. */
  2011. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2012. /*
  2013. * Bspec vol 1c.5 - video engine command streamer:
  2014. * "If ENABLED, all TLBs will be invalidated once the flush
  2015. * operation is complete. This bit is only valid when the
  2016. * Post-Sync Operation field is a value of 1h or 3h."
  2017. */
  2018. if (invalidate & I915_GEM_GPU_DOMAINS)
  2019. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
  2020. intel_ring_emit(ring, cmd);
  2021. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2022. if (INTEL_INFO(ring->dev)->gen >= 8) {
  2023. intel_ring_emit(ring, 0); /* upper addr */
  2024. intel_ring_emit(ring, 0); /* value */
  2025. } else {
  2026. intel_ring_emit(ring, 0);
  2027. intel_ring_emit(ring, MI_NOOP);
  2028. }
  2029. intel_ring_advance(ring);
  2030. return 0;
  2031. }
  2032. static int
  2033. gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2034. u64 offset, u32 len,
  2035. unsigned dispatch_flags)
  2036. {
  2037. struct intel_engine_cs *ring = req->ring;
  2038. bool ppgtt = USES_PPGTT(ring->dev) &&
  2039. !(dispatch_flags & I915_DISPATCH_SECURE);
  2040. int ret;
  2041. ret = intel_ring_begin(req, 4);
  2042. if (ret)
  2043. return ret;
  2044. /* FIXME(BDW): Address space and security selectors. */
  2045. intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
  2046. (dispatch_flags & I915_DISPATCH_RS ?
  2047. MI_BATCH_RESOURCE_STREAMER : 0));
  2048. intel_ring_emit(ring, lower_32_bits(offset));
  2049. intel_ring_emit(ring, upper_32_bits(offset));
  2050. intel_ring_emit(ring, MI_NOOP);
  2051. intel_ring_advance(ring);
  2052. return 0;
  2053. }
  2054. static int
  2055. hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2056. u64 offset, u32 len,
  2057. unsigned dispatch_flags)
  2058. {
  2059. struct intel_engine_cs *ring = req->ring;
  2060. int ret;
  2061. ret = intel_ring_begin(req, 2);
  2062. if (ret)
  2063. return ret;
  2064. intel_ring_emit(ring,
  2065. MI_BATCH_BUFFER_START |
  2066. (dispatch_flags & I915_DISPATCH_SECURE ?
  2067. 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
  2068. (dispatch_flags & I915_DISPATCH_RS ?
  2069. MI_BATCH_RESOURCE_STREAMER : 0));
  2070. /* bit0-7 is the length on GEN6+ */
  2071. intel_ring_emit(ring, offset);
  2072. intel_ring_advance(ring);
  2073. return 0;
  2074. }
  2075. static int
  2076. gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2077. u64 offset, u32 len,
  2078. unsigned dispatch_flags)
  2079. {
  2080. struct intel_engine_cs *ring = req->ring;
  2081. int ret;
  2082. ret = intel_ring_begin(req, 2);
  2083. if (ret)
  2084. return ret;
  2085. intel_ring_emit(ring,
  2086. MI_BATCH_BUFFER_START |
  2087. (dispatch_flags & I915_DISPATCH_SECURE ?
  2088. 0 : MI_BATCH_NON_SECURE_I965));
  2089. /* bit0-7 is the length on GEN6+ */
  2090. intel_ring_emit(ring, offset);
  2091. intel_ring_advance(ring);
  2092. return 0;
  2093. }
  2094. /* Blitter support (SandyBridge+) */
  2095. static int gen6_ring_flush(struct drm_i915_gem_request *req,
  2096. u32 invalidate, u32 flush)
  2097. {
  2098. struct intel_engine_cs *ring = req->ring;
  2099. struct drm_device *dev = ring->dev;
  2100. uint32_t cmd;
  2101. int ret;
  2102. ret = intel_ring_begin(req, 4);
  2103. if (ret)
  2104. return ret;
  2105. cmd = MI_FLUSH_DW;
  2106. if (INTEL_INFO(dev)->gen >= 8)
  2107. cmd += 1;
  2108. /* We always require a command barrier so that subsequent
  2109. * commands, such as breadcrumb interrupts, are strictly ordered
  2110. * wrt the contents of the write cache being flushed to memory
  2111. * (and thus being coherent from the CPU).
