i915_debugfs.c 138 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Keith Packard <keithp@keithp.com>
  26. *
  27. */
  28. #include <linux/seq_file.h>
  29. #include <linux/circ_buf.h>
  30. #include <linux/ctype.h>
  31. #include <linux/debugfs.h>
  32. #include <linux/slab.h>
  33. #include <linux/export.h>
  34. #include <linux/list_sort.h>
  35. #include <asm/msr-index.h>
  36. #include <drm/drmP.h>
  37. #include "intel_drv.h"
  38. #include "intel_ringbuffer.h"
  39. #include <drm/i915_drm.h>
  40. #include "i915_drv.h"
  41. enum {
  42. ACTIVE_LIST,
  43. INACTIVE_LIST,
  44. PINNED_LIST,
  45. };
  46. static const char *yesno(int v)
  47. {
  48. return v ? "yes" : "no";
  49. }
  50. /* As the drm_debugfs_init() routines are called before dev->dev_private is
  51. * allocated we need to hook into the minor for release. */
  52. static int
  53. drm_add_fake_info_node(struct drm_minor *minor,
  54. struct dentry *ent,
  55. const void *key)
  56. {
  57. struct drm_info_node *node;
  58. node = kmalloc(sizeof(*node), GFP_KERNEL);
  59. if (node == NULL) {
  60. debugfs_remove(ent);
  61. return -ENOMEM;
  62. }
  63. node->minor = minor;
  64. node->dent = ent;
  65. node->info_ent = (void *) key;
  66. mutex_lock(&minor->debugfs_lock);
  67. list_add(&node->list, &minor->debugfs_list);
  68. mutex_unlock(&minor->debugfs_lock);
  69. return 0;
  70. }
  71. static int i915_capabilities(struct seq_file *m, void *data)
  72. {
  73. struct drm_info_node *node = m->private;
  74. struct drm_device *dev = node->minor->dev;
  75. const struct intel_device_info *info = INTEL_INFO(dev);
  76. seq_printf(m, "gen: %d\n", info->gen);
  77. seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
  78. #define PRINT_FLAG(x) seq_printf(m, #x ": %s\n", yesno(info->x))
  79. #define SEP_SEMICOLON ;
  80. DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
  81. #undef PRINT_FLAG
  82. #undef SEP_SEMICOLON
  83. return 0;
  84. }
  85. static const char *get_pin_flag(struct drm_i915_gem_object *obj)
  86. {
  87. if (obj->pin_display)
  88. return "p";
  89. else
  90. return " ";
  91. }
  92. static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
  93. {
  94. switch (obj->tiling_mode) {
  95. default:
  96. case I915_TILING_NONE: return " ";
  97. case I915_TILING_X: return "X";
  98. case I915_TILING_Y: return "Y";
  99. }
  100. }
  101. static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
  102. {
  103. return i915_gem_obj_to_ggtt(obj) ? "g" : " ";
  104. }
  105. static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
  106. {
  107. u64 size = 0;
  108. struct i915_vma *vma;
  109. list_for_each_entry(vma, &obj->vma_list, vma_link) {
  110. if (i915_is_ggtt(vma->vm) &&
  111. drm_mm_node_allocated(&vma->node))
  112. size += vma->node.size;
  113. }
  114. return size;
  115. }
  116. static void
  117. describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
  118. {
  119. struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
  120. struct intel_engine_cs *ring;
  121. struct i915_vma *vma;
  122. int pin_count = 0;
  123. int i;
  124. seq_printf(m, "%pK: %s%s%s%s %8zdKiB %02x %02x [ ",
  125. &obj->base,
  126. obj->active ? "*" : " ",
  127. get_pin_flag(obj),
  128. get_tiling_flag(obj),
  129. get_global_flag(obj),
  130. obj->base.size / 1024,
  131. obj->base.read_domains,
  132. obj->base.write_domain);
  133. for_each_ring(ring, dev_priv, i)
  134. seq_printf(m, "%x ",
  135. i915_gem_request_get_seqno(obj->last_read_req[i]));
  136. seq_printf(m, "] %x %x%s%s%s",
  137. i915_gem_request_get_seqno(obj->last_write_req),
  138. i915_gem_request_get_seqno(obj->last_fenced_req),
  139. i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
  140. obj->dirty ? " dirty" : "",
  141. obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
  142. if (obj->base.name)
  143. seq_printf(m, " (name: %d)", obj->base.name);
  144. list_for_each_entry(vma, &obj->vma_list, vma_link) {
  145. if (vma->pin_count > 0)
  146. pin_count++;
  147. }
  148. seq_printf(m, " (pinned x %d)", pin_count);
  149. if (obj->pin_display)
  150. seq_printf(m, " (display)");
  151. if (obj->fence_reg != I915_FENCE_REG_NONE)
  152. seq_printf(m, " (fence: %d)", obj->fence_reg);
  153. list_for_each_entry(vma, &obj->vma_list, vma_link) {
  154. seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
  155. i915_is_ggtt(vma->vm) ? "g" : "pp",
  156. vma->node.start, vma->node.size);
  157. if (i915_is_ggtt(vma->vm))
  158. seq_printf(m, ", type: %u)", vma->ggtt_view.type);
  159. else
  160. seq_puts(m, ")");
  161. }
  162. if (obj->stolen)
  163. seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
  164. if (obj->pin_display || obj->fault_mappable) {
  165. char s[3], *t = s;
  166. if (obj->pin_display)
  167. *t++ = 'p';
  168. if (obj->fault_mappable)
  169. *t++ = 'f';
  170. *t = '\0';
  171. seq_printf(m, " (%s mappable)", s);
  172. }
  173. if (obj->last_write_req != NULL)
  174. seq_printf(m, " (%s)",
  175. i915_gem_request_get_ring(obj->last_write_req)->name);
  176. if (obj->frontbuffer_bits)
  177. seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
  178. }
  179. static void describe_ctx(struct seq_file *m, struct intel_context *ctx)
  180. {
  181. seq_putc(m, ctx->legacy_hw_ctx.initialized ? 'I' : 'i');
  182. seq_putc(m, ctx->remap_slice ? 'R' : 'r');
  183. seq_putc(m, ' ');
  184. }
  185. static int i915_gem_object_list_info(struct seq_file *m, void *data)
  186. {
  187. struct drm_info_node *node = m->private;
  188. uintptr_t list = (uintptr_t) node->info_ent->data;
  189. struct list_head *head;
  190. struct drm_device *dev = node->minor->dev;
  191. struct drm_i915_private *dev_priv = dev->dev_private;
  192. struct i915_address_space *vm = &dev_priv->gtt.base;
  193. struct i915_vma *vma;
  194. u64 total_obj_size, total_gtt_size;
  195. int count, ret;
  196. ret = mutex_lock_interruptible(&dev->struct_mutex);
  197. if (ret)
  198. return ret;
  199. /* FIXME: the user of this interface might want more than just GGTT */
  200. switch (list) {
  201. case ACTIVE_LIST:
  202. seq_puts(m, "Active:\n");
  203. head = &vm->active_list;
  204. break;
  205. case INACTIVE_LIST:
  206. seq_puts(m, "Inactive:\n");
  207. head = &vm->inactive_list;
  208. break;
  209. default:
  210. mutex_unlock(&dev->struct_mutex);
  211. return -EINVAL;
  212. }
  213. total_obj_size = total_gtt_size = count = 0;
  214. list_for_each_entry(vma, head, mm_list) {
  215. seq_printf(m, " ");
  216. describe_obj(m, vma->obj);
  217. seq_printf(m, "\n");
  218. total_obj_size += vma->obj->base.size;
