i915_irq.c 120 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290
  1. /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
  2. */
  3. /*
  4. * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
  5. * All Rights Reserved.
  6. *
  7. * Permission is hereby granted, free of charge, to any person obtaining a
  8. * copy of this software and associated documentation files (the
  9. * "Software"), to deal in the Software without restriction, including
  10. * without limitation the rights to use, copy, modify, merge, publish,
  11. * distribute, sub license, and/or sell copies of the Software, and to
  12. * permit persons to whom the Software is furnished to do so, subject to
  13. * the following conditions:
  14. *
  15. * The above copyright notice and this permission notice (including the
  16. * next paragraph) shall be included in all copies or substantial portions
  17. * of the Software.
  18. *
  19. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  20. * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  21. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
  22. * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
  23. * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
  24. * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
  25. * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
  26. *
  27. */
  28. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  29. #include <linux/sysrq.h>
  30. #include <linux/slab.h>
  31. #include <linux/circ_buf.h>
  32. #include <drm/drmP.h>
  33. #include <drm/i915_drm.h>
  34. #include "i915_drv.h"
  35. #include "i915_trace.h"
  36. #include "intel_drv.h"
  37. /**
  38. * DOC: interrupt handling
  39. *
  40. * These functions provide the basic support for enabling and disabling the
  41. * interrupt handling support. There's a lot more functionality in i915_irq.c
  42. * and related files, but that will be described in separate chapters.
  43. */
  44. static const u32 hpd_ibx[HPD_NUM_PINS] = {
  45. [HPD_CRT] = SDE_CRT_HOTPLUG,
  46. [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
  47. [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
  48. [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
  49. [HPD_PORT_D] = SDE_PORTD_HOTPLUG
  50. };
  51. static const u32 hpd_cpt[HPD_NUM_PINS] = {
  52. [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
  53. [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
  54. [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
  55. [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
  56. [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
  57. };
  58. static const u32 hpd_spt[HPD_NUM_PINS] = {
  59. [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
  60. [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
  61. [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
  62. [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
  63. };
  64. static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
  65. [HPD_CRT] = CRT_HOTPLUG_INT_EN,
  66. [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
  67. [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
  68. [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
  69. [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
  70. [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
  71. };
  72. static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
  73. [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
  74. [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
  75. [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
  76. [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
  77. [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
  78. [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
  79. };
  80. static const u32 hpd_status_i915[HPD_NUM_PINS] = {
  81. [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
  82. [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
  83. [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
  84. [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
  85. [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
  86. [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
  87. };
  88. /* BXT hpd list */
  89. static const u32 hpd_bxt[HPD_NUM_PINS] = {
  90. [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
  91. [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
  92. };
  93. /* IIR can theoretically queue up two events. Be paranoid. */
  94. #define GEN8_IRQ_RESET_NDX(type, which) do { \
  95. I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
  96. POSTING_READ(GEN8_##type##_IMR(which)); \
  97. I915_WRITE(GEN8_##type##_IER(which), 0); \
  98. I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
  99. POSTING_READ(GEN8_##type##_IIR(which)); \
  100. I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
  101. POSTING_READ(GEN8_##type##_IIR(which)); \
  102. } while (0)
  103. #define GEN5_IRQ_RESET(type) do { \
  104. I915_WRITE(type##IMR, 0xffffffff); \
  105. POSTING_READ(type##IMR); \
  106. I915_WRITE(type##IER, 0); \
  107. I915_WRITE(type##IIR, 0xffffffff); \
  108. POSTING_READ(type##IIR); \
  109. I915_WRITE(type##IIR, 0xffffffff); \
  110. POSTING_READ(type##IIR); \
  111. } while (0)
  112. /*
  113. * We should clear IMR at preinstall/uninstall, and just check at postinstall.
  114. */
  115. #define GEN5_ASSERT_IIR_IS_ZERO(reg) do { \
  116. u32 val = I915_READ(reg); \
  117. if (val) { \
  118. WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", \
  119. (reg), val); \
  120. I915_WRITE((reg), 0xffffffff); \
  121. POSTING_READ(reg); \
  122. I915_WRITE((reg), 0xffffffff); \
  123. POSTING_READ(reg); \
  124. } \
  125. } while (0)
  126. #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
  127. GEN5_ASSERT_IIR_IS_ZERO(GEN8_##type##_IIR(which)); \
  128. I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
  129. I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
  130. POSTING_READ(GEN8_##type##_IMR(which)); \
  131. } while (0)
  132. #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
  133. GEN5_ASSERT_IIR_IS_ZERO(type##IIR); \
  134. I915_WRITE(type##IER, (ier_val)); \
  135. I915_WRITE(type##IMR, (imr_val)); \
  136. POSTING_READ(type##IMR); \
  137. } while (0)
  138. static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
  139. /* For display hotplug interrupt */
  140. void
  141. ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
  142. {
  143. assert_spin_locked(&dev_priv->irq_lock);
  144. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  145. return;
  146. if ((dev_priv->irq_mask & mask) != 0) {
  147. dev_priv->irq_mask &= ~mask;
  148. I915_WRITE(DEIMR, dev_priv->irq_mask);
  149. POSTING_READ(DEIMR);
  150. }
  151. }
  152. void
  153. ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
  154. {
  155. assert_spin_locked(&dev_priv->irq_lock);
  156. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  157. return;
  158. if ((dev_priv->irq_mask & mask) != mask) {
  159. dev_priv->irq_mask |= mask;
  160. I915_WRITE(DEIMR, dev_priv->irq_mask);
  161. POSTING_READ(DEIMR);
  162. }
  163. }
  164. /**
  165. * ilk_update_gt_irq - update GTIMR
  166. * @dev_priv: driver private
  167. * @interrupt_mask: mask of interrupt bits to update
  168. * @enabled_irq_mask: mask of interrupt bits to enable
  169. */
  170. static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
  171. uint32_t interrupt_mask,
  172. uint32_t enabled_irq_mask)
  173. {
  174. assert_spin_locked(&dev_priv->irq_lock);
  175. WARN_ON(enabled_irq_mask & ~interrupt_mask);
  176. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  177. return;
  178. dev_priv->gt_irq_mask &= ~interrupt_mask;
  179. dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
  180. I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
  181. POSTING_READ(GTIMR);
  182. }
  183. void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
  184. {
  185. ilk_update_gt_irq(dev_priv, mask, mask);
  186. }
  187. void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
  188. {
  189. ilk_update_gt_irq(dev_priv, mask, 0);
  190. }
  191. static u32 gen6_pm_iir(struct drm_i915_private *dev_priv)
  192. {
  193. return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
  194. }
  195. static u32 gen6_pm_imr(struct drm_i915_private *dev_priv)
  196. {
  197. return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
  198. }
  199. static u32 gen6_pm_ier(struct drm_i915_private *dev_priv)
  200. {
  201. return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
  202. }
  203. /**
  204. * snb_update_pm_irq - update GEN6_PMIMR
  205. * @dev_priv: driver private
  206. * @interrupt_mask: mask of interrupt bits to update
  207. * @enabled_irq_mask: mask of interrupt bits to enable
  208. */
  209. static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
  210. uint32_t interrupt_mask,
  211. uint32_t enabled_irq_mask)
  212. {
  213. uint32_t new_val;
  214. WARN_ON(enabled_irq_mask & ~interrupt_mask);
  215. assert_spin_locked(&dev_priv->irq_lock);
  216. new_val = dev_priv->pm_irq_mask;
  217. new_val &= ~interrupt_mask;
  218. new_val |= (~enabled_irq_mask & interrupt_mask);
  219. if (new_val != dev_priv->pm_irq_mask) {
  220. dev_priv->pm_irq_mask = new_val;
  221. I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
  222. POSTING_READ(gen6_pm_imr(dev_priv));
  223. }
  224. }
  225. void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
  226. {
  227. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  228. return;
  229. snb_update_pm_irq(dev_priv, mask, mask);
  230. }
  231. static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
  232. uint32_t mask)
  233. {
  234. snb_update_pm_irq(dev_priv, mask, 0);
  235. }
  236. void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
  237. {
  238. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  239. return;
  240. __gen6_disable_pm_irq(dev_priv, mask);
  241. }
  242. void gen6_reset_rps_interrupts(struct drm_device *dev)
  243. {
  244. struct drm_i915_private *dev_priv = dev->dev_private;
  245. uint32_t reg = gen6_pm_iir(dev_priv);
  246. spin_lock_irq(&dev_priv->irq_lock);
  247. I915_WRITE(reg, dev_priv->pm_rps_events);
  248. I915_WRITE(reg, dev_priv->pm_rps_events);
  249. POSTING_READ(reg);
  250. dev_priv->rps.pm_iir = 0;
  251. spin_unlock_irq(&dev_priv->irq_lock);
  252. }
  253. void gen6_enable_rps_interrupts(struct drm_device *dev)
  254. {
  255. struct drm_i915_private *dev_priv = dev->dev_private;
  256. spin_lock_irq(&dev_priv->irq_lock);
  257. WARN_ON(dev_priv->rps.pm_iir);
  258. WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
  259. dev_priv->rps.interrupts_enabled = true;
  260. I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
  261. dev_priv->pm_rps_events);
  262. gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
  263. spin_unlock_irq(&dev_priv->irq_lock);
  264. }
  265. u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
  266. {
  267. /*
  268. * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
  269. * if GEN6_PM_UP_EI_EXPIRED is masked.
  270. *
  271. * TODO: verify if this can be reproduced on VLV,CHV.
  272. */
  273. if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
  274. mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
  275. if (INTEL_INFO(dev_priv)->gen >= 8)
  276. mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
  277. return mask;
  278. }
  279. void gen6_disable_rps_interrupts(struct drm_device *dev)
  280. {
  281. struct drm_i915_private *dev_priv = dev->dev_private;
  282. spin_lock_irq(&dev_priv->irq_lock);
  283. dev_priv->rps.interrupts_enabled = false;
  284. spin_unlock_irq(&dev_priv->irq_lock);
  285. cancel_work_sync(&dev_priv->rps.work);
  286. spin_lock_irq(&dev_priv->irq_lock);
  287. I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
  288. __gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
  289. I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
  290. ~dev_priv->pm_rps_events);
  291. spin_unlock_irq(&dev_priv->irq_lock);
  292. synchronize_irq(dev->irq);
  293. }
  294. /**
  295. * ibx_display_interrupt_update - update SDEIMR
  296. * @dev_priv: driver private
  297. * @interrupt_mask: mask of interrupt bits to update
  298. * @enabled_irq_mask: mask of interrupt bits to enable
  299. */
  300. void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
  301. uint32_t interrupt_mask,
  302. uint32_t enabled_irq_mask)
  303. {
  304. uint32_t sdeimr = I915_READ(SDEIMR);
  305. sdeimr &= ~interrupt_mask;
  306. sdeimr |= (~enabled_irq_mask & interrupt_mask);
  307. WARN_ON(enabled_irq_mask & ~interrupt_mask);
  308. assert_spin_locked(&dev_priv->irq_lock);
  309. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  310. return;
  311. I915_WRITE(SDEIMR, sdeimr);
  312. POSTING_READ(SDEIMR);
  313. }
  314. static void
  315. __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
  316. u32 enable_mask, u32 status_mask)
  317. {
  318. u32 reg = PIPESTAT(pipe);
  319. u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
  320. assert_spin_locked(&dev_priv->irq_lock);
  321. WARN_ON(!intel_irqs_enabled(dev_priv));
  322. if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
  323. status_mask & ~PIPESTAT_INT_STATUS_MASK,
  324. "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
  325. pipe_name(pipe), enable_mask, status_mask))
  326. return;
  327. if ((pipestat & enable_mask) == enable_mask)
  328. return;
  329. dev_priv->pipestat_irq_mask[pipe] |= status_mask;
  330. /* Enable the interrupt, clear any pending status */
  331. pipestat |= enable_mask | status_mask;
  332. I915_WRITE(reg, pipestat);
  333. POSTING_READ(reg);
  334. }
  335. static void
  336. __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
  337. u32 enable_mask, u32 status_mask)
  338. {
  339. u32 reg = PIPESTAT(pipe);
  340. u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
  341. assert_spin_locked(&dev_priv->irq_lock);
  342. WARN_ON(!intel_irqs_enabled(dev_priv));
  343. if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
  344. status_mask & ~PIPESTAT_INT_STATUS_MASK,
  345. "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
  346. pipe_name(pipe), enable_mask, status_mask))
  347. return;
  348. if ((pipestat & enable_mask) == 0)
  349. return;
  350. dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
  351. pipestat &= ~enable_mask;
  352. I915_WRITE(reg, pipestat);
  353. POSTING_READ(reg);
  354. }
  355. static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
  356. {
  357. u32 enable_mask = status_mask << 16;
  358. /*
  359. * On pipe A we don't support the PSR interrupt yet,
  360. * on pipe B and C the same bit MBZ.
  361. */
  362. if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
  363. return 0;
  364. /*
  365. * On pipe B and C we don't support the PSR interrupt yet, on pipe
  366. * A the same bit is for perf counters which we don't use either.
  367. */
  368. if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
  369. return 0;
  370. enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
  371. SPRITE0_FLIP_DONE_INT_EN_VLV |
  372. SPRITE1_FLIP_DONE_INT_EN_VLV);
  373. if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
  374. enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
  375. if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
  376. enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
  377. return enable_mask;
  378. }
  379. void
  380. i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
  381. u32 status_mask)
  382. {
  383. u32 enable_mask;
  384. if (IS_VALLEYVIEW(dev_priv->dev))
  385. enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
  386. status_mask);
  387. else
  388. enable_mask = status_mask << 16;
  389. __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
  390. }
  391. void
  392. i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
  393. u32 status_mask)
  394. {
  395. u32 enable_mask;
  396. if (IS_VALLEYVIEW(dev_priv->dev))
  397. enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
  398. status_mask);
  399. else
  400. enable_mask = status_mask << 16;
  401. __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
  402. }
  403. /**
  404. * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
  405. */
  406. static void i915_enable_asle_pipestat(struct drm_device *dev)
  407. {
  408. struct drm_i915_private *dev_priv = dev->dev_private;
  409. if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
  410. return;
  411. spin_lock_irq(&dev_priv->irq_lock);
  412. i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
  413. if (INTEL_INFO(dev)->gen >= 4)
  414. i915_enable_pipestat(dev_priv, PIPE_A,
  415. PIPE_LEGACY_BLC_EVENT_STATUS);
  416. spin_unlock_irq(&dev_priv->irq_lock);
  417. }
  418. /*
  419. * This timing diagram depicts the video signal in and
  420. * around the vertical blanking period.
  421. *
  422. * Assumptions about the fictitious mode used in this example:
  423. * vblank_start >= 3
  424. * vsync_start = vblank_start + 1
  425. * vsync_end = vblank_start + 2
  426. * vtotal = vblank_start + 3
  427. *
  428. * start of vblank:
  429. * latch double buffered registers
  430. * increment frame counter (ctg+)
  431. * generate start of vblank interrupt (gen4+)
  432. * |
  433. * | frame start:
  434. * | generate frame start interrupt (aka. vblank interrupt) (gmch)
  435. * | may be shifted forward 1-3 extra lines via PIPECONF
  436. * | |
  437. * | | start of vsync:
  438. * | | generate vsync interrupt
  439. * | | |
  440. * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
  441. * . \hs/ . \hs/ \hs/ \hs/ . \hs/
  442. * ----va---> <-----------------vb--------------------> <--------va-------------
  443. * | | <----vs-----> |
  444. * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
  445. * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
  446. * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
  447. * | | |
  448. * last visible pixel first visible pixel
  449. * | increment frame counter (gen3/4)
  450. * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
  451. *
  452. * x = horizontal active
  453. * _ = horizontal blanking
  454. * hs = horizontal sync
  455. * va = vertical active
  456. * vb = vertical blanking
  457. * vs = vertical sync
  458. * vbs = vblank_start (number)
  459. *
  460. * Summary:
  461. * - most events happen at the start of horizontal sync
  462. * - frame start happens at the start of horizontal blank, 1-4 lines
  463. * (depending on PIPECONF settings) after the start of vblank
  464. * - gen3/4 pixel and frame counter are synchronized with the start
  465. * of horizontal active on the first line of vertical active
  466. */
  467. static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
  468. {
  469. /* Gen2 doesn't have a hardware frame counter */
  470. return 0;
  471. }
  472. /* Called from drm generic code, passed a 'crtc', which
  473. * we use as a pipe index
  474. */
  475. static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
  476. {
  477. struct drm_i915_private *dev_priv = dev->dev_private;
  478. unsigned long high_frame;
  479. unsigned long low_frame;
  480. u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
  481. struct intel_crtc *intel_crtc =
  482. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  483. const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
  484. htotal = mode->crtc_htotal;
  485. hsync_start = mode->crtc_hsync_start;
  486. vbl_start = mode->crtc_vblank_start;
  487. if (mode->flags & DRM_MODE_FLAG_INTERLACE)
  488. vbl_start = DIV_ROUND_UP(vbl_start, 2);
  489. /* Convert to pixel count */
  490. vbl_start *= htotal;
  491. /* Start of vblank event occurs at start of hsync */
  492. vbl_start -= htotal - hsync_start;
  493. high_frame = PIPEFRAME(pipe);
  494. low_frame = PIPEFRAMEPIXEL(pipe);
  495. /*
  496. * High & low register fields aren't synchronized, so make sure
  497. * we get a low value that's stable across two reads of the high
  498. * register.
  499. */
  500. do {
  501. high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
  502. low = I915_READ(low_frame);
  503. high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
  504. } while (high1 != high2);
  505. high1 >>= PIPE_FRAME_HIGH_SHIFT;
  506. pixel = low & PIPE_PIXEL_MASK;
  507. low >>= PIPE_FRAME_LOW_SHIFT;
  508. /*
  509. * The frame counter increments at beginning of active.
  510. * Cook up a vblank counter by also checking the pixel
  511. * counter against vblank start.