  2112. */
  2113. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2114. /*
  2115. * Bspec vol 1c.3 - blitter engine command streamer:
  2116. * "If ENABLED, all TLBs will be invalidated once the flush
  2117. * operation is complete. This bit is only valid when the
  2118. * Post-Sync Operation field is a value of 1h or 3h."
  2119. */
  2120. if (invalidate & I915_GEM_DOMAIN_RENDER)
  2121. cmd |= MI_INVALIDATE_TLB;
  2122. intel_ring_emit(ring, cmd);
  2123. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2124. if (INTEL_INFO(dev)->gen >= 8) {
  2125. intel_ring_emit(ring, 0); /* upper addr */
  2126. intel_ring_emit(ring, 0); /* value */
  2127. } else {
  2128. intel_ring_emit(ring, 0);
  2129. intel_ring_emit(ring, MI_NOOP);
  2130. }
  2131. intel_ring_advance(ring);
  2132. return 0;
  2133. }
  2134. int intel_init_render_ring_buffer(struct drm_device *dev)
  2135. {
  2136. struct drm_i915_private *dev_priv = dev->dev_private;
  2137. struct intel_engine_cs *ring = &dev_priv->ring[RCS];
  2138. struct drm_i915_gem_object *obj;
  2139. int ret;
  2140. ring->name = "render ring";
  2141. ring->id = RCS;
  2142. ring->mmio_base = RENDER_RING_BASE;
  2143. if (INTEL_INFO(dev)->gen >= 8) {
  2144. if (i915_semaphore_is_enabled(dev)) {
  2145. obj = i915_gem_alloc_object(dev, 4096);
  2146. if (obj == NULL) {
  2147. DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
  2148. i915.semaphores = 0;
  2149. } else {
  2150. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  2151. ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
  2152. if (ret != 0) {
  2153. drm_gem_object_unreference(&obj->base);
  2154. DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
  2155. i915.semaphores = 0;
  2156. } else
  2157. dev_priv->semaphore_obj = obj;
  2158. }
  2159. }
  2160. ring->init_context = intel_rcs_ctx_init;
  2161. ring->add_request = gen6_add_request;
  2162. ring->flush = gen8_render_ring_flush;
  2163. ring->irq_get = gen8_ring_get_irq;
  2164. ring->irq_put = gen8_ring_put_irq;
  2165. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2166. ring->get_seqno = gen6_ring_get_seqno;
  2167. ring->set_seqno = ring_set_seqno;
  2168. if (i915_semaphore_is_enabled(dev)) {
  2169. WARN_ON(!dev_priv->semaphore_obj);
  2170. ring->semaphore.sync_to = gen8_ring_sync;
  2171. ring->semaphore.signal = gen8_rcs_signal;
  2172. GEN8_RING_SEMAPHORE_INIT;
  2173. }
  2174. } else if (INTEL_INFO(dev)->gen >= 6) {
  2175. ring->add_request = gen6_add_request;
  2176. ring->flush = gen7_render_ring_flush;
  2177. if (INTEL_INFO(dev)->gen == 6)
  2178. ring->flush = gen6_render_ring_flush;
  2179. ring->irq_get = gen6_ring_get_irq;
  2180. ring->irq_put = gen6_ring_put_irq;
  2181. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2182. ring->get_seqno = gen6_ring_get_seqno;
  2183. ring->set_seqno = ring_set_seqno;
  2184. if (i915_semaphore_is_enabled(dev)) {
  2185. ring->semaphore.sync_to = gen6_ring_sync;
  2186. ring->semaphore.signal = gen6_signal;
  2187. /*
  2188. * The current semaphore is only applied on pre-gen8
  2189. * platform. And there is no VCS2 ring on the pre-gen8
  2190. * platform. So the semaphore between RCS and VCS2 is
  2191. * initialized as INVALID. Gen8 will initialize the
  2192. * sema between VCS2 and RCS later.