  219. total_gtt_size += vma->node.size;
  220. count++;
  221. }
  222. mutex_unlock(&dev->struct_mutex);
  223. seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
  224. count, total_obj_size, total_gtt_size);
  225. return 0;
  226. }
  227. static int obj_rank_by_stolen(void *priv,
  228. struct list_head *A, struct list_head *B)
  229. {
  230. struct drm_i915_gem_object *a =
  231. container_of(A, struct drm_i915_gem_object, obj_exec_link);
  232. struct drm_i915_gem_object *b =
  233. container_of(B, struct drm_i915_gem_object, obj_exec_link);
  234. return a->stolen->start - b->stolen->start;
  235. }
  236. static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
  237. {
  238. struct drm_info_node *node = m->private;
  239. struct drm_device *dev = node->minor->dev;
  240. struct drm_i915_private *dev_priv = dev->dev_private;
  241. struct drm_i915_gem_object *obj;
  242. u64 total_obj_size, total_gtt_size;
  243. LIST_HEAD(stolen);
  244. int count, ret;
  245. ret = mutex_lock_interruptible(&dev->struct_mutex);
  246. if (ret)
  247. return ret;
  248. total_obj_size = total_gtt_size = count = 0;
  249. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  250. if (obj->stolen == NULL)
  251. continue;
  252. list_add(&obj->obj_exec_link, &stolen);
  253. total_obj_size += obj->base.size;
  254. total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
  255. count++;
  256. }
  257. list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
  258. if (obj->stolen == NULL)
  259. continue;
  260. list_add(&obj->obj_exec_link, &stolen);
  261. total_obj_size += obj->base.size;
  262. count++;
  263. }
  264. list_sort(NULL, &stolen, obj_rank_by_stolen);
  265. seq_puts(m, "Stolen:\n");
  266. while (!list_empty(&stolen)) {
  267. obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
  268. seq_puts(m, " ");
  269. describe_obj(m, obj);
  270. seq_putc(m, '\n');
  271. list_del_init(&obj->obj_exec_link);
  272. }
  273. mutex_unlock(&dev->struct_mutex);
  274. seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
  275. count, total_obj_size, total_gtt_size);
  276. return 0;
  277. }
  278. #define count_objects(list, member) do { \
  279. list_for_each_entry(obj, list, member) { \
  280. size += i915_gem_obj_total_ggtt_size(obj); \
  281. ++count; \
  282. if (obj->map_and_fenceable) { \
  283. mappable_size += i915_gem_obj_ggtt_size(obj); \
  284. ++mappable_count; \
  285. } \
  286. } \
  287. } while (0)
  288. struct file_stats {
  289. struct drm_i915_file_private *file_priv;
  290. unsigned long count;
  291. u64 total, unbound;
  292. u64 global, shared;
  293. u64 active, inactive;
  294. };
  295. static int per_file_stats(int id, void *ptr, void *data)
  296. {
  297. struct drm_i915_gem_object *obj = ptr;
  298. struct file_stats *stats = data;
  299. struct i915_vma *vma;
  300. stats->count++;
  301. stats->total += obj->base.size;
  302. if (obj->base.name || obj->base.dma_buf)
  303. stats->shared += obj->base.size;
  304. if (USES_FULL_PPGTT(obj->base.dev)) {
  305. list_for_each_entry(vma, &obj->vma_list, vma_link) {
  306. struct i915_hw_ppgtt *ppgtt;
  307. if (!drm_mm_node_allocated(&vma->node))
  308. continue;
  309. if (i915_is_ggtt(vma->vm)) {
  310. stats->global += obj->base.size;
  311. continue;
  312. }
  313. ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
  314. if (ppgtt->file_priv != stats->file_priv)
  315. continue;
  316. if (obj->active) /* XXX per-vma statistic */
  317. stats->active += obj->base.size;
  318. else
  319. stats->inactive += obj->base.size;
  320. return 0;
  321. }
  322. } else {
  323. if (i915_gem_obj_ggtt_bound(obj)) {
  324. stats->global += obj->base.size;
  325. if (obj->active)
  326. stats->active += obj->base.size;
  327. else
  328. stats->inactive += obj->base.size;
  329. return 0;
  330. }
  331. }
  332. if (!list_empty(&obj->global_list))
  333. stats->unbound += obj->base.size;
  334. return 0;
  335. }
  336. #define print_file_stats(m, name, stats) do { \
  337. if (stats.count) \
  338. seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
  339. name, \
  340. stats.count, \
  341. stats.total, \
  342. stats.active, \
  343. stats.inactive, \
  344. stats.global, \
  345. stats.shared, \
  346. stats.unbound); \
  347. } while (0)
  348. static void print_batch_pool_stats(struct seq_file *m,
  349. struct drm_i915_private *dev_priv)
  350. {
  351. struct drm_i915_gem_object *obj;
  352. struct file_stats stats;
  353. struct intel_engine_cs *ring;
  354. int i, j;
  355. memset(&stats, 0, sizeof(stats));
  356. for_each_ring(ring, dev_priv, i) {
  357. for (j = 0; j < ARRAY_SIZE(ring->batch_pool.cache_list); j++) {
  358. list_for_each_entry(obj,
  359. &ring->batch_pool.cache_list[j],
  360. batch_pool_link)
  361. per_file_stats(0, obj, &stats);
  362. }
  363. }
  364. print_file_stats(m, "[k]batch pool", stats);
  365. }
  366. #define count_vmas(list, member) do { \
  367. list_for_each_entry(vma, list, member) { \
  368. size += i915_gem_obj_total_ggtt_size(vma->obj); \
  369. ++count; \
  370. if (vma->obj->map_and_fenceable) { \
  371. mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
  372. ++mappable_count; \
  373. } \
  374. } \
  375. } while (0)
  376. static int i915_gem_object_info(struct seq_file *m, void* data)
  377. {
  378. struct drm_info_node *node = m->private;
  379. struct drm_device *dev = node->minor->dev;
  380. struct drm_i915_private *dev_priv = dev->dev_private;
  381. u32 count, mappable_count, purgeable_count;
  382. u64 size, mappable_size, purgeable_size;
  383. struct drm_i915_gem_object *obj;
  384. struct i915_address_space *vm = &dev_priv->gtt.base;
  385. struct drm_file *file;
  386. struct i915_vma *vma;
  387. int ret;
  388. ret = mutex_lock_interruptible(&dev->struct_mutex);
  389. if (ret)
  390. return ret;
  391. seq_printf(m, "%u objects, %zu bytes\n",
  392. dev_priv->mm.object_count,
  393. dev_priv->mm.object_memory);
  394. size = count = mappable_size = mappable_count = 0;
  395. count_objects(&dev_priv->mm.bound_list, global_list);
  396. seq_printf(m, "%u [%u] objects, %llu [%llu] bytes in gtt\n",
  397. count, mappable_count, size, mappable_size);
  398. size = count = mappable_size = mappable_count = 0;
  399. count_vmas(&vm->active_list, mm_list);
  400. seq_printf(m, " %u [%u] active objects, %llu [%llu] bytes\n",
  401. count, mappable_count, size, mappable_size);
  402. size = count = mappable_size = mappable_count = 0;
  403. count_vmas(&vm->inactive_list, mm_list);
