intel_ddi.c 88 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eugeni Dodonov <eugeni.dodonov@intel.com>
  25. *
  26. */
  27. #include "i915_drv.h"
  28. #include "intel_drv.h"
  29. struct ddi_buf_trans {
  30. u32 trans1; /* balance leg enable, de-emph level */
  31. u32 trans2; /* vref sel, vswing */
  32. u8 i_boost; /* SKL: I_boost; valid: 0x0, 0x1, 0x3, 0x7 */
  33. };
  34. /* HDMI/DVI modes ignore everything but the last 2 items. So we share
  35. * them for both DP and FDI transports, allowing those ports to
  36. * automatically adapt to HDMI connections as well
  37. */
  38. static const struct ddi_buf_trans hsw_ddi_translations_dp[] = {
  39. { 0x00FFFFFF, 0x0006000E, 0x0 },
  40. { 0x00D75FFF, 0x0005000A, 0x0 },
  41. { 0x00C30FFF, 0x00040006, 0x0 },
  42. { 0x80AAAFFF, 0x000B0000, 0x0 },
  43. { 0x00FFFFFF, 0x0005000A, 0x0 },
  44. { 0x00D75FFF, 0x000C0004, 0x0 },
  45. { 0x80C30FFF, 0x000B0000, 0x0 },
  46. { 0x00FFFFFF, 0x00040006, 0x0 },
  47. { 0x80D75FFF, 0x000B0000, 0x0 },
  48. };
  49. static const struct ddi_buf_trans hsw_ddi_translations_fdi[] = {
  50. { 0x00FFFFFF, 0x0007000E, 0x0 },
  51. { 0x00D75FFF, 0x000F000A, 0x0 },
  52. { 0x00C30FFF, 0x00060006, 0x0 },
  53. { 0x00AAAFFF, 0x001E0000, 0x0 },
  54. { 0x00FFFFFF, 0x000F000A, 0x0 },
  55. { 0x00D75FFF, 0x00160004, 0x0 },
  56. { 0x00C30FFF, 0x001E0000, 0x0 },
  57. { 0x00FFFFFF, 0x00060006, 0x0 },
  58. { 0x00D75FFF, 0x001E0000, 0x0 },
  59. };
  60. static const struct ddi_buf_trans hsw_ddi_translations_hdmi[] = {
  61. /* Idx NT mV d T mV d db */
  62. { 0x00FFFFFF, 0x0006000E, 0x0 },/* 0: 400 400 0 */
  63. { 0x00E79FFF, 0x000E000C, 0x0 },/* 1: 400 500 2 */
  64. { 0x00D75FFF, 0x0005000A, 0x0 },/* 2: 400 600 3.5 */
  65. { 0x00FFFFFF, 0x0005000A, 0x0 },/* 3: 600 600 0 */
  66. { 0x00E79FFF, 0x001D0007, 0x0 },/* 4: 600 750 2 */
  67. { 0x00D75FFF, 0x000C0004, 0x0 },/* 5: 600 900 3.5 */
  68. { 0x00FFFFFF, 0x00040006, 0x0 },/* 6: 800 800 0 */
  69. { 0x80E79FFF, 0x00030002, 0x0 },/* 7: 800 1000 2 */
  70. { 0x00FFFFFF, 0x00140005, 0x0 },/* 8: 850 850 0 */
  71. { 0x00FFFFFF, 0x000C0004, 0x0 },/* 9: 900 900 0 */
  72. { 0x00FFFFFF, 0x001C0003, 0x0 },/* 10: 950 950 0 */
  73. { 0x80FFFFFF, 0x00030002, 0x0 },/* 11: 1000 1000 0 */
  74. };
  75. static const struct ddi_buf_trans bdw_ddi_translations_edp[] = {
  76. { 0x00FFFFFF, 0x00000012, 0x0 },
  77. { 0x00EBAFFF, 0x00020011, 0x0 },
  78. { 0x00C71FFF, 0x0006000F, 0x0 },
  79. { 0x00AAAFFF, 0x000E000A, 0x0 },
  80. { 0x00FFFFFF, 0x00020011, 0x0 },
  81. { 0x00DB6FFF, 0x0005000F, 0x0 },
  82. { 0x00BEEFFF, 0x000A000C, 0x0 },
  83. { 0x00FFFFFF, 0x0005000F, 0x0 },
  84. { 0x00DB6FFF, 0x000A000C, 0x0 },
  85. };
  86. static const struct ddi_buf_trans bdw_ddi_translations_dp[] = {
  87. { 0x00FFFFFF, 0x0007000E, 0x0 },
  88. { 0x00D75FFF, 0x000E000A, 0x0 },
  89. { 0x00BEFFFF, 0x00140006, 0x0 },
  90. { 0x80B2CFFF, 0x001B0002, 0x0 },
  91. { 0x00FFFFFF, 0x000E000A, 0x0 },
  92. { 0x00DB6FFF, 0x00160005, 0x0 },
  93. { 0x80C71FFF, 0x001A0002, 0x0 },
  94. { 0x00F7DFFF, 0x00180004, 0x0 },
  95. { 0x80D75FFF, 0x001B0002, 0x0 },
  96. };
  97. static const struct ddi_buf_trans bdw_ddi_translations_fdi[] = {
  98. { 0x00FFFFFF, 0x0001000E, 0x0 },
  99. { 0x00D75FFF, 0x0004000A, 0x0 },
  100. { 0x00C30FFF, 0x00070006, 0x0 },
  101. { 0x00AAAFFF, 0x000C0000, 0x0 },
  102. { 0x00FFFFFF, 0x0004000A, 0x0 },
  103. { 0x00D75FFF, 0x00090004, 0x0 },
  104. { 0x00C30FFF, 0x000C0000, 0x0 },
  105. { 0x00FFFFFF, 0x00070006, 0x0 },
  106. { 0x00D75FFF, 0x000C0000, 0x0 },
  107. };
  108. static const struct ddi_buf_trans bdw_ddi_translations_hdmi[] = {
  109. /* Idx NT mV d T mV df db */
  110. { 0x00FFFFFF, 0x0007000E, 0x0 },/* 0: 400 400 0 */
  111. { 0x00D75FFF, 0x000E000A, 0x0 },/* 1: 400 600 3.5 */
  112. { 0x00BEFFFF, 0x00140006, 0x0 },/* 2: 400 800 6 */
  113. { 0x00FFFFFF, 0x0009000D, 0x0 },/* 3: 450 450 0 */
  114. { 0x00FFFFFF, 0x000E000A, 0x0 },/* 4: 600 600 0 */
  115. { 0x00D7FFFF, 0x00140006, 0x0 },/* 5: 600 800 2.5 */
  116. { 0x80CB2FFF, 0x001B0002, 0x0 },/* 6: 600 1000 4.5 */
  117. { 0x00FFFFFF, 0x00140006, 0x0 },/* 7: 800 800 0 */
  118. { 0x80E79FFF, 0x001B0002, 0x0 },/* 8: 800 1000 2 */
  119. { 0x80FFFFFF, 0x001B0002, 0x0 },/* 9: 1000 1000 0 */
  120. };
  121. /* Skylake H and S */
  122. static const struct ddi_buf_trans skl_ddi_translations_dp[] = {
  123. { 0x00002016, 0x000000A0, 0x0 },
  124. { 0x00005012, 0x0000009B, 0x0 },
  125. { 0x00007011, 0x00000088, 0x0 },
  126. { 0x00009010, 0x000000C7, 0x0 },
  127. { 0x00002016, 0x0000009B, 0x0 },
  128. { 0x00005012, 0x00000088, 0x0 },
  129. { 0x00007011, 0x000000C7, 0x0 },
  130. { 0x00002016, 0x000000DF, 0x0 },
  131. { 0x00005012, 0x000000C7, 0x0 },
  132. };
  133. /* Skylake U */
  134. static const struct ddi_buf_trans skl_u_ddi_translations_dp[] = {
  135. { 0x0000201B, 0x000000A2, 0x0 },
  136. { 0x00005012, 0x00000088, 0x0 },
  137. { 0x00007011, 0x00000087, 0x0 },
  138. { 0x80009010, 0x000000C7, 0x1 }, /* Uses I_boost level 0x1 */
  139. { 0x0000201B, 0x0000009D, 0x0 },
  140. { 0x00005012, 0x000000C7, 0x0 },
  141. { 0x00007011, 0x000000C7, 0x0 },
  142. { 0x00002016, 0x00000088, 0x0 },
  143. { 0x00005012, 0x000000C7, 0x0 },
  144. };
  145. /* Skylake Y */
  146. static const struct ddi_buf_trans skl_y_ddi_translations_dp[] = {
  147. { 0x00000018, 0x000000A2, 0x0 },
  148. { 0x00005012, 0x00000088, 0x0 },
  149. { 0x00007011, 0x00000087, 0x0 },
  150. { 0x80009010, 0x000000C7, 0x3 }, /* Uses I_boost level 0x3 */
  151. { 0x00000018, 0x0000009D, 0x0 },
  152. { 0x00005012, 0x000000C7, 0x0 },
  153. { 0x00007011, 0x000000C7, 0x0 },
  154. { 0x00000018, 0x00000088, 0x0 },
  155. { 0x00005012, 0x000000C7, 0x0 },
  156. };
  157. /*
  158. * Skylake H and S
  159. * eDP 1.4 low vswing translation parameters
  160. */
  161. static const struct ddi_buf_trans skl_ddi_translations_edp[] = {
  162. { 0x00000018, 0x000000A8, 0x0 },
  163. { 0x00004013, 0x000000A9, 0x0 },
  164. { 0x00007011, 0x000000A2, 0x0 },
  165. { 0x00009010, 0x0000009C, 0x0 },
  166. { 0x00000018, 0x000000A9, 0x0 },
  167. { 0x00006013, 0x000000A2, 0x0 },
  168. { 0x00007011, 0x000000A6, 0x0 },
  169. { 0x00000018, 0x000000AB, 0x0 },
  170. { 0x00007013, 0x0000009F, 0x0 },
  171. { 0x00000018, 0x000000DF, 0x0 },
  172. };
  173. /*
  174. * Skylake U
  175. * eDP 1.4 low vswing translation parameters
  176. */
  177. static const struct ddi_buf_trans skl_u_ddi_translations_edp[] = {
  178. { 0x00000018, 0x000000A8, 0x0 },
  179. { 0x00004013, 0x000000A9, 0x0 },
  180. { 0x00007011, 0x000000A2, 0x0 },
  181. { 0x00009010, 0x0000009C, 0x0 },
  182. { 0x00000018, 0x000000A9, 0x0 },
  183. { 0x00006013, 0x000000A2, 0x0 },
  184. { 0x00007011, 0x000000A6, 0x0 },
  185. { 0x00002016, 0x000000AB, 0x0 },
  186. { 0x00005013, 0x0000009F, 0x0 },
  187. { 0x00000018, 0x000000DF, 0x0 },
  188. };
  189. /*
  190. * Skylake Y
  191. * eDP 1.4 low vswing translation parameters
  192. */
  193. static const struct ddi_buf_trans skl_y_ddi_translations_edp[] = {
  194. { 0x00000018, 0x000000A8, 0x0 },
  195. { 0x00004013, 0x000000AB, 0x0 },
  196. { 0x00007011, 0x000000A4, 0x0 },
  197. { 0x00009010, 0x000000DF, 0x0 },
  198. { 0x00000018, 0x000000AA, 0x0 },
  199. { 0x00006013, 0x000000A4, 0x0 },
  200. { 0x00007011, 0x0000009D, 0x0 },
  201. { 0x00000018, 0x000000A0, 0x0 },
  202. { 0x00006012, 0x000000DF, 0x0 },
  203. { 0x00000018, 0x0000008A, 0x0 },
  204. };
  205. /* Skylake U, H and S */
  206. static const struct ddi_buf_trans skl_ddi_translations_hdmi[] = {
  207. { 0x00000018, 0x000000AC, 0x0 },
  208. { 0x00005012, 0x0000009D, 0x0 },
  209. { 0x00007011, 0x00000088, 0x0 },
  210. { 0x00000018, 0x000000A1, 0x0 },
  211. { 0x00000018, 0x00000098, 0x0 },
  212. { 0x00004013, 0x00000088, 0x0 },
  213. { 0x00006012, 0x00000087, 0x0 },
  214. { 0x00000018, 0x000000DF, 0x0 },
  215. { 0x00003015, 0x00000087, 0x0 }, /* Default */
  216. { 0x00003015, 0x000000C7, 0x0 },
  217. { 0x00000018, 0x000000C7, 0x0 },
  218. };
  219. /* Skylake Y */
  220. static const struct ddi_buf_trans skl_y_ddi_translations_hdmi[] = {
  221. { 0x00000018, 0x000000A1, 0x0 },
  222. { 0x00005012, 0x000000DF, 0x0 },
  223. { 0x00007011, 0x00000084, 0x0 },
  224. { 0x00000018, 0x000000A4, 0x0 },
  225. { 0x00000018, 0x0000009D, 0x0 },
  226. { 0x00004013, 0x00000080, 0x0 },
  227. { 0x00006013, 0x000000C7, 0x0 },
  228. { 0x00000018, 0x0000008A, 0x0 },
  229. { 0x00003015, 0x000000C7, 0x0 }, /* Default */
  230. { 0x80003015, 0x000000C7, 0x7 }, /* Uses I_boost level 0x7 */
  231. { 0x00000018, 0x000000C7, 0x0 },
  232. };
  233. struct bxt_ddi_buf_trans {
  234. u32 margin; /* swing value */
  235. u32 scale; /* scale value */
  236. u32 enable; /* scale enable */
  237. u32 deemphasis;
  238. bool default_index; /* true if the entry represents default value */
  239. };
  240. /* BSpec does not define separate vswing/pre-emphasis values for eDP.
  241. * Using DP values for eDP as well.
  242. */
  243. static const struct bxt_ddi_buf_trans bxt_ddi_translations_dp[] = {
  244. /* Idx NT mV diff db */
  245. { 52, 0x9A, 0, 128, true }, /* 0: 400 0 */
  246. { 78, 0x9A, 0, 85, false }, /* 1: 400 3.5 */
  247. { 104, 0x9A, 0, 64, false }, /* 2: 400 6 */
  248. { 154, 0x9A, 0, 43, false }, /* 3: 400 9.5 */
  249. { 77, 0x9A, 0, 128, false }, /* 4: 600 0 */
  250. { 116, 0x9A, 0, 85, false }, /* 5: 600 3.5 */
  251. { 154, 0x9A, 0, 64, false }, /* 6: 600 6 */
  252. { 102, 0x9A, 0, 128, false }, /* 7: 800 0 */
  253. { 154, 0x9A, 0, 85, false }, /* 8: 800 3.5 */
  254. { 154, 0x9A, 1, 128, false }, /* 9: 1200 0 */
  255. };
  256. /* BSpec has 2 recommended values - entries 0 and 8.
  257. * Using the entry with higher vswing.