  512. */
  513. return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
  514. }
  515. static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
  516. {
  517. struct drm_i915_private *dev_priv = dev->dev_private;
  518. int reg = PIPE_FRMCOUNT_GM45(pipe);
  519. return I915_READ(reg);
  520. }
  521. /* raw reads, only for fast reads of display block, no need for forcewake etc. */
  522. #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
  523. static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
  524. {
  525. struct drm_device *dev = crtc->base.dev;
  526. struct drm_i915_private *dev_priv = dev->dev_private;
  527. const struct drm_display_mode *mode = &crtc->base.hwmode;
  528. enum pipe pipe = crtc->pipe;
  529. int position, vtotal;
  530. vtotal = mode->crtc_vtotal;
  531. if (mode->flags & DRM_MODE_FLAG_INTERLACE)
  532. vtotal /= 2;
  533. if (IS_GEN2(dev))
  534. position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
  535. else
  536. position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
  537. /*
  538. * On HSW, the DSL reg (0x70000) appears to return 0 if we
  539. * read it just before the start of vblank. So try it again
  540. * so we don't accidentally end up spanning a vblank frame
  541. * increment, causing the pipe_update_end() code to squak at us.
  542. *
  543. * The nature of this problem means we can't simply check the ISR
  544. * bit and return the vblank start value; nor can we use the scanline
  545. * debug register in the transcoder as it appears to have the same
  546. * problem. We may need to extend this to include other platforms,
  547. * but so far testing only shows the problem on HSW.
  548. */
  549. if (IS_HASWELL(dev) && !position) {
  550. int i, temp;
  551. for (i = 0; i < 100; i++) {
  552. udelay(1);
  553. temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
  554. DSL_LINEMASK_GEN3;
  555. if (temp != position) {
  556. position = temp;
  557. break;
  558. }
  559. }
  560. }
  561. /*
  562. * See update_scanline_offset() for the details on the
  563. * scanline_offset adjustment.
  564. */
  565. return (position + crtc->scanline_offset) % vtotal;
  566. }
  567. static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
  568. unsigned int flags, int *vpos, int *hpos,
  569. ktime_t *stime, ktime_t *etime)
  570. {
  571. struct drm_i915_private *dev_priv = dev->dev_private;
  572. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  573. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  574. const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
  575. int position;
  576. int vbl_start, vbl_end, hsync_start, htotal, vtotal;
  577. bool in_vbl = true;
  578. int ret = 0;
  579. unsigned long irqflags;
  580. if (WARN_ON(!mode->crtc_clock)) {
  581. DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
  582. "pipe %c\n", pipe_name(pipe));
  583. return 0;
  584. }
  585. htotal = mode->crtc_htotal;
  586. hsync_start = mode->crtc_hsync_start;
  587. vtotal = mode->crtc_vtotal;
  588. vbl_start = mode->crtc_vblank_start;
  589. vbl_end = mode->crtc_vblank_end;
  590. if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
  591. vbl_start = DIV_ROUND_UP(vbl_start, 2);
  592. vbl_end /= 2;
  593. vtotal /= 2;
  594. }
  595. ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
  596. /*
  597. * Lock uncore.lock, as we will do multiple timing critical raw
  598. * register reads, potentially with preemption disabled, so the
  599. * following code must not block on uncore.lock.
  600. */
  601. spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
  602. /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
  603. /* Get optional system timestamp before query. */
  604. if (stime)
  605. *stime = ktime_get();
  606. if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
  607. /* No obvious pixelcount register. Only query vertical
  608. * scanout position from Display scan line register.
  609. */
  610. position = __intel_get_crtc_scanline(intel_crtc);
  611. } else {
  612. /* Have access to pixelcount since start of frame.
  613. * We can split this into vertical and horizontal
  614. * scanout position.
  615. */
  616. position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
  617. /* convert to pixel counts */
  618. vbl_start *= htotal;
  619. vbl_end *= htotal;
  620. vtotal *= htotal;
  621. /*
  622. * In interlaced modes, the pixel counter counts all pixels,
  623. * so one field will have htotal more pixels. In order to avoid
  624. * the reported position from jumping backwards when the pixel
  625. * counter is beyond the length of the shorter field, just
  626. * clamp the position the length of the shorter field. This
  627. * matches how the scanline counter based position works since
  628. * the scanline counter doesn't count the two half lines.
  629. */
  630. if (position >= vtotal)
  631. position = vtotal - 1;
  632. /*
  633. * Start of vblank interrupt is triggered at start of hsync,
  634. * just prior to the first active line of vblank. However we
  635. * consider lines to start at the leading edge of horizontal
  636. * active. So, should we get here before we've crossed into
  637. * the horizontal active of the first line in vblank, we would
  638. * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
  639. * always add htotal-hsync_start to the current pixel position.
  640. */
  641. position = (position + htotal - hsync_start) % vtotal;
  642. }
  643. /* Get optional system timestamp after query. */
  644. if (etime)
  645. *etime = ktime_get();
  646. /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
  647. spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
  648. in_vbl = position >= vbl_start && position < vbl_end;
  649. /*
  650. * While in vblank, position will be negative
  651. * counting up towards 0 at vbl_end. And outside
  652. * vblank, position will be positive counting
  653. * up since vbl_end.
  654. */
  655. if (position >= vbl_start)
  656. position -= vbl_end;
  657. else
  658. position += vtotal - vbl_end;
  659. if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
  660. *vpos = position;
  661. *hpos = 0;
  662. } else {
  663. *vpos = position / htotal;
  664. *hpos = position - (*vpos * htotal);
  665. }
  666. /* In vblank? */
  667. if (in_vbl)
  668. ret |= DRM_SCANOUTPOS_IN_VBLANK;
  669. return ret;
  670. }
  671. int intel_get_crtc_scanline(struct intel_crtc *crtc)
  672. {
  673. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  674. unsigned long irqflags;
  675. int position;
  676. spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
  677. position = __intel_get_crtc_scanline(crtc);
  678. spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
  679. return position;
  680. }
  681. static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
  682. int *max_error,
  683. struct timeval *vblank_time,
  684. unsigned flags)
  685. {
  686. struct drm_crtc *crtc;
  687. if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
  688. DRM_ERROR("Invalid crtc %d\n", pipe);
  689. return -EINVAL;
  690. }
  691. /* Get drm_crtc to timestamp: */
  692. crtc = intel_get_crtc_for_pipe(dev, pipe);
  693. if (crtc == NULL) {
  694. DRM_ERROR("Invalid crtc %d\n", pipe);
  695. return -EINVAL;
  696. }
  697. if (!crtc->hwmode.crtc_clock) {
  698. DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
  699. return -EBUSY;
  700. }
  701. /* Helper routine in DRM core does all the work: */
  702. return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
  703. vblank_time, flags,
  704. crtc,
  705. &crtc->hwmode);
  706. }
  707. static void ironlake_rps_change_irq_handler(struct drm_device *dev)
  708. {
  709. struct drm_i915_private *dev_priv = dev->dev_private;
  710. u32 busy_up, busy_down, max_avg, min_avg;
  711. u8 new_delay;
  712. spin_lock(&mchdev_lock);
  713. I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
  714. new_delay = dev_priv->ips.cur_delay;
  715. I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
  716. busy_up = I915_READ(RCPREVBSYTUPAVG);
  717. busy_down = I915_READ(RCPREVBSYTDNAVG);
  718. max_avg = I915_READ(RCBMAXAVG);
  719. min_avg = I915_READ(RCBMINAVG);
  720. /* Handle RCS change request from hw */
  721. if (busy_up > max_avg) {
  722. if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
  723. new_delay = dev_priv->ips.cur_delay - 1;
  724. if (new_delay < dev_priv->ips.max_delay)
  725. new_delay = dev_priv->ips.max_delay;
  726. } else if (busy_down < min_avg) {
  727. if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
  728. new_delay = dev_priv->ips.cur_delay + 1;
  729. if (new_delay > dev_priv->ips.min_delay)
  730. new_delay = dev_priv->ips.min_delay;
  731. }
  732. if (ironlake_set_drps(dev, new_delay))
  733. dev_priv->ips.cur_delay = new_delay;
  734. spin_unlock(&mchdev_lock);
  735. return;
  736. }
  737. static void notify_ring(struct intel_engine_cs *ring)
  738. {
  739. if (!intel_ring_initialized(ring))
  740. return;
  741. trace_i915_gem_request_notify(ring);
  742. wake_up_all(&ring->irq_queue);
  743. }
  744. static void vlv_c0_read(struct drm_i915_private *dev_priv,
  745. struct intel_rps_ei *ei)
  746. {
  747. ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
  748. ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
  749. ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
  750. }
  751. static bool vlv_c0_above(struct drm_i915_private *dev_priv,
  752. const struct intel_rps_ei *old,
  753. const struct intel_rps_ei *now,
  754. int threshold)
  755. {
  756. u64 time, c0;
  757. if (old->cz_clock == 0)
  758. return false;
  759. time = now->cz_clock - old->cz_clock;
  760. time *= threshold * dev_priv->mem_freq;
  761. /* Workload can be split between render + media, e.g. SwapBuffers
  762. * being blitted in X after being rendered in mesa. To account for
  763. * this we need to combine both engines into our activity counter.
  764. */
  765. c0 = now->render_c0 - old->render_c0;
  766. c0 += now->media_c0 - old->media_c0;
  767. c0 *= 100 * VLV_CZ_CLOCK_TO_MILLI_SEC * 4 / 1000;
  768. return c0 >= time;
  769. }
  770. void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
  771. {
  772. vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
  773. dev_priv->rps.up_ei = dev_priv->rps.down_ei;
  774. }
  775. static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
  776. {
  777. struct intel_rps_ei now;
  778. u32 events = 0;
  779. if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
  780. return 0;
  781. vlv_c0_read(dev_priv, &now);
  782. if (now.cz_clock == 0)
  783. return 0;
  784. if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
  785. if (!vlv_c0_above(dev_priv,
  786. &dev_priv->rps.down_ei, &now,
  787. dev_priv->rps.down_threshold))
  788. events |= GEN6_PM_RP_DOWN_THRESHOLD;
  789. dev_priv->rps.down_ei = now;
  790. }
  791. if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
  792. if (vlv_c0_above(dev_priv,
  793. &dev_priv->rps.up_ei, &now,
  794. dev_priv->rps.up_threshold))
  795. events |= GEN6_PM_RP_UP_THRESHOLD;
  796. dev_priv->rps.up_ei = now;
  797. }
  798. return events;
  799. }
  800. static bool any_waiters(struct drm_i915_private *dev_priv)
  801. {
  802. struct intel_engine_cs *ring;
  803. int i;
  804. for_each_ring(ring, dev_priv, i)
  805. if (ring->irq_refcount)
  806. return true;
  807. return false;
  808. }
  809. static void gen6_pm_rps_work(struct work_struct *work)
  810. {
  811. struct drm_i915_private *dev_priv =
  812. container_of(work, struct drm_i915_private, rps.work);
  813. bool client_boost;
  814. int new_delay, adj, min, max;
  815. u32 pm_iir;
  816. spin_lock_irq(&dev_priv->irq_lock);
  817. /* Speed up work cancelation during disabling rps interrupts. */
  818. if (!dev_priv->rps.interrupts_enabled) {
  819. spin_unlock_irq(&dev_priv->irq_lock);
  820. return;
  821. }
  822. pm_iir = dev_priv->rps.pm_iir;
  823. dev_priv->rps.pm_iir = 0;
  824. /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
  825. gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
  826. client_boost = dev_priv->rps.client_boost;
  827. dev_priv->rps.client_boost = false;
  828. spin_unlock_irq(&dev_priv->irq_lock);
  829. /* Make sure we didn't queue anything we're not going to process. */
  830. WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
  831. if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
  832. return;
  833. mutex_lock(&dev_priv->rps.hw_lock);
  834. pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
  835. adj = dev_priv->rps.last_adj;
  836. new_delay = dev_priv->rps.cur_freq;
  837. min = dev_priv->rps.min_freq_softlimit;
  838. max = dev_priv->rps.max_freq_softlimit;
  839. if (client_boost) {
  840. new_delay = dev_priv->rps.max_freq_softlimit;
  841. adj = 0;
  842. } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
  843. if (adj > 0)
  844. adj *= 2;
  845. else /* CHV needs even encode values */
  846. adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
  847. /*
  848. * For better performance, jump directly
  849. * to RPe if we're below it.
  850. */
  851. if (new_delay < dev_priv->rps.efficient_freq - adj) {
  852. new_delay = dev_priv->rps.efficient_freq;
  853. adj = 0;
  854. }
  855. } else if (any_waiters(dev_priv)) {
  856. adj = 0;
  857. } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
  858. if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
  859. new_delay = dev_priv->rps.efficient_freq;
  860. else
  861. new_delay = dev_priv->rps.min_freq_softlimit;
  862. adj = 0;
  863. } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
  864. if (adj < 0)
  865. adj *= 2;
  866. else /* CHV needs even encode values */
  867. adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
  868. } else { /* unknown event */
  869. adj = 0;
  870. }
  871. dev_priv->rps.last_adj = adj;
  872. /* sysfs frequency interfaces may have snuck in while servicing the
  873. * interrupt
  874. */
  875. new_delay += adj;
  876. new_delay = clamp_t(int, new_delay, min, max);
  877. intel_set_rps(dev_priv->dev, new_delay);
  878. mutex_unlock(&dev_priv->rps.hw_lock);
  879. }
  880. /**
  881. * ivybridge_parity_work - Workqueue called when a parity error interrupt
  882. * occurred.
  883. * @work: workqueue struct
  884. *
  885. * Doesn't actually do anything except notify userspace. As a consequence of
  886. * this event, userspace should try to remap the bad rows since statistically
  887. * it is likely the same row is more likely to go bad again.
  888. */
  889. static void ivybridge_parity_work(struct work_struct *work)
  890. {
  891. struct drm_i915_private *dev_priv =
  892. container_of(work, struct drm_i915_private, l3_parity.error_work);
  893. u32 error_status, row, bank, subbank;
  894. char *parity_event[6];
  895. uint32_t misccpctl;
  896. uint8_t slice = 0;
  897. /* We must turn off DOP level clock gating to access the L3 registers.
  898. * In order to prevent a get/put style interface, acquire struct mutex
  899. * any time we access those registers.