  404. seq_printf(m, " %u [%u] inactive objects, %llu [%llu] bytes\n",
  405. count, mappable_count, size, mappable_size);
  406. size = count = purgeable_size = purgeable_count = 0;
  407. list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
  408. size += obj->base.size, ++count;
  409. if (obj->madv == I915_MADV_DONTNEED)
  410. purgeable_size += obj->base.size, ++purgeable_count;
  411. }
  412. seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
  413. size = count = mappable_size = mappable_count = 0;
  414. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  415. if (obj->fault_mappable) {
  416. size += i915_gem_obj_ggtt_size(obj);
  417. ++count;
  418. }
  419. if (obj->pin_display) {
  420. mappable_size += i915_gem_obj_ggtt_size(obj);
  421. ++mappable_count;
  422. }
  423. if (obj->madv == I915_MADV_DONTNEED) {
  424. purgeable_size += obj->base.size;
  425. ++purgeable_count;
  426. }
  427. }
  428. seq_printf(m, "%u purgeable objects, %llu bytes\n",
  429. purgeable_count, purgeable_size);
  430. seq_printf(m, "%u pinned mappable objects, %llu bytes\n",
  431. mappable_count, mappable_size);
  432. seq_printf(m, "%u fault mappable objects, %llu bytes\n",
  433. count, size);
  434. seq_printf(m, "%llu [%llu] gtt total\n",
  435. dev_priv->gtt.base.total,
  436. (u64)dev_priv->gtt.mappable_end - dev_priv->gtt.base.start);
  437. seq_putc(m, '\n');
  438. print_batch_pool_stats(m, dev_priv);
  439. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  440. struct file_stats stats;
  441. struct task_struct *task;
  442. memset(&stats, 0, sizeof(stats));
  443. stats.file_priv = file->driver_priv;
  444. spin_lock(&file->table_lock);
  445. idr_for_each(&file->object_idr, per_file_stats, &stats);
  446. spin_unlock(&file->table_lock);
  447. /*
  448. * Although we have a valid reference on file->pid, that does
  449. * not guarantee that the task_struct who called get_pid() is
  450. * still alive (e.g. get_pid(current) => fork() => exit()).
  451. * Therefore, we need to protect this ->comm access using RCU.
  452. */
  453. rcu_read_lock();
  454. task = pid_task(file->pid, PIDTYPE_PID);
  455. print_file_stats(m, task ? task->comm : "<unknown>", stats);
  456. rcu_read_unlock();
  457. }
  458. mutex_unlock(&dev->struct_mutex);
  459. return 0;
  460. }
  461. static int i915_gem_gtt_info(struct seq_file *m, void *data)
  462. {
  463. struct drm_info_node *node = m->private;
  464. struct drm_device *dev = node->minor->dev;
  465. uintptr_t list = (uintptr_t) node->info_ent->data;
  466. struct drm_i915_private *dev_priv = dev->dev_private;
  467. struct drm_i915_gem_object *obj;
  468. u64 total_obj_size, total_gtt_size;
  469. int count, ret;
  470. ret = mutex_lock_interruptible(&dev->struct_mutex);
  471. if (ret)
  472. return ret;
  473. total_obj_size = total_gtt_size = count = 0;
  474. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  475. if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
  476. continue;
  477. seq_puts(m, " ");
  478. describe_obj(m, obj);
  479. seq_putc(m, '\n');
  480. total_obj_size += obj->base.size;
  481. total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
  482. count++;
  483. }
  484. mutex_unlock(&dev->struct_mutex);
  485. seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
  486. count, total_obj_size, total_gtt_size);
  487. return 0;
  488. }
  489. static int i915_gem_pageflip_info(struct seq_file *m, void *data)
  490. {
  491. struct drm_info_node *node = m->private;
  492. struct drm_device *dev = node->minor->dev;
  493. struct drm_i915_private *dev_priv = dev->dev_private;
  494. struct intel_crtc *crtc;
  495. int ret;
  496. ret = mutex_lock_interruptible(&dev->struct_mutex);
  497. if (ret)
  498. return ret;
  499. for_each_intel_crtc(dev, crtc) {
  500. const char pipe = pipe_name(crtc->pipe);
  501. const char plane = plane_name(crtc->plane);
  502. struct intel_unpin_work *work;
  503. spin_lock_irq(&dev->event_lock);
  504. work = crtc->unpin_work;
  505. if (work == NULL) {
  506. seq_printf(m, "No flip due on pipe %c (plane %c)\n",
  507. pipe, plane);
  508. } else {
  509. u32 addr;
  510. if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
  511. seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
  512. pipe, plane);
  513. } else {
  514. seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
  515. pipe, plane);
  516. }
  517. if (work->flip_queued_req) {
  518. struct intel_engine_cs *ring =
  519. i915_gem_request_get_ring(work->flip_queued_req);
  520. seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
  521. ring->name,
  522. i915_gem_request_get_seqno(work->flip_queued_req),
  523. dev_priv->next_seqno,
  524. ring->get_seqno(ring, true),
  525. i915_gem_request_completed(work->flip_queued_req, true));
  526. } else
  527. seq_printf(m, "Flip not associated with any ring\n");
  528. seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
  529. work->flip_queued_vblank,
  530. work->flip_ready_vblank,
  531. drm_crtc_vblank_count(&crtc->base));
  532. if (work->enable_stall_check)
  533. seq_puts(m, "Stall check enabled, ");
  534. else
  535. seq_puts(m, "Stall check waiting for page flip ioctl, ");
  536. seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
  537. if (INTEL_INFO(dev)->gen >= 4)
  538. addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
  539. else
  540. addr = I915_READ(DSPADDR(crtc->plane));
  541. seq_printf(m, "Current scanout address 0x%08x\n", addr);
  542. if (work->pending_flip_obj) {
  543. seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
  544. seq_printf(m, "MMIO update completed? %d\n", addr == work->gtt_offset);
  545. }
  546. }
  547. spin_unlock_irq(&dev->event_lock);
  548. }
  549. mutex_unlock(&dev->struct_mutex);
  550. return 0;
  551. }
  552. static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
  553. {
  554. struct drm_info_node *node = m->private;
  555. struct drm_device *dev = node->minor->dev;
  556. struct drm_i915_private *dev_priv = dev->dev_private;
  557. struct drm_i915_gem_object *obj;
  558. struct intel_engine_cs *ring;
  559. int total = 0;
  560. int ret, i, j;
  561. ret = mutex_lock_interruptible(&dev->struct_mutex);
  562. if (ret)
  563. return ret;
  564. for_each_ring(ring, dev_priv, i) {
  565. for (j = 0; j < ARRAY_SIZE(ring->batch_pool.cache_list); j++) {
  566. int count;
  567. count = 0;
  568. list_for_each_entry(obj,
  569. &ring->batch_pool.cache_list[j],
  570. batch_pool_link)
  571. count++;
  572. seq_printf(m, "%s cache[%d]: %d objects\n",
  573. ring->name, j, count);
  574. list_for_each_entry(obj,