  258. */
  259. static const struct bxt_ddi_buf_trans bxt_ddi_translations_hdmi[] = {
  260. /* Idx NT mV diff db */
  261. { 52, 0x9A, 0, 128, false }, /* 0: 400 0 */
  262. { 52, 0x9A, 0, 85, false }, /* 1: 400 3.5 */
  263. { 52, 0x9A, 0, 64, false }, /* 2: 400 6 */
  264. { 42, 0x9A, 0, 43, false }, /* 3: 400 9.5 */
  265. { 77, 0x9A, 0, 128, false }, /* 4: 600 0 */
  266. { 77, 0x9A, 0, 85, false }, /* 5: 600 3.5 */
  267. { 77, 0x9A, 0, 64, false }, /* 6: 600 6 */
  268. { 102, 0x9A, 0, 128, false }, /* 7: 800 0 */
  269. { 102, 0x9A, 0, 85, false }, /* 8: 800 3.5 */
  270. { 154, 0x9A, 1, 128, true }, /* 9: 1200 0 */
  271. };
  272. static void bxt_ddi_vswing_sequence(struct drm_device *dev, u32 level,
  273. enum port port, int type);
  274. static void ddi_get_encoder_port(struct intel_encoder *intel_encoder,
  275. struct intel_digital_port **dig_port,
  276. enum port *port)
  277. {
  278. struct drm_encoder *encoder = &intel_encoder->base;
  279. int type = intel_encoder->type;
  280. if (type == INTEL_OUTPUT_DP_MST) {
  281. *dig_port = enc_to_mst(encoder)->primary;
  282. *port = (*dig_port)->port;
  283. } else if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP ||
  284. type == INTEL_OUTPUT_HDMI || type == INTEL_OUTPUT_UNKNOWN) {
  285. *dig_port = enc_to_dig_port(encoder);
  286. *port = (*dig_port)->port;
  287. } else if (type == INTEL_OUTPUT_ANALOG) {
  288. *dig_port = NULL;
  289. *port = PORT_E;
  290. } else {
  291. DRM_ERROR("Invalid DDI encoder type %d\n", type);
  292. BUG();
  293. }
  294. }
  295. enum port intel_ddi_get_encoder_port(struct intel_encoder *intel_encoder)
  296. {
  297. struct intel_digital_port *dig_port;
  298. enum port port;
  299. ddi_get_encoder_port(intel_encoder, &dig_port, &port);
  300. return port;
  301. }
  302. static bool
  303. intel_dig_port_supports_hdmi(const struct intel_digital_port *intel_dig_port)
  304. {
  305. return intel_dig_port->hdmi.hdmi_reg;
  306. }
  307. static const struct ddi_buf_trans *skl_get_buf_trans_dp(struct drm_device *dev,
  308. int *n_entries)
  309. {
  310. const struct ddi_buf_trans *ddi_translations;
  311. if (IS_SKL_ULX(dev)) {
  312. ddi_translations = skl_y_ddi_translations_dp;
  313. *n_entries = ARRAY_SIZE(skl_y_ddi_translations_dp);
  314. } else if (IS_SKL_ULT(dev)) {
  315. ddi_translations = skl_u_ddi_translations_dp;
  316. *n_entries = ARRAY_SIZE(skl_u_ddi_translations_dp);
  317. } else {
  318. ddi_translations = skl_ddi_translations_dp;
  319. *n_entries = ARRAY_SIZE(skl_ddi_translations_dp);
  320. }
  321. return ddi_translations;
  322. }
  323. static const struct ddi_buf_trans *skl_get_buf_trans_edp(struct drm_device *dev,
  324. int *n_entries)
  325. {
  326. struct drm_i915_private *dev_priv = dev->dev_private;
  327. const struct ddi_buf_trans *ddi_translations;
  328. if (IS_SKL_ULX(dev)) {
  329. if (dev_priv->edp_low_vswing) {
  330. ddi_translations = skl_y_ddi_translations_edp;
  331. *n_entries = ARRAY_SIZE(skl_y_ddi_translations_edp);
  332. } else {
  333. ddi_translations = skl_y_ddi_translations_dp;
  334. *n_entries = ARRAY_SIZE(skl_y_ddi_translations_dp);
  335. }
  336. } else if (IS_SKL_ULT(dev)) {
  337. if (dev_priv->edp_low_vswing) {
  338. ddi_translations = skl_u_ddi_translations_edp;
  339. *n_entries = ARRAY_SIZE(skl_u_ddi_translations_edp);
  340. } else {
  341. ddi_translations = skl_u_ddi_translations_dp;
  342. *n_entries = ARRAY_SIZE(skl_u_ddi_translations_dp);
  343. }
  344. } else {
  345. if (dev_priv->edp_low_vswing) {
  346. ddi_translations = skl_ddi_translations_edp;
  347. *n_entries = ARRAY_SIZE(skl_ddi_translations_edp);
  348. } else {
  349. ddi_translations = skl_ddi_translations_dp;
  350. *n_entries = ARRAY_SIZE(skl_ddi_translations_dp);
  351. }
  352. }
  353. return ddi_translations;
  354. }
  355. static const struct ddi_buf_trans *
  356. skl_get_buf_trans_hdmi(struct drm_device *dev,
  357. int *n_entries)
  358. {
  359. const struct ddi_buf_trans *ddi_translations;
  360. if (IS_SKL_ULX(dev)) {
  361. ddi_translations = skl_y_ddi_translations_hdmi;
  362. *n_entries = ARRAY_SIZE(skl_y_ddi_translations_hdmi);
  363. } else {
  364. ddi_translations = skl_ddi_translations_hdmi;
  365. *n_entries = ARRAY_SIZE(skl_ddi_translations_hdmi);
  366. }
  367. return ddi_translations;
  368. }
  369. /*
  370. * Starting with Haswell, DDI port buffers must be programmed with correct
  371. * values in advance. The buffer values are different for FDI and DP modes,
  372. * but the HDMI/DVI fields are shared among those. So we program the DDI
  373. * in either FDI or DP modes only, as HDMI connections will work with both
  374. * of those
  375. */
  376. static void intel_prepare_ddi_buffers(struct drm_device *dev, enum port port,
  377. bool supports_hdmi)
  378. {
  379. struct drm_i915_private *dev_priv = dev->dev_private;
  380. u32 reg;
  381. u32 iboost_bit = 0;
  382. int i, n_hdmi_entries, n_dp_entries, n_edp_entries, hdmi_default_entry,
  383. size;
  384. int hdmi_level = dev_priv->vbt.ddi_port_info[port].hdmi_level_shift;
  385. const struct ddi_buf_trans *ddi_translations_fdi;
  386. const struct ddi_buf_trans *ddi_translations_dp;
  387. const struct ddi_buf_trans *ddi_translations_edp;
  388. const struct ddi_buf_trans *ddi_translations_hdmi;
  389. const struct ddi_buf_trans *ddi_translations;
  390. if (IS_BROXTON(dev)) {
  391. if (!supports_hdmi)
  392. return;
  393. /* Vswing programming for HDMI */
  394. bxt_ddi_vswing_sequence(dev, hdmi_level, port,
  395. INTEL_OUTPUT_HDMI);
  396. return;
  397. } else if (IS_SKYLAKE(dev)) {
  398. ddi_translations_fdi = NULL;
  399. ddi_translations_dp =
  400. skl_get_buf_trans_dp(dev, &n_dp_entries);
  401. ddi_translations_edp =
  402. skl_get_buf_trans_edp(dev, &n_edp_entries);
  403. ddi_translations_hdmi =
  404. skl_get_buf_trans_hdmi(dev, &n_hdmi_entries);
  405. hdmi_default_entry = 8;
  406. /* If we're boosting the current, set bit 31 of trans1 */
  407. if (dev_priv->vbt.ddi_port_info[port].hdmi_boost_level ||
  408. dev_priv->vbt.ddi_port_info[port].dp_boost_level)
  409. iboost_bit = 1<<31;
  410. } else if (IS_BROADWELL(dev)) {
  411. ddi_translations_fdi = bdw_ddi_translations_fdi;
  412. ddi_translations_dp = bdw_ddi_translations_dp;
  413. ddi_translations_edp = bdw_ddi_translations_edp;
  414. ddi_translations_hdmi = bdw_ddi_translations_hdmi;
  415. n_edp_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
  416. n_dp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
  417. n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
  418. hdmi_default_entry = 7;
  419. } else if (IS_HASWELL(dev)) {
  420. ddi_translations_fdi = hsw_ddi_translations_fdi;
  421. ddi_translations_dp = hsw_ddi_translations_dp;
  422. ddi_translations_edp = hsw_ddi_translations_dp;
  423. ddi_translations_hdmi = hsw_ddi_translations_hdmi;
  424. n_dp_entries = n_edp_entries = ARRAY_SIZE(hsw_ddi_translations_dp);
  425. n_hdmi_entries = ARRAY_SIZE(hsw_ddi_translations_hdmi);
  426. hdmi_default_entry = 6;
  427. } else {
  428. WARN(1, "ddi translation table missing\n");
  429. ddi_translations_edp = bdw_ddi_translations_dp;
  430. ddi_translations_fdi = bdw_ddi_translations_fdi;
  431. ddi_translations_dp = bdw_ddi_translations_dp;
  432. ddi_translations_hdmi = bdw_ddi_translations_hdmi;
  433. n_edp_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
  434. n_dp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
  435. n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
  436. hdmi_default_entry = 7;
  437. }
  438. switch (port) {
  439. case PORT_A:
  440. ddi_translations = ddi_translations_edp;
  441. size = n_edp_entries;
  442. break;
  443. case PORT_B:
  444. case PORT_C:
  445. ddi_translations = ddi_translations_dp;
  446. size = n_dp_entries;
  447. break;
  448. case PORT_D:
  449. if (intel_dp_is_edp(dev, PORT_D)) {
  450. ddi_translations = ddi_translations_edp;
  451. size = n_edp_entries;
  452. } else {
  453. ddi_translations = ddi_translations_dp;
  454. size = n_dp_entries;
  455. }
  456. break;
  457. case PORT_E:
  458. if (ddi_translations_fdi)
  459. ddi_translations = ddi_translations_fdi;
  460. else
  461. ddi_translations = ddi_translations_dp;
  462. size = n_dp_entries;
  463. break;
  464. default:
  465. BUG();
  466. }
  467. for (i = 0, reg = DDI_BUF_TRANS(port); i < size; i++) {
  468. I915_WRITE(reg, ddi_translations[i].trans1 | iboost_bit);
  469. reg += 4;
  470. I915_WRITE(reg, ddi_translations[i].trans2);
  471. reg += 4;
  472. }
  473. if (!supports_hdmi)
  474. return;
  475. /* Choose a good default if VBT is badly populated */
  476. if (hdmi_level == HDMI_LEVEL_SHIFT_UNKNOWN ||
  477. hdmi_level >= n_hdmi_entries)
  478. hdmi_level = hdmi_default_entry;
  479. /* Entry 9 is for HDMI: */
  480. I915_WRITE(reg, ddi_translations_hdmi[hdmi_level].trans1 | iboost_bit);
  481. reg += 4;
  482. I915_WRITE(reg, ddi_translations_hdmi[hdmi_level].trans2);
  483. reg += 4;
  484. }
  485. /* Program DDI buffers translations for DP. By default, program ports A-D in DP
  486. * mode and port E for FDI.
  487. */
  488. void intel_prepare_ddi(struct drm_device *dev)
  489. {
  490. struct intel_encoder *intel_encoder;
  491. bool visited[I915_MAX_PORTS] = { 0, };
  492. if (!HAS_DDI(dev))
  493. return;
  494. for_each_intel_encoder(dev, intel_encoder) {
  495. struct intel_digital_port *intel_dig_port;
  496. enum port port;
  497. bool supports_hdmi;
  498. ddi_get_encoder_port(intel_encoder, &intel_dig_port, &port);
  499. if (visited[port])
  500. continue;
  501. supports_hdmi = intel_dig_port &&
  502. intel_dig_port_supports_hdmi(intel_dig_port);
  503. intel_prepare_ddi_buffers(dev, port, supports_hdmi);
  504. visited[port] = true;
  505. }
  506. }
  507. static void intel_wait_ddi_buf_idle(struct drm_i915_private *dev_priv,
  508. enum port port)
  509. {
  510. uint32_t reg = DDI_BUF_CTL(port);
  511. int i;
  512. for (i = 0; i < 16; i++) {
  513. udelay(1);
  514. if (I915_READ(reg) & DDI_BUF_IS_IDLE)
  515. return;
  516. }
  517. DRM_ERROR("Timeout waiting for DDI BUF %c idle bit\n", port_name(port));
  518. }
  519. /* Starting with Haswell, different DDI ports can work in FDI mode for
  520. * connection to the PCH-located connectors. For this, it is necessary to train
  521. * both the DDI port and PCH receiver for the desired DDI buffer settings.
  522. *
  523. * The recommended port to work in FDI mode is DDI E, which we use here. Also,
  524. * please note that when FDI mode is active on DDI E, it shares 2 lines with
  525. * DDI A (which is used for eDP)
  526. */
  527. void hsw_fdi_link_train(struct drm_crtc *crtc)
  528. {
  529. struct drm_device *dev = crtc->dev;
  530. struct drm_i915_private *dev_priv = dev->dev_private;
  531. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  532. u32 temp, i, rx_ctl_val;
  533. /* Set the FDI_RX_MISC pwrdn lanes and the 2 workarounds listed at the
  534. * mode set "sequence for CRT port" document:
  535. * - TP1 to TP2 time with the default value
  536. * - FDI delay to 90h
  537. *
  538. * WaFDIAutoLinkSetTimingOverrride:hsw
  539. */
  540. I915_WRITE(_FDI_RXA_MISC, FDI_RX_PWRDN_LANE1_VAL(2) |
  541. FDI_RX_PWRDN_LANE0_VAL(2) |
  542. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  543. /* Enable the PCH Receiver FDI PLL */
  544. rx_ctl_val = dev_priv->fdi_rx_config | FDI_RX_ENHANCE_FRAME_ENABLE |
  545. FDI_RX_PLL_ENABLE |
  546. FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
  547. I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
  548. POSTING_READ(_FDI_RXA_CTL);
  549. udelay(220);
  550. /* Switch from Rawclk to PCDclk */
  551. rx_ctl_val |= FDI_PCDCLK;
  552. I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
  553. /* Configure Port Clock Select */
  554. I915_WRITE(PORT_CLK_SEL(PORT_E), intel_crtc->config->ddi_pll_sel);
  555. WARN_ON(intel_crtc->config->ddi_pll_sel != PORT_CLK_SEL_SPLL);
  556. /* Start the training iterating through available voltages and emphasis,
  557. * testing each value twice. */
  558. for (i = 0; i < ARRAY_SIZE(hsw_ddi_translations_fdi) * 2; i++) {
  559. /* Configure DP_TP_CTL with auto-training */
  560. I915_WRITE(DP_TP_CTL(PORT_E),
  561. DP_TP_CTL_FDI_AUTOTRAIN |
  562. DP_TP_CTL_ENHANCED_FRAME_ENABLE |
  563. DP_TP_CTL_LINK_TRAIN_PAT1 |
  564. DP_TP_CTL_ENABLE);
  565. /* Configure and enable DDI_BUF_CTL for DDI E with next voltage.