  900. */
  901. mutex_lock(&dev_priv->dev->struct_mutex);
  902. /* If we've screwed up tracking, just let the interrupt fire again */
  903. if (WARN_ON(!dev_priv->l3_parity.which_slice))
  904. goto out;
  905. misccpctl = I915_READ(GEN7_MISCCPCTL);
  906. I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
  907. POSTING_READ(GEN7_MISCCPCTL);
  908. while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
  909. u32 reg;
  910. slice--;
  911. if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
  912. break;
  913. dev_priv->l3_parity.which_slice &= ~(1<<slice);
  914. reg = GEN7_L3CDERRST1 + (slice * 0x200);
  915. error_status = I915_READ(reg);
  916. row = GEN7_PARITY_ERROR_ROW(error_status);
  917. bank = GEN7_PARITY_ERROR_BANK(error_status);
  918. subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
  919. I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
  920. POSTING_READ(reg);
  921. parity_event[0] = I915_L3_PARITY_UEVENT "=1";
  922. parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
  923. parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
  924. parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
  925. parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
  926. parity_event[5] = NULL;
  927. kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
  928. KOBJ_CHANGE, parity_event);
  929. DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
  930. slice, row, bank, subbank);
  931. kfree(parity_event[4]);
  932. kfree(parity_event[3]);
  933. kfree(parity_event[2]);
  934. kfree(parity_event[1]);
  935. }
  936. I915_WRITE(GEN7_MISCCPCTL, misccpctl);
  937. out:
  938. WARN_ON(dev_priv->l3_parity.which_slice);
  939. spin_lock_irq(&dev_priv->irq_lock);
  940. gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
  941. spin_unlock_irq(&dev_priv->irq_lock);
  942. mutex_unlock(&dev_priv->dev->struct_mutex);
  943. }
  944. static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
  945. {
  946. struct drm_i915_private *dev_priv = dev->dev_private;
  947. if (!HAS_L3_DPF(dev))
  948. return;
  949. spin_lock(&dev_priv->irq_lock);
  950. gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
  951. spin_unlock(&dev_priv->irq_lock);
  952. iir &= GT_PARITY_ERROR(dev);
  953. if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
  954. dev_priv->l3_parity.which_slice |= 1 << 1;
  955. if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
  956. dev_priv->l3_parity.which_slice |= 1 << 0;
  957. queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
  958. }
  959. static void ilk_gt_irq_handler(struct drm_device *dev,
  960. struct drm_i915_private *dev_priv,
  961. u32 gt_iir)
  962. {
  963. if (gt_iir &
  964. (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
  965. notify_ring(&dev_priv->ring[RCS]);
  966. if (gt_iir & ILK_BSD_USER_INTERRUPT)
  967. notify_ring(&dev_priv->ring[VCS]);
  968. }
  969. static void snb_gt_irq_handler(struct drm_device *dev,
  970. struct drm_i915_private *dev_priv,
  971. u32 gt_iir)
  972. {
  973. if (gt_iir &
  974. (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
  975. notify_ring(&dev_priv->ring[RCS]);
  976. if (gt_iir & GT_BSD_USER_INTERRUPT)
  977. notify_ring(&dev_priv->ring[VCS]);
  978. if (gt_iir & GT_BLT_USER_INTERRUPT)
  979. notify_ring(&dev_priv->ring[BCS]);
  980. if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
  981. GT_BSD_CS_ERROR_INTERRUPT |
  982. GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
  983. DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
  984. if (gt_iir & GT_PARITY_ERROR(dev))
  985. ivybridge_parity_error_irq_handler(dev, gt_iir);
  986. }
  987. static irqreturn_t gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
  988. u32 master_ctl)
  989. {
  990. irqreturn_t ret = IRQ_NONE;
  991. if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
  992. u32 tmp = I915_READ_FW(GEN8_GT_IIR(0));
  993. if (tmp) {
  994. I915_WRITE_FW(GEN8_GT_IIR(0), tmp);
  995. ret = IRQ_HANDLED;
  996. if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT))
  997. intel_lrc_irq_handler(&dev_priv->ring[RCS]);
  998. if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT))
  999. notify_ring(&dev_priv->ring[RCS]);
  1000. if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT))
  1001. intel_lrc_irq_handler(&dev_priv->ring[BCS]);
  1002. if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT))
  1003. notify_ring(&dev_priv->ring[BCS]);
  1004. } else
  1005. DRM_ERROR("The master control interrupt lied (GT0)!\n");
  1006. }
  1007. if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
  1008. u32 tmp = I915_READ_FW(GEN8_GT_IIR(1));
  1009. if (tmp) {
  1010. I915_WRITE_FW(GEN8_GT_IIR(1), tmp);
  1011. ret = IRQ_HANDLED;
  1012. if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT))
  1013. intel_lrc_irq_handler(&dev_priv->ring[VCS]);
  1014. if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT))
  1015. notify_ring(&dev_priv->ring[VCS]);
  1016. if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT))
  1017. intel_lrc_irq_handler(&dev_priv->ring[VCS2]);
  1018. if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT))
  1019. notify_ring(&dev_priv->ring[VCS2]);
  1020. } else
  1021. DRM_ERROR("The master control interrupt lied (GT1)!\n");
  1022. }
  1023. if (master_ctl & GEN8_GT_VECS_IRQ) {
  1024. u32 tmp = I915_READ_FW(GEN8_GT_IIR(3));
  1025. if (tmp) {
  1026. I915_WRITE_FW(GEN8_GT_IIR(3), tmp);
  1027. ret = IRQ_HANDLED;
  1028. if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT))
  1029. intel_lrc_irq_handler(&dev_priv->ring[VECS]);
  1030. if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT))
  1031. notify_ring(&dev_priv->ring[VECS]);
  1032. } else
  1033. DRM_ERROR("The master control interrupt lied (GT3)!\n");
  1034. }
  1035. if (master_ctl & GEN8_GT_PM_IRQ) {
  1036. u32 tmp = I915_READ_FW(GEN8_GT_IIR(2));
  1037. if (tmp & dev_priv->pm_rps_events) {
  1038. I915_WRITE_FW(GEN8_GT_IIR(2),
  1039. tmp & dev_priv->pm_rps_events);
  1040. ret = IRQ_HANDLED;
  1041. gen6_rps_irq_handler(dev_priv, tmp);
  1042. } else
  1043. DRM_ERROR("The master control interrupt lied (PM)!\n");
  1044. }
  1045. return ret;
  1046. }
  1047. static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
  1048. {
  1049. switch (port) {
  1050. case PORT_A:
  1051. return val & BXT_PORTA_HOTPLUG_LONG_DETECT;
  1052. case PORT_B:
  1053. return val & PORTB_HOTPLUG_LONG_DETECT;
  1054. case PORT_C:
  1055. return val & PORTC_HOTPLUG_LONG_DETECT;
  1056. case PORT_D:
  1057. return val & PORTD_HOTPLUG_LONG_DETECT;
  1058. default:
  1059. return false;
  1060. }
  1061. }
  1062. static bool pch_port_hotplug_long_detect(enum port port, u32 val)
  1063. {
  1064. switch (port) {
  1065. case PORT_B:
  1066. return val & PORTB_HOTPLUG_LONG_DETECT;
  1067. case PORT_C:
  1068. return val & PORTC_HOTPLUG_LONG_DETECT;
  1069. case PORT_D:
  1070. return val & PORTD_HOTPLUG_LONG_DETECT;
  1071. case PORT_E:
  1072. return val & PORTE_HOTPLUG_LONG_DETECT;
  1073. default:
  1074. return false;
  1075. }
  1076. }
  1077. static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
  1078. {
  1079. switch (port) {
  1080. case PORT_B:
  1081. return val & PORTB_HOTPLUG_INT_LONG_PULSE;
  1082. case PORT_C:
  1083. return val & PORTC_HOTPLUG_INT_LONG_PULSE;
  1084. case PORT_D:
  1085. return val & PORTD_HOTPLUG_INT_LONG_PULSE;
  1086. default:
  1087. return false;
  1088. }
  1089. }
  1090. /* Get a bit mask of pins that have triggered, and which ones may be long. */
  1091. static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
  1092. u32 hotplug_trigger, u32 dig_hotplug_reg,
  1093. const u32 hpd[HPD_NUM_PINS],
  1094. bool long_pulse_detect(enum port port, u32 val))
  1095. {
  1096. enum port port;
  1097. int i;
  1098. *pin_mask = 0;
  1099. *long_mask = 0;
  1100. for_each_hpd_pin(i) {
  1101. if ((hpd[i] & hotplug_trigger) == 0)
  1102. continue;
  1103. *pin_mask |= BIT(i);
  1104. if (!intel_hpd_pin_to_port(i, &port))
  1105. continue;
  1106. if (long_pulse_detect(port, dig_hotplug_reg))
  1107. *long_mask |= BIT(i);
  1108. }
  1109. DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
  1110. hotplug_trigger, dig_hotplug_reg, *pin_mask);
  1111. }
  1112. static void gmbus_irq_handler(struct drm_device *dev)
  1113. {
  1114. struct drm_i915_private *dev_priv = dev->dev_private;
  1115. wake_up_all(&dev_priv->gmbus_wait_queue);
  1116. }
  1117. static void dp_aux_irq_handler(struct drm_device *dev)
  1118. {
  1119. struct drm_i915_private *dev_priv = dev->dev_private;
  1120. wake_up_all(&dev_priv->gmbus_wait_queue);
  1121. }
  1122. #if defined(CONFIG_DEBUG_FS)
  1123. static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
  1124. uint32_t crc0, uint32_t crc1,
  1125. uint32_t crc2, uint32_t crc3,
  1126. uint32_t crc4)
  1127. {
  1128. struct drm_i915_private *dev_priv = dev->dev_private;
  1129. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
  1130. struct intel_pipe_crc_entry *entry;
  1131. int head, tail;
  1132. spin_lock(&pipe_crc->lock);
  1133. if (!pipe_crc->entries) {
  1134. spin_unlock(&pipe_crc->lock);
  1135. DRM_DEBUG_KMS("spurious interrupt\n");
  1136. return;
  1137. }
  1138. head = pipe_crc->head;
  1139. tail = pipe_crc->tail;
  1140. if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
  1141. spin_unlock(&pipe_crc->lock);
  1142. DRM_ERROR("CRC buffer overflowing\n");
  1143. return;
  1144. }
  1145. entry = &pipe_crc->entries[head];
  1146. entry->frame = dev->driver->get_vblank_counter(dev, pipe);
  1147. entry->crc[0] = crc0;
  1148. entry->crc[1] = crc1;
  1149. entry->crc[2] = crc2;
  1150. entry->crc[3] = crc3;
  1151. entry->crc[4] = crc4;
  1152. head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
  1153. pipe_crc->head = head;
  1154. spin_unlock(&pipe_crc->lock);
  1155. wake_up_interruptible(&pipe_crc->wq);
  1156. }
  1157. #else
  1158. static inline void
  1159. display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
  1160. uint32_t crc0, uint32_t crc1,
  1161. uint32_t crc2, uint32_t crc3,
  1162. uint32_t crc4) {}
  1163. #endif
  1164. static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
  1165. {
  1166. struct drm_i915_private *dev_priv = dev->dev_private;
  1167. display_pipe_crc_irq_handler(dev, pipe,
  1168. I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
  1169. 0, 0, 0, 0);
  1170. }
  1171. static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
  1172. {
  1173. struct drm_i915_private *dev_priv = dev->dev_private;
  1174. display_pipe_crc_irq_handler(dev, pipe,
  1175. I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
  1176. I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
  1177. I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
  1178. I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
  1179. I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
  1180. }
  1181. static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
  1182. {
  1183. struct drm_i915_private *dev_priv = dev->dev_private;
  1184. uint32_t res1, res2;
  1185. if (INTEL_INFO(dev)->gen >= 3)
  1186. res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
  1187. else
  1188. res1 = 0;
  1189. if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
  1190. res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
  1191. else
  1192. res2 = 0;
  1193. display_pipe_crc_irq_handler(dev, pipe,
  1194. I915_READ(PIPE_CRC_RES_RED(pipe)),
  1195. I915_READ(PIPE_CRC_RES_GREEN(pipe)),
  1196. I915_READ(PIPE_CRC_RES_BLUE(pipe)),
  1197. res1, res2);
  1198. }
  1199. /* The RPS events need forcewake, so we add them to a work queue and mask their
  1200. * IMR bits until the work is done. Other interrupts can be processed without
  1201. * the work queue. */
  1202. static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
  1203. {
  1204. if (pm_iir & dev_priv->pm_rps_events) {
  1205. spin_lock(&dev_priv->irq_lock);
  1206. gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
  1207. if (dev_priv->rps.interrupts_enabled) {
  1208. dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
  1209. queue_work(dev_priv->wq, &dev_priv->rps.work);
  1210. }
  1211. spin_unlock(&dev_priv->irq_lock);
  1212. }
  1213. if (INTEL_INFO(dev_priv)->gen >= 8)
  1214. return;
  1215. if (HAS_VEBOX(dev_priv->dev)) {
  1216. if (pm_iir & PM_VEBOX_USER_INTERRUPT)
  1217. notify_ring(&dev_priv->ring[VECS]);
  1218. if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
  1219. DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
  1220. }
  1221. }
  1222. static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
  1223. {
  1224. if (!drm_handle_vblank(dev, pipe))
  1225. return false;
  1226. return true;
  1227. }
  1228. static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
  1229. {
  1230. struct drm_i915_private *dev_priv = dev->dev_private;
  1231. u32 pipe_stats[I915_MAX_PIPES] = { };
  1232. int pipe;
  1233. spin_lock(&dev_priv->irq_lock);
  1234. for_each_pipe(dev_priv, pipe) {
  1235. int reg;
  1236. u32 mask, iir_bit = 0;
  1237. /*
  1238. * PIPESTAT bits get signalled even when the interrupt is
  1239. * disabled with the mask bits, and some of the status bits do
  1240. * not generate interrupts at all (like the underrun bit). Hence
  1241. * we need to be careful that we only handle what we want to
  1242. * handle.
  1243. */
  1244. /* fifo underruns are filterered in the underrun handler. */
  1245. mask = PIPE_FIFO_UNDERRUN_STATUS;
  1246. switch (pipe) {
  1247. case PIPE_A:
  1248. iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
  1249. break;
  1250. case PIPE_B:
  1251. iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
  1252. break;
  1253. case PIPE_C:
  1254. iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
  1255. break;
  1256. }
  1257. if (iir & iir_bit)
  1258. mask |= dev_priv->pipestat_irq_mask[pipe];
  1259. if (!mask)
  1260. continue;
  1261. reg = PIPESTAT(pipe);
  1262. mask |= PIPESTAT_INT_ENABLE_MASK;
  1263. pipe_stats[pipe] = I915_READ(reg) & mask;
  1264. /*
  1265. * Clear the PIPE*STAT regs before the IIR
  1266. */
  1267. if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
  1268. PIPESTAT_INT_STATUS_MASK))
  1269. I915_WRITE(reg, pipe_stats[pipe]);
  1270. }
  1271. spin_unlock(&dev_priv->irq_lock);
  1272. for_each_pipe(dev_priv, pipe) {
  1273. if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
  1274. intel_pipe_handle_vblank(dev, pipe))
  1275. intel_check_page_flip(dev, pipe);
  1276. if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
  1277. intel_prepare_page_flip(dev, pipe);
  1278. intel_finish_page_flip(dev, pipe);
  1279. }
  1280. if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
  1281. i9xx_pipe_crc_irq_handler(dev, pipe);
  1282. if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
  1283. intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
  1284. }
  1285. if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
  1286. gmbus_irq_handler(dev);
  1287. }
  1288. static void i9xx_hpd_irq_handler(struct drm_device *dev)
  1289. {
  1290. struct drm_i915_private *dev_priv = dev->dev_private;
  1291. u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
  1292. u32 pin_mask, long_mask;
  1293. if (!hotplug_status)
  1294. return;
  1295. I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
  1296. /*
  1297. * Make sure hotplug status is cleared before we clear IIR, or else we
  1298. * may miss hotplug events.
  1299. */
  1300. POSTING_READ(PORT_HOTPLUG_STAT);
  1301. if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
  1302. u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
  1303. intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
  1304. hotplug_trigger, hpd_status_g4x,
  1305. i9xx_port_hotplug_long_detect);
  1306. intel_hpd_irq_handler(dev, pin_mask, long_mask);
  1307. if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
  1308. dp_aux_irq_handler(dev);
  1309. } else {
  1310. u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
  1311. intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
  1312. hotplug_trigger, hpd_status_i915,
  1313. i9xx_port_hotplug_long_detect);
  1314. intel_hpd_irq_handler(dev, pin_mask, long_mask);
  1315. }
  1316. }
  1317. static irqreturn_t valleyview_irq_handler(int irq, void *arg)
  1318. {
  1319. struct drm_device *dev = arg;
  1320. struct drm_i915_private *dev_priv = dev->dev_private;
  1321. u32 iir, gt_iir, pm_iir;
  1322. irqreturn_t ret = IRQ_NONE;
  1323. if (!intel_irqs_enabled(dev_priv))
  1324. return IRQ_NONE;
  1325. while (true) {
  1326. /* Find, clear, then process each source of interrupt */
  1327. gt_iir = I915_READ(GTIIR);
  1328. if (gt_iir)
  1329. I915_WRITE(GTIIR, gt_iir);
  1330. pm_iir = I915_READ(GEN6_PMIIR);
  1331. if (pm_iir)
  1332. I915_WRITE(GEN6_PMIIR, pm_iir);
  1333. iir = I915_READ(VLV_IIR);
  1334. if (iir) {
  1335. /* Consume port before clearing IIR or we'll miss events */
  1336. if (iir & I915_DISPLAY_PORT_INTERRUPT)
  1337. i9xx_hpd_irq_handler(dev);
  1338. I915_WRITE(VLV_IIR, iir);
  1339. }
  1340. if (gt_iir == 0 && pm_iir == 0 && iir == 0)
  1341. goto out;
  1342. ret = IRQ_HANDLED;
  1343. if (gt_iir)
  1344. snb_gt_irq_handler(dev, dev_priv, gt_iir);
  1345. if (pm_iir)
  1346. gen6_rps_irq_handler(dev_priv, pm_iir);
  1347. /* Call regardless, as some status bits might not be
  1348. * signalled in iir */
  1349. valleyview_pipestat_irq_handler(dev, iir);
  1350. }
  1351. out:
  1352. return ret;
  1353. }
  1354. static irqreturn_t cherryview_irq_handler(int irq, void *arg)
  1355. {
  1356. struct drm_device *dev = arg;
  1357. struct drm_i915_private *dev_priv = dev->dev_private;
  1358. u32 master_ctl, iir;
  1359. irqreturn_t ret = IRQ_NONE;
  1360. if (!intel_irqs_enabled(dev_priv))
  1361. return IRQ_NONE;
  1362. for (;;) {
  1363. master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
  1364. iir = I915_READ(VLV_IIR);
  1365. if (master_ctl == 0 && iir == 0)
  1366. break;
  1367. ret = IRQ_HANDLED;
  1368. I915_WRITE(GEN8_MASTER_IRQ, 0);
  1369. /* Find, clear, then process each source of interrupt */
  1370. if (iir) {
  1371. /* Consume port before clearing IIR or we'll miss events */
  1372. if (iir & I915_DISPLAY_PORT_INTERRUPT)
  1373. i9xx_hpd_irq_handler(dev);