  2193. */
  2194. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
  2195. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
  2196. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
  2197. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
  2198. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2199. ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
  2200. ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
  2201. ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
  2202. ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
  2203. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2204. }
  2205. } else if (IS_GEN5(dev)) {
  2206. ring->add_request = pc_render_add_request;
  2207. ring->flush = gen4_render_ring_flush;
  2208. ring->get_seqno = pc_render_get_seqno;
  2209. ring->set_seqno = pc_render_set_seqno;
  2210. ring->irq_get = gen5_ring_get_irq;
  2211. ring->irq_put = gen5_ring_put_irq;
  2212. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
  2213. GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
  2214. } else {
  2215. ring->add_request = i9xx_add_request;
  2216. if (INTEL_INFO(dev)->gen < 4)
  2217. ring->flush = gen2_render_ring_flush;
  2218. else
  2219. ring->flush = gen4_render_ring_flush;
  2220. ring->get_seqno = ring_get_seqno;
  2221. ring->set_seqno = ring_set_seqno;
  2222. if (IS_GEN2(dev)) {
  2223. ring->irq_get = i8xx_ring_get_irq;
  2224. ring->irq_put = i8xx_ring_put_irq;
  2225. } else {
  2226. ring->irq_get = i9xx_ring_get_irq;
  2227. ring->irq_put = i9xx_ring_put_irq;
  2228. }
  2229. ring->irq_enable_mask = I915_USER_INTERRUPT;
  2230. }
  2231. ring->write_tail = ring_write_tail;
  2232. if (IS_HASWELL(dev))
  2233. ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
  2234. else if (IS_GEN8(dev))
  2235. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2236. else if (INTEL_INFO(dev)->gen >= 6)
  2237. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2238. else if (INTEL_INFO(dev)->gen >= 4)
  2239. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2240. else if (IS_I830(dev) || IS_845G(dev))
  2241. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  2242. else
  2243. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  2244. ring->init_hw = init_render_ring;
  2245. ring->cleanup = render_ring_cleanup;
  2246. /* Workaround batchbuffer to combat CS tlb bug. */
  2247. if (HAS_BROKEN_CS_TLB(dev)) {
  2248. obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
  2249. if (obj == NULL) {
  2250. DRM_ERROR("Failed to allocate batch bo\n");
  2251. return -ENOMEM;
  2252. }
  2253. ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
  2254. if (ret != 0) {
  2255. drm_gem_object_unreference(&obj->base);
  2256. DRM_ERROR("Failed to ping batch bo\n");
  2257. return ret;
  2258. }
  2259. ring->scratch.obj = obj;
  2260. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
  2261. }
  2262. ret = intel_init_ring_buffer(dev, ring);
  2263. if (ret)
  2264. return ret;
  2265. if (INTEL_INFO(dev)->gen >= 5) {
  2266. ret = intel_init_pipe_control(ring);
  2267. if (ret)
  2268. return ret;
  2269. }
  2270. return 0;
  2271. }
  2272. int intel_init_bsd_ring_buffer(struct drm_device *dev)
  2273. {
  2274. struct drm_i915_private *dev_priv = dev->dev_private;
  2275. struct intel_engine_cs *ring = &dev_priv->ring[VCS];
  2276. ring->name = "bsd ring";
  2277. ring->id = VCS;
  2278. ring->write_tail = ring_write_tail;
  2279. if (INTEL_INFO(dev)->gen >= 6) {
  2280. ring->mmio_base = GEN6_BSD_RING_BASE;
  2281. /* gen6 bsd needs a special wa for tail updates */
  2282. if (IS_GEN6(dev))
  2283. ring->write_tail = gen6_bsd_ring_write_tail;
  2284. ring->flush = gen6_bsd_ring_flush;
  2285. ring->add_request = gen6_add_request;
  2286. ring->get_seqno = gen6_ring_get_seqno;
  2287. ring->set_seqno = ring_set_seqno;
  2288. if (INTEL_INFO(dev)->gen >= 8) {
  2289. ring->irq_enable_mask =
  2290. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
  2291. ring->irq_get = gen8_ring_get_irq;
  2292. ring->irq_put = gen8_ring_put_irq;
  2293. ring->dispatch_execbuffer =
  2294. gen8_ring_dispatch_execbuffer;
  2295. if (i915_semaphore_is_enabled(dev)) {
  2296. ring->semaphore.sync_to = gen8_ring_sync;
  2297. ring->semaphore.signal = gen8_xcs_signal;
  2298. GEN8_RING_SEMAPHORE_INIT;
  2299. }
  2300. } else {
  2301. ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  2302. ring->irq_get = gen6_ring_get_irq;