  566. * DDI E does not support port reversal, the functionality is
  567. * achieved on the PCH side in FDI_RX_CTL, so no need to set the
  568. * port reversal bit */
  569. I915_WRITE(DDI_BUF_CTL(PORT_E),
  570. DDI_BUF_CTL_ENABLE |
  571. ((intel_crtc->config->fdi_lanes - 1) << 1) |
  572. DDI_BUF_TRANS_SELECT(i / 2));
  573. POSTING_READ(DDI_BUF_CTL(PORT_E));
  574. udelay(600);
  575. /* Program PCH FDI Receiver TU */
  576. I915_WRITE(_FDI_RXA_TUSIZE1, TU_SIZE(64));
  577. /* Enable PCH FDI Receiver with auto-training */
  578. rx_ctl_val |= FDI_RX_ENABLE | FDI_LINK_TRAIN_AUTO;
  579. I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
  580. POSTING_READ(_FDI_RXA_CTL);
  581. /* Wait for FDI receiver lane calibration */
  582. udelay(30);
  583. /* Unset FDI_RX_MISC pwrdn lanes */
  584. temp = I915_READ(_FDI_RXA_MISC);
  585. temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  586. I915_WRITE(_FDI_RXA_MISC, temp);
  587. POSTING_READ(_FDI_RXA_MISC);
  588. /* Wait for FDI auto training time */
  589. udelay(5);
  590. temp = I915_READ(DP_TP_STATUS(PORT_E));
  591. if (temp & DP_TP_STATUS_AUTOTRAIN_DONE) {
  592. DRM_DEBUG_KMS("FDI link training done on step %d\n", i);
  593. /* Enable normal pixel sending for FDI */
  594. I915_WRITE(DP_TP_CTL(PORT_E),
  595. DP_TP_CTL_FDI_AUTOTRAIN |
  596. DP_TP_CTL_LINK_TRAIN_NORMAL |
  597. DP_TP_CTL_ENHANCED_FRAME_ENABLE |
  598. DP_TP_CTL_ENABLE);
  599. return;
  600. }
  601. temp = I915_READ(DDI_BUF_CTL(PORT_E));
  602. temp &= ~DDI_BUF_CTL_ENABLE;
  603. I915_WRITE(DDI_BUF_CTL(PORT_E), temp);
  604. POSTING_READ(DDI_BUF_CTL(PORT_E));
  605. /* Disable DP_TP_CTL and FDI_RX_CTL and retry */
  606. temp = I915_READ(DP_TP_CTL(PORT_E));
  607. temp &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  608. temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
  609. I915_WRITE(DP_TP_CTL(PORT_E), temp);
  610. POSTING_READ(DP_TP_CTL(PORT_E));
  611. intel_wait_ddi_buf_idle(dev_priv, PORT_E);
  612. rx_ctl_val &= ~FDI_RX_ENABLE;
  613. I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
  614. POSTING_READ(_FDI_RXA_CTL);
  615. /* Reset FDI_RX_MISC pwrdn lanes */
  616. temp = I915_READ(_FDI_RXA_MISC);
  617. temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  618. temp |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
  619. I915_WRITE(_FDI_RXA_MISC, temp);
  620. POSTING_READ(_FDI_RXA_MISC);
  621. }
  622. DRM_ERROR("FDI link training failed!\n");
  623. }
  624. void intel_ddi_init_dp_buf_reg(struct intel_encoder *encoder)
  625. {
  626. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  627. struct intel_digital_port *intel_dig_port =
  628. enc_to_dig_port(&encoder->base);
  629. intel_dp->DP = intel_dig_port->saved_port_bits |
  630. DDI_BUF_CTL_ENABLE | DDI_BUF_TRANS_SELECT(0);
  631. intel_dp->DP |= DDI_PORT_WIDTH(intel_dp->lane_count);
  632. }
  633. static struct intel_encoder *
  634. intel_ddi_get_crtc_encoder(struct drm_crtc *crtc)
  635. {
  636. struct drm_device *dev = crtc->dev;
  637. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  638. struct intel_encoder *intel_encoder, *ret = NULL;
  639. int num_encoders = 0;
  640. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  641. ret = intel_encoder;
  642. num_encoders++;
  643. }
  644. if (num_encoders != 1)
  645. WARN(1, "%d encoders on crtc for pipe %c\n", num_encoders,
  646. pipe_name(intel_crtc->pipe));
  647. BUG_ON(ret == NULL);
  648. return ret;
  649. }
  650. struct intel_encoder *
  651. intel_ddi_get_crtc_new_encoder(struct intel_crtc_state *crtc_state)
  652. {
  653. struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  654. struct intel_encoder *ret = NULL;
  655. struct drm_atomic_state *state;
  656. struct drm_connector *connector;
  657. struct drm_connector_state *connector_state;
  658. int num_encoders = 0;
  659. int i;
  660. state = crtc_state->base.state;
  661. for_each_connector_in_state(state, connector, connector_state, i) {
  662. if (connector_state->crtc != crtc_state->base.crtc)
  663. continue;
  664. ret = to_intel_encoder(connector_state->best_encoder);
  665. num_encoders++;
  666. }
  667. WARN(num_encoders != 1, "%d encoders on crtc for pipe %c\n", num_encoders,
  668. pipe_name(crtc->pipe));
  669. BUG_ON(ret == NULL);
  670. return ret;
  671. }
  672. #define LC_FREQ 2700
  673. #define LC_FREQ_2K U64_C(LC_FREQ * 2000)
  674. #define P_MIN 2
  675. #define P_MAX 64
  676. #define P_INC 2
  677. /* Constraints for PLL good behavior */
  678. #define REF_MIN 48
  679. #define REF_MAX 400
  680. #define VCO_MIN 2400
  681. #define VCO_MAX 4800
  682. #define abs_diff(a, b) ({ \
  683. typeof(a) __a = (a); \
  684. typeof(b) __b = (b); \
  685. (void) (&__a == &__b); \
  686. __a > __b ? (__a - __b) : (__b - __a); })
  687. struct hsw_wrpll_rnp {
  688. unsigned p, n2, r2;
  689. };
  690. static unsigned hsw_wrpll_get_budget_for_freq(int clock)
  691. {
  692. unsigned budget;
  693. switch (clock) {
  694. case 25175000:
  695. case 25200000:
  696. case 27000000:
  697. case 27027000:
  698. case 37762500:
  699. case 37800000:
  700. case 40500000:
  701. case 40541000:
  702. case 54000000:
  703. case 54054000:
  704. case 59341000:
  705. case 59400000:
  706. case 72000000:
  707. case 74176000:
  708. case 74250000:
  709. case 81000000:
  710. case 81081000:
  711. case 89012000:
  712. case 89100000:
  713. case 108000000:
  714. case 108108000:
  715. case 111264000:
  716. case 111375000:
  717. case 148352000:
  718. case 148500000:
  719. case 162000000:
  720. case 162162000:
  721. case 222525000:
  722. case 222750000:
  723. case 296703000:
  724. case 297000000:
  725. budget = 0;
  726. break;
  727. case 233500000:
  728. case 245250000:
  729. case 247750000:
  730. case 253250000:
  731. case 298000000:
  732. budget = 1500;
  733. break;
  734. case 169128000:
  735. case 169500000:
  736. case 179500000:
  737. case 202000000:
  738. budget = 2000;
  739. break;
  740. case 256250000:
  741. case 262500000:
  742. case 270000000:
  743. case 272500000:
  744. case 273750000:
  745. case 280750000:
  746. case 281250000:
  747. case 286000000:
  748. case 291750000:
  749. budget = 4000;
  750. break;
  751. case 267250000:
  752. case 268500000:
  753. budget = 5000;
  754. break;
  755. default:
  756. budget = 1000;
  757. break;
  758. }
  759. return budget;
  760. }
  761. static void hsw_wrpll_update_rnp(uint64_t freq2k, unsigned budget,
  762. unsigned r2, unsigned n2, unsigned p,
  763. struct hsw_wrpll_rnp *best)
  764. {
  765. uint64_t a, b, c, d, diff, diff_best;
  766. /* No best (r,n,p) yet */
  767. if (best->p == 0) {
  768. best->p = p;
  769. best->n2 = n2;
  770. best->r2 = r2;
  771. return;
  772. }
  773. /*
  774. * Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to
  775. * freq2k.
  776. *
  777. * delta = 1e6 *
  778. * abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) /
  779. * freq2k;
  780. *
  781. * and we would like delta <= budget.
  782. *
  783. * If the discrepancy is above the PPM-based budget, always prefer to
  784. * improve upon the previous solution. However, if you're within the
  785. * budget, try to maximize Ref * VCO, that is N / (P * R^2).
  786. */
  787. a = freq2k * budget * p * r2;
  788. b = freq2k * budget * best->p * best->r2;
  789. diff = abs_diff(freq2k * p * r2, LC_FREQ_2K * n2);
  790. diff_best = abs_diff(freq2k * best->p * best->r2,
  791. LC_FREQ_2K * best->n2);
  792. c = 1000000 * diff;
  793. d = 1000000 * diff_best;
  794. if (a < c && b < d) {
  795. /* If both are above the budget, pick the closer */
  796. if (best->p * best->r2 * diff < p * r2 * diff_best) {
  797. best->p = p;
  798. best->n2 = n2;
  799. best->r2 = r2;
  800. }
  801. } else if (a >= c && b < d) {
  802. /* If A is below the threshold but B is above it? Update. */
  803. best->p = p;
  804. best->n2 = n2;
  805. best->r2 = r2;
  806. } else if (a >= c && b >= d) {
  807. /* Both are below the limit, so pick the higher n2/(r2*r2) */
  808. if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) {
  809. best->p = p;
  810. best->n2 = n2;
  811. best->r2 = r2;
  812. }
  813. }
  814. /* Otherwise a < c && b >= d, do nothing */
  815. }
  816. static int hsw_ddi_calc_wrpll_link(struct drm_i915_private *dev_priv, int reg)
  817. {
  818. int refclk = LC_FREQ;
  819. int n, p, r;
  820. u32 wrpll;
  821. wrpll = I915_READ(reg);
  822. switch (wrpll & WRPLL_PLL_REF_MASK) {
  823. case WRPLL_PLL_SSC:
  824. case WRPLL_PLL_NON_SSC:
  825. /*
  826. * We could calculate spread here, but our checking
  827. * code only cares about 5% accuracy, and spread is a max of
  828. * 0.5% downspread.
  829. */
  830. refclk = 135;
  831. break;
  832. case WRPLL_PLL_LCPLL:
  833. refclk = LC_FREQ;
  834. break;
  835. default:
  836. WARN(1, "bad wrpll refclk\n");
  837. return 0;
  838. }
  839. r = wrpll & WRPLL_DIVIDER_REF_MASK;
  840. p = (wrpll & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT;
  841. n = (wrpll & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT;
  842. /* Convert to KHz, p & r have a fixed point portion */
  843. return (refclk * n * 100) / (p * r);
  844. }
  845. static int skl_calc_wrpll_link(struct drm_i915_private *dev_priv,
  846. uint32_t dpll)
  847. {
  848. uint32_t cfgcr1_reg, cfgcr2_reg;
  849. uint32_t cfgcr1_val, cfgcr2_val;
  850. uint32_t p0, p1, p2, dco_freq;
  851. cfgcr1_reg = GET_CFG_CR1_REG(dpll);
  852. cfgcr2_reg = GET_CFG_CR2_REG(dpll);
  853. cfgcr1_val = I915_READ(cfgcr1_reg);
  854. cfgcr2_val = I915_READ(cfgcr2_reg);
  855. p0 = cfgcr2_val & DPLL_CFGCR2_PDIV_MASK;
  856. p2 = cfgcr2_val & DPLL_CFGCR2_KDIV_MASK;
  857. if (cfgcr2_val & DPLL_CFGCR2_QDIV_MODE(1))
  858. p1 = (cfgcr2_val & DPLL_CFGCR2_QDIV_RATIO_MASK) >> 8;
  859. else
  860. p1 = 1;
  861. switch (p0) {
  862. case DPLL_CFGCR2_PDIV_1:
  863. p0 = 1;
  864. break;
  865. case DPLL_CFGCR2_PDIV_2:
  866. p0 = 2;
  867. break;
  868. case DPLL_CFGCR2_PDIV_3:
  869. p0 = 3;
  870. break;
  871. case DPLL_CFGCR2_PDIV_7:
  872. p0 = 7;
  873. break;
  874. }
  875. switch (p2) {
  876. case DPLL_CFGCR2_KDIV_5:
  877. p2 = 5;
  878. break;
  879. case DPLL_CFGCR2_KDIV_2:
  880. p2 = 2;
  881. break;
  882. case DPLL_CFGCR2_KDIV_3:
  883. p2 = 3;
  884. break;
  885. case DPLL_CFGCR2_KDIV_1:
  886. p2 = 1;
  887. break;
  888. }
  889. dco_freq = (cfgcr1_val & DPLL_CFGCR1_DCO_INTEGER_MASK) * 24 * 1000;
  890. dco_freq += (((cfgcr1_val & DPLL_CFGCR1_DCO_FRACTION_MASK) >> 9) * 24 *
  891. 1000) / 0x8000;
  892. return dco_freq / (p0 * p1 * p2 * 5);
  893. }
  894. static void ddi_dotclock_get(struct intel_crtc_state *pipe_config)
  895. {
  896. int dotclock;
  897. if (pipe_config->has_pch_encoder)
  898. dotclock = intel_dotclock_calculate(pipe_config->port_clock,
  899. &pipe_config->fdi_m_n);
  900. else if (pipe_config->has_dp_encoder)
  901. dotclock = intel_dotclock_calculate(pipe_config->port_clock,
  902. &pipe_config->dp_m_n);
  903. else if (pipe_config->has_hdmi_sink && pipe_config->pipe_bpp == 36)
  904. dotclock = pipe_config->port_clock * 2 / 3;
  905. else
  906. dotclock = pipe_config->port_clock;
  907. if (pipe_config->pixel_multiplier)
  908. dotclock /= pipe_config->pixel_multiplier;
  909. pipe_config->base.adjusted_mode.crtc_clock = dotclock;
  910. }
  911. static void skl_ddi_clock_get(struct intel_encoder *encoder,
  912. struct intel_crtc_state *pipe_config)
  913. {
  914. struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
  915. int link_clock = 0;
  916. uint32_t dpll_ctl1, dpll;
  917. dpll = pipe_config->ddi_pll_sel;
  918. dpll_ctl1 = I915_READ(DPLL_CTRL1);
  919. if (dpll_ctl1 & DPLL_CTRL1_HDMI_MODE(dpll)) {
  920. link_clock = skl_calc_wrpll_link(dev_priv, dpll);
  921. } else {
  922. link_clock = dpll_ctl1 & DPLL_CTRL1_LINK_RATE_MASK(dpll);
  923. link_clock >>= DPLL_CTRL1_LINK_RATE_SHIFT(dpll);
  924. switch (link_clock) {
  925. case DPLL_CTRL1_LINK_RATE_810:
  926. link_clock = 81000;
  927. break;
  928. case DPLL_CTRL1_LINK_RATE_1080:
  929. link_clock = 108000;
  930. break;
  931. case DPLL_CTRL1_LINK_RATE_1350:
  932. link_clock = 135000;
  933. break;
  934. case DPLL_CTRL1_LINK_RATE_1620:
  935. link_clock = 162000;
  936. break;
  937. case DPLL_CTRL1_LINK_RATE_2160:
  938. link_clock = 216000;
  939. break;
  940. case DPLL_CTRL1_LINK_RATE_2700:
  941. link_clock = 270000;
  942. break;
  943. default:
  944. WARN(1, "Unsupported link rate\n");
  945. break;
  946. }
  947. link_clock *= 2;
  948. }
  949. pipe_config->port_clock = link_clock;
  950. ddi_dotclock_get(pipe_config);
  951. }
  952. static void hsw_ddi_clock_get(struct intel_encoder *encoder,
  953. struct intel_crtc_state *pipe_config)
  954. {
  955. struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
  956. int link_clock = 0;
  957. u32 val, pll;
  958. val = pipe_config->ddi_pll_sel;
  959. switch (val & PORT_CLK_SEL_MASK) {
  960. case PORT_CLK_SEL_LCPLL_810:
  961. link_clock = 81000;
  962. break;
  963. case PORT_CLK_SEL_LCPLL_1350:
  964. link_clock = 135000;
  965. break;
  966. case PORT_CLK_SEL_LCPLL_2700:
  967. link_clock = 270000;
  968. break;
  969. case PORT_CLK_SEL_WRPLL1:
  970. link_clock = hsw_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL1);
  971. break;
  972. case PORT_CLK_SEL_WRPLL2:
  973. link_clock = hsw_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL2);
  974. break;
  975. case PORT_CLK_SEL_SPLL:
  976. pll = I915_READ(SPLL_CTL) & SPLL_PLL_FREQ_MASK;
  977. if (pll == SPLL_PLL_FREQ_810MHz)
  978. link_clock = 81000;
  979. else if (pll == SPLL_PLL_FREQ_1350MHz)
  980. link_clock = 135000;
  981. else if (pll == SPLL_PLL_FREQ_2700MHz)
  982. link_clock = 270000;
  983. else {
  984. WARN(1, "bad spll freq\n");
  985. return;
  986. }
  987. break;
  988. default:
  989. WARN(1, "bad port clock sel\n");
  990. return;
  991. }
  992. pipe_config->port_clock = link_clock * 2;
  993. ddi_dotclock_get(pipe_config);
  994. }
  995. static int bxt_calc_pll_link(struct drm_i915_private *dev_priv,
  996. enum intel_dpll_id dpll)
  997. {
  998. struct intel_shared_dpll *pll;
  999. struct intel_dpll_hw_state *state;
  1000. intel_clock_t clock;
  1001. /* For DDI ports we always use a shared PLL. */
  1002. if (WARN_ON(dpll == DPLL_ID_PRIVATE))
  1003. return 0;
  1004. pll = &dev_priv->shared_dplls[dpll];
  1005. state = &pll->config.hw_state;
  1006. clock.m1 = 2;
  1007. clock.m2 = (state->pll0 & PORT_PLL_M2_MASK) << 22;
  1008. if (state->pll3 & PORT_PLL_M2_FRAC_ENABLE)
  1009. clock.m2 |= state->pll2 & PORT_PLL_M2_FRAC_MASK;
  1010. clock.n = (state->pll1 & PORT_PLL_N_MASK) >> PORT_PLL_N_SHIFT;
  1011. clock.p1 = (state->ebb0 & PORT_PLL_P1_MASK) >> PORT_PLL_P1_SHIFT;
  1012. clock.p2 = (state->ebb0 & PORT_PLL_P2_MASK) >> PORT_PLL_P2_SHIFT;
  1013. return chv_calc_dpll_params(100000, &clock);
  1014. }
  1015. static void bxt_ddi_clock_get(struct intel_encoder *encoder,
  1016. struct intel_crtc_state *pipe_config)
  1017. {
  1018. struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
  1019. enum port port = intel_ddi_get_encoder_port(encoder);
  1020. uint32_t dpll = port;
  1021. pipe_config->port_clock = bxt_calc_pll_link(dev_priv, dpll);
  1022. ddi_dotclock_get(pipe_config);
  1023. }
  1024. void intel_ddi_clock_get(struct intel_encoder *encoder,
  1025. struct intel_crtc_state *pipe_config)
  1026. {
  1027. struct drm_device *dev = encoder->base.dev;
  1028. if (INTEL_INFO(dev)->gen <= 8)
  1029. hsw_ddi_clock_get(encoder, pipe_config);
  1030. else if (IS_SKYLAKE(dev))
  1031. skl_ddi_clock_get(encoder, pipe_config);
  1032. else if (IS_BROXTON(dev))
  1033. bxt_ddi_clock_get(encoder, pipe_config);
  1034. }
  1035. static void
  1036. hsw_ddi_calculate_wrpll(int clock /* in Hz */,
  1037. unsigned *r2_out, unsigned *n2_out, unsigned *p_out)
  1038. {
  1039. uint64_t freq2k;
  1040. unsigned p, n2, r2;
  1041. struct hsw_wrpll_rnp best = { 0, 0, 0 };
  1042. unsigned budget;
  1043. freq2k = clock / 100;
  1044. budget = hsw_wrpll_get_budget_for_freq(clock);
  1045. /* Special case handling for 540 pixel clock: bypass WR PLL entirely
  1046. * and directly pass the LC PLL to it. */
  1047. if (freq2k == 5400000) {
  1048. *n2_out = 2;
  1049. *p_out = 1;
  1050. *r2_out = 2;
  1051. return;
  1052. }
  1053. /*
  1054. * Ref = LC_FREQ / R, where Ref is the actual reference input seen by
  1055. * the WR PLL.