  1374. I915_WRITE(VLV_IIR, iir);
  1375. }
  1376. gen8_gt_irq_handler(dev_priv, master_ctl);
  1377. /* Call regardless, as some status bits might not be
  1378. * signalled in iir */
  1379. valleyview_pipestat_irq_handler(dev, iir);
  1380. I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
  1381. POSTING_READ(GEN8_MASTER_IRQ);
  1382. }
  1383. return ret;
  1384. }
  1385. static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
  1386. {
  1387. struct drm_i915_private *dev_priv = dev->dev_private;
  1388. int pipe;
  1389. u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
  1390. if (hotplug_trigger) {
  1391. u32 dig_hotplug_reg, pin_mask, long_mask;
  1392. dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
  1393. I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
  1394. intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
  1395. dig_hotplug_reg, hpd_ibx,
  1396. pch_port_hotplug_long_detect);
  1397. intel_hpd_irq_handler(dev, pin_mask, long_mask);
  1398. }
  1399. if (pch_iir & SDE_AUDIO_POWER_MASK) {
  1400. int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
  1401. SDE_AUDIO_POWER_SHIFT);
  1402. DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
  1403. port_name(port));
  1404. }
  1405. if (pch_iir & SDE_AUX_MASK)
  1406. dp_aux_irq_handler(dev);
  1407. if (pch_iir & SDE_GMBUS)
  1408. gmbus_irq_handler(dev);
  1409. if (pch_iir & SDE_AUDIO_HDCP_MASK)
  1410. DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
  1411. if (pch_iir & SDE_AUDIO_TRANS_MASK)
  1412. DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
  1413. if (pch_iir & SDE_POISON)
  1414. DRM_ERROR("PCH poison interrupt\n");
  1415. if (pch_iir & SDE_FDI_MASK)
  1416. for_each_pipe(dev_priv, pipe)
  1417. DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
  1418. pipe_name(pipe),
  1419. I915_READ(FDI_RX_IIR(pipe)));
  1420. if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
  1421. DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
  1422. if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
  1423. DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
  1424. if (pch_iir & SDE_TRANSA_FIFO_UNDER)
  1425. intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
  1426. if (pch_iir & SDE_TRANSB_FIFO_UNDER)
  1427. intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
  1428. }
  1429. static void ivb_err_int_handler(struct drm_device *dev)
  1430. {
  1431. struct drm_i915_private *dev_priv = dev->dev_private;
  1432. u32 err_int = I915_READ(GEN7_ERR_INT);
  1433. enum pipe pipe;
  1434. if (err_int & ERR_INT_POISON)
  1435. DRM_ERROR("Poison interrupt\n");
  1436. for_each_pipe(dev_priv, pipe) {
  1437. if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
  1438. intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
  1439. if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
  1440. if (IS_IVYBRIDGE(dev))
  1441. ivb_pipe_crc_irq_handler(dev, pipe);
  1442. else
  1443. hsw_pipe_crc_irq_handler(dev, pipe);
  1444. }
  1445. }
  1446. I915_WRITE(GEN7_ERR_INT, err_int);
  1447. }
  1448. static void cpt_serr_int_handler(struct drm_device *dev)
  1449. {
  1450. struct drm_i915_private *dev_priv = dev->dev_private;
  1451. u32 serr_int = I915_READ(SERR_INT);
  1452. if (serr_int & SERR_INT_POISON)
  1453. DRM_ERROR("PCH poison interrupt\n");
  1454. if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
  1455. intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
  1456. if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
  1457. intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
  1458. if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
  1459. intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
  1460. I915_WRITE(SERR_INT, serr_int);
  1461. }
  1462. static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
  1463. {
  1464. struct drm_i915_private *dev_priv = dev->dev_private;
  1465. int pipe;
  1466. u32 hotplug_trigger;
  1467. if (HAS_PCH_SPT(dev))
  1468. hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT;
  1469. else
  1470. hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
  1471. if (hotplug_trigger) {
  1472. u32 dig_hotplug_reg, pin_mask, long_mask;
  1473. dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
  1474. I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
  1475. if (HAS_PCH_SPT(dev)) {
  1476. intel_get_hpd_pins(&pin_mask, &long_mask,
  1477. hotplug_trigger,
  1478. dig_hotplug_reg, hpd_spt,
  1479. pch_port_hotplug_long_detect);
  1480. /* detect PORTE HP event */
  1481. dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
  1482. if (pch_port_hotplug_long_detect(PORT_E,
  1483. dig_hotplug_reg))
  1484. long_mask |= 1 << HPD_PORT_E;
  1485. } else
  1486. intel_get_hpd_pins(&pin_mask, &long_mask,
  1487. hotplug_trigger,
  1488. dig_hotplug_reg, hpd_cpt,
  1489. pch_port_hotplug_long_detect);
  1490. intel_hpd_irq_handler(dev, pin_mask, long_mask);
  1491. }
  1492. if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
  1493. int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
  1494. SDE_AUDIO_POWER_SHIFT_CPT);
  1495. DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
  1496. port_name(port));
  1497. }
  1498. if (pch_iir & SDE_AUX_MASK_CPT)
  1499. dp_aux_irq_handler(dev);
  1500. if (pch_iir & SDE_GMBUS_CPT)
  1501. gmbus_irq_handler(dev);
  1502. if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
  1503. DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
  1504. if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
  1505. DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
  1506. if (pch_iir & SDE_FDI_MASK_CPT)
  1507. for_each_pipe(dev_priv, pipe)
  1508. DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
  1509. pipe_name(pipe),
  1510. I915_READ(FDI_RX_IIR(pipe)));
  1511. if (pch_iir & SDE_ERROR_CPT)
  1512. cpt_serr_int_handler(dev);
  1513. }
  1514. static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
  1515. {
  1516. struct drm_i915_private *dev_priv = dev->dev_private;
  1517. enum pipe pipe;
  1518. if (de_iir & DE_AUX_CHANNEL_A)
  1519. dp_aux_irq_handler(dev);
  1520. if (de_iir & DE_GSE)
  1521. intel_opregion_asle_intr(dev);
  1522. if (de_iir & DE_POISON)
  1523. DRM_ERROR("Poison interrupt\n");
  1524. for_each_pipe(dev_priv, pipe) {
  1525. if (de_iir & DE_PIPE_VBLANK(pipe) &&
  1526. intel_pipe_handle_vblank(dev, pipe))
  1527. intel_check_page_flip(dev, pipe);
  1528. if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
  1529. intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
  1530. if (de_iir & DE_PIPE_CRC_DONE(pipe))
  1531. i9xx_pipe_crc_irq_handler(dev, pipe);
  1532. /* plane/pipes map 1:1 on ilk+ */
  1533. if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
  1534. intel_prepare_page_flip(dev, pipe);
  1535. intel_finish_page_flip_plane(dev, pipe);
  1536. }
  1537. }
  1538. /* check event from PCH */
  1539. if (de_iir & DE_PCH_EVENT) {
  1540. u32 pch_iir = I915_READ(SDEIIR);
  1541. if (HAS_PCH_CPT(dev))
  1542. cpt_irq_handler(dev, pch_iir);
  1543. else
  1544. ibx_irq_handler(dev, pch_iir);
  1545. /* should clear PCH hotplug event before clear CPU irq */
  1546. I915_WRITE(SDEIIR, pch_iir);
  1547. }
  1548. if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
  1549. ironlake_rps_change_irq_handler(dev);
  1550. }
  1551. static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
  1552. {
  1553. struct drm_i915_private *dev_priv = dev->dev_private;
  1554. enum pipe pipe;
  1555. if (de_iir & DE_ERR_INT_IVB)
  1556. ivb_err_int_handler(dev);
  1557. if (de_iir & DE_AUX_CHANNEL_A_IVB)
  1558. dp_aux_irq_handler(dev);
  1559. if (de_iir & DE_GSE_IVB)
  1560. intel_opregion_asle_intr(dev);
  1561. for_each_pipe(dev_priv, pipe) {
  1562. if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
  1563. intel_pipe_handle_vblank(dev, pipe))
  1564. intel_check_page_flip(dev, pipe);
  1565. /* plane/pipes map 1:1 on ilk+ */
  1566. if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
  1567. intel_prepare_page_flip(dev, pipe);
  1568. intel_finish_page_flip_plane(dev, pipe);
  1569. }
  1570. }
  1571. /* check event from PCH */
  1572. if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
  1573. u32 pch_iir = I915_READ(SDEIIR);
  1574. cpt_irq_handler(dev, pch_iir);
  1575. /* clear PCH hotplug event before clear CPU irq */
  1576. I915_WRITE(SDEIIR, pch_iir);
  1577. }
  1578. }
  1579. /*
  1580. * To handle irqs with the minimum potential races with fresh interrupts, we:
  1581. * 1 - Disable Master Interrupt Control.
  1582. * 2 - Find the source(s) of the interrupt.
  1583. * 3 - Clear the Interrupt Identity bits (IIR).
  1584. * 4 - Process the interrupt(s) that had bits set in the IIRs.
  1585. * 5 - Re-enable Master Interrupt Control.
  1586. */
  1587. static irqreturn_t ironlake_irq_handler(int irq, void *arg)
  1588. {
  1589. struct drm_device *dev = arg;
  1590. struct drm_i915_private *dev_priv = dev->dev_private;
  1591. u32 de_iir, gt_iir, de_ier, sde_ier = 0;
  1592. irqreturn_t ret = IRQ_NONE;
  1593. if (!intel_irqs_enabled(dev_priv))
  1594. return IRQ_NONE;
  1595. /* We get interrupts on unclaimed registers, so check for this before we
  1596. * do any I915_{READ,WRITE}. */
  1597. intel_uncore_check_errors(dev);
  1598. /* disable master interrupt before clearing iir */
  1599. de_ier = I915_READ(DEIER);
  1600. I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
  1601. POSTING_READ(DEIER);
  1602. /* Disable south interrupts. We'll only write to SDEIIR once, so further
  1603. * interrupts will will be stored on its back queue, and then we'll be
  1604. * able to process them after we restore SDEIER (as soon as we restore
  1605. * it, we'll get an interrupt if SDEIIR still has something to process
  1606. * due to its back queue). */
  1607. if (!HAS_PCH_NOP(dev)) {
  1608. sde_ier = I915_READ(SDEIER);
  1609. I915_WRITE(SDEIER, 0);
  1610. POSTING_READ(SDEIER);
  1611. }
  1612. /* Find, clear, then process each source of interrupt */
  1613. gt_iir = I915_READ(GTIIR);
  1614. if (gt_iir) {
  1615. I915_WRITE(GTIIR, gt_iir);
  1616. ret = IRQ_HANDLED;
  1617. if (INTEL_INFO(dev)->gen >= 6)
  1618. snb_gt_irq_handler(dev, dev_priv, gt_iir);
  1619. else
  1620. ilk_gt_irq_handler(dev, dev_priv, gt_iir);
  1621. }
  1622. de_iir = I915_READ(DEIIR);
  1623. if (de_iir) {
  1624. I915_WRITE(DEIIR, de_iir);
  1625. ret = IRQ_HANDLED;
  1626. if (INTEL_INFO(dev)->gen >= 7)
  1627. ivb_display_irq_handler(dev, de_iir);
  1628. else
  1629. ilk_display_irq_handler(dev, de_iir);
  1630. }
  1631. if (INTEL_INFO(dev)->gen >= 6) {
  1632. u32 pm_iir = I915_READ(GEN6_PMIIR);
  1633. if (pm_iir) {
  1634. I915_WRITE(GEN6_PMIIR, pm_iir);
  1635. ret = IRQ_HANDLED;
  1636. gen6_rps_irq_handler(dev_priv, pm_iir);
  1637. }
  1638. }
  1639. I915_WRITE(DEIER, de_ier);
  1640. POSTING_READ(DEIER);
  1641. if (!HAS_PCH_NOP(dev)) {
  1642. I915_WRITE(SDEIER, sde_ier);
  1643. POSTING_READ(SDEIER);
  1644. }
  1645. return ret;
  1646. }
  1647. static void bxt_hpd_handler(struct drm_device *dev, uint32_t iir_status)
  1648. {
  1649. struct drm_i915_private *dev_priv = dev->dev_private;
  1650. u32 hp_control, hp_trigger;
  1651. u32 pin_mask, long_mask;
  1652. /* Get the status */
  1653. hp_trigger = iir_status & BXT_DE_PORT_HOTPLUG_MASK;
  1654. hp_control = I915_READ(BXT_HOTPLUG_CTL);
  1655. /* Hotplug not enabled ? */
  1656. if (!(hp_control & BXT_HOTPLUG_CTL_MASK)) {
  1657. DRM_ERROR("Interrupt when HPD disabled\n");
  1658. return;
  1659. }
  1660. /* Clear sticky bits in hpd status */
  1661. I915_WRITE(BXT_HOTPLUG_CTL, hp_control);
  1662. intel_get_hpd_pins(&pin_mask, &long_mask, hp_trigger, hp_control,
  1663. hpd_bxt, bxt_port_hotplug_long_detect);
  1664. intel_hpd_irq_handler(dev, pin_mask, long_mask);
  1665. }
  1666. static irqreturn_t gen8_irq_handler(int irq, void *arg)
  1667. {
  1668. struct drm_device *dev = arg;
  1669. struct drm_i915_private *dev_priv = dev->dev_private;
  1670. u32 master_ctl;
  1671. irqreturn_t ret = IRQ_NONE;
  1672. uint32_t tmp = 0;
  1673. enum pipe pipe;
  1674. u32 aux_mask = GEN8_AUX_CHANNEL_A;
  1675. if (!intel_irqs_enabled(dev_priv))
  1676. return IRQ_NONE;
  1677. if (IS_GEN9(dev))
  1678. aux_mask |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
  1679. GEN9_AUX_CHANNEL_D;
  1680. master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
  1681. master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
  1682. if (!master_ctl)
  1683. return IRQ_NONE;
  1684. I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
  1685. /* Find, clear, then process each source of interrupt */
  1686. ret = gen8_gt_irq_handler(dev_priv, master_ctl);
  1687. if (master_ctl & GEN8_DE_MISC_IRQ) {
  1688. tmp = I915_READ(GEN8_DE_MISC_IIR);
  1689. if (tmp) {
  1690. I915_WRITE(GEN8_DE_MISC_IIR, tmp);
  1691. ret = IRQ_HANDLED;
  1692. if (tmp & GEN8_DE_MISC_GSE)
  1693. intel_opregion_asle_intr(dev);
  1694. else
  1695. DRM_ERROR("Unexpected DE Misc interrupt\n");
  1696. }
  1697. else
  1698. DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
  1699. }
  1700. if (master_ctl & GEN8_DE_PORT_IRQ) {
  1701. tmp = I915_READ(GEN8_DE_PORT_IIR);
  1702. if (tmp) {
  1703. bool found = false;
  1704. I915_WRITE(GEN8_DE_PORT_IIR, tmp);
  1705. ret = IRQ_HANDLED;
  1706. if (tmp & aux_mask) {
  1707. dp_aux_irq_handler(dev);
  1708. found = true;
  1709. }
  1710. if (IS_BROXTON(dev) && tmp & BXT_DE_PORT_HOTPLUG_MASK) {
  1711. bxt_hpd_handler(dev, tmp);
  1712. found = true;
  1713. }
  1714. if (IS_BROXTON(dev) && (tmp & BXT_DE_PORT_GMBUS)) {
  1715. gmbus_irq_handler(dev);
  1716. found = true;
  1717. }
  1718. if (!found)
  1719. DRM_ERROR("Unexpected DE Port interrupt\n");
  1720. }
  1721. else
  1722. DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
  1723. }
  1724. for_each_pipe(dev_priv, pipe) {
  1725. uint32_t pipe_iir, flip_done = 0, fault_errors = 0;
  1726. if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
  1727. continue;
  1728. pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
  1729. if (pipe_iir) {
  1730. ret = IRQ_HANDLED;
  1731. I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
  1732. if (pipe_iir & GEN8_PIPE_VBLANK &&
  1733. intel_pipe_handle_vblank(dev, pipe))
  1734. intel_check_page_flip(dev, pipe);
  1735. if (IS_GEN9(dev))
  1736. flip_done = pipe_iir & GEN9_PIPE_PLANE1_FLIP_DONE;
  1737. else
  1738. flip_done = pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE;
  1739. if (flip_done) {
  1740. intel_prepare_page_flip(dev, pipe);
  1741. intel_finish_page_flip_plane(dev, pipe);
  1742. }
  1743. if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
  1744. hsw_pipe_crc_irq_handler(dev, pipe);
  1745. if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN)
  1746. intel_cpu_fifo_underrun_irq_handler(dev_priv,
  1747. pipe);
  1748. if (IS_GEN9(dev))
  1749. fault_errors = pipe_iir & GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
  1750. else
  1751. fault_errors = pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
  1752. if (fault_errors)
  1753. DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
  1754. pipe_name(pipe),
  1755. pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
  1756. } else
  1757. DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
  1758. }
  1759. if (HAS_PCH_SPLIT(dev) && !HAS_PCH_NOP(dev) &&
  1760. master_ctl & GEN8_DE_PCH_IRQ) {
  1761. /*
  1762. * FIXME(BDW): Assume for now that the new interrupt handling
  1763. * scheme also closed the SDE interrupt handling race we've seen
  1764. * on older pch-split platforms. But this needs testing.
  1765. */
  1766. u32 pch_iir = I915_READ(SDEIIR);
  1767. if (pch_iir) {
  1768. I915_WRITE(SDEIIR, pch_iir);
  1769. ret = IRQ_HANDLED;
  1770. cpt_irq_handler(dev, pch_iir);
  1771. } else
  1772. DRM_ERROR("The master control interrupt lied (SDE)!\n");
  1773. }
  1774. I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
  1775. POSTING_READ_FW(GEN8_MASTER_IRQ);
  1776. return ret;
  1777. }
  1778. static void i915_error_wake_up(struct drm_i915_private *dev_priv,
  1779. bool reset_completed)
  1780. {
  1781. struct intel_engine_cs *ring;
  1782. int i;
  1783. /*
  1784. * Notify all waiters for GPU completion events that reset state has
  1785. * been changed, and that they need to restart their wait after
  1786. * checking for potential errors (and bail out to drop locks if there is
  1787. * a gpu reset pending so that i915_error_work_func can acquire them).
  1788. */
  1789. /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
  1790. for_each_ring(ring, dev_priv, i)
  1791. wake_up_all(&ring->irq_queue);
  1792. /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
  1793. wake_up_all(&dev_priv->pending_flip_queue);
  1794. /*
  1795. * Signal tasks blocked in i915_gem_wait_for_error that the pending
  1796. * reset state is cleared.
  1797. */
  1798. if (reset_completed)
  1799. wake_up_all(&dev_priv->gpu_error.reset_queue);
  1800. }
  1801. /**
  1802. * i915_reset_and_wakeup - do process context error handling work
  1803. *
  1804. * Fire an error uevent so userspace can see that a hang or error
  1805. * was detected.
  1806. */
  1807. static void i915_reset_and_wakeup(struct drm_device *dev)
  1808. {
  1809. struct drm_i915_private *dev_priv = to_i915(dev);
  1810. struct i915_gpu_error *error = &dev_priv->gpu_error;
  1811. char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
  1812. char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
  1813. char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
  1814. int ret;
  1815. kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
  1816. /*
  1817. * Note that there's only one work item which does gpu resets, so we
  1818. * need not worry about concurrent gpu resets potentially incrementing
  1819. * error->reset_counter twice. We only need to take care of another
  1820. * racing irq/hangcheck declaring the gpu dead for a second time. A
  1821. * quick check for that is good enough: schedule_work ensures the
  1822. * correct ordering between hang detection and this work item, and since
  1823. * the reset in-progress bit is only ever set by code outside of this
  1824. * work we don't need to worry about any other races.