  575. &ring->batch_pool.cache_list[j],
  576. batch_pool_link) {
  577. seq_puts(m, " ");
  578. describe_obj(m, obj);
  579. seq_putc(m, '\n');
  580. }
  581. total += count;
  582. }
  583. }
  584. seq_printf(m, "total: %d\n", total);
  585. mutex_unlock(&dev->struct_mutex);
  586. return 0;
  587. }
  588. static int i915_gem_request_info(struct seq_file *m, void *data)
  589. {
  590. struct drm_info_node *node = m->private;
  591. struct drm_device *dev = node->minor->dev;
  592. struct drm_i915_private *dev_priv = dev->dev_private;
  593. struct intel_engine_cs *ring;
  594. struct drm_i915_gem_request *req;
  595. int ret, any, i;
  596. ret = mutex_lock_interruptible(&dev->struct_mutex);
  597. if (ret)
  598. return ret;
  599. any = 0;
  600. for_each_ring(ring, dev_priv, i) {
  601. int count;
  602. count = 0;
  603. list_for_each_entry(req, &ring->request_list, list)
  604. count++;
  605. if (count == 0)
  606. continue;
  607. seq_printf(m, "%s requests: %d\n", ring->name, count);
  608. list_for_each_entry(req, &ring->request_list, list) {
  609. struct task_struct *task;
  610. rcu_read_lock();
  611. task = NULL;
  612. if (req->pid)
  613. task = pid_task(req->pid, PIDTYPE_PID);
  614. seq_printf(m, " %x @ %d: %s [%d]\n",
  615. req->seqno,
  616. (int) (jiffies - req->emitted_jiffies),
  617. task ? task->comm : "<unknown>",
  618. task ? task->pid : -1);
  619. rcu_read_unlock();
  620. }
  621. any++;
  622. }
  623. mutex_unlock(&dev->struct_mutex);
  624. if (any == 0)
  625. seq_puts(m, "No requests\n");
  626. return 0;
  627. }
  628. static void i915_ring_seqno_info(struct seq_file *m,
  629. struct intel_engine_cs *ring)
  630. {
  631. if (ring->get_seqno) {
  632. seq_printf(m, "Current sequence (%s): %x\n",
  633. ring->name, ring->get_seqno(ring, false));
  634. }
  635. }
  636. static int i915_gem_seqno_info(struct seq_file *m, void *data)
  637. {
  638. struct drm_info_node *node = m->private;
  639. struct drm_device *dev = node->minor->dev;
  640. struct drm_i915_private *dev_priv = dev->dev_private;
  641. struct intel_engine_cs *ring;
  642. int ret, i;
  643. ret = mutex_lock_interruptible(&dev->struct_mutex);
  644. if (ret)
  645. return ret;
  646. intel_runtime_pm_get(dev_priv);
  647. for_each_ring(ring, dev_priv, i)
  648. i915_ring_seqno_info(m, ring);
  649. intel_runtime_pm_put(dev_priv);
  650. mutex_unlock(&dev->struct_mutex);
  651. return 0;
  652. }
  653. static int i915_interrupt_info(struct seq_file *m, void *data)
  654. {
  655. struct drm_info_node *node = m->private;
  656. struct drm_device *dev = node->minor->dev;
  657. struct drm_i915_private *dev_priv = dev->dev_private;
  658. struct intel_engine_cs *ring;
  659. int ret, i, pipe;
  660. ret = mutex_lock_interruptible(&dev->struct_mutex);
  661. if (ret)
  662. return ret;
  663. intel_runtime_pm_get(dev_priv);
  664. if (IS_CHERRYVIEW(dev)) {
  665. seq_printf(m, "Master Interrupt Control:\t%08x\n",
  666. I915_READ(GEN8_MASTER_IRQ));
  667. seq_printf(m, "Display IER:\t%08x\n",
  668. I915_READ(VLV_IER));
  669. seq_printf(m, "Display IIR:\t%08x\n",
  670. I915_READ(VLV_IIR));
  671. seq_printf(m, "Display IIR_RW:\t%08x\n",
  672. I915_READ(VLV_IIR_RW));
  673. seq_printf(m, "Display IMR:\t%08x\n",
  674. I915_READ(VLV_IMR));
  675. for_each_pipe(dev_priv, pipe)
  676. seq_printf(m, "Pipe %c stat:\t%08x\n",
  677. pipe_name(pipe),
  678. I915_READ(PIPESTAT(pipe)));
  679. seq_printf(m, "Port hotplug:\t%08x\n",
  680. I915_READ(PORT_HOTPLUG_EN));
  681. seq_printf(m, "DPFLIPSTAT:\t%08x\n",
  682. I915_READ(VLV_DPFLIPSTAT));
  683. seq_printf(m, "DPINVGTT:\t%08x\n",
  684. I915_READ(DPINVGTT));
  685. for (i = 0; i < 4; i++) {
  686. seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
  687. i, I915_READ(GEN8_GT_IMR(i)));
  688. seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
  689. i, I915_READ(GEN8_GT_IIR(i)));
  690. seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
  691. i, I915_READ(GEN8_GT_IER(i)));
  692. }
  693. seq_printf(m, "PCU interrupt mask:\t%08x\n",
  694. I915_READ(GEN8_PCU_IMR));
  695. seq_printf(m, "PCU interrupt identity:\t%08x\n",
  696. I915_READ(GEN8_PCU_IIR));
  697. seq_printf(m, "PCU interrupt enable:\t%08x\n",
  698. I915_READ(GEN8_PCU_IER));
  699. } else if (INTEL_INFO(dev)->gen >= 8) {
  700. seq_printf(m, "Master Interrupt Control:\t%08x\n",
  701. I915_READ(GEN8_MASTER_IRQ));
  702. for (i = 0; i < 4; i++) {
  703. seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
  704. i, I915_READ(GEN8_GT_IMR(i)));
  705. seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
  706. i, I915_READ(GEN8_GT_IIR(i)));
  707. seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
  708. i, I915_READ(GEN8_GT_IER(i)));
  709. }
  710. for_each_pipe(dev_priv, pipe) {
  711. if (!intel_display_power_is_enabled(dev_priv,
  712. POWER_DOMAIN_PIPE(pipe))) {
  713. seq_printf(m, "Pipe %c power disabled\n",
  714. pipe_name(pipe));
  715. continue;
  716. }
  717. seq_printf(m, "Pipe %c IMR:\t%08x\n",
  718. pipe_name(pipe),
  719. I915_READ(GEN8_DE_PIPE_IMR(pipe)));
  720. seq_printf(m, "Pipe %c IIR:\t%08x\n",
  721. pipe_name(pipe),
  722. I915_READ(GEN8_DE_PIPE_IIR(pipe)));
  723. seq_printf(m, "Pipe %c IER:\t%08x\n",
  724. pipe_name(pipe),
  725. I915_READ(GEN8_DE_PIPE_IER(pipe)));
  726. }
  727. seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
  728. I915_READ(GEN8_DE_PORT_IMR));
  729. seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
  730. I915_READ(GEN8_DE_PORT_IIR));
  731. seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
  732. I915_READ(GEN8_DE_PORT_IER));
  733. seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
  734. I915_READ(GEN8_DE_MISC_IMR));
  735. seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
  736. I915_READ(GEN8_DE_MISC_IIR));
  737. seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
  738. I915_READ(GEN8_DE_MISC_IER));
  739. seq_printf(m, "PCU interrupt mask:\t%08x\n",
  740. I915_READ(GEN8_PCU_IMR));
  741. seq_printf(m, "PCU interrupt identity:\t%08x\n",
  742. I915_READ(GEN8_PCU_IIR));
  743. seq_printf(m, "PCU interrupt enable:\t%08x\n",
  744. I915_READ(GEN8_PCU_IER));
  745. } else if (IS_VALLEYVIEW(dev)) {
  746. seq_printf(m, "Display IER:\t%08x\n",
  747. I915_READ(VLV_IER));
  748. seq_printf(m, "Display IIR:\t%08x\n",
  749. I915_READ(VLV_IIR));
  750. seq_printf(m, "Display IIR_RW:\t%08x\n",
  751. I915_READ(VLV_IIR_RW));
  752. seq_printf(m, "Display IMR:\t%08x\n",
  753. I915_READ(VLV_IMR));
  754. for_each_pipe(dev_priv, pipe)
  755. seq_printf(m, "Pipe %c stat:\t%08x\n",