  1056. *
  1057. * We want R so that REF_MIN <= Ref <= REF_MAX.
  1058. * Injecting R2 = 2 * R gives:
  1059. * REF_MAX * r2 > LC_FREQ * 2 and
  1060. * REF_MIN * r2 < LC_FREQ * 2
  1061. *
  1062. * Which means the desired boundaries for r2 are:
  1063. * LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN
  1064. *
  1065. */
  1066. for (r2 = LC_FREQ * 2 / REF_MAX + 1;
  1067. r2 <= LC_FREQ * 2 / REF_MIN;
  1068. r2++) {
  1069. /*
  1070. * VCO = N * Ref, that is: VCO = N * LC_FREQ / R
  1071. *
  1072. * Once again we want VCO_MIN <= VCO <= VCO_MAX.
  1073. * Injecting R2 = 2 * R and N2 = 2 * N, we get:
  1074. * VCO_MAX * r2 > n2 * LC_FREQ and
  1075. * VCO_MIN * r2 < n2 * LC_FREQ)
  1076. *
  1077. * Which means the desired boundaries for n2 are:
  1078. * VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ
  1079. */
  1080. for (n2 = VCO_MIN * r2 / LC_FREQ + 1;
  1081. n2 <= VCO_MAX * r2 / LC_FREQ;
  1082. n2++) {
  1083. for (p = P_MIN; p <= P_MAX; p += P_INC)
  1084. hsw_wrpll_update_rnp(freq2k, budget,
  1085. r2, n2, p, &best);
  1086. }
  1087. }
  1088. *n2_out = best.n2;
  1089. *p_out = best.p;
  1090. *r2_out = best.r2;
  1091. }
  1092. static bool
  1093. hsw_ddi_pll_select(struct intel_crtc *intel_crtc,
  1094. struct intel_crtc_state *crtc_state,
  1095. struct intel_encoder *intel_encoder,
  1096. int clock)
  1097. {
  1098. if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
  1099. struct intel_shared_dpll *pll;
  1100. uint32_t val;
  1101. unsigned p, n2, r2;
  1102. hsw_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p);
  1103. val = WRPLL_PLL_ENABLE | WRPLL_PLL_LCPLL |
  1104. WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) |
  1105. WRPLL_DIVIDER_POST(p);
  1106. memset(&crtc_state->dpll_hw_state, 0,
  1107. sizeof(crtc_state->dpll_hw_state));
  1108. crtc_state->dpll_hw_state.wrpll = val;
  1109. pll = intel_get_shared_dpll(intel_crtc, crtc_state);
  1110. if (pll == NULL) {
  1111. DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
  1112. pipe_name(intel_crtc->pipe));
  1113. return false;
  1114. }
  1115. crtc_state->ddi_pll_sel = PORT_CLK_SEL_WRPLL(pll->id);
  1116. }
  1117. return true;
  1118. }
  1119. struct skl_wrpll_context {
  1120. uint64_t min_deviation; /* current minimal deviation */
  1121. uint64_t central_freq; /* chosen central freq */
  1122. uint64_t dco_freq; /* chosen dco freq */
  1123. unsigned int p; /* chosen divider */
  1124. };
  1125. static void skl_wrpll_context_init(struct skl_wrpll_context *ctx)
  1126. {
  1127. memset(ctx, 0, sizeof(*ctx));
  1128. ctx->min_deviation = U64_MAX;
  1129. }
  1130. /* DCO freq must be within +1%/-6% of the DCO central freq */
  1131. #define SKL_DCO_MAX_PDEVIATION 100
  1132. #define SKL_DCO_MAX_NDEVIATION 600
  1133. static void skl_wrpll_try_divider(struct skl_wrpll_context *ctx,
  1134. uint64_t central_freq,
  1135. uint64_t dco_freq,
  1136. unsigned int divider)
  1137. {
  1138. uint64_t deviation;
  1139. deviation = div64_u64(10000 * abs_diff(dco_freq, central_freq),
  1140. central_freq);
  1141. /* positive deviation */
  1142. if (dco_freq >= central_freq) {
  1143. if (deviation < SKL_DCO_MAX_PDEVIATION &&
  1144. deviation < ctx->min_deviation) {
  1145. ctx->min_deviation = deviation;
  1146. ctx->central_freq = central_freq;
  1147. ctx->dco_freq = dco_freq;
  1148. ctx->p = divider;
  1149. }
  1150. /* negative deviation */
  1151. } else if (deviation < SKL_DCO_MAX_NDEVIATION &&
  1152. deviation < ctx->min_deviation) {
  1153. ctx->min_deviation = deviation;
  1154. ctx->central_freq = central_freq;
  1155. ctx->dco_freq = dco_freq;
  1156. ctx->p = divider;
  1157. }
  1158. }
  1159. static void skl_wrpll_get_multipliers(unsigned int p,
  1160. unsigned int *p0 /* out */,
  1161. unsigned int *p1 /* out */,
  1162. unsigned int *p2 /* out */)
  1163. {
  1164. /* even dividers */
  1165. if (p % 2 == 0) {
  1166. unsigned int half = p / 2;
  1167. if (half == 1 || half == 2 || half == 3 || half == 5) {
  1168. *p0 = 2;
  1169. *p1 = 1;
  1170. *p2 = half;
  1171. } else if (half % 2 == 0) {
  1172. *p0 = 2;
  1173. *p1 = half / 2;
  1174. *p2 = 2;
  1175. } else if (half % 3 == 0) {
  1176. *p0 = 3;
  1177. *p1 = half / 3;
  1178. *p2 = 2;
  1179. } else if (half % 7 == 0) {
  1180. *p0 = 7;
  1181. *p1 = half / 7;
  1182. *p2 = 2;
  1183. }
  1184. } else if (p == 3 || p == 9) { /* 3, 5, 7, 9, 15, 21, 35 */
  1185. *p0 = 3;
  1186. *p1 = 1;
  1187. *p2 = p / 3;
  1188. } else if (p == 5 || p == 7) {
  1189. *p0 = p;
  1190. *p1 = 1;
  1191. *p2 = 1;
  1192. } else if (p == 15) {
  1193. *p0 = 3;
  1194. *p1 = 1;
  1195. *p2 = 5;
  1196. } else if (p == 21) {
  1197. *p0 = 7;
  1198. *p1 = 1;
  1199. *p2 = 3;
  1200. } else if (p == 35) {
  1201. *p0 = 7;
  1202. *p1 = 1;
  1203. *p2 = 5;
  1204. }
  1205. }
  1206. struct skl_wrpll_params {
  1207. uint32_t dco_fraction;
  1208. uint32_t dco_integer;
  1209. uint32_t qdiv_ratio;
  1210. uint32_t qdiv_mode;
  1211. uint32_t kdiv;
  1212. uint32_t pdiv;
  1213. uint32_t central_freq;
  1214. };
  1215. static void skl_wrpll_params_populate(struct skl_wrpll_params *params,
  1216. uint64_t afe_clock,
  1217. uint64_t central_freq,
  1218. uint32_t p0, uint32_t p1, uint32_t p2)
  1219. {
  1220. uint64_t dco_freq;
  1221. switch (central_freq) {
  1222. case 9600000000ULL:
  1223. params->central_freq = 0;
  1224. break;
  1225. case 9000000000ULL:
  1226. params->central_freq = 1;
  1227. break;
  1228. case 8400000000ULL:
  1229. params->central_freq = 3;
  1230. }
  1231. switch (p0) {
  1232. case 1:
  1233. params->pdiv = 0;
  1234. break;
  1235. case 2:
  1236. params->pdiv = 1;
  1237. break;
  1238. case 3:
  1239. params->pdiv = 2;
  1240. break;
  1241. case 7:
  1242. params->pdiv = 4;
  1243. break;
  1244. default:
  1245. WARN(1, "Incorrect PDiv\n");
  1246. }
  1247. switch (p2) {
  1248. case 5:
  1249. params->kdiv = 0;
  1250. break;
  1251. case 2:
  1252. params->kdiv = 1;
  1253. break;
  1254. case 3:
  1255. params->kdiv = 2;
  1256. break;
  1257. case 1:
  1258. params->kdiv = 3;
  1259. break;
  1260. default:
  1261. WARN(1, "Incorrect KDiv\n");
  1262. }
  1263. params->qdiv_ratio = p1;
  1264. params->qdiv_mode = (params->qdiv_ratio == 1) ? 0 : 1;
  1265. dco_freq = p0 * p1 * p2 * afe_clock;
  1266. /*
  1267. * Intermediate values are in Hz.
  1268. * Divide by MHz to match bsepc
  1269. */
  1270. params->dco_integer = div_u64(dco_freq, 24 * MHz(1));
  1271. params->dco_fraction =
  1272. div_u64((div_u64(dco_freq, 24) -
  1273. params->dco_integer * MHz(1)) * 0x8000, MHz(1));
  1274. }
  1275. static bool
  1276. skl_ddi_calculate_wrpll(int clock /* in Hz */,
  1277. struct skl_wrpll_params *wrpll_params)
  1278. {
  1279. uint64_t afe_clock = clock * 5; /* AFE Clock is 5x Pixel clock */
  1280. uint64_t dco_central_freq[3] = {8400000000ULL,
  1281. 9000000000ULL,
  1282. 9600000000ULL};
  1283. static const int even_dividers[] = { 4, 6, 8, 10, 12, 14, 16, 18, 20,
  1284. 24, 28, 30, 32, 36, 40, 42, 44,
  1285. 48, 52, 54, 56, 60, 64, 66, 68,
  1286. 70, 72, 76, 78, 80, 84, 88, 90,
  1287. 92, 96, 98 };
  1288. static const int odd_dividers[] = { 3, 5, 7, 9, 15, 21, 35 };
  1289. static const struct {
  1290. const int *list;
  1291. int n_dividers;
  1292. } dividers[] = {
  1293. { even_dividers, ARRAY_SIZE(even_dividers) },
  1294. { odd_dividers, ARRAY_SIZE(odd_dividers) },
  1295. };
  1296. struct skl_wrpll_context ctx;
  1297. unsigned int dco, d, i;
  1298. unsigned int p0, p1, p2;
  1299. skl_wrpll_context_init(&ctx);
  1300. for (d = 0; d < ARRAY_SIZE(dividers); d++) {
  1301. for (dco = 0; dco < ARRAY_SIZE(dco_central_freq); dco++) {
  1302. for (i = 0; i < dividers[d].n_dividers; i++) {
  1303. unsigned int p = dividers[d].list[i];
  1304. uint64_t dco_freq = p * afe_clock;
  1305. skl_wrpll_try_divider(&ctx,
  1306. dco_central_freq[dco],
  1307. dco_freq,
  1308. p);
  1309. /*
  1310. * Skip the remaining dividers if we're sure to
  1311. * have found the definitive divider, we can't
  1312. * improve a 0 deviation.
  1313. */
  1314. if (ctx.min_deviation == 0)
  1315. goto skip_remaining_dividers;
  1316. }
  1317. }
  1318. skip_remaining_dividers:
  1319. /*
  1320. * If a solution is found with an even divider, prefer
  1321. * this one.
  1322. */
  1323. if (d == 0 && ctx.p)
  1324. break;
  1325. }
  1326. if (!ctx.p) {
  1327. DRM_DEBUG_DRIVER("No valid divider found for %dHz\n", clock);
  1328. return false;
  1329. }
  1330. /*
  1331. * gcc incorrectly analyses that these can be used without being
  1332. * initialized. To be fair, it's hard to guess.
  1333. */
  1334. p0 = p1 = p2 = 0;
  1335. skl_wrpll_get_multipliers(ctx.p, &p0, &p1, &p2);
  1336. skl_wrpll_params_populate(wrpll_params, afe_clock, ctx.central_freq,
  1337. p0, p1, p2);
  1338. return true;
  1339. }
  1340. static bool
  1341. skl_ddi_pll_select(struct intel_crtc *intel_crtc,
  1342. struct intel_crtc_state *crtc_state,
  1343. struct intel_encoder *intel_encoder,
  1344. int clock)
  1345. {
  1346. struct intel_shared_dpll *pll;
  1347. uint32_t ctrl1, cfgcr1, cfgcr2;
  1348. /*
  1349. * See comment in intel_dpll_hw_state to understand why we always use 0
  1350. * as the DPLL id in this function.