  1825. */
  1826. if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
  1827. DRM_DEBUG_DRIVER("resetting chip\n");
  1828. kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
  1829. reset_event);
  1830. /*
  1831. * In most cases it's guaranteed that we get here with an RPM
  1832. * reference held, for example because there is a pending GPU
  1833. * request that won't finish until the reset is done. This
  1834. * isn't the case at least when we get here by doing a
  1835. * simulated reset via debugs, so get an RPM reference.
  1836. */
  1837. intel_runtime_pm_get(dev_priv);
  1838. intel_prepare_reset(dev);
  1839. /*
  1840. * All state reset _must_ be completed before we update the
  1841. * reset counter, for otherwise waiters might miss the reset
  1842. * pending state and not properly drop locks, resulting in
  1843. * deadlocks with the reset work.
  1844. */
  1845. ret = i915_reset(dev);
  1846. intel_finish_reset(dev);
  1847. intel_runtime_pm_put(dev_priv);
  1848. if (ret == 0) {
  1849. /*
  1850. * After all the gem state is reset, increment the reset
  1851. * counter and wake up everyone waiting for the reset to
  1852. * complete.
  1853. *
  1854. * Since unlock operations are a one-sided barrier only,
  1855. * we need to insert a barrier here to order any seqno
  1856. * updates before
  1857. * the counter increment.
  1858. */
  1859. smp_mb__before_atomic();
  1860. atomic_inc(&dev_priv->gpu_error.reset_counter);
  1861. kobject_uevent_env(&dev->primary->kdev->kobj,
  1862. KOBJ_CHANGE, reset_done_event);
  1863. } else {
  1864. atomic_or(I915_WEDGED, &error->reset_counter);
  1865. }
  1866. /*
  1867. * Note: The wake_up also serves as a memory barrier so that
  1868. * waiters see the update value of the reset counter atomic_t.
  1869. */
  1870. i915_error_wake_up(dev_priv, true);
  1871. }
  1872. }
  1873. static void i915_report_and_clear_eir(struct drm_device *dev)
  1874. {
  1875. struct drm_i915_private *dev_priv = dev->dev_private;
  1876. uint32_t instdone[I915_NUM_INSTDONE_REG];
  1877. u32 eir = I915_READ(EIR);
  1878. int pipe, i;
  1879. if (!eir)
  1880. return;
  1881. pr_err("render error detected, EIR: 0x%08x\n", eir);
  1882. i915_get_extra_instdone(dev, instdone);
  1883. if (IS_G4X(dev)) {
  1884. if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
  1885. u32 ipeir = I915_READ(IPEIR_I965);
  1886. pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
  1887. pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
  1888. for (i = 0; i < ARRAY_SIZE(instdone); i++)
  1889. pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
  1890. pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
  1891. pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
  1892. I915_WRITE(IPEIR_I965, ipeir);
  1893. POSTING_READ(IPEIR_I965);
  1894. }
  1895. if (eir & GM45_ERROR_PAGE_TABLE) {
  1896. u32 pgtbl_err = I915_READ(PGTBL_ER);
  1897. pr_err("page table error\n");
  1898. pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
  1899. I915_WRITE(PGTBL_ER, pgtbl_err);
  1900. POSTING_READ(PGTBL_ER);
  1901. }
  1902. }
  1903. if (!IS_GEN2(dev)) {
  1904. if (eir & I915_ERROR_PAGE_TABLE) {
  1905. u32 pgtbl_err = I915_READ(PGTBL_ER);
  1906. pr_err("page table error\n");
  1907. pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
  1908. I915_WRITE(PGTBL_ER, pgtbl_err);
  1909. POSTING_READ(PGTBL_ER);
  1910. }
  1911. }
  1912. if (eir & I915_ERROR_MEMORY_REFRESH) {
  1913. pr_err("memory refresh error:\n");
  1914. for_each_pipe(dev_priv, pipe)
  1915. pr_err("pipe %c stat: 0x%08x\n",
  1916. pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
  1917. /* pipestat has already been acked */
  1918. }
  1919. if (eir & I915_ERROR_INSTRUCTION) {
  1920. pr_err("instruction error\n");
  1921. pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
  1922. for (i = 0; i < ARRAY_SIZE(instdone); i++)
  1923. pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
  1924. if (INTEL_INFO(dev)->gen < 4) {
  1925. u32 ipeir = I915_READ(IPEIR);
  1926. pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
  1927. pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
  1928. pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
  1929. I915_WRITE(IPEIR, ipeir);
  1930. POSTING_READ(IPEIR);
  1931. } else {
  1932. u32 ipeir = I915_READ(IPEIR_I965);
  1933. pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
  1934. pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
  1935. pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
  1936. pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
  1937. I915_WRITE(IPEIR_I965, ipeir);
  1938. POSTING_READ(IPEIR_I965);
  1939. }
  1940. }
  1941. I915_WRITE(EIR, eir);
  1942. POSTING_READ(EIR);
  1943. eir = I915_READ(EIR);
  1944. if (eir) {
  1945. /*
  1946. * some errors might have become stuck,
  1947. * mask them.
  1948. */
  1949. DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
  1950. I915_WRITE(EMR, I915_READ(EMR) | eir);
  1951. I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
  1952. }
  1953. }
  1954. /**
  1955. * i915_handle_error - handle a gpu error
  1956. * @dev: drm device
  1957. *
  1958. * Do some basic checking of regsiter state at error time and
  1959. * dump it to the syslog. Also call i915_capture_error_state() to make
  1960. * sure we get a record and make it available in debugfs. Fire a uevent
  1961. * so userspace knows something bad happened (should trigger collection
  1962. * of a ring dump etc.).
  1963. */
  1964. void i915_handle_error(struct drm_device *dev, bool wedged,
  1965. const char *fmt, ...)
  1966. {
  1967. struct drm_i915_private *dev_priv = dev->dev_private;
  1968. va_list args;
  1969. char error_msg[80];
  1970. va_start(args, fmt);
  1971. vscnprintf(error_msg, sizeof(error_msg), fmt, args);
  1972. va_end(args);
  1973. i915_capture_error_state(dev, wedged, error_msg);
  1974. i915_report_and_clear_eir(dev);
  1975. if (wedged) {
  1976. atomic_or(I915_RESET_IN_PROGRESS_FLAG,
  1977. &dev_priv->gpu_error.reset_counter);
  1978. /*
  1979. * Wakeup waiting processes so that the reset function
  1980. * i915_reset_and_wakeup doesn't deadlock trying to grab
  1981. * various locks. By bumping the reset counter first, the woken
  1982. * processes will see a reset in progress and back off,
  1983. * releasing their locks and then wait for the reset completion.
  1984. * We must do this for _all_ gpu waiters that might hold locks
  1985. * that the reset work needs to acquire.
  1986. *
  1987. * Note: The wake_up serves as the required memory barrier to
  1988. * ensure that the waiters see the updated value of the reset
  1989. * counter atomic_t.
  1990. */
  1991. i915_error_wake_up(dev_priv, false);
  1992. }
  1993. i915_reset_and_wakeup(dev);
  1994. }
  1995. /* Called from drm generic code, passed 'crtc' which
  1996. * we use as a pipe index
  1997. */
  1998. static int i915_enable_vblank(struct drm_device *dev, int pipe)
  1999. {
  2000. struct drm_i915_private *dev_priv = dev->dev_private;
  2001. unsigned long irqflags;
  2002. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2003. if (INTEL_INFO(dev)->gen >= 4)
  2004. i915_enable_pipestat(dev_priv, pipe,
  2005. PIPE_START_VBLANK_INTERRUPT_STATUS);
  2006. else
  2007. i915_enable_pipestat(dev_priv, pipe,
  2008. PIPE_VBLANK_INTERRUPT_STATUS);
  2009. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2010. return 0;
  2011. }
  2012. static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
  2013. {
  2014. struct drm_i915_private *dev_priv = dev->dev_private;
  2015. unsigned long irqflags;
  2016. uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
  2017. DE_PIPE_VBLANK(pipe);
  2018. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2019. ironlake_enable_display_irq(dev_priv, bit);
  2020. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2021. return 0;
  2022. }
  2023. static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
  2024. {
  2025. struct drm_i915_private *dev_priv = dev->dev_private;
  2026. unsigned long irqflags;
  2027. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2028. i915_enable_pipestat(dev_priv, pipe,
  2029. PIPE_START_VBLANK_INTERRUPT_STATUS);
  2030. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2031. return 0;
  2032. }
  2033. static int gen8_enable_vblank(struct drm_device *dev, int pipe)
  2034. {
  2035. struct drm_i915_private *dev_priv = dev->dev_private;
  2036. unsigned long irqflags;
  2037. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2038. dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
  2039. I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
  2040. POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
  2041. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2042. return 0;
  2043. }
  2044. /* Called from drm generic code, passed 'crtc' which
  2045. * we use as a pipe index
  2046. */
  2047. static void i915_disable_vblank(struct drm_device *dev, int pipe)
  2048. {
  2049. struct drm_i915_private *dev_priv = dev->dev_private;
  2050. unsigned long irqflags;
  2051. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2052. i915_disable_pipestat(dev_priv, pipe,
  2053. PIPE_VBLANK_INTERRUPT_STATUS |
  2054. PIPE_START_VBLANK_INTERRUPT_STATUS);
  2055. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2056. }
  2057. static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
  2058. {
  2059. struct drm_i915_private *dev_priv = dev->dev_private;
  2060. unsigned long irqflags;
  2061. uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
  2062. DE_PIPE_VBLANK(pipe);
  2063. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2064. ironlake_disable_display_irq(dev_priv, bit);
  2065. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2066. }
  2067. static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
  2068. {
  2069. struct drm_i915_private *dev_priv = dev->dev_private;
  2070. unsigned long irqflags;
  2071. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2072. i915_disable_pipestat(dev_priv, pipe,
  2073. PIPE_START_VBLANK_INTERRUPT_STATUS);
  2074. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2075. }
  2076. static void gen8_disable_vblank(struct drm_device *dev, int pipe)
  2077. {
  2078. struct drm_i915_private *dev_priv = dev->dev_private;
  2079. unsigned long irqflags;
  2080. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  2081. dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
  2082. I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
  2083. POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
  2084. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  2085. }
  2086. static bool
  2087. ring_idle(struct intel_engine_cs *ring, u32 seqno)
  2088. {
  2089. return (list_empty(&ring->request_list) ||
  2090. i915_seqno_passed(seqno, ring->last_submitted_seqno));
  2091. }
  2092. static bool
  2093. ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
  2094. {
  2095. if (INTEL_INFO(dev)->gen >= 8) {
  2096. return (ipehr >> 23) == 0x1c;
  2097. } else {
  2098. ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
  2099. return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
  2100. MI_SEMAPHORE_REGISTER);
  2101. }
  2102. }
  2103. static struct intel_engine_cs *
  2104. semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
  2105. {
  2106. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  2107. struct intel_engine_cs *signaller;
  2108. int i;
  2109. if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
  2110. for_each_ring(signaller, dev_priv, i) {
  2111. if (ring == signaller)
  2112. continue;
  2113. if (offset == signaller->semaphore.signal_ggtt[ring->id])
  2114. return signaller;
  2115. }
  2116. } else {
  2117. u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
  2118. for_each_ring(signaller, dev_priv, i) {
  2119. if(ring == signaller)
  2120. continue;
  2121. if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
  2122. return signaller;
  2123. }
  2124. }
  2125. DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
  2126. ring->id, ipehr, offset);
  2127. return NULL;
  2128. }
  2129. static struct intel_engine_cs *
  2130. semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
  2131. {
  2132. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  2133. u32 cmd, ipehr, head;
  2134. u64 offset = 0;
  2135. int i, backwards;
  2136. ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
  2137. if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
  2138. return NULL;
  2139. /*
  2140. * HEAD is likely pointing to the dword after the actual command,
  2141. * so scan backwards until we find the MBOX. But limit it to just 3
  2142. * or 4 dwords depending on the semaphore wait command size.
  2143. * Note that we don't care about ACTHD here since that might
  2144. * point at at batch, and semaphores are always emitted into the
  2145. * ringbuffer itself.
  2146. */
  2147. head = I915_READ_HEAD(ring) & HEAD_ADDR;
  2148. backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
  2149. for (i = backwards; i; --i) {
  2150. /*
  2151. * Be paranoid and presume the hw has gone off into the wild -
  2152. * our ring is smaller than what the hardware (and hence
  2153. * HEAD_ADDR) allows. Also handles wrap-around.
  2154. */
  2155. head &= ring->buffer->size - 1;
  2156. /* This here seems to blow up */
  2157. cmd = ioread32(ring->buffer->virtual_start + head);
  2158. if (cmd == ipehr)
  2159. break;
  2160. head -= 4;
  2161. }
  2162. if (!i)
  2163. return NULL;
  2164. *seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
  2165. if (INTEL_INFO(ring->dev)->gen >= 8) {
  2166. offset = ioread32(ring->buffer->virtual_start + head + 12);
  2167. offset <<= 32;
  2168. offset = ioread32(ring->buffer->virtual_start + head + 8);
  2169. }
  2170. return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
  2171. }
  2172. static int semaphore_passed(struct intel_engine_cs *ring)
  2173. {
  2174. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  2175. struct intel_engine_cs *signaller;
  2176. u32 seqno;
  2177. ring->hangcheck.deadlock++;
  2178. signaller = semaphore_waits_for(ring, &seqno);
  2179. if (signaller == NULL)
  2180. return -1;
  2181. /* Prevent pathological recursion due to driver bugs */
  2182. if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
  2183. return -1;
  2184. if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
  2185. return 1;
  2186. /* cursory check for an unkickable deadlock */
  2187. if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
  2188. semaphore_passed(signaller) < 0)
  2189. return -1;
  2190. return 0;
  2191. }
  2192. static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
  2193. {
  2194. struct intel_engine_cs *ring;
  2195. int i;
  2196. for_each_ring(ring, dev_priv, i)
  2197. ring->hangcheck.deadlock = 0;
  2198. }
  2199. static enum intel_ring_hangcheck_action
  2200. ring_stuck(struct intel_engine_cs *ring, u64 acthd)
  2201. {
  2202. struct drm_device *dev = ring->dev;
  2203. struct drm_i915_private *dev_priv = dev->dev_private;
  2204. u32 tmp;
  2205. if (acthd != ring->hangcheck.acthd) {
  2206. if (acthd > ring->hangcheck.max_acthd) {
  2207. ring->hangcheck.max_acthd = acthd;
  2208. return HANGCHECK_ACTIVE;
  2209. }
  2210. return HANGCHECK_ACTIVE_LOOP;
  2211. }
  2212. if (IS_GEN2(dev))
  2213. return HANGCHECK_HUNG;
  2214. /* Is the chip hanging on a WAIT_FOR_EVENT?
  2215. * If so we can simply poke the RB_WAIT bit
  2216. * and break the hang. This should work on
  2217. * all but the second generation chipsets.
  2218. */
  2219. tmp = I915_READ_CTL(ring);
  2220. if (tmp & RING_WAIT) {
  2221. i915_handle_error(dev, false,
  2222. "Kicking stuck wait on %s",
  2223. ring->name);
  2224. I915_WRITE_CTL(ring, tmp);
  2225. return HANGCHECK_KICK;
  2226. }
  2227. if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
  2228. switch (semaphore_passed(ring)) {
  2229. default:
  2230. return HANGCHECK_HUNG;
  2231. case 1:
  2232. i915_handle_error(dev, false,
  2233. "Kicking stuck semaphore on %s",
  2234. ring->name);
  2235. I915_WRITE_CTL(ring, tmp);
  2236. return HANGCHECK_KICK;
  2237. case 0:
  2238. return HANGCHECK_WAIT;
  2239. }
  2240. }
  2241. return HANGCHECK_HUNG;
  2242. }
  2243. /*
  2244. * This is called when the chip hasn't reported back with completed
  2245. * batchbuffers in a long time. We keep track per ring seqno progress and
  2246. * if there are no progress, hangcheck score for that ring is increased.
  2247. * Further, acthd is inspected to see if the ring is stuck. On stuck case
  2248. * we kick the ring. If we see no progress on three subsequent calls
  2249. * we assume chip is wedged and try to fix it by resetting the chip.
  2250. */
  2251. static void i915_hangcheck_elapsed(struct work_struct *work)
  2252. {
  2253. struct drm_i915_private *dev_priv =
  2254. container_of(work, typeof(*dev_priv),
  2255. gpu_error.hangcheck_work.work);
  2256. struct drm_device *dev = dev_priv->dev;
  2257. struct intel_engine_cs *ring;
  2258. int i;
  2259. int busy_count = 0, rings_hung = 0;
  2260. bool stuck[I915_NUM_RINGS] = { 0 };
  2261. #define BUSY 1
  2262. #define KICK 5
  2263. #define HUNG 20
  2264. if (!i915.enable_hangcheck)
  2265. return;
  2266. for_each_ring(ring, dev_priv, i) {
  2267. u64 acthd;
  2268. u32 seqno;
  2269. bool busy = true;
  2270. semaphore_clear_deadlocks(dev_priv);
  2271. seqno = ring->get_seqno(ring, false);
  2272. acthd = intel_ring_get_active_head(ring);
  2273. if (ring->hangcheck.seqno == seqno) {
  2274. if (ring_idle(ring, seqno)) {
  2275. ring->hangcheck.action = HANGCHECK_IDLE;
  2276. if (waitqueue_active(&ring->irq_queue)) {
  2277. /* Issue a wake-up to catch stuck h/w. */
  2278. if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
  2279. if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
  2280. DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
  2281. ring->name);
  2282. else
  2283. DRM_INFO("Fake missed irq on %s\n",
  2284. ring->name);
  2285. wake_up_all(&ring->irq_queue);
  2286. }
  2287. /* Safeguard against driver failure */
  2288. ring->hangcheck.score += BUSY;
  2289. } else
  2290. busy = false;
  2291. } else {
  2292. /* We always increment the hangcheck score
  2293. * if the ring is busy and still processing
  2294. * the same request, so that no single request
  2295. * can run indefinitely (such as a chain of
  2296. * batches). The only time we do not increment
  2297. * the hangcheck score on this ring, if this
  2298. * ring is in a legitimate wait for another
  2299. * ring. In that case the waiting ring is a
  2300. * victim and we want to be sure we catch the
  2301. * right culprit. Then every time we do kick
  2302. * the ring, add a small increment to the
  2303. * score so that we can catch a batch that is
  2304. * being repeatedly kicked and so responsible
  2305. * for stalling the machine.