  756. pipe_name(pipe),
  757. I915_READ(PIPESTAT(pipe)));
  758. seq_printf(m, "Master IER:\t%08x\n",
  759. I915_READ(VLV_MASTER_IER));
  760. seq_printf(m, "Render IER:\t%08x\n",
  761. I915_READ(GTIER));
  762. seq_printf(m, "Render IIR:\t%08x\n",
  763. I915_READ(GTIIR));
  764. seq_printf(m, "Render IMR:\t%08x\n",
  765. I915_READ(GTIMR));
  766. seq_printf(m, "PM IER:\t\t%08x\n",
  767. I915_READ(GEN6_PMIER));
  768. seq_printf(m, "PM IIR:\t\t%08x\n",
  769. I915_READ(GEN6_PMIIR));
  770. seq_printf(m, "PM IMR:\t\t%08x\n",
  771. I915_READ(GEN6_PMIMR));
  772. seq_printf(m, "Port hotplug:\t%08x\n",
  773. I915_READ(PORT_HOTPLUG_EN));
  774. seq_printf(m, "DPFLIPSTAT:\t%08x\n",
  775. I915_READ(VLV_DPFLIPSTAT));
  776. seq_printf(m, "DPINVGTT:\t%08x\n",
  777. I915_READ(DPINVGTT));
  778. } else if (!HAS_PCH_SPLIT(dev)) {
  779. seq_printf(m, "Interrupt enable: %08x\n",
  780. I915_READ(IER));
  781. seq_printf(m, "Interrupt identity: %08x\n",
  782. I915_READ(IIR));
  783. seq_printf(m, "Interrupt mask: %08x\n",
  784. I915_READ(IMR));
  785. for_each_pipe(dev_priv, pipe)
  786. seq_printf(m, "Pipe %c stat: %08x\n",
  787. pipe_name(pipe),
  788. I915_READ(PIPESTAT(pipe)));
  789. } else {
  790. seq_printf(m, "North Display Interrupt enable: %08x\n",
  791. I915_READ(DEIER));
  792. seq_printf(m, "North Display Interrupt identity: %08x\n",
  793. I915_READ(DEIIR));
  794. seq_printf(m, "North Display Interrupt mask: %08x\n",
  795. I915_READ(DEIMR));
  796. seq_printf(m, "South Display Interrupt enable: %08x\n",
  797. I915_READ(SDEIER));
  798. seq_printf(m, "South Display Interrupt identity: %08x\n",
  799. I915_READ(SDEIIR));
  800. seq_printf(m, "South Display Interrupt mask: %08x\n",
  801. I915_READ(SDEIMR));
  802. seq_printf(m, "Graphics Interrupt enable: %08x\n",
  803. I915_READ(GTIER));
  804. seq_printf(m, "Graphics Interrupt identity: %08x\n",
  805. I915_READ(GTIIR));
  806. seq_printf(m, "Graphics Interrupt mask: %08x\n",
  807. I915_READ(GTIMR));
  808. }
  809. for_each_ring(ring, dev_priv, i) {
  810. if (INTEL_INFO(dev)->gen >= 6) {
  811. seq_printf(m,
  812. "Graphics Interrupt mask (%s): %08x\n",
  813. ring->name, I915_READ_IMR(ring));
  814. }
  815. i915_ring_seqno_info(m, ring);
  816. }
  817. intel_runtime_pm_put(dev_priv);
  818. mutex_unlock(&dev->struct_mutex);
  819. return 0;
  820. }
  821. static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
  822. {
  823. struct drm_info_node *node = m->private;
  824. struct drm_device *dev = node->minor->dev;
  825. struct drm_i915_private *dev_priv = dev->dev_private;
  826. int i, ret;
  827. ret = mutex_lock_interruptible(&dev->struct_mutex);
  828. if (ret)
  829. return ret;
  830. seq_printf(m, "Reserved fences = %d\n", dev_priv->fence_reg_start);
  831. seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
  832. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  833. struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
  834. seq_printf(m, "Fence %d, pin count = %d, object = ",
  835. i, dev_priv->fence_regs[i].pin_count);
  836. if (obj == NULL)
  837. seq_puts(m, "unused");
  838. else
  839. describe_obj(m, obj);
  840. seq_putc(m, '\n');
  841. }
  842. mutex_unlock(&dev->struct_mutex);
  843. return 0;
  844. }
  845. static int i915_hws_info(struct seq_file *m, void *data)
  846. {
  847. struct drm_info_node *node = m->private;
  848. struct drm_device *dev = node->minor->dev;
  849. struct drm_i915_private *dev_priv = dev->dev_private;
  850. struct intel_engine_cs *ring;
  851. const u32 *hws;
  852. int i;
  853. ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
  854. hws = ring->status_page.page_addr;
  855. if (hws == NULL)
  856. return 0;
  857. for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
  858. seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
  859. i * 4,
  860. hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
  861. }
  862. return 0;
  863. }
  864. static ssize_t
  865. i915_error_state_write(struct file *filp,
  866. const char __user *ubuf,
  867. size_t cnt,
  868. loff_t *ppos)
  869. {
  870. struct i915_error_state_file_priv *error_priv = filp->private_data;
  871. struct drm_device *dev = error_priv->dev;
  872. int ret;
  873. DRM_DEBUG_DRIVER("Resetting error state\n");
  874. ret = mutex_lock_interruptible(&dev->struct_mutex);
  875. if (ret)
  876. return ret;
  877. i915_destroy_error_state(dev);
  878. mutex_unlock(&dev->struct_mutex);
  879. return cnt;
  880. }
  881. static int i915_error_state_open(struct inode *inode, struct file *file)
  882. {
  883. struct drm_device *dev = inode->i_private;
  884. struct i915_error_state_file_priv *error_priv;
  885. error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
  886. if (!error_priv)
  887. return -ENOMEM;
  888. error_priv->dev = dev;
  889. i915_error_state_get(dev, error_priv);
  890. file->private_data = error_priv;
  891. return 0;
  892. }
  893. static int i915_error_state_release(struct inode *inode, struct file *file)
  894. {
  895. struct i915_error_state_file_priv *error_priv = file->private_data;
  896. i915_error_state_put(error_priv);
  897. kfree(error_priv);
  898. return 0;
  899. }
  900. static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
  901. size_t count, loff_t *pos)
  902. {
  903. struct i915_error_state_file_priv *error_priv = file->private_data;
  904. struct drm_i915_error_state_buf error_str;
  905. loff_t tmp_pos = 0;
  906. ssize_t ret_count = 0;
  907. int ret;
  908. ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
  909. if (ret)
  910. return ret;
  911. ret = i915_error_state_to_str(&error_str, error_priv);
  912. if (ret)
  913. goto out;
  914. ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
  915. error_str.buf,
  916. error_str.bytes);
  917. if (ret_count < 0)
  918. ret = ret_count;
  919. else
  920. *pos = error_str.start + ret_count;
  921. out:
  922. i915_error_state_buf_release(&error_str);
  923. return ret ?: ret_count;
  924. }
  925. static const struct file_operations i915_error_state_fops = {
  926. .owner = THIS_MODULE,
  927. .open = i915_error_state_open,
  928. .read = i915_error_state_read,
  929. .write = i915_error_state_write,
  930. .llseek = default_llseek,
  931. .release = i915_error_state_release,
  932. };
  933. static int
  934. i915_next_seqno_get(void *data, u64 *val)
  935. {
  936. struct drm_device *dev = data;
  937. struct drm_i915_private *dev_priv = dev->dev_private;
  938. int ret;
  939. ret = mutex_lock_interruptible(&dev->struct_mutex);
  940. if (ret)
  941. return ret;