  2303. ring->irq_put = gen6_ring_put_irq;
  2304. ring->dispatch_execbuffer =
  2305. gen6_ring_dispatch_execbuffer;
  2306. if (i915_semaphore_is_enabled(dev)) {
  2307. ring->semaphore.sync_to = gen6_ring_sync;
  2308. ring->semaphore.signal = gen6_signal;
  2309. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
  2310. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
  2311. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
  2312. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
  2313. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2314. ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
  2315. ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
  2316. ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
  2317. ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
  2318. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2319. }
  2320. }
  2321. } else {
  2322. ring->mmio_base = BSD_RING_BASE;
  2323. ring->flush = bsd_ring_flush;
  2324. ring->add_request = i9xx_add_request;
  2325. ring->get_seqno = ring_get_seqno;
  2326. ring->set_seqno = ring_set_seqno;
  2327. if (IS_GEN5(dev)) {
  2328. ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  2329. ring->irq_get = gen5_ring_get_irq;
  2330. ring->irq_put = gen5_ring_put_irq;
  2331. } else {
  2332. ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  2333. ring->irq_get = i9xx_ring_get_irq;
  2334. ring->irq_put = i9xx_ring_put_irq;
  2335. }
  2336. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2337. }
  2338. ring->init_hw = init_ring_common;
  2339. return intel_init_ring_buffer(dev, ring);
  2340. }
  2341. /**
  2342. * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
  2343. */
  2344. int intel_init_bsd2_ring_buffer(struct drm_device *dev)
  2345. {
  2346. struct drm_i915_private *dev_priv = dev->dev_private;
  2347. struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
  2348. ring->name = "bsd2 ring";
  2349. ring->id = VCS2;
  2350. ring->write_tail = ring_write_tail;
  2351. ring->mmio_base = GEN8_BSD2_RING_BASE;
  2352. ring->flush = gen6_bsd_ring_flush;
  2353. ring->add_request = gen6_add_request;
  2354. ring->get_seqno = gen6_ring_get_seqno;
  2355. ring->set_seqno = ring_set_seqno;
  2356. ring->irq_enable_mask =
  2357. GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
  2358. ring->irq_get = gen8_ring_get_irq;
  2359. ring->irq_put = gen8_ring_put_irq;
  2360. ring->dispatch_execbuffer =
  2361. gen8_ring_dispatch_execbuffer;
  2362. if (i915_semaphore_is_enabled(dev)) {
  2363. ring->semaphore.sync_to = gen8_ring_sync;
  2364. ring->semaphore.signal = gen8_xcs_signal;
  2365. GEN8_RING_SEMAPHORE_INIT;
  2366. }
  2367. ring->init_hw = init_ring_common;
  2368. return intel_init_ring_buffer(dev, ring);
  2369. }
  2370. int intel_init_blt_ring_buffer(struct drm_device *dev)
  2371. {
  2372. struct drm_i915_private *dev_priv = dev->dev_private;
  2373. struct intel_engine_cs *ring = &dev_priv->ring[BCS];
  2374. ring->name = "blitter ring";
  2375. ring->id = BCS;
  2376. ring->mmio_base = BLT_RING_BASE;
  2377. ring->write_tail = ring_write_tail;
  2378. ring->flush = gen6_ring_flush;
  2379. ring->add_request = gen6_add_request;
  2380. ring->get_seqno = gen6_ring_get_seqno;
  2381. ring->set_seqno = ring_set_seqno;
  2382. if (INTEL_INFO(dev)->gen >= 8) {
  2383. ring->irq_enable_mask =
  2384. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
  2385. ring->irq_get = gen8_ring_get_irq;
  2386. ring->irq_put = gen8_ring_put_irq;
  2387. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2388. if (i915_semaphore_is_enabled(dev)) {
  2389. ring->semaphore.sync_to = gen8_ring_sync;
  2390. ring->semaphore.signal = gen8_xcs_signal;
  2391. GEN8_RING_SEMAPHORE_INIT;
  2392. }
  2393. } else {
  2394. ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  2395. ring->irq_get = gen6_ring_get_irq;
  2396. ring->irq_put = gen6_ring_put_irq;
  2397. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2398. if (i915_semaphore_is_enabled(dev)) {
  2399. ring->semaphore.signal = gen6_signal;
  2400. ring->semaphore.sync_to = gen6_ring_sync;
  2401. /*
  2402. * The current semaphore is only applied on pre-gen8
  2403. * platform. And there is no VCS2 ring on the pre-gen8
  2404. * platform. So the semaphore between BCS and VCS2 is
  2405. * initialized as INVALID. Gen8 will initialize the
  2406. * sema between BCS and VCS2 later.