  2306. */
  2307. ring->hangcheck.action = ring_stuck(ring,
  2308. acthd);
  2309. switch (ring->hangcheck.action) {
  2310. case HANGCHECK_IDLE:
  2311. case HANGCHECK_WAIT:
  2312. case HANGCHECK_ACTIVE:
  2313. break;
  2314. case HANGCHECK_ACTIVE_LOOP:
  2315. ring->hangcheck.score += BUSY;
  2316. break;
  2317. case HANGCHECK_KICK:
  2318. ring->hangcheck.score += KICK;
  2319. break;
  2320. case HANGCHECK_HUNG:
  2321. ring->hangcheck.score += HUNG;
  2322. stuck[i] = true;
  2323. break;
  2324. }
  2325. }
  2326. } else {
  2327. ring->hangcheck.action = HANGCHECK_ACTIVE;
  2328. /* Gradually reduce the count so that we catch DoS
  2329. * attempts across multiple batches.
  2330. */
  2331. if (ring->hangcheck.score > 0)
  2332. ring->hangcheck.score--;
  2333. ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
  2334. }
  2335. ring->hangcheck.seqno = seqno;
  2336. ring->hangcheck.acthd = acthd;
  2337. busy_count += busy;
  2338. }
  2339. for_each_ring(ring, dev_priv, i) {
  2340. if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
  2341. DRM_INFO("%s on %s\n",
  2342. stuck[i] ? "stuck" : "no progress",
  2343. ring->name);
  2344. rings_hung++;
  2345. }
  2346. }
  2347. if (rings_hung)
  2348. return i915_handle_error(dev, true, "Ring hung");
  2349. if (busy_count)
  2350. /* Reset timer case chip hangs without another request
  2351. * being added */
  2352. i915_queue_hangcheck(dev);
  2353. }
  2354. void i915_queue_hangcheck(struct drm_device *dev)
  2355. {
  2356. struct i915_gpu_error *e = &to_i915(dev)->gpu_error;
  2357. if (!i915.enable_hangcheck)
  2358. return;
  2359. /* Don't continually defer the hangcheck so that it is always run at
  2360. * least once after work has been scheduled on any ring. Otherwise,
  2361. * we will ignore a hung ring if a second ring is kept busy.
  2362. */
  2363. queue_delayed_work(e->hangcheck_wq, &e->hangcheck_work,
  2364. round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES));
  2365. }
  2366. static void ibx_irq_reset(struct drm_device *dev)
  2367. {
  2368. struct drm_i915_private *dev_priv = dev->dev_private;
  2369. if (HAS_PCH_NOP(dev))
  2370. return;
  2371. GEN5_IRQ_RESET(SDE);
  2372. if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
  2373. I915_WRITE(SERR_INT, 0xffffffff);
  2374. }
  2375. /*
  2376. * SDEIER is also touched by the interrupt handler to work around missed PCH
  2377. * interrupts. Hence we can't update it after the interrupt handler is enabled -
  2378. * instead we unconditionally enable all PCH interrupt sources here, but then
  2379. * only unmask them as needed with SDEIMR.
  2380. *
  2381. * This function needs to be called before interrupts are enabled.
  2382. */
  2383. static void ibx_irq_pre_postinstall(struct drm_device *dev)
  2384. {
  2385. struct drm_i915_private *dev_priv = dev->dev_private;
  2386. if (HAS_PCH_NOP(dev))
  2387. return;
  2388. WARN_ON(I915_READ(SDEIER) != 0);
  2389. I915_WRITE(SDEIER, 0xffffffff);
  2390. POSTING_READ(SDEIER);
  2391. }
  2392. static void gen5_gt_irq_reset(struct drm_device *dev)
  2393. {
  2394. struct drm_i915_private *dev_priv = dev->dev_private;
  2395. GEN5_IRQ_RESET(GT);
  2396. if (INTEL_INFO(dev)->gen >= 6)
  2397. GEN5_IRQ_RESET(GEN6_PM);
  2398. }
  2399. /* drm_dma.h hooks
  2400. */
  2401. static void ironlake_irq_reset(struct drm_device *dev)
  2402. {
  2403. struct drm_i915_private *dev_priv = dev->dev_private;
  2404. I915_WRITE(HWSTAM, 0xffffffff);
  2405. GEN5_IRQ_RESET(DE);
  2406. if (IS_GEN7(dev))
  2407. I915_WRITE(GEN7_ERR_INT, 0xffffffff);
  2408. gen5_gt_irq_reset(dev);
  2409. ibx_irq_reset(dev);
  2410. }
  2411. static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
  2412. {
  2413. enum pipe pipe;
  2414. I915_WRITE(PORT_HOTPLUG_EN, 0);
  2415. I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
  2416. for_each_pipe(dev_priv, pipe)
  2417. I915_WRITE(PIPESTAT(pipe), 0xffff);
  2418. GEN5_IRQ_RESET(VLV_);
  2419. }
  2420. static void valleyview_irq_preinstall(struct drm_device *dev)
  2421. {
  2422. struct drm_i915_private *dev_priv = dev->dev_private;
  2423. /* VLV magic */
  2424. I915_WRITE(VLV_IMR, 0);
  2425. I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
  2426. I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
  2427. I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
  2428. gen5_gt_irq_reset(dev);
  2429. I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
  2430. vlv_display_irq_reset(dev_priv);
  2431. }
  2432. static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
  2433. {
  2434. GEN8_IRQ_RESET_NDX(GT, 0);
  2435. GEN8_IRQ_RESET_NDX(GT, 1);
  2436. GEN8_IRQ_RESET_NDX(GT, 2);
  2437. GEN8_IRQ_RESET_NDX(GT, 3);
  2438. }
  2439. static void gen8_irq_reset(struct drm_device *dev)
  2440. {
  2441. struct drm_i915_private *dev_priv = dev->dev_private;
  2442. int pipe;
  2443. I915_WRITE(GEN8_MASTER_IRQ, 0);
  2444. POSTING_READ(GEN8_MASTER_IRQ);
  2445. gen8_gt_irq_reset(dev_priv);
  2446. for_each_pipe(dev_priv, pipe)
  2447. if (intel_display_power_is_enabled(dev_priv,
  2448. POWER_DOMAIN_PIPE(pipe)))
  2449. GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
  2450. GEN5_IRQ_RESET(GEN8_DE_PORT_);
  2451. GEN5_IRQ_RESET(GEN8_DE_MISC_);
  2452. GEN5_IRQ_RESET(GEN8_PCU_);
  2453. if (HAS_PCH_SPLIT(dev))
  2454. ibx_irq_reset(dev);
  2455. }
  2456. void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
  2457. unsigned int pipe_mask)
  2458. {
  2459. uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
  2460. spin_lock_irq(&dev_priv->irq_lock);
  2461. if (pipe_mask & 1 << PIPE_A)
  2462. GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_A,
  2463. dev_priv->de_irq_mask[PIPE_A],
  2464. ~dev_priv->de_irq_mask[PIPE_A] | extra_ier);
  2465. if (pipe_mask & 1 << PIPE_B)
  2466. GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_B,
  2467. dev_priv->de_irq_mask[PIPE_B],
  2468. ~dev_priv->de_irq_mask[PIPE_B] | extra_ier);
  2469. if (pipe_mask & 1 << PIPE_C)
  2470. GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_C,
  2471. dev_priv->de_irq_mask[PIPE_C],
  2472. ~dev_priv->de_irq_mask[PIPE_C] | extra_ier);
  2473. spin_unlock_irq(&dev_priv->irq_lock);
  2474. }
  2475. static void cherryview_irq_preinstall(struct drm_device *dev)
  2476. {
  2477. struct drm_i915_private *dev_priv = dev->dev_private;
  2478. I915_WRITE(GEN8_MASTER_IRQ, 0);
  2479. POSTING_READ(GEN8_MASTER_IRQ);
  2480. gen8_gt_irq_reset(dev_priv);
  2481. GEN5_IRQ_RESET(GEN8_PCU_);
  2482. I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
  2483. vlv_display_irq_reset(dev_priv);
  2484. }
  2485. static void ibx_hpd_irq_setup(struct drm_device *dev)
  2486. {
  2487. struct drm_i915_private *dev_priv = dev->dev_private;
  2488. struct intel_encoder *intel_encoder;
  2489. u32 hotplug_irqs, hotplug, enabled_irqs = 0;
  2490. if (HAS_PCH_IBX(dev)) {
  2491. hotplug_irqs = SDE_HOTPLUG_MASK;
  2492. for_each_intel_encoder(dev, intel_encoder)
  2493. if (dev_priv->hotplug.stats[intel_encoder->hpd_pin].state == HPD_ENABLED)
  2494. enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
  2495. } else if (HAS_PCH_SPT(dev)) {
  2496. hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
  2497. for_each_intel_encoder(dev, intel_encoder)
  2498. if (dev_priv->hotplug.stats[intel_encoder->hpd_pin].state == HPD_ENABLED)
  2499. enabled_irqs |= hpd_spt[intel_encoder->hpd_pin];
  2500. } else {
  2501. hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
  2502. for_each_intel_encoder(dev, intel_encoder)
  2503. if (dev_priv->hotplug.stats[intel_encoder->hpd_pin].state == HPD_ENABLED)
  2504. enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
  2505. }
  2506. ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
  2507. /*
  2508. * Enable digital hotplug on the PCH, and configure the DP short pulse
  2509. * duration to 2ms (which is the minimum in the Display Port spec)
  2510. *
  2511. * This register is the same on all known PCH chips.
  2512. */
  2513. hotplug = I915_READ(PCH_PORT_HOTPLUG);
  2514. hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
  2515. hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
  2516. hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
  2517. hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
  2518. I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
  2519. /* enable SPT PORTE hot plug */
  2520. if (HAS_PCH_SPT(dev)) {
  2521. hotplug = I915_READ(PCH_PORT_HOTPLUG2);
  2522. hotplug |= PORTE_HOTPLUG_ENABLE;
  2523. I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
  2524. }
  2525. }
  2526. static void bxt_hpd_irq_setup(struct drm_device *dev)
  2527. {
  2528. struct drm_i915_private *dev_priv = dev->dev_private;
  2529. struct intel_encoder *intel_encoder;
  2530. u32 hotplug_port = 0;
  2531. u32 hotplug_ctrl;
  2532. /* Now, enable HPD */
  2533. for_each_intel_encoder(dev, intel_encoder) {
  2534. if (dev_priv->hotplug.stats[intel_encoder->hpd_pin].state
  2535. == HPD_ENABLED)
  2536. hotplug_port |= hpd_bxt[intel_encoder->hpd_pin];
  2537. }
  2538. /* Mask all HPD control bits */
  2539. hotplug_ctrl = I915_READ(BXT_HOTPLUG_CTL) & ~BXT_HOTPLUG_CTL_MASK;
  2540. /* Enable requested port in hotplug control */
  2541. /* TODO: implement (short) HPD support on port A */
  2542. WARN_ON_ONCE(hotplug_port & BXT_DE_PORT_HP_DDIA);
  2543. if (hotplug_port & BXT_DE_PORT_HP_DDIB)
  2544. hotplug_ctrl |= BXT_DDIB_HPD_ENABLE;
  2545. if (hotplug_port & BXT_DE_PORT_HP_DDIC)
  2546. hotplug_ctrl |= BXT_DDIC_HPD_ENABLE;
  2547. I915_WRITE(BXT_HOTPLUG_CTL, hotplug_ctrl);
  2548. /* Unmask DDI hotplug in IMR */
  2549. hotplug_ctrl = I915_READ(GEN8_DE_PORT_IMR) & ~hotplug_port;
  2550. I915_WRITE(GEN8_DE_PORT_IMR, hotplug_ctrl);
  2551. /* Enable DDI hotplug in IER */
  2552. hotplug_ctrl = I915_READ(GEN8_DE_PORT_IER) | hotplug_port;
  2553. I915_WRITE(GEN8_DE_PORT_IER, hotplug_ctrl);
  2554. POSTING_READ(GEN8_DE_PORT_IER);
  2555. }
  2556. static void ibx_irq_postinstall(struct drm_device *dev)
  2557. {
  2558. struct drm_i915_private *dev_priv = dev->dev_private;
  2559. u32 mask;
  2560. if (HAS_PCH_NOP(dev))
  2561. return;
  2562. if (HAS_PCH_IBX(dev))
  2563. mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
  2564. else
  2565. mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
  2566. GEN5_ASSERT_IIR_IS_ZERO(SDEIIR);
  2567. I915_WRITE(SDEIMR, ~mask);
  2568. }
  2569. static void gen5_gt_irq_postinstall(struct drm_device *dev)
  2570. {
  2571. struct drm_i915_private *dev_priv = dev->dev_private;
  2572. u32 pm_irqs, gt_irqs;
  2573. pm_irqs = gt_irqs = 0;
  2574. dev_priv->gt_irq_mask = ~0;
  2575. if (HAS_L3_DPF(dev)) {
  2576. /* L3 parity interrupt is always unmasked. */
  2577. dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
  2578. gt_irqs |= GT_PARITY_ERROR(dev);
  2579. }
  2580. gt_irqs |= GT_RENDER_USER_INTERRUPT;
  2581. if (IS_GEN5(dev)) {
  2582. gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
  2583. ILK_BSD_USER_INTERRUPT;
  2584. } else {
  2585. gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
  2586. }
  2587. GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
  2588. if (INTEL_INFO(dev)->gen >= 6) {
  2589. /*
  2590. * RPS interrupts will get enabled/disabled on demand when RPS
  2591. * itself is enabled/disabled.
  2592. */
  2593. if (HAS_VEBOX(dev))
  2594. pm_irqs |= PM_VEBOX_USER_INTERRUPT;
  2595. dev_priv->pm_irq_mask = 0xffffffff;
  2596. GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
  2597. }
  2598. }
  2599. static int ironlake_irq_postinstall(struct drm_device *dev)
  2600. {
  2601. struct drm_i915_private *dev_priv = dev->dev_private;
  2602. u32 display_mask, extra_mask;
  2603. if (INTEL_INFO(dev)->gen >= 7) {
  2604. display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
  2605. DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
  2606. DE_PLANEB_FLIP_DONE_IVB |
  2607. DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
  2608. extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
  2609. DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
  2610. } else {
  2611. display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
  2612. DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
  2613. DE_AUX_CHANNEL_A |
  2614. DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
  2615. DE_POISON);
  2616. extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
  2617. DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
  2618. }
  2619. dev_priv->irq_mask = ~display_mask;
  2620. I915_WRITE(HWSTAM, 0xeffe);
  2621. ibx_irq_pre_postinstall(dev);
  2622. GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
  2623. gen5_gt_irq_postinstall(dev);
  2624. ibx_irq_postinstall(dev);
  2625. if (IS_IRONLAKE_M(dev)) {
  2626. /* Enable PCU event interrupts
  2627. *
  2628. * spinlocking not required here for correctness since interrupt
  2629. * setup is guaranteed to run in single-threaded context. But we
  2630. * need it to make the assert_spin_locked happy. */
  2631. spin_lock_irq(&dev_priv->irq_lock);
  2632. ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
  2633. spin_unlock_irq(&dev_priv->irq_lock);
  2634. }
  2635. return 0;
  2636. }
  2637. static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
  2638. {
  2639. u32 pipestat_mask;
  2640. u32 iir_mask;
  2641. enum pipe pipe;
  2642. pipestat_mask = PIPESTAT_INT_STATUS_MASK |
  2643. PIPE_FIFO_UNDERRUN_STATUS;
  2644. for_each_pipe(dev_priv, pipe)
  2645. I915_WRITE(PIPESTAT(pipe), pipestat_mask);
  2646. POSTING_READ(PIPESTAT(PIPE_A));
  2647. pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
  2648. PIPE_CRC_DONE_INTERRUPT_STATUS;
  2649. i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
  2650. for_each_pipe(dev_priv, pipe)
  2651. i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
  2652. iir_mask = I915_DISPLAY_PORT_INTERRUPT |
  2653. I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  2654. I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
  2655. if (IS_CHERRYVIEW(dev_priv))
  2656. iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
  2657. dev_priv->irq_mask &= ~iir_mask;
  2658. I915_WRITE(VLV_IIR, iir_mask);
  2659. I915_WRITE(VLV_IIR, iir_mask);
  2660. I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
  2661. I915_WRITE(VLV_IMR, dev_priv->irq_mask);
  2662. POSTING_READ(VLV_IMR);
  2663. }
  2664. static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
  2665. {
  2666. u32 pipestat_mask;
  2667. u32 iir_mask;
  2668. enum pipe pipe;
  2669. iir_mask = I915_DISPLAY_PORT_INTERRUPT |
  2670. I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  2671. I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
  2672. if (IS_CHERRYVIEW(dev_priv))
  2673. iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
  2674. dev_priv->irq_mask |= iir_mask;
  2675. I915_WRITE(VLV_IMR, dev_priv->irq_mask);
  2676. I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
  2677. I915_WRITE(VLV_IIR, iir_mask);
  2678. I915_WRITE(VLV_IIR, iir_mask);
  2679. POSTING_READ(VLV_IIR);
  2680. pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
  2681. PIPE_CRC_DONE_INTERRUPT_STATUS;
  2682. i915_disable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
  2683. for_each_pipe(dev_priv, pipe)
  2684. i915_disable_pipestat(dev_priv, pipe, pipestat_mask);
  2685. pipestat_mask = PIPESTAT_INT_STATUS_MASK |
  2686. PIPE_FIFO_UNDERRUN_STATUS;
  2687. for_each_pipe(dev_priv, pipe)
  2688. I915_WRITE(PIPESTAT(pipe), pipestat_mask);
  2689. POSTING_READ(PIPESTAT(PIPE_A));
  2690. }
  2691. void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
  2692. {
  2693. assert_spin_locked(&dev_priv->irq_lock);
  2694. if (dev_priv->display_irqs_enabled)
  2695. return;
  2696. dev_priv->display_irqs_enabled = true;
  2697. if (intel_irqs_enabled(dev_priv))
  2698. valleyview_display_irqs_install(dev_priv);
  2699. }
  2700. void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
  2701. {
  2702. assert_spin_locked(&dev_priv->irq_lock);
  2703. if (!dev_priv->display_irqs_enabled)
  2704. return;
  2705. dev_priv->display_irqs_enabled = false;
  2706. if (intel_irqs_enabled(dev_priv))
  2707. valleyview_display_irqs_uninstall(dev_priv);
  2708. }
  2709. static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
  2710. {
  2711. dev_priv->irq_mask = ~0;
  2712. I915_WRITE(PORT_HOTPLUG_EN, 0);
  2713. POSTING_READ(PORT_HOTPLUG_EN);
  2714. I915_WRITE(VLV_IIR, 0xffffffff);
  2715. I915_WRITE(VLV_IIR, 0xffffffff);
  2716. I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
  2717. I915_WRITE(VLV_IMR, dev_priv->irq_mask);
  2718. POSTING_READ(VLV_IMR);
  2719. /* Interrupt setup is already guaranteed to be single-threaded, this is
  2720. * just to make the assert_spin_locked check happy. */
  2721. spin_lock_irq(&dev_priv->irq_lock);
  2722. if (dev_priv->display_irqs_enabled)
  2723. valleyview_display_irqs_install(dev_priv);
  2724. spin_unlock_irq(&dev_priv->irq_lock);
  2725. }
  2726. static int valleyview_irq_postinstall(struct drm_device *dev)
  2727. {
  2728. struct drm_i915_private *dev_priv = dev->dev_private;
  2729. vlv_display_irq_postinstall(dev_priv);
  2730. gen5_gt_irq_postinstall(dev);
  2731. /* ack & enable invalid PTE error interrupts */
  2732. #if 0 /* FIXME: add support to irq handler for checking these bits */
  2733. I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
  2734. I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
  2735. #endif
  2736. I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
  2737. return 0;
  2738. }
  2739. static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
  2740. {
  2741. /* These are interrupts we'll toggle with the ring mask register */
  2742. uint32_t gt_interrupts[] = {
  2743. GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
  2744. GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
  2745. GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
  2746. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
  2747. GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
  2748. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
  2749. GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
  2750. GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
  2751. GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
  2752. 0,
  2753. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
  2754. GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
  2755. };
  2756. dev_priv->pm_irq_mask = 0xffffffff;
  2757. GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
  2758. GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
  2759. /*
  2760. * RPS interrupts will get enabled/disabled on demand when RPS itself
  2761. * is enabled/disabled.