  942. *val = dev_priv->next_seqno;
  943. mutex_unlock(&dev->struct_mutex);
  944. return 0;
  945. }
  946. static int
  947. i915_next_seqno_set(void *data, u64 val)
  948. {
  949. struct drm_device *dev = data;
  950. int ret;
  951. ret = mutex_lock_interruptible(&dev->struct_mutex);
  952. if (ret)
  953. return ret;
  954. ret = i915_gem_set_seqno(dev, val);
  955. mutex_unlock(&dev->struct_mutex);
  956. return ret;
  957. }
  958. DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
  959. i915_next_seqno_get, i915_next_seqno_set,
  960. "0x%llx\n");
  961. static int i915_frequency_info(struct seq_file *m, void *unused)
  962. {
  963. struct drm_info_node *node = m->private;
  964. struct drm_device *dev = node->minor->dev;
  965. struct drm_i915_private *dev_priv = dev->dev_private;
  966. int ret = 0;
  967. intel_runtime_pm_get(dev_priv);
  968. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  969. if (IS_GEN5(dev)) {
  970. u16 rgvswctl = I915_READ16(MEMSWCTL);
  971. u16 rgvstat = I915_READ16(MEMSTAT_ILK);
  972. seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
  973. seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
  974. seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
  975. MEMSTAT_VID_SHIFT);
  976. seq_printf(m, "Current P-state: %d\n",
  977. (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
  978. } else if (IS_GEN6(dev) || (IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) ||
  979. IS_BROADWELL(dev) || IS_GEN9(dev)) {
  980. u32 rp_state_limits;
  981. u32 gt_perf_status;
  982. u32 rp_state_cap;
  983. u32 rpmodectl, rpinclimit, rpdeclimit;
  984. u32 rpstat, cagf, reqf;
  985. u32 rpupei, rpcurup, rpprevup;
  986. u32 rpdownei, rpcurdown, rpprevdown;
  987. u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
  988. int max_freq;
  989. rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
  990. if (IS_BROXTON(dev)) {
  991. rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
  992. gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
  993. } else {
  994. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  995. gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
  996. }
  997. /* RPSTAT1 is in the GT power well */
  998. ret = mutex_lock_interruptible(&dev->struct_mutex);
  999. if (ret)
  1000. goto out;
  1001. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  1002. reqf = I915_READ(GEN6_RPNSWREQ);
  1003. if (IS_GEN9(dev))
  1004. reqf >>= 23;
  1005. else {
  1006. reqf &= ~GEN6_TURBO_DISABLE;
  1007. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  1008. reqf >>= 24;
  1009. else
  1010. reqf >>= 25;
  1011. }
  1012. reqf = intel_gpu_freq(dev_priv, reqf);
  1013. rpmodectl = I915_READ(GEN6_RP_CONTROL);
  1014. rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
  1015. rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
  1016. rpstat = I915_READ(GEN6_RPSTAT1);
  1017. rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
  1018. rpcurup = I915_READ(GEN6_RP_CUR_UP);
  1019. rpprevup = I915_READ(GEN6_RP_PREV_UP);
  1020. rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
  1021. rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
  1022. rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
  1023. if (IS_GEN9(dev))
  1024. cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
  1025. else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  1026. cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
  1027. else
  1028. cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
  1029. cagf = intel_gpu_freq(dev_priv, cagf);
  1030. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  1031. mutex_unlock(&dev->struct_mutex);
  1032. if (IS_GEN6(dev) || IS_GEN7(dev)) {
  1033. pm_ier = I915_READ(GEN6_PMIER);
  1034. pm_imr = I915_READ(GEN6_PMIMR);
  1035. pm_isr = I915_READ(GEN6_PMISR);
  1036. pm_iir = I915_READ(GEN6_PMIIR);
  1037. pm_mask = I915_READ(GEN6_PMINTRMSK);
  1038. } else {
  1039. pm_ier = I915_READ(GEN8_GT_IER(2));
  1040. pm_imr = I915_READ(GEN8_GT_IMR(2));
  1041. pm_isr = I915_READ(GEN8_GT_ISR(2));
  1042. pm_iir = I915_READ(GEN8_GT_IIR(2));
  1043. pm_mask = I915_READ(GEN6_PMINTRMSK);
  1044. }
  1045. seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
  1046. pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
  1047. seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
  1048. seq_printf(m, "Render p-state ratio: %d\n",
  1049. (gt_perf_status & (IS_GEN9(dev) ? 0x1ff00 : 0xff00)) >> 8);
  1050. seq_printf(m, "Render p-state VID: %d\n",
  1051. gt_perf_status & 0xff);
  1052. seq_printf(m, "Render p-state limit: %d\n",
  1053. rp_state_limits & 0xff);
  1054. seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
  1055. seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
  1056. seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
  1057. seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
  1058. seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
  1059. seq_printf(m, "CAGF: %dMHz\n", cagf);
  1060. seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
  1061. GEN6_CURICONT_MASK);
  1062. seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
  1063. GEN6_CURBSYTAVG_MASK);
  1064. seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
  1065. GEN6_CURBSYTAVG_MASK);
  1066. seq_printf(m, "Up threshold: %d%%\n",
  1067. dev_priv->rps.up_threshold);
  1068. seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
  1069. GEN6_CURIAVG_MASK);
  1070. seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
  1071. GEN6_CURBSYTAVG_MASK);
  1072. seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
  1073. GEN6_CURBSYTAVG_MASK);
  1074. seq_printf(m, "Down threshold: %d%%\n",
  1075. dev_priv->rps.down_threshold);
  1076. max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 0 :
  1077. rp_state_cap >> 16) & 0xff;
  1078. max_freq *= (IS_SKYLAKE(dev) ? GEN9_FREQ_SCALER : 1);
  1079. seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
  1080. intel_gpu_freq(dev_priv, max_freq));
  1081. max_freq = (rp_state_cap & 0xff00) >> 8;
  1082. max_freq *= (IS_SKYLAKE(dev) ? GEN9_FREQ_SCALER : 1);
  1083. seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
  1084. intel_gpu_freq(dev_priv, max_freq));
  1085. max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 16 :
  1086. rp_state_cap >> 0) & 0xff;
  1087. max_freq *= (IS_SKYLAKE(dev) ? GEN9_FREQ_SCALER : 1);
  1088. seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
  1089. intel_gpu_freq(dev_priv, max_freq));
  1090. seq_printf(m, "Max overclocked frequency: %dMHz\n",