  2407. */
  2408. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
  2409. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
  2410. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
  2411. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
  2412. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2413. ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
  2414. ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
  2415. ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
  2416. ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
  2417. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2418. }
  2419. }
  2420. ring->init_hw = init_ring_common;
  2421. return intel_init_ring_buffer(dev, ring);
  2422. }
  2423. int intel_init_vebox_ring_buffer(struct drm_device *dev)
  2424. {
  2425. struct drm_i915_private *dev_priv = dev->dev_private;
  2426. struct intel_engine_cs *ring = &dev_priv->ring[VECS];
  2427. ring->name = "video enhancement ring";
  2428. ring->id = VECS;
  2429. ring->mmio_base = VEBOX_RING_BASE;
  2430. ring->write_tail = ring_write_tail;
  2431. ring->flush = gen6_ring_flush;
  2432. ring->add_request = gen6_add_request;
  2433. ring->get_seqno = gen6_ring_get_seqno;
  2434. ring->set_seqno = ring_set_seqno;
  2435. if (INTEL_INFO(dev)->gen >= 8) {
  2436. ring->irq_enable_mask =
  2437. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
  2438. ring->irq_get = gen8_ring_get_irq;
  2439. ring->irq_put = gen8_ring_put_irq;
  2440. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2441. if (i915_semaphore_is_enabled(dev)) {
  2442. ring->semaphore.sync_to = gen8_ring_sync;
  2443. ring->semaphore.signal = gen8_xcs_signal;
  2444. GEN8_RING_SEMAPHORE_INIT;
  2445. }
  2446. } else {
  2447. ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  2448. ring->irq_get = hsw_vebox_get_irq;
  2449. ring->irq_put = hsw_vebox_put_irq;
  2450. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2451. if (i915_semaphore_is_enabled(dev)) {
  2452. ring->semaphore.sync_to = gen6_ring_sync;
  2453. ring->semaphore.signal = gen6_signal;
  2454. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
  2455. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
  2456. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
  2457. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
  2458. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2459. ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
  2460. ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
  2461. ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
  2462. ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
  2463. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2464. }
  2465. }
  2466. ring->init_hw = init_ring_common;
  2467. return intel_init_ring_buffer(dev, ring);
  2468. }
  2469. int
  2470. intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
  2471. {
  2472. struct intel_engine_cs *ring = req->ring;
  2473. int ret;
  2474. if (!ring->gpu_caches_dirty)
  2475. return 0;
  2476. ret = ring->flush(req, 0, I915_GEM_GPU_DOMAINS);
  2477. if (ret)
  2478. return ret;
  2479. trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
  2480. ring->gpu_caches_dirty = false;
  2481. return 0;
  2482. }
  2483. int
  2484. intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
  2485. {
  2486. struct intel_engine_cs *ring = req->ring;
  2487. uint32_t flush_domains;
  2488. int ret;
  2489. flush_domains = 0;
  2490. if (ring->gpu_caches_dirty)
  2491. flush_domains = I915_GEM_GPU_DOMAINS;
  2492. ret = ring->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
  2493. if (ret)
  2494. return ret;
  2495. trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
  2496. ring->gpu_caches_dirty = false;
  2497. return 0;
  2498. }
  2499. void
  2500. intel_stop_ring_buffer(struct intel_engine_cs *ring)
  2501. {
  2502. int ret;
  2503. if (!intel_ring_initialized(ring))
  2504. return;
  2505. ret = intel_ring_idle(ring);
  2506. if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
  2507. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  2508. ring->name, ret);
  2509. stop_ring(ring);
  2510. }