  1351. */
  1352. ctrl1 = DPLL_CTRL1_OVERRIDE(0);
  1353. if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
  1354. struct skl_wrpll_params wrpll_params = { 0, };
  1355. ctrl1 |= DPLL_CTRL1_HDMI_MODE(0);
  1356. if (!skl_ddi_calculate_wrpll(clock * 1000, &wrpll_params))
  1357. return false;
  1358. cfgcr1 = DPLL_CFGCR1_FREQ_ENABLE |
  1359. DPLL_CFGCR1_DCO_FRACTION(wrpll_params.dco_fraction) |
  1360. wrpll_params.dco_integer;
  1361. cfgcr2 = DPLL_CFGCR2_QDIV_RATIO(wrpll_params.qdiv_ratio) |
  1362. DPLL_CFGCR2_QDIV_MODE(wrpll_params.qdiv_mode) |
  1363. DPLL_CFGCR2_KDIV(wrpll_params.kdiv) |
  1364. DPLL_CFGCR2_PDIV(wrpll_params.pdiv) |
  1365. wrpll_params.central_freq;
  1366. } else if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
  1367. switch (crtc_state->port_clock / 2) {
  1368. case 81000:
  1369. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, 0);
  1370. break;
  1371. case 135000:
  1372. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, 0);
  1373. break;
  1374. case 270000:
  1375. ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, 0);
  1376. break;
  1377. }
  1378. cfgcr1 = cfgcr2 = 0;
  1379. } else /* eDP */
  1380. return true;
  1381. memset(&crtc_state->dpll_hw_state, 0,
  1382. sizeof(crtc_state->dpll_hw_state));
  1383. crtc_state->dpll_hw_state.ctrl1 = ctrl1;
  1384. crtc_state->dpll_hw_state.cfgcr1 = cfgcr1;
  1385. crtc_state->dpll_hw_state.cfgcr2 = cfgcr2;
  1386. pll = intel_get_shared_dpll(intel_crtc, crtc_state);
  1387. if (pll == NULL) {
  1388. DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
  1389. pipe_name(intel_crtc->pipe));
  1390. return false;
  1391. }
  1392. /* shared DPLL id 0 is DPLL 1 */
  1393. crtc_state->ddi_pll_sel = pll->id + 1;
  1394. return true;
  1395. }
  1396. /* bxt clock parameters */
  1397. struct bxt_clk_div {
  1398. int clock;
  1399. uint32_t p1;
  1400. uint32_t p2;
  1401. uint32_t m2_int;
  1402. uint32_t m2_frac;
  1403. bool m2_frac_en;
  1404. uint32_t n;
  1405. };
  1406. /* pre-calculated values for DP linkrates */
  1407. static const struct bxt_clk_div bxt_dp_clk_val[] = {
  1408. {162000, 4, 2, 32, 1677722, 1, 1},
  1409. {270000, 4, 1, 27, 0, 0, 1},
  1410. {540000, 2, 1, 27, 0, 0, 1},
  1411. {216000, 3, 2, 32, 1677722, 1, 1},
  1412. {243000, 4, 1, 24, 1258291, 1, 1},
  1413. {324000, 4, 1, 32, 1677722, 1, 1},
  1414. {432000, 3, 1, 32, 1677722, 1, 1}
  1415. };
  1416. static bool
  1417. bxt_ddi_pll_select(struct intel_crtc *intel_crtc,
  1418. struct intel_crtc_state *crtc_state,
  1419. struct intel_encoder *intel_encoder,
  1420. int clock)
  1421. {
  1422. struct intel_shared_dpll *pll;
  1423. struct bxt_clk_div clk_div = {0};
  1424. int vco = 0;
  1425. uint32_t prop_coef, int_coef, gain_ctl, targ_cnt;
  1426. uint32_t lanestagger;
  1427. if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
  1428. intel_clock_t best_clock;
  1429. /* Calculate HDMI div */
  1430. /*
  1431. * FIXME: tie the following calculation into
  1432. * i9xx_crtc_compute_clock
  1433. */
  1434. if (!bxt_find_best_dpll(crtc_state, clock, &best_clock)) {
  1435. DRM_DEBUG_DRIVER("no PLL dividers found for clock %d pipe %c\n",
  1436. clock, pipe_name(intel_crtc->pipe));
  1437. return false;
  1438. }
  1439. clk_div.p1 = best_clock.p1;
  1440. clk_div.p2 = best_clock.p2;
  1441. WARN_ON(best_clock.m1 != 2);
  1442. clk_div.n = best_clock.n;
  1443. clk_div.m2_int = best_clock.m2 >> 22;
  1444. clk_div.m2_frac = best_clock.m2 & ((1 << 22) - 1);
  1445. clk_div.m2_frac_en = clk_div.m2_frac != 0;
  1446. vco = best_clock.vco;
  1447. } else if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
  1448. intel_encoder->type == INTEL_OUTPUT_EDP) {
  1449. int i;
  1450. clk_div = bxt_dp_clk_val[0];
  1451. for (i = 0; i < ARRAY_SIZE(bxt_dp_clk_val); ++i) {
  1452. if (bxt_dp_clk_val[i].clock == clock) {
  1453. clk_div = bxt_dp_clk_val[i];
  1454. break;
  1455. }
  1456. }
  1457. vco = clock * 10 / 2 * clk_div.p1 * clk_div.p2;
  1458. }
  1459. if (vco >= 6200000 && vco <= 6700000) {
  1460. prop_coef = 4;
  1461. int_coef = 9;
  1462. gain_ctl = 3;
  1463. targ_cnt = 8;
  1464. } else if ((vco > 5400000 && vco < 6200000) ||
  1465. (vco >= 4800000 && vco < 5400000)) {
  1466. prop_coef = 5;
  1467. int_coef = 11;
  1468. gain_ctl = 3;
  1469. targ_cnt = 9;
  1470. } else if (vco == 5400000) {
  1471. prop_coef = 3;
  1472. int_coef = 8;
  1473. gain_ctl = 1;
  1474. targ_cnt = 9;
  1475. } else {
  1476. DRM_ERROR("Invalid VCO\n");
  1477. return false;
  1478. }
  1479. memset(&crtc_state->dpll_hw_state, 0,
  1480. sizeof(crtc_state->dpll_hw_state));
  1481. if (clock > 270000)
  1482. lanestagger = 0x18;
  1483. else if (clock > 135000)
  1484. lanestagger = 0x0d;
  1485. else if (clock > 67000)
  1486. lanestagger = 0x07;
  1487. else if (clock > 33000)
  1488. lanestagger = 0x04;
  1489. else
  1490. lanestagger = 0x02;
  1491. crtc_state->dpll_hw_state.ebb0 =
  1492. PORT_PLL_P1(clk_div.p1) | PORT_PLL_P2(clk_div.p2);
  1493. crtc_state->dpll_hw_state.pll0 = clk_div.m2_int;
  1494. crtc_state->dpll_hw_state.pll1 = PORT_PLL_N(clk_div.n);
  1495. crtc_state->dpll_hw_state.pll2 = clk_div.m2_frac;
  1496. if (clk_div.m2_frac_en)
  1497. crtc_state->dpll_hw_state.pll3 =
  1498. PORT_PLL_M2_FRAC_ENABLE;
  1499. crtc_state->dpll_hw_state.pll6 =
  1500. prop_coef | PORT_PLL_INT_COEFF(int_coef);
  1501. crtc_state->dpll_hw_state.pll6 |=
  1502. PORT_PLL_GAIN_CTL(gain_ctl);
  1503. crtc_state->dpll_hw_state.pll8 = targ_cnt;
  1504. crtc_state->dpll_hw_state.pll9 = 5 << PORT_PLL_LOCK_THRESHOLD_SHIFT;
  1505. crtc_state->dpll_hw_state.pll10 =
  1506. PORT_PLL_DCO_AMP(PORT_PLL_DCO_AMP_DEFAULT)
  1507. | PORT_PLL_DCO_AMP_OVR_EN_H;
  1508. crtc_state->dpll_hw_state.ebb4 = PORT_PLL_10BIT_CLK_ENABLE;
  1509. crtc_state->dpll_hw_state.pcsdw12 =
  1510. LANESTAGGER_STRAP_OVRD | lanestagger;
  1511. pll = intel_get_shared_dpll(intel_crtc, crtc_state);
  1512. if (pll == NULL) {
  1513. DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
  1514. pipe_name(intel_crtc->pipe));
  1515. return false;
  1516. }
  1517. /* shared DPLL id 0 is DPLL A */
  1518. crtc_state->ddi_pll_sel = pll->id;
  1519. return true;
  1520. }
  1521. /*
  1522. * Tries to find a *shared* PLL for the CRTC and store it in
  1523. * intel_crtc->ddi_pll_sel.
  1524. *
  1525. * For private DPLLs, compute_config() should do the selection for us. This
  1526. * function should be folded into compute_config() eventually.
  1527. */
  1528. bool intel_ddi_pll_select(struct intel_crtc *intel_crtc,
  1529. struct intel_crtc_state *crtc_state)
  1530. {
  1531. struct drm_device *dev = intel_crtc->base.dev;
  1532. struct intel_encoder *intel_encoder =
  1533. intel_ddi_get_crtc_new_encoder(crtc_state);
  1534. int clock = crtc_state->port_clock;
  1535. if (IS_SKYLAKE(dev))
  1536. return skl_ddi_pll_select(intel_crtc, crtc_state,
  1537. intel_encoder, clock);
  1538. else if (IS_BROXTON(dev))
  1539. return bxt_ddi_pll_select(intel_crtc, crtc_state,
  1540. intel_encoder, clock);
  1541. else
  1542. return hsw_ddi_pll_select(intel_crtc, crtc_state,
  1543. intel_encoder, clock);
  1544. }
  1545. void intel_ddi_set_pipe_settings(struct drm_crtc *crtc)
  1546. {
  1547. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  1548. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1549. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  1550. enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
  1551. int type = intel_encoder->type;
  1552. uint32_t temp;
  1553. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP || type == INTEL_OUTPUT_DP_MST) {
  1554. temp = TRANS_MSA_SYNC_CLK;
  1555. switch (intel_crtc->config->pipe_bpp) {
  1556. case 18:
  1557. temp |= TRANS_MSA_6_BPC;
  1558. break;
  1559. case 24:
  1560. temp |= TRANS_MSA_8_BPC;
  1561. break;
  1562. case 30:
  1563. temp |= TRANS_MSA_10_BPC;
  1564. break;
  1565. case 36:
  1566. temp |= TRANS_MSA_12_BPC;
  1567. break;
  1568. default:
  1569. BUG();
  1570. }
  1571. I915_WRITE(TRANS_MSA_MISC(cpu_transcoder), temp);
  1572. }
  1573. }
  1574. void intel_ddi_set_vc_payload_alloc(struct drm_crtc *crtc, bool state)
  1575. {
  1576. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1577. struct drm_device *dev = crtc->dev;
  1578. struct drm_i915_private *dev_priv = dev->dev_private;
  1579. enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
  1580. uint32_t temp;
  1581. temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  1582. if (state == true)
  1583. temp |= TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
  1584. else
  1585. temp &= ~TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
  1586. I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
  1587. }
  1588. void intel_ddi_enable_transcoder_func(struct drm_crtc *crtc)
  1589. {
  1590. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1591. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  1592. struct drm_encoder *encoder = &intel_encoder->base;
  1593. struct drm_device *dev = crtc->dev;
  1594. struct drm_i915_private *dev_priv = dev->dev_private;
  1595. enum pipe pipe = intel_crtc->pipe;
  1596. enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
  1597. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  1598. int type = intel_encoder->type;
  1599. uint32_t temp;
  1600. /* Enable TRANS_DDI_FUNC_CTL for the pipe to work in HDMI mode */
  1601. temp = TRANS_DDI_FUNC_ENABLE;
  1602. temp |= TRANS_DDI_SELECT_PORT(port);
  1603. switch (intel_crtc->config->pipe_bpp) {
  1604. case 18:
  1605. temp |= TRANS_DDI_BPC_6;
  1606. break;
  1607. case 24:
  1608. temp |= TRANS_DDI_BPC_8;
  1609. break;
  1610. case 30:
  1611. temp |= TRANS_DDI_BPC_10;
  1612. break;
  1613. case 36:
  1614. temp |= TRANS_DDI_BPC_12;
  1615. break;
  1616. default:
  1617. BUG();
  1618. }
  1619. if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PVSYNC)
  1620. temp |= TRANS_DDI_PVSYNC;
  1621. if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PHSYNC)
  1622. temp |= TRANS_DDI_PHSYNC;
  1623. if (cpu_transcoder == TRANSCODER_EDP) {
  1624. switch (pipe) {
  1625. case PIPE_A:
  1626. /* On Haswell, can only use the always-on power well for
  1627. * eDP when not using the panel fitter, and when not
  1628. * using motion blur mitigation (which we don't
  1629. * support). */
  1630. if (IS_HASWELL(dev) &&
  1631. (intel_crtc->config->pch_pfit.enabled ||
  1632. intel_crtc->config->pch_pfit.force_thru))
  1633. temp |= TRANS_DDI_EDP_INPUT_A_ONOFF;
  1634. else
  1635. temp |= TRANS_DDI_EDP_INPUT_A_ON;
  1636. break;
  1637. case PIPE_B:
  1638. temp |= TRANS_DDI_EDP_INPUT_B_ONOFF;
  1639. break;
  1640. case PIPE_C:
  1641. temp |= TRANS_DDI_EDP_INPUT_C_ONOFF;
  1642. break;
  1643. default:
  1644. BUG();
  1645. break;
  1646. }
  1647. }
  1648. if (type == INTEL_OUTPUT_HDMI) {
  1649. if (intel_crtc->config->has_hdmi_sink)
  1650. temp |= TRANS_DDI_MODE_SELECT_HDMI;
  1651. else
  1652. temp |= TRANS_DDI_MODE_SELECT_DVI;
  1653. } else if (type == INTEL_OUTPUT_ANALOG) {
  1654. temp |= TRANS_DDI_MODE_SELECT_FDI;
  1655. temp |= (intel_crtc->config->fdi_lanes - 1) << 1;
  1656. } else if (type == INTEL_OUTPUT_DISPLAYPORT ||
  1657. type == INTEL_OUTPUT_EDP) {
  1658. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1659. if (intel_dp->is_mst) {
  1660. temp |= TRANS_DDI_MODE_SELECT_DP_MST;
  1661. } else
  1662. temp |= TRANS_DDI_MODE_SELECT_DP_SST;
  1663. temp |= DDI_PORT_WIDTH(intel_dp->lane_count);
  1664. } else if (type == INTEL_OUTPUT_DP_MST) {
  1665. struct intel_dp *intel_dp = &enc_to_mst(encoder)->primary->dp;
  1666. if (intel_dp->is_mst) {
  1667. temp |= TRANS_DDI_MODE_SELECT_DP_MST;
  1668. } else
  1669. temp |= TRANS_DDI_MODE_SELECT_DP_SST;
  1670. temp |= DDI_PORT_WIDTH(intel_dp->lane_count);
  1671. } else {
  1672. WARN(1, "Invalid encoder type %d for pipe %c\n",
  1673. intel_encoder->type, pipe_name(pipe));
  1674. }
  1675. I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
  1676. }
  1677. void intel_ddi_disable_transcoder_func(struct drm_i915_private *dev_priv,
  1678. enum transcoder cpu_transcoder)
  1679. {
  1680. uint32_t reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  1681. uint32_t val = I915_READ(reg);
  1682. val &= ~(TRANS_DDI_FUNC_ENABLE | TRANS_DDI_PORT_MASK | TRANS_DDI_DP_VC_PAYLOAD_ALLOC);
  1683. val |= TRANS_DDI_PORT_NONE;
  1684. I915_WRITE(reg, val);
  1685. }
  1686. bool intel_ddi_connector_get_hw_state(struct intel_connector *intel_connector)
  1687. {
  1688. struct drm_device *dev = intel_connector->base.dev;
  1689. struct drm_i915_private *dev_priv = dev->dev_private;
  1690. struct intel_encoder *intel_encoder = intel_connector->encoder;
  1691. int type = intel_connector->base.connector_type;
  1692. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  1693. enum pipe pipe = 0;
  1694. enum transcoder cpu_transcoder;
  1695. enum intel_display_power_domain power_domain;
  1696. uint32_t tmp;
  1697. power_domain = intel_display_port_power_domain(intel_encoder);
  1698. if (!intel_display_power_is_enabled(dev_priv, power_domain))
  1699. return false;
  1700. if (!intel_encoder->get_hw_state(intel_encoder, &pipe))
  1701. return false;
  1702. if (port == PORT_A)
  1703. cpu_transcoder = TRANSCODER_EDP;
  1704. else
  1705. cpu_transcoder = (enum transcoder) pipe;
  1706. tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  1707. switch (tmp & TRANS_DDI_MODE_SELECT_MASK) {
  1708. case TRANS_DDI_MODE_SELECT_HDMI:
  1709. case TRANS_DDI_MODE_SELECT_DVI:
  1710. return (type == DRM_MODE_CONNECTOR_HDMIA);
  1711. case TRANS_DDI_MODE_SELECT_DP_SST:
  1712. if (type == DRM_MODE_CONNECTOR_eDP)
  1713. return true;
  1714. return (type == DRM_MODE_CONNECTOR_DisplayPort);
  1715. case TRANS_DDI_MODE_SELECT_DP_MST:
  1716. /* if the transcoder is in MST state then
  1717. * connector isn't connected */
  1718. return false;
  1719. case TRANS_DDI_MODE_SELECT_FDI:
  1720. return (type == DRM_MODE_CONNECTOR_VGA);
  1721. default:
  1722. return false;
  1723. }
  1724. }
  1725. bool intel_ddi_get_hw_state(struct intel_encoder *encoder,
  1726. enum pipe *pipe)
  1727. {
  1728. struct drm_device *dev = encoder->base.dev;
  1729. struct drm_i915_private *dev_priv = dev->dev_private;
  1730. enum port port = intel_ddi_get_encoder_port(encoder);
  1731. enum intel_display_power_domain power_domain;
  1732. u32 tmp;
  1733. int i;
  1734. power_domain = intel_display_port_power_domain(encoder);
  1735. if (!intel_display_power_is_enabled(dev_priv, power_domain))
  1736. return false;
  1737. tmp = I915_READ(DDI_BUF_CTL(port));
  1738. if (!(tmp & DDI_BUF_CTL_ENABLE))
  1739. return false;
  1740. if (port == PORT_A) {
  1741. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  1742. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  1743. case TRANS_DDI_EDP_INPUT_A_ON:
  1744. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  1745. *pipe = PIPE_A;
  1746. break;
  1747. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  1748. *pipe = PIPE_B;
  1749. break;
  1750. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  1751. *pipe = PIPE_C;
  1752. break;
  1753. }
  1754. return true;
  1755. } else {
  1756. for (i = TRANSCODER_A; i <= TRANSCODER_C; i++) {
  1757. tmp = I915_READ(TRANS_DDI_FUNC_CTL(i));
  1758. if ((tmp & TRANS_DDI_PORT_MASK)
  1759. == TRANS_DDI_SELECT_PORT(port)) {
  1760. if ((tmp & TRANS_DDI_MODE_SELECT_MASK) == TRANS_DDI_MODE_SELECT_DP_MST)
  1761. return false;
  1762. *pipe = i;
  1763. return true;
  1764. }
  1765. }
  1766. }
  1767. DRM_DEBUG_KMS("No pipe for ddi port %c found\n", port_name(port));
  1768. return false;
  1769. }
  1770. void intel_ddi_enable_pipe_clock(struct intel_crtc *intel_crtc)
  1771. {
  1772. struct drm_crtc *crtc = &intel_crtc->base;
  1773. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  1774. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  1775. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  1776. enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
  1777. if (cpu_transcoder != TRANSCODER_EDP)
  1778. I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
  1779. TRANS_CLK_SEL_PORT(port));
  1780. }
  1781. void intel_ddi_disable_pipe_clock(struct intel_crtc *intel_crtc)
  1782. {
  1783. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  1784. enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
  1785. if (cpu_transcoder != TRANSCODER_EDP)
  1786. I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
  1787. TRANS_CLK_SEL_DISABLED);
  1788. }
  1789. static void skl_ddi_set_iboost(struct drm_device *dev, u32 level,
  1790. enum port port, int type)
  1791. {
  1792. struct drm_i915_private *dev_priv = dev->dev_private;
  1793. const struct ddi_buf_trans *ddi_translations;
  1794. uint8_t iboost;
  1795. uint8_t dp_iboost, hdmi_iboost;
  1796. int n_entries;
  1797. u32 reg;
  1798. /* VBT may override standard boost values */
  1799. dp_iboost = dev_priv->vbt.ddi_port_info[port].dp_boost_level;
  1800. hdmi_iboost = dev_priv->vbt.ddi_port_info[port].hdmi_boost_level;
  1801. if (type == INTEL_OUTPUT_DISPLAYPORT) {
  1802. if (dp_iboost) {
  1803. iboost = dp_iboost;
  1804. } else {
  1805. ddi_translations = skl_get_buf_trans_dp(dev, &n_entries);
  1806. iboost = ddi_translations[port].i_boost;
  1807. }
  1808. } else if (type == INTEL_OUTPUT_EDP) {
  1809. if (dp_iboost) {
  1810. iboost = dp_iboost;
  1811. } else {
  1812. ddi_translations = skl_get_buf_trans_edp(dev, &n_entries);
  1813. iboost = ddi_translations[port].i_boost;
  1814. }
  1815. } else if (type == INTEL_OUTPUT_HDMI) {
  1816. if (hdmi_iboost) {
  1817. iboost = hdmi_iboost;
  1818. } else {
  1819. ddi_translations = skl_get_buf_trans_hdmi(dev, &n_entries);
  1820. iboost = ddi_translations[port].i_boost;
  1821. }
  1822. } else {
  1823. return;
  1824. }
  1825. /* Make sure that the requested I_boost is valid */
  1826. if (iboost && iboost != 0x1 && iboost != 0x3 && iboost != 0x7) {
  1827. DRM_ERROR("Invalid I_boost value %u\n", iboost);
  1828. return;
  1829. }
  1830. reg = I915_READ(DISPIO_CR_TX_BMU_CR0);
  1831. reg &= ~BALANCE_LEG_MASK(port);
  1832. reg &= ~(1 << (BALANCE_LEG_DISABLE_SHIFT + port));
  1833. if (iboost)
  1834. reg |= iboost << BALANCE_LEG_SHIFT(port);
  1835. else
  1836. reg |= 1 << (BALANCE_LEG_DISABLE_SHIFT + port);
  1837. I915_WRITE(DISPIO_CR_TX_BMU_CR0, reg);
  1838. }
  1839. static void bxt_ddi_vswing_sequence(struct drm_device *dev, u32 level,
  1840. enum port port, int type)
  1841. {
  1842. struct drm_i915_private *dev_priv = dev->dev_private;
  1843. const struct bxt_ddi_buf_trans *ddi_translations;
  1844. u32 n_entries, i;
  1845. uint32_t val;
  1846. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
  1847. n_entries = ARRAY_SIZE(bxt_ddi_translations_dp);
  1848. ddi_translations = bxt_ddi_translations_dp;
  1849. } else if (type == INTEL_OUTPUT_HDMI) {
  1850. n_entries = ARRAY_SIZE(bxt_ddi_translations_hdmi);
  1851. ddi_translations = bxt_ddi_translations_hdmi;
  1852. } else {
  1853. DRM_DEBUG_KMS("Vswing programming not done for encoder %d\n",
  1854. type);
  1855. return;
  1856. }
  1857. /* Check if default value has to be used */
  1858. if (level >= n_entries ||
  1859. (type == INTEL_OUTPUT_HDMI && level == HDMI_LEVEL_SHIFT_UNKNOWN)) {
  1860. for (i = 0; i < n_entries; i++) {
  1861. if (ddi_translations[i].default_index) {
  1862. level = i;
  1863. break;
  1864. }
  1865. }
  1866. }
  1867. /*
  1868. * While we write to the group register to program all lanes at once we
  1869. * can read only lane registers and we pick lanes 0/1 for that.