  1091. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  1092. seq_printf(m, "Current freq: %d MHz\n",
  1093. intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
  1094. seq_printf(m, "Actual freq: %d MHz\n", cagf);
  1095. seq_printf(m, "Idle freq: %d MHz\n",
  1096. intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
  1097. seq_printf(m, "Min freq: %d MHz\n",
  1098. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
  1099. seq_printf(m, "Max freq: %d MHz\n",
  1100. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  1101. seq_printf(m,
  1102. "efficient (RPe) frequency: %d MHz\n",
  1103. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
  1104. } else if (IS_VALLEYVIEW(dev)) {
  1105. u32 freq_sts;
  1106. mutex_lock(&dev_priv->rps.hw_lock);
  1107. freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  1108. seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
  1109. seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
  1110. seq_printf(m, "actual GPU freq: %d MHz\n",
  1111. intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
  1112. seq_printf(m, "current GPU freq: %d MHz\n",
  1113. intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
  1114. seq_printf(m, "max GPU freq: %d MHz\n",
  1115. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  1116. seq_printf(m, "min GPU freq: %d MHz\n",
  1117. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
  1118. seq_printf(m, "idle GPU freq: %d MHz\n",
  1119. intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
  1120. seq_printf(m,
  1121. "efficient (RPe) frequency: %d MHz\n",
  1122. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
  1123. mutex_unlock(&dev_priv->rps.hw_lock);
  1124. } else {
  1125. seq_puts(m, "no P-state info available\n");
  1126. }
  1127. out:
  1128. intel_runtime_pm_put(dev_priv);
  1129. return ret;
  1130. }
  1131. static int i915_hangcheck_info(struct seq_file *m, void *unused)
  1132. {
  1133. struct drm_info_node *node = m->private;
  1134. struct drm_device *dev = node->minor->dev;
  1135. struct drm_i915_private *dev_priv = dev->dev_private;
  1136. struct intel_engine_cs *ring;
  1137. u64 acthd[I915_NUM_RINGS];
  1138. u32 seqno[I915_NUM_RINGS];
  1139. int i;
  1140. if (!i915.enable_hangcheck) {
  1141. seq_printf(m, "Hangcheck disabled\n");
  1142. return 0;
  1143. }
  1144. intel_runtime_pm_get(dev_priv);
  1145. for_each_ring(ring, dev_priv, i) {
  1146. seqno[i] = ring->get_seqno(ring, false);
  1147. acthd[i] = intel_ring_get_active_head(ring);
  1148. }
  1149. intel_runtime_pm_put(dev_priv);
  1150. if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
  1151. seq_printf(m, "Hangcheck active, fires in %dms\n",
  1152. jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
  1153. jiffies));
  1154. } else
  1155. seq_printf(m, "Hangcheck inactive\n");
  1156. for_each_ring(ring, dev_priv, i) {
  1157. seq_printf(m, "%s:\n", ring->name);
  1158. seq_printf(m, "\tseqno = %x [current %x]\n",
  1159. ring->hangcheck.seqno, seqno[i]);
  1160. seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
  1161. (long long)ring->hangcheck.acthd,
  1162. (long long)acthd[i]);
  1163. seq_printf(m, "\tmax ACTHD = 0x%08llx\n",
  1164. (long long)ring->hangcheck.max_acthd);
  1165. seq_printf(m, "\tscore = %d\n", ring->hangcheck.score);
  1166. seq_printf(m, "\taction = %d\n", ring->hangcheck.action);
  1167. }
  1168. return 0;
  1169. }
  1170. static int ironlake_drpc_info(struct seq_file *m)
  1171. {
  1172. struct drm_info_node *node = m->private;
  1173. struct drm_device *dev = node->minor->dev;
  1174. struct drm_i915_private *dev_priv = dev->dev_private;
  1175. u32 rgvmodectl, rstdbyctl;
  1176. u16 crstandvid;
  1177. int ret;
  1178. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1179. if (ret)
  1180. return ret;
  1181. intel_runtime_pm_get(dev_priv);
  1182. rgvmodectl = I915_READ(MEMMODECTL);
  1183. rstdbyctl = I915_READ(RSTDBYCTL);
  1184. crstandvid = I915_READ16(CRSTANDVID);
  1185. intel_runtime_pm_put(dev_priv);
  1186. mutex_unlock(&dev->struct_mutex);
  1187. seq_printf(m, "HD boost: %s\n", (rgvmodectl & MEMMODE_BOOST_EN) ?
  1188. "yes" : "no");
  1189. seq_printf(m, "Boost freq: %d\n",
  1190. (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
  1191. MEMMODE_BOOST_FREQ_SHIFT);
  1192. seq_printf(m, "HW control enabled: %s\n",
  1193. rgvmodectl & MEMMODE_HWIDLE_EN ? "yes" : "no");
  1194. seq_printf(m, "SW control enabled: %s\n",
  1195. rgvmodectl & MEMMODE_SWMODE_EN ? "yes" : "no");
  1196. seq_printf(m, "Gated voltage change: %s\n",
  1197. rgvmodectl & MEMMODE_RCLK_GATE ? "yes" : "no");
  1198. seq_printf(m, "Starting frequency: P%d\n",
  1199. (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
  1200. seq_printf(m, "Max P-state: P%d\n",
  1201. (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
  1202. seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
  1203. seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
  1204. seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
  1205. seq_printf(m, "Render standby enabled: %s\n",
  1206. (rstdbyctl & RCX_SW_EXIT) ? "no" : "yes");
  1207. seq_puts(m, "Current RS state: ");
  1208. switch (rstdbyctl & RSX_STATUS_MASK) {
  1209. case RSX_STATUS_ON:
  1210. seq_puts(m, "on\n");
  1211. break;
  1212. case RSX_STATUS_RC1:
  1213. seq_puts(m, "RC1\n");
  1214. break;
  1215. case RSX_STATUS_RC1E:
  1216. seq_puts(m, "RC1E\n");
  1217. break;
  1218. case RSX_STATUS_RS1:
  1219. seq_puts(m, "RS1\n");
  1220. break;
  1221. case RSX_STATUS_RS2:
  1222. seq_puts(m, "RS2 (RC6)\n");
  1223. break;
  1224. case RSX_STATUS_RS3:
  1225. seq_puts(m, "RC3 (RC6+)\n");
  1226. break;
  1227. default:
  1228. seq_puts(m, "unknown\n");
  1229. break;
  1230. }
  1231. return 0;
  1232. }
  1233. static int i915_forcewake_domains(struct seq_file *m, void *data)
  1234. {
  1235. struct drm_info_node *node = m->private;
  1236. struct drm_device *dev = node->minor->dev;
  1237. struct drm_i915_private *dev_priv = dev->dev_private;
  1238. struct intel_uncore_forcewake_domain *fw_domain;
  1239. int i;
  1240. spin_lock_irq(&dev_priv->uncore.lock);
  1241. for_each_fw_domain(fw_domain, dev_priv, i) {
  1242. seq_printf(m, "%s.wake_count = %u\n",
  1243. intel_uncore_forcewake_domain_to_str(i),
  1244. fw_domain->wake_count);
  1245. }
  1246. spin_unlock_irq(&dev_priv->uncore.lock);
  1247. return 0;
  1248. }
  1249. static int vlv_drpc_info(struct seq_file *m)
  1250. {
  1251. struct drm_info_node *node = m->private;
  1252. struct drm_device *dev = node->minor->dev;