  2762. */
  2763. GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
  2764. GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
  2765. }
  2766. static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
  2767. {
  2768. uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
  2769. uint32_t de_pipe_enables;
  2770. int pipe;
  2771. u32 de_port_en = GEN8_AUX_CHANNEL_A;
  2772. if (IS_GEN9(dev_priv)) {
  2773. de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
  2774. GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
  2775. de_port_en |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
  2776. GEN9_AUX_CHANNEL_D;
  2777. if (IS_BROXTON(dev_priv))
  2778. de_port_en |= BXT_DE_PORT_GMBUS;
  2779. } else
  2780. de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
  2781. GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
  2782. de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
  2783. GEN8_PIPE_FIFO_UNDERRUN;
  2784. dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
  2785. dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
  2786. dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
  2787. for_each_pipe(dev_priv, pipe)
  2788. if (intel_display_power_is_enabled(dev_priv,
  2789. POWER_DOMAIN_PIPE(pipe)))
  2790. GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
  2791. dev_priv->de_irq_mask[pipe],
  2792. de_pipe_enables);
  2793. GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_en, de_port_en);
  2794. }
  2795. static int gen8_irq_postinstall(struct drm_device *dev)
  2796. {
  2797. struct drm_i915_private *dev_priv = dev->dev_private;
  2798. if (HAS_PCH_SPLIT(dev))
  2799. ibx_irq_pre_postinstall(dev);
  2800. gen8_gt_irq_postinstall(dev_priv);
  2801. gen8_de_irq_postinstall(dev_priv);
  2802. if (HAS_PCH_SPLIT(dev))
  2803. ibx_irq_postinstall(dev);
  2804. I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
  2805. POSTING_READ(GEN8_MASTER_IRQ);
  2806. return 0;
  2807. }
  2808. static int cherryview_irq_postinstall(struct drm_device *dev)
  2809. {
  2810. struct drm_i915_private *dev_priv = dev->dev_private;
  2811. vlv_display_irq_postinstall(dev_priv);
  2812. gen8_gt_irq_postinstall(dev_priv);
  2813. I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
  2814. POSTING_READ(GEN8_MASTER_IRQ);
  2815. return 0;
  2816. }
  2817. static void gen8_irq_uninstall(struct drm_device *dev)
  2818. {
  2819. struct drm_i915_private *dev_priv = dev->dev_private;
  2820. if (!dev_priv)
  2821. return;
  2822. gen8_irq_reset(dev);
  2823. }
  2824. static void vlv_display_irq_uninstall(struct drm_i915_private *dev_priv)
  2825. {
  2826. /* Interrupt setup is already guaranteed to be single-threaded, this is
  2827. * just to make the assert_spin_locked check happy. */
  2828. spin_lock_irq(&dev_priv->irq_lock);
  2829. if (dev_priv->display_irqs_enabled)
  2830. valleyview_display_irqs_uninstall(dev_priv);
  2831. spin_unlock_irq(&dev_priv->irq_lock);
  2832. vlv_display_irq_reset(dev_priv);
  2833. dev_priv->irq_mask = ~0;
  2834. }
  2835. static void valleyview_irq_uninstall(struct drm_device *dev)
  2836. {
  2837. struct drm_i915_private *dev_priv = dev->dev_private;
  2838. if (!dev_priv)
  2839. return;
  2840. I915_WRITE(VLV_MASTER_IER, 0);
  2841. gen5_gt_irq_reset(dev);
  2842. I915_WRITE(HWSTAM, 0xffffffff);
  2843. vlv_display_irq_uninstall(dev_priv);
  2844. }
  2845. static void cherryview_irq_uninstall(struct drm_device *dev)
  2846. {
  2847. struct drm_i915_private *dev_priv = dev->dev_private;
  2848. if (!dev_priv)
  2849. return;
  2850. I915_WRITE(GEN8_MASTER_IRQ, 0);
  2851. POSTING_READ(GEN8_MASTER_IRQ);
  2852. gen8_gt_irq_reset(dev_priv);
  2853. GEN5_IRQ_RESET(GEN8_PCU_);
  2854. vlv_display_irq_uninstall(dev_priv);
  2855. }
  2856. static void ironlake_irq_uninstall(struct drm_device *dev)
  2857. {
  2858. struct drm_i915_private *dev_priv = dev->dev_private;
  2859. if (!dev_priv)
  2860. return;
  2861. ironlake_irq_reset(dev);
  2862. }
  2863. static void i8xx_irq_preinstall(struct drm_device * dev)
  2864. {
  2865. struct drm_i915_private *dev_priv = dev->dev_private;
  2866. int pipe;
  2867. for_each_pipe(dev_priv, pipe)
  2868. I915_WRITE(PIPESTAT(pipe), 0);
  2869. I915_WRITE16(IMR, 0xffff);
  2870. I915_WRITE16(IER, 0x0);
  2871. POSTING_READ16(IER);
  2872. }
  2873. static int i8xx_irq_postinstall(struct drm_device *dev)
  2874. {
  2875. struct drm_i915_private *dev_priv = dev->dev_private;
  2876. I915_WRITE16(EMR,
  2877. ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
  2878. /* Unmask the interrupts that we always want on. */
  2879. dev_priv->irq_mask =
  2880. ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  2881. I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
  2882. I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
  2883. I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
  2884. I915_WRITE16(IMR, dev_priv->irq_mask);
  2885. I915_WRITE16(IER,
  2886. I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  2887. I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
  2888. I915_USER_INTERRUPT);
  2889. POSTING_READ16(IER);
  2890. /* Interrupt setup is already guaranteed to be single-threaded, this is
  2891. * just to make the assert_spin_locked check happy. */
  2892. spin_lock_irq(&dev_priv->irq_lock);
  2893. i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
  2894. i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
  2895. spin_unlock_irq(&dev_priv->irq_lock);
  2896. return 0;
  2897. }
  2898. /*
  2899. * Returns true when a page flip has completed.
  2900. */
  2901. static bool i8xx_handle_vblank(struct drm_device *dev,
  2902. int plane, int pipe, u32 iir)
  2903. {
  2904. struct drm_i915_private *dev_priv = dev->dev_private;
  2905. u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
  2906. if (!intel_pipe_handle_vblank(dev, pipe))
  2907. return false;
  2908. if ((iir & flip_pending) == 0)
  2909. goto check_page_flip;
  2910. /* We detect FlipDone by looking for the change in PendingFlip from '1'
  2911. * to '0' on the following vblank, i.e. IIR has the Pendingflip
  2912. * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
  2913. * the flip is completed (no longer pending). Since this doesn't raise
  2914. * an interrupt per se, we watch for the change at vblank.
  2915. */
  2916. if (I915_READ16(ISR) & flip_pending)
  2917. goto check_page_flip;
  2918. intel_prepare_page_flip(dev, plane);
  2919. intel_finish_page_flip(dev, pipe);
  2920. return true;
  2921. check_page_flip:
  2922. intel_check_page_flip(dev, pipe);
  2923. return false;
  2924. }
  2925. static irqreturn_t i8xx_irq_handler(int irq, void *arg)
  2926. {
  2927. struct drm_device *dev = arg;
  2928. struct drm_i915_private *dev_priv = dev->dev_private;
  2929. u16 iir, new_iir;
  2930. u32 pipe_stats[2];
  2931. int pipe;
  2932. u16 flip_mask =
  2933. I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
  2934. I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
  2935. if (!intel_irqs_enabled(dev_priv))
  2936. return IRQ_NONE;
  2937. iir = I915_READ16(IIR);
  2938. if (iir == 0)
  2939. return IRQ_NONE;
  2940. while (iir & ~flip_mask) {
  2941. /* Can't rely on pipestat interrupt bit in iir as it might
  2942. * have been cleared after the pipestat interrupt was received.
  2943. * It doesn't set the bit in iir again, but it still produces
  2944. * interrupts (for non-MSI).
  2945. */
  2946. spin_lock(&dev_priv->irq_lock);
  2947. if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
  2948. DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
  2949. for_each_pipe(dev_priv, pipe) {
  2950. int reg = PIPESTAT(pipe);
  2951. pipe_stats[pipe] = I915_READ(reg);
  2952. /*
  2953. * Clear the PIPE*STAT regs before the IIR
  2954. */
  2955. if (pipe_stats[pipe] & 0x8000ffff)
  2956. I915_WRITE(reg, pipe_stats[pipe]);
  2957. }
  2958. spin_unlock(&dev_priv->irq_lock);
  2959. I915_WRITE16(IIR, iir & ~flip_mask);
  2960. new_iir = I915_READ16(IIR); /* Flush posted writes */
  2961. if (iir & I915_USER_INTERRUPT)
  2962. notify_ring(&dev_priv->ring[RCS]);
  2963. for_each_pipe(dev_priv, pipe) {
  2964. int plane = pipe;
  2965. if (HAS_FBC(dev))
  2966. plane = !plane;
  2967. if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
  2968. i8xx_handle_vblank(dev, plane, pipe, iir))
  2969. flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
  2970. if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
  2971. i9xx_pipe_crc_irq_handler(dev, pipe);
  2972. if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
  2973. intel_cpu_fifo_underrun_irq_handler(dev_priv,
  2974. pipe);
  2975. }
  2976. iir = new_iir;
  2977. }
  2978. return IRQ_HANDLED;
  2979. }
  2980. static void i8xx_irq_uninstall(struct drm_device * dev)
  2981. {
  2982. struct drm_i915_private *dev_priv = dev->dev_private;
  2983. int pipe;
  2984. for_each_pipe(dev_priv, pipe) {
  2985. /* Clear enable bits; then clear status bits */
  2986. I915_WRITE(PIPESTAT(pipe), 0);
  2987. I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
  2988. }
  2989. I915_WRITE16(IMR, 0xffff);
  2990. I915_WRITE16(IER, 0x0);
  2991. I915_WRITE16(IIR, I915_READ16(IIR));
  2992. }
  2993. static void i915_irq_preinstall(struct drm_device * dev)
  2994. {
  2995. struct drm_i915_private *dev_priv = dev->dev_private;
  2996. int pipe;
  2997. if (I915_HAS_HOTPLUG(dev)) {
  2998. I915_WRITE(PORT_HOTPLUG_EN, 0);
  2999. I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
  3000. }
  3001. I915_WRITE16(HWSTAM, 0xeffe);
  3002. for_each_pipe(dev_priv, pipe)
  3003. I915_WRITE(PIPESTAT(pipe), 0);
  3004. I915_WRITE(IMR, 0xffffffff);
  3005. I915_WRITE(IER, 0x0);
  3006. POSTING_READ(IER);
  3007. }
  3008. static int i915_irq_postinstall(struct drm_device *dev)
  3009. {
  3010. struct drm_i915_private *dev_priv = dev->dev_private;
  3011. u32 enable_mask;
  3012. I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
  3013. /* Unmask the interrupts that we always want on. */
  3014. dev_priv->irq_mask =
  3015. ~(I915_ASLE_INTERRUPT |
  3016. I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  3017. I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
  3018. I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
  3019. I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
  3020. enable_mask =
  3021. I915_ASLE_INTERRUPT |
  3022. I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  3023. I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
  3024. I915_USER_INTERRUPT;
  3025. if (I915_HAS_HOTPLUG(dev)) {
  3026. I915_WRITE(PORT_HOTPLUG_EN, 0);
  3027. POSTING_READ(PORT_HOTPLUG_EN);
  3028. /* Enable in IER... */
  3029. enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
  3030. /* and unmask in IMR */
  3031. dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
  3032. }
  3033. I915_WRITE(IMR, dev_priv->irq_mask);
  3034. I915_WRITE(IER, enable_mask);
  3035. POSTING_READ(IER);
  3036. i915_enable_asle_pipestat(dev);
  3037. /* Interrupt setup is already guaranteed to be single-threaded, this is
  3038. * just to make the assert_spin_locked check happy. */
  3039. spin_lock_irq(&dev_priv->irq_lock);
  3040. i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
  3041. i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
  3042. spin_unlock_irq(&dev_priv->irq_lock);
  3043. return 0;
  3044. }
  3045. /*
  3046. * Returns true when a page flip has completed.
  3047. */
  3048. static bool i915_handle_vblank(struct drm_device *dev,
  3049. int plane, int pipe, u32 iir)
  3050. {
  3051. struct drm_i915_private *dev_priv = dev->dev_private;
  3052. u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
  3053. if (!intel_pipe_handle_vblank(dev, pipe))
  3054. return false;
  3055. if ((iir & flip_pending) == 0)
  3056. goto check_page_flip;
  3057. /* We detect FlipDone by looking for the change in PendingFlip from '1'
  3058. * to '0' on the following vblank, i.e. IIR has the Pendingflip
  3059. * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
  3060. * the flip is completed (no longer pending). Since this doesn't raise
  3061. * an interrupt per se, we watch for the change at vblank.
  3062. */
  3063. if (I915_READ(ISR) & flip_pending)
  3064. goto check_page_flip;
  3065. intel_prepare_page_flip(dev, plane);
  3066. intel_finish_page_flip(dev, pipe);
  3067. return true;
  3068. check_page_flip:
  3069. intel_check_page_flip(dev, pipe);
  3070. return false;
  3071. }
  3072. static irqreturn_t i915_irq_handler(int irq, void *arg)
  3073. {
  3074. struct drm_device *dev = arg;
  3075. struct drm_i915_private *dev_priv = dev->dev_private;
  3076. u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
  3077. u32 flip_mask =
  3078. I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
  3079. I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
  3080. int pipe, ret = IRQ_NONE;
  3081. if (!intel_irqs_enabled(dev_priv))
  3082. return IRQ_NONE;
  3083. iir = I915_READ(IIR);
  3084. do {
  3085. bool irq_received = (iir & ~flip_mask) != 0;
  3086. bool blc_event = false;
  3087. /* Can't rely on pipestat interrupt bit in iir as it might
  3088. * have been cleared after the pipestat interrupt was received.
  3089. * It doesn't set the bit in iir again, but it still produces
  3090. * interrupts (for non-MSI).
  3091. */
  3092. spin_lock(&dev_priv->irq_lock);
  3093. if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
  3094. DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
  3095. for_each_pipe(dev_priv, pipe) {
  3096. int reg = PIPESTAT(pipe);
  3097. pipe_stats[pipe] = I915_READ(reg);
  3098. /* Clear the PIPE*STAT regs before the IIR */
  3099. if (pipe_stats[pipe] & 0x8000ffff) {
  3100. I915_WRITE(reg, pipe_stats[pipe]);
  3101. irq_received = true;
  3102. }
  3103. }
  3104. spin_unlock(&dev_priv->irq_lock);
  3105. if (!irq_received)
  3106. break;
  3107. /* Consume port. Then clear IIR or we'll miss events */
  3108. if (I915_HAS_HOTPLUG(dev) &&
  3109. iir & I915_DISPLAY_PORT_INTERRUPT)
  3110. i9xx_hpd_irq_handler(dev);
  3111. I915_WRITE(IIR, iir & ~flip_mask);
  3112. new_iir = I915_READ(IIR); /* Flush posted writes */
  3113. if (iir & I915_USER_INTERRUPT)
  3114. notify_ring(&dev_priv->ring[RCS]);
  3115. for_each_pipe(dev_priv, pipe) {
  3116. int plane = pipe;
  3117. if (HAS_FBC(dev))
  3118. plane = !plane;
  3119. if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
  3120. i915_handle_vblank(dev, plane, pipe, iir))
  3121. flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
  3122. if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
  3123. blc_event = true;
  3124. if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
  3125. i9xx_pipe_crc_irq_handler(dev, pipe);
  3126. if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
  3127. intel_cpu_fifo_underrun_irq_handler(dev_priv,
  3128. pipe);
  3129. }
  3130. if (blc_event || (iir & I915_ASLE_INTERRUPT))
  3131. intel_opregion_asle_intr(dev);
  3132. /* With MSI, interrupts are only generated when iir
  3133. * transitions from zero to nonzero. If another bit got
  3134. * set while we were handling the existing iir bits, then
  3135. * we would never get another interrupt.