  1870. */
  1871. val = I915_READ(BXT_PORT_PCS_DW10_LN01(port));
  1872. val &= ~(TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT);
  1873. I915_WRITE(BXT_PORT_PCS_DW10_GRP(port), val);
  1874. val = I915_READ(BXT_PORT_TX_DW2_LN0(port));
  1875. val &= ~(MARGIN_000 | UNIQ_TRANS_SCALE);
  1876. val |= ddi_translations[level].margin << MARGIN_000_SHIFT |
  1877. ddi_translations[level].scale << UNIQ_TRANS_SCALE_SHIFT;
  1878. I915_WRITE(BXT_PORT_TX_DW2_GRP(port), val);
  1879. val = I915_READ(BXT_PORT_TX_DW3_LN0(port));
  1880. val &= ~UNIQE_TRANGE_EN_METHOD;
  1881. if (ddi_translations[level].enable)
  1882. val |= UNIQE_TRANGE_EN_METHOD;
  1883. I915_WRITE(BXT_PORT_TX_DW3_GRP(port), val);
  1884. val = I915_READ(BXT_PORT_TX_DW4_LN0(port));
  1885. val &= ~DE_EMPHASIS;
  1886. val |= ddi_translations[level].deemphasis << DEEMPH_SHIFT;
  1887. I915_WRITE(BXT_PORT_TX_DW4_GRP(port), val);
  1888. val = I915_READ(BXT_PORT_PCS_DW10_LN01(port));
  1889. val |= TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT;
  1890. I915_WRITE(BXT_PORT_PCS_DW10_GRP(port), val);
  1891. }
  1892. static uint32_t translate_signal_level(int signal_levels)
  1893. {
  1894. uint32_t level;
  1895. switch (signal_levels) {
  1896. default:
  1897. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level: 0x%x\n",
  1898. signal_levels);
  1899. case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
  1900. level = 0;
  1901. break;
  1902. case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
  1903. level = 1;
  1904. break;
  1905. case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
  1906. level = 2;
  1907. break;
  1908. case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3:
  1909. level = 3;
  1910. break;
  1911. case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
  1912. level = 4;
  1913. break;
  1914. case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
  1915. level = 5;
  1916. break;
  1917. case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
  1918. level = 6;
  1919. break;
  1920. case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
  1921. level = 7;
  1922. break;
  1923. case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
  1924. level = 8;
  1925. break;
  1926. case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
  1927. level = 9;
  1928. break;
  1929. }
  1930. return level;
  1931. }
  1932. uint32_t ddi_signal_levels(struct intel_dp *intel_dp)
  1933. {
  1934. struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
  1935. struct drm_device *dev = dport->base.base.dev;
  1936. struct intel_encoder *encoder = &dport->base;
  1937. uint8_t train_set = intel_dp->train_set[0];
  1938. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1939. DP_TRAIN_PRE_EMPHASIS_MASK);
  1940. enum port port = dport->port;
  1941. uint32_t level;
  1942. level = translate_signal_level(signal_levels);
  1943. if (IS_SKYLAKE(dev))
  1944. skl_ddi_set_iboost(dev, level, port, encoder->type);
  1945. else if (IS_BROXTON(dev))
  1946. bxt_ddi_vswing_sequence(dev, level, port, encoder->type);
  1947. return DDI_BUF_TRANS_SELECT(level);
  1948. }
  1949. static void intel_ddi_pre_enable(struct intel_encoder *intel_encoder)
  1950. {
  1951. struct drm_encoder *encoder = &intel_encoder->base;
  1952. struct drm_device *dev = encoder->dev;
  1953. struct drm_i915_private *dev_priv = dev->dev_private;
  1954. struct intel_crtc *crtc = to_intel_crtc(encoder->crtc);
  1955. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  1956. int type = intel_encoder->type;
  1957. int hdmi_level;
  1958. if (type == INTEL_OUTPUT_EDP) {
  1959. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1960. intel_edp_panel_on(intel_dp);
  1961. }
  1962. if (IS_SKYLAKE(dev)) {
  1963. uint32_t dpll = crtc->config->ddi_pll_sel;
  1964. uint32_t val;
  1965. /*
  1966. * DPLL0 is used for eDP and is the only "private" DPLL (as
  1967. * opposed to shared) on SKL
  1968. */
  1969. if (type == INTEL_OUTPUT_EDP) {
  1970. WARN_ON(dpll != SKL_DPLL0);
  1971. val = I915_READ(DPLL_CTRL1);
  1972. val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) |
  1973. DPLL_CTRL1_SSC(dpll) |
  1974. DPLL_CTRL1_LINK_RATE_MASK(dpll));
  1975. val |= crtc->config->dpll_hw_state.ctrl1 << (dpll * 6);
  1976. I915_WRITE(DPLL_CTRL1, val);
  1977. POSTING_READ(DPLL_CTRL1);
  1978. }
  1979. /* DDI -> PLL mapping */
  1980. val = I915_READ(DPLL_CTRL2);
  1981. val &= ~(DPLL_CTRL2_DDI_CLK_OFF(port) |
  1982. DPLL_CTRL2_DDI_CLK_SEL_MASK(port));
  1983. val |= (DPLL_CTRL2_DDI_CLK_SEL(dpll, port) |
  1984. DPLL_CTRL2_DDI_SEL_OVERRIDE(port));
  1985. I915_WRITE(DPLL_CTRL2, val);
  1986. } else if (INTEL_INFO(dev)->gen < 9) {
  1987. WARN_ON(crtc->config->ddi_pll_sel == PORT_CLK_SEL_NONE);
  1988. I915_WRITE(PORT_CLK_SEL(port), crtc->config->ddi_pll_sel);
  1989. }
  1990. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
  1991. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  1992. intel_ddi_init_dp_buf_reg(intel_encoder);
  1993. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  1994. intel_dp_start_link_train(intel_dp);
  1995. intel_dp_complete_link_train(intel_dp);
  1996. if (port != PORT_A || INTEL_INFO(dev)->gen >= 9)
  1997. intel_dp_stop_link_train(intel_dp);
  1998. } else if (type == INTEL_OUTPUT_HDMI) {
  1999. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
  2000. if (IS_BROXTON(dev)) {
  2001. hdmi_level = dev_priv->vbt.
  2002. ddi_port_info[port].hdmi_level_shift;
  2003. bxt_ddi_vswing_sequence(dev, hdmi_level, port,
  2004. INTEL_OUTPUT_HDMI);
  2005. }
  2006. intel_hdmi->set_infoframes(encoder,
  2007. crtc->config->has_hdmi_sink,
  2008. &crtc->config->base.adjusted_mode);
  2009. }
  2010. }
  2011. static void intel_ddi_post_disable(struct intel_encoder *intel_encoder)
  2012. {
  2013. struct drm_encoder *encoder = &intel_encoder->base;
  2014. struct drm_device *dev = encoder->dev;
  2015. struct drm_i915_private *dev_priv = dev->dev_private;
  2016. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  2017. int type = intel_encoder->type;
  2018. uint32_t val;
  2019. bool wait = false;
  2020. val = I915_READ(DDI_BUF_CTL(port));
  2021. if (val & DDI_BUF_CTL_ENABLE) {
  2022. val &= ~DDI_BUF_CTL_ENABLE;
  2023. I915_WRITE(DDI_BUF_CTL(port), val);
  2024. wait = true;
  2025. }
  2026. val = I915_READ(DP_TP_CTL(port));
  2027. val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  2028. val |= DP_TP_CTL_LINK_TRAIN_PAT1;
  2029. I915_WRITE(DP_TP_CTL(port), val);
  2030. if (wait)
  2031. intel_wait_ddi_buf_idle(dev_priv, port);
  2032. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
  2033. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  2034. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
  2035. intel_edp_panel_vdd_on(intel_dp);
  2036. intel_edp_panel_off(intel_dp);
  2037. }
  2038. if (IS_SKYLAKE(dev))
  2039. I915_WRITE(DPLL_CTRL2, (I915_READ(DPLL_CTRL2) |
  2040. DPLL_CTRL2_DDI_CLK_OFF(port)));
  2041. else if (INTEL_INFO(dev)->gen < 9)
  2042. I915_WRITE(PORT_CLK_SEL(port), PORT_CLK_SEL_NONE);
  2043. }
  2044. static void intel_enable_ddi(struct intel_encoder *intel_encoder)
  2045. {
  2046. struct drm_encoder *encoder = &intel_encoder->base;
  2047. struct drm_crtc *crtc = encoder->crtc;
  2048. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2049. struct drm_device *dev = encoder->dev;
  2050. struct drm_i915_private *dev_priv = dev->dev_private;
  2051. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  2052. int type = intel_encoder->type;
  2053. if (type == INTEL_OUTPUT_HDMI) {
  2054. struct intel_digital_port *intel_dig_port =
  2055. enc_to_dig_port(encoder);
  2056. /* In HDMI/DVI mode, the port width, and swing/emphasis values
  2057. * are ignored so nothing special needs to be done besides
  2058. * enabling the port.
  2059. */
  2060. I915_WRITE(DDI_BUF_CTL(port),
  2061. intel_dig_port->saved_port_bits |
  2062. DDI_BUF_CTL_ENABLE);
  2063. } else if (type == INTEL_OUTPUT_EDP) {
  2064. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  2065. if (port == PORT_A && INTEL_INFO(dev)->gen < 9)
  2066. intel_dp_stop_link_train(intel_dp);
  2067. intel_edp_backlight_on(intel_dp);
  2068. intel_psr_enable(intel_dp);
  2069. intel_edp_drrs_enable(intel_dp);
  2070. }
  2071. if (intel_crtc->config->has_audio) {
  2072. intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
  2073. intel_audio_codec_enable(intel_encoder);
  2074. }
  2075. }
  2076. static void intel_disable_ddi(struct intel_encoder *intel_encoder)
  2077. {
  2078. struct drm_encoder *encoder = &intel_encoder->base;
  2079. struct drm_crtc *crtc = encoder->crtc;
  2080. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2081. int type = intel_encoder->type;
  2082. struct drm_device *dev = encoder->dev;
  2083. struct drm_i915_private *dev_priv = dev->dev_private;
  2084. if (intel_crtc->config->has_audio) {
  2085. intel_audio_codec_disable(intel_encoder);
  2086. intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
  2087. }
  2088. if (type == INTEL_OUTPUT_EDP) {
  2089. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  2090. intel_edp_drrs_disable(intel_dp);
  2091. intel_psr_disable(intel_dp);
  2092. intel_edp_backlight_off(intel_dp);
  2093. }
  2094. }
  2095. static void hsw_ddi_pll_enable(struct drm_i915_private *dev_priv,
  2096. struct intel_shared_dpll *pll)
  2097. {
  2098. I915_WRITE(WRPLL_CTL(pll->id), pll->config.hw_state.wrpll);
  2099. POSTING_READ(WRPLL_CTL(pll->id));
  2100. udelay(20);
  2101. }
  2102. static void hsw_ddi_pll_disable(struct drm_i915_private *dev_priv,
  2103. struct intel_shared_dpll *pll)
  2104. {
  2105. uint32_t val;
  2106. val = I915_READ(WRPLL_CTL(pll->id));
  2107. I915_WRITE(WRPLL_CTL(pll->id), val & ~WRPLL_PLL_ENABLE);
  2108. POSTING_READ(WRPLL_CTL(pll->id));
  2109. }
  2110. static bool hsw_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
  2111. struct intel_shared_dpll *pll,
  2112. struct intel_dpll_hw_state *hw_state)
  2113. {
  2114. uint32_t val;
  2115. if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
  2116. return false;
  2117. val = I915_READ(WRPLL_CTL(pll->id));
  2118. hw_state->wrpll = val;
  2119. return val & WRPLL_PLL_ENABLE;
  2120. }
  2121. static const char * const hsw_ddi_pll_names[] = {
  2122. "WRPLL 1",
  2123. "WRPLL 2",
  2124. };
  2125. static void hsw_shared_dplls_init(struct drm_i915_private *dev_priv)
  2126. {
  2127. int i;
  2128. dev_priv->num_shared_dpll = 2;
  2129. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2130. dev_priv->shared_dplls[i].id = i;
  2131. dev_priv->shared_dplls[i].name = hsw_ddi_pll_names[i];
  2132. dev_priv->shared_dplls[i].disable = hsw_ddi_pll_disable;
  2133. dev_priv->shared_dplls[i].enable = hsw_ddi_pll_enable;
  2134. dev_priv->shared_dplls[i].get_hw_state =
  2135. hsw_ddi_pll_get_hw_state;
  2136. }
  2137. }
  2138. static const char * const skl_ddi_pll_names[] = {
  2139. "DPLL 1",
  2140. "DPLL 2",
  2141. "DPLL 3",
  2142. };
  2143. struct skl_dpll_regs {
  2144. u32 ctl, cfgcr1, cfgcr2;
  2145. };
  2146. /* this array is indexed by the *shared* pll id */
  2147. static const struct skl_dpll_regs skl_dpll_regs[3] = {
  2148. {
  2149. /* DPLL 1 */
  2150. .ctl = LCPLL2_CTL,
  2151. .cfgcr1 = DPLL1_CFGCR1,
  2152. .cfgcr2 = DPLL1_CFGCR2,
  2153. },
  2154. {
  2155. /* DPLL 2 */
  2156. .ctl = WRPLL_CTL1,
  2157. .cfgcr1 = DPLL2_CFGCR1,
  2158. .cfgcr2 = DPLL2_CFGCR2,
  2159. },
  2160. {
  2161. /* DPLL 3 */
  2162. .ctl = WRPLL_CTL2,
  2163. .cfgcr1 = DPLL3_CFGCR1,
  2164. .cfgcr2 = DPLL3_CFGCR2,
  2165. },
  2166. };
  2167. static void skl_ddi_pll_enable(struct drm_i915_private *dev_priv,
  2168. struct intel_shared_dpll *pll)
  2169. {
  2170. uint32_t val;
  2171. unsigned int dpll;
  2172. const struct skl_dpll_regs *regs = skl_dpll_regs;
  2173. /* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */
  2174. dpll = pll->id + 1;
  2175. val = I915_READ(DPLL_CTRL1);
  2176. val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) | DPLL_CTRL1_SSC(dpll) |
  2177. DPLL_CTRL1_LINK_RATE_MASK(dpll));
  2178. val |= pll->config.hw_state.ctrl1 << (dpll * 6);
  2179. I915_WRITE(DPLL_CTRL1, val);
  2180. POSTING_READ(DPLL_CTRL1);
  2181. I915_WRITE(regs[pll->id].cfgcr1, pll->config.hw_state.cfgcr1);
  2182. I915_WRITE(regs[pll->id].cfgcr2, pll->config.hw_state.cfgcr2);
  2183. POSTING_READ(regs[pll->id].cfgcr1);
  2184. POSTING_READ(regs[pll->id].cfgcr2);
  2185. /* the enable bit is always bit 31 */
  2186. I915_WRITE(regs[pll->id].ctl,
  2187. I915_READ(regs[pll->id].ctl) | LCPLL_PLL_ENABLE);
  2188. if (wait_for(I915_READ(DPLL_STATUS) & DPLL_LOCK(dpll), 5))
  2189. DRM_ERROR("DPLL %d not locked\n", dpll);
  2190. }
  2191. static void skl_ddi_pll_disable(struct drm_i915_private *dev_priv,
  2192. struct intel_shared_dpll *pll)
  2193. {
  2194. const struct skl_dpll_regs *regs = skl_dpll_regs;
  2195. /* the enable bit is always bit 31 */
  2196. I915_WRITE(regs[pll->id].ctl,
  2197. I915_READ(regs[pll->id].ctl) & ~LCPLL_PLL_ENABLE);
  2198. POSTING_READ(regs[pll->id].ctl);
  2199. }
  2200. static bool skl_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
  2201. struct intel_shared_dpll *pll,
  2202. struct intel_dpll_hw_state *hw_state)
  2203. {
  2204. uint32_t val;
  2205. unsigned int dpll;
  2206. const struct skl_dpll_regs *regs = skl_dpll_regs;
  2207. if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
  2208. return false;
  2209. /* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */
  2210. dpll = pll->id + 1;
  2211. val = I915_READ(regs[pll->id].ctl);
  2212. if (!(val & LCPLL_PLL_ENABLE))
  2213. return false;
  2214. val = I915_READ(DPLL_CTRL1);
  2215. hw_state->ctrl1 = (val >> (dpll * 6)) & 0x3f;
  2216. /* avoid reading back stale values if HDMI mode is not enabled */
  2217. if (val & DPLL_CTRL1_HDMI_MODE(dpll)) {
  2218. hw_state->cfgcr1 = I915_READ(regs[pll->id].cfgcr1);
  2219. hw_state->cfgcr2 = I915_READ(regs[pll->id].cfgcr2);
  2220. }
  2221. return true;
  2222. }
  2223. static void skl_shared_dplls_init(struct drm_i915_private *dev_priv)
  2224. {
  2225. int i;
  2226. dev_priv->num_shared_dpll = 3;
  2227. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2228. dev_priv->shared_dplls[i].id = i;
  2229. dev_priv->shared_dplls[i].name = skl_ddi_pll_names[i];
  2230. dev_priv->shared_dplls[i].disable = skl_ddi_pll_disable;
  2231. dev_priv->shared_dplls[i].enable = skl_ddi_pll_enable;
  2232. dev_priv->shared_dplls[i].get_hw_state =
  2233. skl_ddi_pll_get_hw_state;
  2234. }
  2235. }
  2236. static void broxton_phy_init(struct drm_i915_private *dev_priv,
  2237. enum dpio_phy phy)
  2238. {
  2239. enum port port;
  2240. uint32_t val;
  2241. val = I915_READ(BXT_P_CR_GT_DISP_PWRON);
  2242. val |= GT_DISPLAY_POWER_ON(phy);
  2243. I915_WRITE(BXT_P_CR_GT_DISP_PWRON, val);
  2244. /* Considering 10ms timeout until BSpec is updated */
  2245. if (wait_for(I915_READ(BXT_PORT_CL1CM_DW0(phy)) & PHY_POWER_GOOD, 10))
  2246. DRM_ERROR("timeout during PHY%d power on\n", phy);
  2247. for (port = (phy == DPIO_PHY0 ? PORT_B : PORT_A);
  2248. port <= (phy == DPIO_PHY0 ? PORT_C : PORT_A); port++) {
  2249. int lane;
  2250. for (lane = 0; lane < 4; lane++) {
  2251. val = I915_READ(BXT_PORT_TX_DW14_LN(port, lane));
  2252. /*
  2253. * Note that on CHV this flag is called UPAR, but has
  2254. * the same function.
  2255. */
  2256. val &= ~LATENCY_OPTIM;
  2257. if (lane != 1)
  2258. val |= LATENCY_OPTIM;
  2259. I915_WRITE(BXT_PORT_TX_DW14_LN(port, lane), val);
  2260. }
  2261. }
  2262. /* Program PLL Rcomp code offset */
  2263. val = I915_READ(BXT_PORT_CL1CM_DW9(phy));
  2264. val &= ~IREF0RC_OFFSET_MASK;
  2265. val |= 0xE4 << IREF0RC_OFFSET_SHIFT;
  2266. I915_WRITE(BXT_PORT_CL1CM_DW9(phy), val);
  2267. val = I915_READ(BXT_PORT_CL1CM_DW10(phy));
  2268. val &= ~IREF1RC_OFFSET_MASK;
  2269. val |= 0xE4 << IREF1RC_OFFSET_SHIFT;
  2270. I915_WRITE(BXT_PORT_CL1CM_DW10(phy), val);
  2271. /* Program power gating */
  2272. val = I915_READ(BXT_PORT_CL1CM_DW28(phy));
  2273. val |= OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN |
  2274. SUS_CLK_CONFIG;
  2275. I915_WRITE(BXT_PORT_CL1CM_DW28(phy), val);
  2276. if (phy == DPIO_PHY0) {
  2277. val = I915_READ(BXT_PORT_CL2CM_DW6_BC);
  2278. val |= DW6_OLDO_DYN_PWR_DOWN_EN;
  2279. I915_WRITE(BXT_PORT_CL2CM_DW6_BC, val);
  2280. }
  2281. val = I915_READ(BXT_PORT_CL1CM_DW30(phy));
  2282. val &= ~OCL2_LDOFUSE_PWR_DIS;
  2283. /*
  2284. * On PHY1 disable power on the second channel, since no port is
  2285. * connected there. On PHY0 both channels have a port, so leave it
  2286. * enabled.
  2287. * TODO: port C is only connected on BXT-P, so on BXT0/1 we should
  2288. * power down the second channel on PHY0 as well.
  2289. */
  2290. if (phy == DPIO_PHY1)
  2291. val |= OCL2_LDOFUSE_PWR_DIS;
  2292. I915_WRITE(BXT_PORT_CL1CM_DW30(phy), val);
  2293. if (phy == DPIO_PHY0) {
  2294. uint32_t grc_code;
  2295. /*
  2296. * PHY0 isn't connected to an RCOMP resistor so copy over
  2297. * the corresponding calibrated value from PHY1, and disable
  2298. * the automatic calibration on PHY0.
  2299. */
  2300. if (wait_for(I915_READ(BXT_PORT_REF_DW3(DPIO_PHY1)) & GRC_DONE,
  2301. 10))
  2302. DRM_ERROR("timeout waiting for PHY1 GRC\n");
  2303. val = I915_READ(BXT_PORT_REF_DW6(DPIO_PHY1));
  2304. val = (val & GRC_CODE_MASK) >> GRC_CODE_SHIFT;
  2305. grc_code = val << GRC_CODE_FAST_SHIFT |
  2306. val << GRC_CODE_SLOW_SHIFT |
  2307. val;
  2308. I915_WRITE(BXT_PORT_REF_DW6(DPIO_PHY0), grc_code);
  2309. val = I915_READ(BXT_PORT_REF_DW8(DPIO_PHY0));
  2310. val |= GRC_DIS | GRC_RDY_OVRD;
  2311. I915_WRITE(BXT_PORT_REF_DW8(DPIO_PHY0), val);
  2312. }
  2313. val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
  2314. val |= COMMON_RESET_DIS;
  2315. I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
  2316. }
  2317. void broxton_ddi_phy_init(struct drm_device *dev)
  2318. {
  2319. /* Enable PHY1 first since it provides Rcomp for PHY0 */
  2320. broxton_phy_init(dev->dev_private, DPIO_PHY1);
  2321. broxton_phy_init(dev->dev_private, DPIO_PHY0);
  2322. }
  2323. static void broxton_phy_uninit(struct drm_i915_private *dev_priv,
  2324. enum dpio_phy phy)
  2325. {
  2326. uint32_t val;
  2327. val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
  2328. val &= ~COMMON_RESET_DIS;
  2329. I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
  2330. }
  2331. void broxton_ddi_phy_uninit(struct drm_device *dev)
  2332. {
  2333. struct drm_i915_private *dev_priv = dev->dev_private;
  2334. broxton_phy_uninit(dev_priv, DPIO_PHY1);
  2335. broxton_phy_uninit(dev_priv, DPIO_PHY0);
  2336. /* FIXME: do this in broxton_phy_uninit per phy */
  2337. I915_WRITE(BXT_P_CR_GT_DISP_PWRON, 0);
  2338. }
  2339. static const char * const bxt_ddi_pll_names[] = {
  2340. "PORT PLL A",
  2341. "PORT PLL B",
  2342. "PORT PLL C",
  2343. };
  2344. static void bxt_ddi_pll_enable(struct drm_i915_private *dev_priv,
  2345. struct intel_shared_dpll *pll)
  2346. {
  2347. uint32_t temp;
  2348. enum port port = (enum port)pll->id; /* 1:1 port->PLL mapping */
  2349. temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
  2350. temp &= ~PORT_PLL_REF_SEL;
  2351. /* Non-SSC reference */
  2352. I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
  2353. /* Disable 10 bit clock */
  2354. temp = I915_READ(BXT_PORT_PLL_EBB_4(port));
  2355. temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
  2356. I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);
  2357. /* Write P1 & P2 */
  2358. temp = I915_READ(BXT_PORT_PLL_EBB_0(port));
  2359. temp &= ~(PORT_PLL_P1_MASK | PORT_PLL_P2_MASK);
  2360. temp |= pll->config.hw_state.ebb0;
  2361. I915_WRITE(BXT_PORT_PLL_EBB_0(port), temp);
  2362. /* Write M2 integer */
  2363. temp = I915_READ(BXT_PORT_PLL(port, 0));
  2364. temp &= ~PORT_PLL_M2_MASK;
  2365. temp |= pll->config.hw_state.pll0;
  2366. I915_WRITE(BXT_PORT_PLL(port, 0), temp);
  2367. /* Write N */
  2368. temp = I915_READ(BXT_PORT_PLL(port, 1));
  2369. temp &= ~PORT_PLL_N_MASK;
  2370. temp |= pll->config.hw_state.pll1;
  2371. I915_WRITE(BXT_PORT_PLL(port, 1), temp);
  2372. /* Write M2 fraction */
  2373. temp = I915_READ(BXT_PORT_PLL(port, 2));
  2374. temp &= ~PORT_PLL_M2_FRAC_MASK;
  2375. temp |= pll->config.hw_state.pll2;
  2376. I915_WRITE(BXT_PORT_PLL(port, 2), temp);
  2377. /* Write M2 fraction enable */
  2378. temp = I915_READ(BXT_PORT_PLL(port, 3));
  2379. temp &= ~PORT_PLL_M2_FRAC_ENABLE;
  2380. temp |= pll->config.hw_state.pll3;
  2381. I915_WRITE(BXT_PORT_PLL(port, 3), temp);
  2382. /* Write coeff */
  2383. temp = I915_READ(BXT_PORT_PLL(port, 6));
  2384. temp &= ~PORT_PLL_PROP_COEFF_MASK;
  2385. temp &= ~PORT_PLL_INT_COEFF_MASK;
  2386. temp &= ~PORT_PLL_GAIN_CTL_MASK;
  2387. temp |= pll->config.hw_state.pll6;
  2388. I915_WRITE(BXT_PORT_PLL(port, 6), temp);
  2389. /* Write calibration val */
  2390. temp = I915_READ(BXT_PORT_PLL(port, 8));
  2391. temp &= ~PORT_PLL_TARGET_CNT_MASK;
  2392. temp |= pll->config.hw_state.pll8;
  2393. I915_WRITE(BXT_PORT_PLL(port, 8), temp);
  2394. temp = I915_READ(BXT_PORT_PLL(port, 9));
  2395. temp &= ~PORT_PLL_LOCK_THRESHOLD_MASK;
  2396. temp |= pll->config.hw_state.pll9;
  2397. I915_WRITE(BXT_PORT_PLL(port, 9), temp);
  2398. temp = I915_READ(BXT_PORT_PLL(port, 10));
  2399. temp &= ~PORT_PLL_DCO_AMP_OVR_EN_H;
  2400. temp &= ~PORT_PLL_DCO_AMP_MASK;
  2401. temp |= pll->config.hw_state.pll10;
  2402. I915_WRITE(BXT_PORT_PLL(port, 10), temp);
  2403. /* Recalibrate with new settings */
  2404. temp = I915_READ(BXT_PORT_PLL_EBB_4(port));
  2405. temp |= PORT_PLL_RECALIBRATE;
  2406. I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);
  2407. temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
  2408. temp |= pll->config.hw_state.ebb4;
  2409. I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);
  2410. /* Enable PLL */
  2411. temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
  2412. temp |= PORT_PLL_ENABLE;
  2413. I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
  2414. POSTING_READ(BXT_PORT_PLL_ENABLE(port));
  2415. if (wait_for_atomic_us((I915_READ(BXT_PORT_PLL_ENABLE(port)) &
  2416. PORT_PLL_LOCK), 200))
  2417. DRM_ERROR("PLL %d not locked\n", port);
  2418. /*
  2419. * While we write to the group register to program all lanes at once we
  2420. * can read only lane registers and we pick lanes 0/1 for that.