  3136. *
  3137. * This is fine on non-MSI as well, as if we hit this path
  3138. * we avoid exiting the interrupt handler only to generate
  3139. * another one.
  3140. *
  3141. * Note that for MSI this could cause a stray interrupt report
  3142. * if an interrupt landed in the time between writing IIR and
  3143. * the posting read. This should be rare enough to never
  3144. * trigger the 99% of 100,000 interrupts test for disabling
  3145. * stray interrupts.
  3146. */
  3147. ret = IRQ_HANDLED;
  3148. iir = new_iir;
  3149. } while (iir & ~flip_mask);
  3150. return ret;
  3151. }
  3152. static void i915_irq_uninstall(struct drm_device * dev)
  3153. {
  3154. struct drm_i915_private *dev_priv = dev->dev_private;
  3155. int pipe;
  3156. if (I915_HAS_HOTPLUG(dev)) {
  3157. I915_WRITE(PORT_HOTPLUG_EN, 0);
  3158. I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
  3159. }
  3160. I915_WRITE16(HWSTAM, 0xffff);
  3161. for_each_pipe(dev_priv, pipe) {
  3162. /* Clear enable bits; then clear status bits */
  3163. I915_WRITE(PIPESTAT(pipe), 0);
  3164. I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
  3165. }
  3166. I915_WRITE(IMR, 0xffffffff);
  3167. I915_WRITE(IER, 0x0);
  3168. I915_WRITE(IIR, I915_READ(IIR));
  3169. }
  3170. static void i965_irq_preinstall(struct drm_device * dev)
  3171. {
  3172. struct drm_i915_private *dev_priv = dev->dev_private;
  3173. int pipe;
  3174. I915_WRITE(PORT_HOTPLUG_EN, 0);
  3175. I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
  3176. I915_WRITE(HWSTAM, 0xeffe);
  3177. for_each_pipe(dev_priv, pipe)
  3178. I915_WRITE(PIPESTAT(pipe), 0);
  3179. I915_WRITE(IMR, 0xffffffff);
  3180. I915_WRITE(IER, 0x0);
  3181. POSTING_READ(IER);
  3182. }
  3183. static int i965_irq_postinstall(struct drm_device *dev)
  3184. {
  3185. struct drm_i915_private *dev_priv = dev->dev_private;
  3186. u32 enable_mask;
  3187. u32 error_mask;
  3188. /* Unmask the interrupts that we always want on. */
  3189. dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
  3190. I915_DISPLAY_PORT_INTERRUPT |
  3191. I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
  3192. I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
  3193. I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
  3194. I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
  3195. I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
  3196. enable_mask = ~dev_priv->irq_mask;
  3197. enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
  3198. I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
  3199. enable_mask |= I915_USER_INTERRUPT;
  3200. if (IS_G4X(dev))
  3201. enable_mask |= I915_BSD_USER_INTERRUPT;
  3202. /* Interrupt setup is already guaranteed to be single-threaded, this is
  3203. * just to make the assert_spin_locked check happy. */
  3204. spin_lock_irq(&dev_priv->irq_lock);
  3205. i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
  3206. i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
  3207. i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
  3208. spin_unlock_irq(&dev_priv->irq_lock);
  3209. /*
  3210. * Enable some error detection, note the instruction error mask
  3211. * bit is reserved, so we leave it masked.
  3212. */
  3213. if (IS_G4X(dev)) {
  3214. error_mask = ~(GM45_ERROR_PAGE_TABLE |
  3215. GM45_ERROR_MEM_PRIV |
  3216. GM45_ERROR_CP_PRIV |
  3217. I915_ERROR_MEMORY_REFRESH);
  3218. } else {
  3219. error_mask = ~(I915_ERROR_PAGE_TABLE |
  3220. I915_ERROR_MEMORY_REFRESH);
  3221. }
  3222. I915_WRITE(EMR, error_mask);
  3223. I915_WRITE(IMR, dev_priv->irq_mask);
  3224. I915_WRITE(IER, enable_mask);
  3225. POSTING_READ(IER);
  3226. I915_WRITE(PORT_HOTPLUG_EN, 0);
  3227. POSTING_READ(PORT_HOTPLUG_EN);
  3228. i915_enable_asle_pipestat(dev);
  3229. return 0;
  3230. }
  3231. static void i915_hpd_irq_setup(struct drm_device *dev)
  3232. {
  3233. struct drm_i915_private *dev_priv = dev->dev_private;
  3234. struct intel_encoder *intel_encoder;
  3235. u32 hotplug_en;
  3236. assert_spin_locked(&dev_priv->irq_lock);
  3237. hotplug_en = I915_READ(PORT_HOTPLUG_EN);
  3238. hotplug_en &= ~HOTPLUG_INT_EN_MASK;
  3239. /* Note HDMI and DP share hotplug bits */
  3240. /* enable bits are the same for all generations */
  3241. for_each_intel_encoder(dev, intel_encoder)
  3242. if (dev_priv->hotplug.stats[intel_encoder->hpd_pin].state == HPD_ENABLED)
  3243. hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
  3244. /* Programming the CRT detection parameters tends
  3245. to generate a spurious hotplug event about three
  3246. seconds later. So just do it once.
  3247. */
  3248. if (IS_G4X(dev))
  3249. hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
  3250. hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
  3251. hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
  3252. /* Ignore TV since it's buggy */
  3253. I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
  3254. }
  3255. static irqreturn_t i965_irq_handler(int irq, void *arg)
  3256. {
  3257. struct drm_device *dev = arg;
  3258. struct drm_i915_private *dev_priv = dev->dev_private;
  3259. u32 iir, new_iir;
  3260. u32 pipe_stats[I915_MAX_PIPES];
  3261. int ret = IRQ_NONE, pipe;
  3262. u32 flip_mask =
  3263. I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
  3264. I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
  3265. if (!intel_irqs_enabled(dev_priv))
  3266. return IRQ_NONE;
  3267. iir = I915_READ(IIR);
  3268. for (;;) {
  3269. bool irq_received = (iir & ~flip_mask) != 0;
  3270. bool blc_event = false;
  3271. /* Can't rely on pipestat interrupt bit in iir as it might
  3272. * have been cleared after the pipestat interrupt was received.
  3273. * It doesn't set the bit in iir again, but it still produces
  3274. * interrupts (for non-MSI).
  3275. */
  3276. spin_lock(&dev_priv->irq_lock);
  3277. if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
  3278. DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
  3279. for_each_pipe(dev_priv, pipe) {
  3280. int reg = PIPESTAT(pipe);
  3281. pipe_stats[pipe] = I915_READ(reg);
  3282. /*
  3283. * Clear the PIPE*STAT regs before the IIR
  3284. */
  3285. if (pipe_stats[pipe] & 0x8000ffff) {
  3286. I915_WRITE(reg, pipe_stats[pipe]);
  3287. irq_received = true;
  3288. }
  3289. }
  3290. spin_unlock(&dev_priv->irq_lock);
  3291. if (!irq_received)
  3292. break;
  3293. ret = IRQ_HANDLED;
  3294. /* Consume port. Then clear IIR or we'll miss events */
  3295. if (iir & I915_DISPLAY_PORT_INTERRUPT)
  3296. i9xx_hpd_irq_handler(dev);
  3297. I915_WRITE(IIR, iir & ~flip_mask);
  3298. new_iir = I915_READ(IIR); /* Flush posted writes */
  3299. if (iir & I915_USER_INTERRUPT)
  3300. notify_ring(&dev_priv->ring[RCS]);
  3301. if (iir & I915_BSD_USER_INTERRUPT)
  3302. notify_ring(&dev_priv->ring[VCS]);
  3303. for_each_pipe(dev_priv, pipe) {
  3304. if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
  3305. i915_handle_vblank(dev, pipe, pipe, iir))
  3306. flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
  3307. if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
  3308. blc_event = true;
  3309. if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
  3310. i9xx_pipe_crc_irq_handler(dev, pipe);
  3311. if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
  3312. intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
  3313. }
  3314. if (blc_event || (iir & I915_ASLE_INTERRUPT))
  3315. intel_opregion_asle_intr(dev);
  3316. if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
  3317. gmbus_irq_handler(dev);
  3318. /* With MSI, interrupts are only generated when iir
  3319. * transitions from zero to nonzero. If another bit got
  3320. * set while we were handling the existing iir bits, then
  3321. * we would never get another interrupt.
  3322. *
  3323. * This is fine on non-MSI as well, as if we hit this path
  3324. * we avoid exiting the interrupt handler only to generate
  3325. * another one.
  3326. *
  3327. * Note that for MSI this could cause a stray interrupt report
  3328. * if an interrupt landed in the time between writing IIR and
  3329. * the posting read. This should be rare enough to never
  3330. * trigger the 99% of 100,000 interrupts test for disabling
  3331. * stray interrupts.
  3332. */
  3333. iir = new_iir;
  3334. }
  3335. return ret;
  3336. }
  3337. static void i965_irq_uninstall(struct drm_device * dev)
  3338. {
  3339. struct drm_i915_private *dev_priv = dev->dev_private;
  3340. int pipe;
  3341. if (!dev_priv)
  3342. return;
  3343. I915_WRITE(PORT_HOTPLUG_EN, 0);
  3344. I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
  3345. I915_WRITE(HWSTAM, 0xffffffff);
  3346. for_each_pipe(dev_priv, pipe)
  3347. I915_WRITE(PIPESTAT(pipe), 0);
  3348. I915_WRITE(IMR, 0xffffffff);
  3349. I915_WRITE(IER, 0x0);
  3350. for_each_pipe(dev_priv, pipe)
  3351. I915_WRITE(PIPESTAT(pipe),
  3352. I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
  3353. I915_WRITE(IIR, I915_READ(IIR));
  3354. }
  3355. /**
  3356. * intel_irq_init - initializes irq support
  3357. * @dev_priv: i915 device instance
  3358. *
  3359. * This function initializes all the irq support including work items, timers
  3360. * and all the vtables. It does not setup the interrupt itself though.
  3361. */
  3362. void intel_irq_init(struct drm_i915_private *dev_priv)
  3363. {
  3364. struct drm_device *dev = dev_priv->dev;
  3365. intel_hpd_init_work(dev_priv);
  3366. INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
  3367. INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
  3368. /* Let's track the enabled rps events */
  3369. if (IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
  3370. /* WaGsvRC0ResidencyMethod:vlv */
  3371. dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
  3372. else
  3373. dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
  3374. INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
  3375. i915_hangcheck_elapsed);
  3376. pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
  3377. if (IS_GEN2(dev_priv)) {
  3378. dev->max_vblank_count = 0;
  3379. dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
  3380. } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
  3381. dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
  3382. dev->driver->get_vblank_counter = gm45_get_vblank_counter;
  3383. } else {
  3384. dev->driver->get_vblank_counter = i915_get_vblank_counter;
  3385. dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
  3386. }
  3387. /*
  3388. * Opt out of the vblank disable timer on everything except gen2.
  3389. * Gen2 doesn't have a hardware frame counter and so depends on
  3390. * vblank interrupts to produce sane vblank seuquence numbers.
  3391. */
  3392. if (!IS_GEN2(dev_priv))
  3393. dev->vblank_disable_immediate = true;
  3394. dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
  3395. dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
  3396. if (IS_CHERRYVIEW(dev_priv)) {
  3397. dev->driver->irq_handler = cherryview_irq_handler;
  3398. dev->driver->irq_preinstall = cherryview_irq_preinstall;
  3399. dev->driver->irq_postinstall = cherryview_irq_postinstall;
  3400. dev->driver->irq_uninstall = cherryview_irq_uninstall;
  3401. dev->driver->enable_vblank = valleyview_enable_vblank;
  3402. dev->driver->disable_vblank = valleyview_disable_vblank;
  3403. dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
  3404. } else if (IS_VALLEYVIEW(dev_priv)) {
  3405. dev->driver->irq_handler = valleyview_irq_handler;
  3406. dev->driver->irq_preinstall = valleyview_irq_preinstall;
  3407. dev->driver->irq_postinstall = valleyview_irq_postinstall;
  3408. dev->driver->irq_uninstall = valleyview_irq_uninstall;
  3409. dev->driver->enable_vblank = valleyview_enable_vblank;
  3410. dev->driver->disable_vblank = valleyview_disable_vblank;
  3411. dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
  3412. } else if (INTEL_INFO(dev_priv)->gen >= 8) {
  3413. dev->driver->irq_handler = gen8_irq_handler;
  3414. dev->driver->irq_preinstall = gen8_irq_reset;
  3415. dev->driver->irq_postinstall = gen8_irq_postinstall;
  3416. dev->driver->irq_uninstall = gen8_irq_uninstall;
  3417. dev->driver->enable_vblank = gen8_enable_vblank;
  3418. dev->driver->disable_vblank = gen8_disable_vblank;
  3419. if (HAS_PCH_SPLIT(dev))
  3420. dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
  3421. else
  3422. dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
  3423. } else if (HAS_PCH_SPLIT(dev)) {
  3424. dev->driver->irq_handler = ironlake_irq_handler;
  3425. dev->driver->irq_preinstall = ironlake_irq_reset;
  3426. dev->driver->irq_postinstall = ironlake_irq_postinstall;
  3427. dev->driver->irq_uninstall = ironlake_irq_uninstall;
  3428. dev->driver->enable_vblank = ironlake_enable_vblank;
  3429. dev->driver->disable_vblank = ironlake_disable_vblank;
  3430. dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
  3431. } else {
  3432. if (INTEL_INFO(dev_priv)->gen == 2) {
  3433. dev->driver->irq_preinstall = i8xx_irq_preinstall;
  3434. dev->driver->irq_postinstall = i8xx_irq_postinstall;
  3435. dev->driver->irq_handler = i8xx_irq_handler;
  3436. dev->driver->irq_uninstall = i8xx_irq_uninstall;
  3437. } else if (INTEL_INFO(dev_priv)->gen == 3) {
  3438. dev->driver->irq_preinstall = i915_irq_preinstall;
  3439. dev->driver->irq_postinstall = i915_irq_postinstall;
  3440. dev->driver->irq_uninstall = i915_irq_uninstall;
  3441. dev->driver->irq_handler = i915_irq_handler;
  3442. } else {
  3443. dev->driver->irq_preinstall = i965_irq_preinstall;
  3444. dev->driver->irq_postinstall = i965_irq_postinstall;
  3445. dev->driver->irq_uninstall = i965_irq_uninstall;
  3446. dev->driver->irq_handler = i965_irq_handler;
  3447. }
  3448. if (I915_HAS_HOTPLUG(dev_priv))
  3449. dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
  3450. dev->driver->enable_vblank = i915_enable_vblank;
  3451. dev->driver->disable_vblank = i915_disable_vblank;
  3452. }
  3453. }
  3454. /**
  3455. * intel_irq_install - enables the hardware interrupt
  3456. * @dev_priv: i915 device instance
  3457. *
  3458. * This function enables the hardware interrupt handling, but leaves the hotplug
  3459. * handling still disabled. It is called after intel_irq_init().
  3460. *
  3461. * In the driver load and resume code we need working interrupts in a few places
  3462. * but don't want to deal with the hassle of concurrent probe and hotplug
  3463. * workers. Hence the split into this two-stage approach.
  3464. */
  3465. int intel_irq_install(struct drm_i915_private *dev_priv)
  3466. {
  3467. /*
  3468. * We enable some interrupt sources in our postinstall hooks, so mark
  3469. * interrupts as enabled _before_ actually enabling them to avoid
  3470. * special cases in our ordering checks.
  3471. */
  3472. dev_priv->pm.irqs_enabled = true;
  3473. return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
  3474. }
  3475. /**
  3476. * intel_irq_uninstall - finilizes all irq handling
  3477. * @dev_priv: i915 device instance
  3478. *
  3479. * This stops interrupt and hotplug handling and unregisters and frees all
  3480. * resources acquired in the init functions.
  3481. */
  3482. void intel_irq_uninstall(struct drm_i915_private *dev_priv)
  3483. {
  3484. drm_irq_uninstall(dev_priv->dev);
  3485. intel_hpd_cancel_work(dev_priv);
  3486. dev_priv->pm.irqs_enabled = false;
  3487. }
  3488. /**
  3489. * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
  3490. * @dev_priv: i915 device instance
  3491. *
  3492. * This function is used to disable interrupts at runtime, both in the runtime
  3493. * pm and the system suspend/resume code.
  3494. */
  3495. void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
  3496. {
  3497. dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
  3498. dev_priv->pm.irqs_enabled = false;
  3499. synchronize_irq(dev_priv->dev->irq);
  3500. }
  3501. /**
  3502. * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
  3503. * @dev_priv: i915 device instance
  3504. *
  3505. * This function is used to enable interrupts at runtime, both in the runtime
  3506. * pm and the system suspend/resume code.
  3507. */
  3508. void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
  3509. {
  3510. dev_priv->pm.irqs_enabled = true;
  3511. dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
  3512. dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
  3513. }