  2421. */
  2422. temp = I915_READ(BXT_PORT_PCS_DW12_LN01(port));
  2423. temp &= ~LANE_STAGGER_MASK;
  2424. temp &= ~LANESTAGGER_STRAP_OVRD;
  2425. temp |= pll->config.hw_state.pcsdw12;
  2426. I915_WRITE(BXT_PORT_PCS_DW12_GRP(port), temp);
  2427. }
  2428. static void bxt_ddi_pll_disable(struct drm_i915_private *dev_priv,
  2429. struct intel_shared_dpll *pll)
  2430. {
  2431. enum port port = (enum port)pll->id; /* 1:1 port->PLL mapping */
  2432. uint32_t temp;
  2433. temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
  2434. temp &= ~PORT_PLL_ENABLE;
  2435. I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
  2436. POSTING_READ(BXT_PORT_PLL_ENABLE(port));
  2437. }
  2438. static bool bxt_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
  2439. struct intel_shared_dpll *pll,
  2440. struct intel_dpll_hw_state *hw_state)
  2441. {
  2442. enum port port = (enum port)pll->id; /* 1:1 port->PLL mapping */
  2443. uint32_t val;
  2444. if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
  2445. return false;
  2446. val = I915_READ(BXT_PORT_PLL_ENABLE(port));
  2447. if (!(val & PORT_PLL_ENABLE))
  2448. return false;
  2449. hw_state->ebb0 = I915_READ(BXT_PORT_PLL_EBB_0(port));
  2450. hw_state->ebb0 &= PORT_PLL_P1_MASK | PORT_PLL_P2_MASK;
  2451. hw_state->ebb4 = I915_READ(BXT_PORT_PLL_EBB_4(port));
  2452. hw_state->ebb4 &= PORT_PLL_10BIT_CLK_ENABLE;
  2453. hw_state->pll0 = I915_READ(BXT_PORT_PLL(port, 0));
  2454. hw_state->pll0 &= PORT_PLL_M2_MASK;
  2455. hw_state->pll1 = I915_READ(BXT_PORT_PLL(port, 1));
  2456. hw_state->pll1 &= PORT_PLL_N_MASK;
  2457. hw_state->pll2 = I915_READ(BXT_PORT_PLL(port, 2));
  2458. hw_state->pll2 &= PORT_PLL_M2_FRAC_MASK;
  2459. hw_state->pll3 = I915_READ(BXT_PORT_PLL(port, 3));
  2460. hw_state->pll3 &= PORT_PLL_M2_FRAC_ENABLE;
  2461. hw_state->pll6 = I915_READ(BXT_PORT_PLL(port, 6));
  2462. hw_state->pll6 &= PORT_PLL_PROP_COEFF_MASK |
  2463. PORT_PLL_INT_COEFF_MASK |
  2464. PORT_PLL_GAIN_CTL_MASK;
  2465. hw_state->pll8 = I915_READ(BXT_PORT_PLL(port, 8));
  2466. hw_state->pll8 &= PORT_PLL_TARGET_CNT_MASK;
  2467. hw_state->pll9 = I915_READ(BXT_PORT_PLL(port, 9));
  2468. hw_state->pll9 &= PORT_PLL_LOCK_THRESHOLD_MASK;
  2469. hw_state->pll10 = I915_READ(BXT_PORT_PLL(port, 10));
  2470. hw_state->pll10 &= PORT_PLL_DCO_AMP_OVR_EN_H |
  2471. PORT_PLL_DCO_AMP_MASK;
  2472. /*
  2473. * While we write to the group register to program all lanes at once we
  2474. * can read only lane registers. We configure all lanes the same way, so
  2475. * here just read out lanes 0/1 and output a note if lanes 2/3 differ.
  2476. */
  2477. hw_state->pcsdw12 = I915_READ(BXT_PORT_PCS_DW12_LN01(port));
  2478. if (I915_READ(BXT_PORT_PCS_DW12_LN23(port) != hw_state->pcsdw12))
  2479. DRM_DEBUG_DRIVER("lane stagger config different for lane 01 (%08x) and 23 (%08x)\n",
  2480. hw_state->pcsdw12,
  2481. I915_READ(BXT_PORT_PCS_DW12_LN23(port)));
  2482. hw_state->pcsdw12 &= LANE_STAGGER_MASK | LANESTAGGER_STRAP_OVRD;
  2483. return true;
  2484. }
  2485. static void bxt_shared_dplls_init(struct drm_i915_private *dev_priv)
  2486. {
  2487. int i;
  2488. dev_priv->num_shared_dpll = 3;
  2489. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2490. dev_priv->shared_dplls[i].id = i;
  2491. dev_priv->shared_dplls[i].name = bxt_ddi_pll_names[i];
  2492. dev_priv->shared_dplls[i].disable = bxt_ddi_pll_disable;
  2493. dev_priv->shared_dplls[i].enable = bxt_ddi_pll_enable;
  2494. dev_priv->shared_dplls[i].get_hw_state =
  2495. bxt_ddi_pll_get_hw_state;
  2496. }
  2497. }
  2498. void intel_ddi_pll_init(struct drm_device *dev)
  2499. {
  2500. struct drm_i915_private *dev_priv = dev->dev_private;
  2501. uint32_t val = I915_READ(LCPLL_CTL);
  2502. if (IS_SKYLAKE(dev))
  2503. skl_shared_dplls_init(dev_priv);
  2504. else if (IS_BROXTON(dev))
  2505. bxt_shared_dplls_init(dev_priv);
  2506. else
  2507. hsw_shared_dplls_init(dev_priv);
  2508. if (IS_SKYLAKE(dev)) {
  2509. int cdclk_freq;
  2510. cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
  2511. dev_priv->skl_boot_cdclk = cdclk_freq;
  2512. if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE))
  2513. DRM_ERROR("LCPLL1 is disabled\n");
  2514. else
  2515. intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
  2516. } else if (IS_BROXTON(dev)) {
  2517. broxton_init_cdclk(dev);
  2518. broxton_ddi_phy_init(dev);
  2519. } else {
  2520. /*
  2521. * The LCPLL register should be turned on by the BIOS. For now
  2522. * let's just check its state and print errors in case
  2523. * something is wrong. Don't even try to turn it on.
  2524. */
  2525. if (val & LCPLL_CD_SOURCE_FCLK)
  2526. DRM_ERROR("CDCLK source is not LCPLL\n");
  2527. if (val & LCPLL_PLL_DISABLE)
  2528. DRM_ERROR("LCPLL is disabled\n");
  2529. }
  2530. }
  2531. void intel_ddi_prepare_link_retrain(struct drm_encoder *encoder)
  2532. {
  2533. struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
  2534. struct intel_dp *intel_dp = &intel_dig_port->dp;
  2535. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  2536. enum port port = intel_dig_port->port;
  2537. uint32_t val;
  2538. bool wait = false;
  2539. if (I915_READ(DP_TP_CTL(port)) & DP_TP_CTL_ENABLE) {
  2540. val = I915_READ(DDI_BUF_CTL(port));
  2541. if (val & DDI_BUF_CTL_ENABLE) {
  2542. val &= ~DDI_BUF_CTL_ENABLE;
  2543. I915_WRITE(DDI_BUF_CTL(port), val);
  2544. wait = true;
  2545. }
  2546. val = I915_READ(DP_TP_CTL(port));
  2547. val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  2548. val |= DP_TP_CTL_LINK_TRAIN_PAT1;
  2549. I915_WRITE(DP_TP_CTL(port), val);
  2550. POSTING_READ(DP_TP_CTL(port));
  2551. if (wait)
  2552. intel_wait_ddi_buf_idle(dev_priv, port);
  2553. }
  2554. val = DP_TP_CTL_ENABLE |
  2555. DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_SCRAMBLE_DISABLE;
  2556. if (intel_dp->is_mst)
  2557. val |= DP_TP_CTL_MODE_MST;
  2558. else {
  2559. val |= DP_TP_CTL_MODE_SST;
  2560. if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
  2561. val |= DP_TP_CTL_ENHANCED_FRAME_ENABLE;
  2562. }
  2563. I915_WRITE(DP_TP_CTL(port), val);
  2564. POSTING_READ(DP_TP_CTL(port));
  2565. intel_dp->DP |= DDI_BUF_CTL_ENABLE;
  2566. I915_WRITE(DDI_BUF_CTL(port), intel_dp->DP);
  2567. POSTING_READ(DDI_BUF_CTL(port));
  2568. udelay(600);
  2569. }
  2570. void intel_ddi_fdi_disable(struct drm_crtc *crtc)
  2571. {
  2572. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  2573. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  2574. uint32_t val;
  2575. intel_ddi_post_disable(intel_encoder);
  2576. val = I915_READ(_FDI_RXA_CTL);
  2577. val &= ~FDI_RX_ENABLE;
  2578. I915_WRITE(_FDI_RXA_CTL, val);
  2579. val = I915_READ(_FDI_RXA_MISC);
  2580. val &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  2581. val |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
  2582. I915_WRITE(_FDI_RXA_MISC, val);
  2583. val = I915_READ(_FDI_RXA_CTL);
  2584. val &= ~FDI_PCDCLK;
  2585. I915_WRITE(_FDI_RXA_CTL, val);
  2586. val = I915_READ(_FDI_RXA_CTL);
  2587. val &= ~FDI_RX_PLL_ENABLE;
  2588. I915_WRITE(_FDI_RXA_CTL, val);
  2589. }
  2590. void intel_ddi_get_config(struct intel_encoder *encoder,
  2591. struct intel_crtc_state *pipe_config)
  2592. {
  2593. struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
  2594. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
  2595. enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
  2596. struct intel_hdmi *intel_hdmi;
  2597. u32 temp, flags = 0;
  2598. temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  2599. if (temp & TRANS_DDI_PHSYNC)
  2600. flags |= DRM_MODE_FLAG_PHSYNC;
  2601. else
  2602. flags |= DRM_MODE_FLAG_NHSYNC;
  2603. if (temp & TRANS_DDI_PVSYNC)
  2604. flags |= DRM_MODE_FLAG_PVSYNC;
  2605. else
  2606. flags |= DRM_MODE_FLAG_NVSYNC;
  2607. pipe_config->base.adjusted_mode.flags |= flags;
  2608. switch (temp & TRANS_DDI_BPC_MASK) {
  2609. case TRANS_DDI_BPC_6:
  2610. pipe_config->pipe_bpp = 18;
  2611. break;
  2612. case TRANS_DDI_BPC_8:
  2613. pipe_config->pipe_bpp = 24;
  2614. break;
  2615. case TRANS_DDI_BPC_10:
  2616. pipe_config->pipe_bpp = 30;
  2617. break;
  2618. case TRANS_DDI_BPC_12:
  2619. pipe_config->pipe_bpp = 36;
  2620. break;
  2621. default:
  2622. break;
  2623. }
  2624. switch (temp & TRANS_DDI_MODE_SELECT_MASK) {
  2625. case TRANS_DDI_MODE_SELECT_HDMI:
  2626. pipe_config->has_hdmi_sink = true;
  2627. intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  2628. if (intel_hdmi->infoframe_enabled(&encoder->base))
  2629. pipe_config->has_infoframe = true;
  2630. break;
  2631. case TRANS_DDI_MODE_SELECT_DVI:
  2632. case TRANS_DDI_MODE_SELECT_FDI:
  2633. break;
  2634. case TRANS_DDI_MODE_SELECT_DP_SST:
  2635. case TRANS_DDI_MODE_SELECT_DP_MST:
  2636. pipe_config->has_dp_encoder = true;
  2637. intel_dp_get_m_n(intel_crtc, pipe_config);
  2638. break;
  2639. default:
  2640. break;
  2641. }
  2642. if (intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_AUDIO)) {
  2643. temp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
  2644. if (temp & AUDIO_OUTPUT_ENABLE(intel_crtc->pipe))
  2645. pipe_config->has_audio = true;
  2646. }
  2647. if (encoder->type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp_bpp &&
  2648. pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
  2649. /*
  2650. * This is a big fat ugly hack.
  2651. *
  2652. * Some machines in UEFI boot mode provide us a VBT that has 18
  2653. * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
  2654. * unknown we fail to light up. Yet the same BIOS boots up with
  2655. * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
  2656. * max, not what it tells us to use.
  2657. *
  2658. * Note: This will still be broken if the eDP panel is not lit
  2659. * up by the BIOS, and thus we can't get the mode at module
  2660. * load.
  2661. */
  2662. DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
  2663. pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
  2664. dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
  2665. }
  2666. intel_ddi_clock_get(encoder, pipe_config);
  2667. }
  2668. static void intel_ddi_destroy(struct drm_encoder *encoder)
  2669. {
  2670. /* HDMI has nothing special to destroy, so we can go with this. */
  2671. intel_dp_encoder_destroy(encoder);
  2672. }
  2673. static bool intel_ddi_compute_config(struct intel_encoder *encoder,
  2674. struct intel_crtc_state *pipe_config)
  2675. {
  2676. int type = encoder->type;
  2677. int port = intel_ddi_get_encoder_port(encoder);
  2678. WARN(type == INTEL_OUTPUT_UNKNOWN, "compute_config() on unknown output!\n");
  2679. if (port == PORT_A)
  2680. pipe_config->cpu_transcoder = TRANSCODER_EDP;
  2681. if (type == INTEL_OUTPUT_HDMI)
  2682. return intel_hdmi_compute_config(encoder, pipe_config);
  2683. else
  2684. return intel_dp_compute_config(encoder, pipe_config);
  2685. }
  2686. static const struct drm_encoder_funcs intel_ddi_funcs = {
  2687. .destroy = intel_ddi_destroy,
  2688. };
  2689. static struct intel_connector *
  2690. intel_ddi_init_dp_connector(struct intel_digital_port *intel_dig_port)
  2691. {
  2692. struct intel_connector *connector;
  2693. enum port port = intel_dig_port->port;
  2694. connector = intel_connector_alloc();
  2695. if (!connector)
  2696. return NULL;
  2697. intel_dig_port->dp.output_reg = DDI_BUF_CTL(port);
  2698. if (!intel_dp_init_connector(intel_dig_port, connector)) {
  2699. kfree(connector);
  2700. return NULL;
  2701. }
  2702. return connector;
  2703. }
  2704. static struct intel_connector *
  2705. intel_ddi_init_hdmi_connector(struct intel_digital_port *intel_dig_port)
  2706. {
  2707. struct intel_connector *connector;
  2708. enum port port = intel_dig_port->port;
  2709. connector = intel_connector_alloc();
  2710. if (!connector)
  2711. return NULL;
  2712. intel_dig_port->hdmi.hdmi_reg = DDI_BUF_CTL(port);
  2713. intel_hdmi_init_connector(intel_dig_port, connector);
  2714. return connector;
  2715. }
  2716. void intel_ddi_init(struct drm_device *dev, enum port port)
  2717. {
  2718. struct drm_i915_private *dev_priv = dev->dev_private;
  2719. struct intel_digital_port *intel_dig_port;
  2720. struct intel_encoder *intel_encoder;
  2721. struct drm_encoder *encoder;
  2722. bool init_hdmi, init_dp;
  2723. init_hdmi = (dev_priv->vbt.ddi_port_info[port].supports_dvi ||
  2724. dev_priv->vbt.ddi_port_info[port].supports_hdmi);
  2725. init_dp = dev_priv->vbt.ddi_port_info[port].supports_dp;
  2726. if (!init_dp && !init_hdmi) {
  2727. DRM_DEBUG_KMS("VBT says port %c is not DVI/HDMI/DP compatible, respect it\n",
  2728. port_name(port));
  2729. return;
  2730. }
  2731. intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
  2732. if (!intel_dig_port)
  2733. return;
  2734. intel_encoder = &intel_dig_port->base;
  2735. encoder = &intel_encoder->base;
  2736. drm_encoder_init(dev, encoder, &intel_ddi_funcs,
  2737. DRM_MODE_ENCODER_TMDS);
  2738. intel_encoder->compute_config = intel_ddi_compute_config;
  2739. intel_encoder->enable = intel_enable_ddi;
  2740. intel_encoder->pre_enable = intel_ddi_pre_enable;
  2741. intel_encoder->disable = intel_disable_ddi;
  2742. intel_encoder->post_disable = intel_ddi_post_disable;
  2743. intel_encoder->get_hw_state = intel_ddi_get_hw_state;
  2744. intel_encoder->get_config = intel_ddi_get_config;
  2745. intel_dig_port->port = port;
  2746. intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) &
  2747. (DDI_BUF_PORT_REVERSAL |
  2748. DDI_A_4_LANES);
  2749. intel_encoder->type = INTEL_OUTPUT_UNKNOWN;
  2750. intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
  2751. intel_encoder->cloneable = 0;
  2752. if (init_dp) {
  2753. if (!intel_ddi_init_dp_connector(intel_dig_port))
  2754. goto err;
  2755. intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
  2756. dev_priv->hotplug.irq_port[port] = intel_dig_port;
  2757. }
  2758. /* In theory we don't need the encoder->type check, but leave it just in
  2759. * case we have some really bad VBTs... */
  2760. if (intel_encoder->type != INTEL_OUTPUT_EDP && init_hdmi) {
  2761. if (!intel_ddi_init_hdmi_connector(intel_dig_port))
  2762. goto err;
  2763. }
  2764. return;
  2765. err:
  2766. drm_encoder_cleanup(encoder);
  2767. kfree(intel_dig_port);
  2768. }