  1253. struct drm_i915_private *dev_priv = dev->dev_private;
  1254. u32 rpmodectl1, rcctl1, pw_status;
  1255. intel_runtime_pm_get(dev_priv);
  1256. pw_status = I915_READ(VLV_GTLC_PW_STATUS);
  1257. rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
  1258. rcctl1 = I915_READ(GEN6_RC_CONTROL);
  1259. intel_runtime_pm_put(dev_priv);
  1260. seq_printf(m, "Video Turbo Mode: %s\n",
  1261. yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
  1262. seq_printf(m, "Turbo enabled: %s\n",
  1263. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  1264. seq_printf(m, "HW control enabled: %s\n",
  1265. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  1266. seq_printf(m, "SW control enabled: %s\n",
  1267. yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
  1268. GEN6_RP_MEDIA_SW_MODE));
  1269. seq_printf(m, "RC6 Enabled: %s\n",
  1270. yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
  1271. GEN6_RC_CTL_EI_MODE(1))));
  1272. seq_printf(m, "Render Power Well: %s\n",
  1273. (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
  1274. seq_printf(m, "Media Power Well: %s\n",
  1275. (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
  1276. seq_printf(m, "Render RC6 residency since boot: %u\n",
  1277. I915_READ(VLV_GT_RENDER_RC6));
  1278. seq_printf(m, "Media RC6 residency since boot: %u\n",
  1279. I915_READ(VLV_GT_MEDIA_RC6));
  1280. return i915_forcewake_domains(m, NULL);
  1281. }
  1282. static int gen6_drpc_info(struct seq_file *m)
  1283. {
  1284. struct drm_info_node *node = m->private;
  1285. struct drm_device *dev = node->minor->dev;
  1286. struct drm_i915_private *dev_priv = dev->dev_private;
  1287. u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
  1288. unsigned forcewake_count;
  1289. int count = 0, ret;
  1290. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1291. if (ret)
  1292. return ret;
  1293. intel_runtime_pm_get(dev_priv);
  1294. spin_lock_irq(&dev_priv->uncore.lock);
  1295. forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
  1296. spin_unlock_irq(&dev_priv->uncore.lock);
  1297. if (forcewake_count) {
  1298. seq_puts(m, "RC information inaccurate because somebody "
  1299. "holds a forcewake reference \n");
  1300. } else {
  1301. /* NB: we cannot use forcewake, else we read the wrong values */
  1302. while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
  1303. udelay(10);
  1304. seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
  1305. }
  1306. gt_core_status = readl(dev_priv->regs + GEN6_GT_CORE_STATUS);
  1307. trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
  1308. rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
  1309. rcctl1 = I915_READ(GEN6_RC_CONTROL);
  1310. mutex_unlock(&dev->struct_mutex);
  1311. mutex_lock(&dev_priv->rps.hw_lock);
  1312. sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
  1313. mutex_unlock(&dev_priv->rps.hw_lock);
  1314. intel_runtime_pm_put(dev_priv);
  1315. seq_printf(m, "Video Turbo Mode: %s\n",
  1316. yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
  1317. seq_printf(m, "HW control enabled: %s\n",
  1318. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  1319. seq_printf(m, "SW control enabled: %s\n",
  1320. yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
  1321. GEN6_RP_MEDIA_SW_MODE));
  1322. seq_printf(m, "RC1e Enabled: %s\n",
  1323. yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
  1324. seq_printf(m, "RC6 Enabled: %s\n",
  1325. yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
  1326. seq_printf(m, "Deep RC6 Enabled: %s\n",
  1327. yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
  1328. seq_printf(m, "Deepest RC6 Enabled: %s\n",
  1329. yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
  1330. seq_puts(m, "Current RC state: ");
  1331. switch (gt_core_status & GEN6_RCn_MASK) {
  1332. case GEN6_RC0:
  1333. if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
  1334. seq_puts(m, "Core Power Down\n");
  1335. else
  1336. seq_puts(m, "on\n");
  1337. break;
  1338. case GEN6_RC3:
  1339. seq_puts(m, "RC3\n");
  1340. break;
  1341. case GEN6_RC6:
  1342. seq_puts(m, "RC6\n");
  1343. break;
  1344. case GEN6_RC7:
  1345. seq_puts(m, "RC7\n");
  1346. break;
  1347. default:
  1348. seq_puts(m, "Unknown\n");
  1349. break;
  1350. }
  1351. seq_printf(m, "Core Power Down: %s\n",
  1352. yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
  1353. /* Not exactly sure what this is */
  1354. seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
  1355. I915_READ(GEN6_GT_GFX_RC6_LOCKED));
  1356. seq_printf(m, "RC6 residency since boot: %u\n",
  1357. I915_READ(GEN6_GT_GFX_RC6));
  1358. seq_printf(m, "RC6+ residency since boot: %u\n",
  1359. I915_READ(GEN6_GT_GFX_RC6p));
  1360. seq_printf(m, "RC6++ residency since boot: %u\n",
  1361. I915_READ(GEN6_GT_GFX_RC6pp));
  1362. seq_printf(m, "RC6 voltage: %dmV\n",
  1363. GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
  1364. seq_printf(m, "RC6+ voltage: %dmV\n",
  1365. GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
  1366. seq_printf(m, "RC6++ voltage: %dmV\n",
  1367. GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
  1368. return 0;
  1369. }
  1370. static int i915_drpc_info(struct seq_file *m, void *unused)
  1371. {
  1372. struct drm_info_node *node = m->private;
  1373. struct drm_device *dev = node->minor->dev;
  1374. if (IS_VALLEYVIEW(dev))
  1375. return vlv_drpc_info(m);
  1376. else if (INTEL_INFO(dev)->gen >= 6)
  1377. return gen6_drpc_info(m);
  1378. else
  1379. return ironlake_drpc_info(m);
  1380. }
  1381. static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
  1382. {
  1383. struct drm_info_node *node = m->private;
  1384. struct drm_device *dev = node->minor->dev;
  1385. struct drm_i915_private *dev_priv = dev->dev_private;
  1386. seq_printf(m, "FB tracking busy bits: 0x%08x\n",
  1387. dev_priv->fb_tracking.busy_bits);
  1388. seq_printf(m, "FB tracking flip bits: 0x%08x\n",
  1389. dev_priv->fb_tracking.flip_bits);
  1390. return 0;
  1391. }
  1392. static int i915_fbc_status(struct seq_file *m, void *unused)
  1393. {
  1394. struct drm_info_node *node = m->private;
  1395. struct drm_device *dev = node->minor->dev;
  1396. struct drm_i915_private *dev_priv = dev->dev_private;
  1397. if (!HAS_FBC(dev)) {
  1398. seq_puts(m, "FBC unsupported on this chipset\n");
  1399. return 0;
  1400. }
  1401. intel_runtime_pm_get(dev_priv);
  1402. mutex_lock(&dev_priv->fbc.lock);
  1403. if (intel_fbc_enabled(dev_priv))
  1404. seq_puts(m, "FBC enabled\n");
  1405. else
  1406. seq_printf(m, "FBC disabled: %s\n",
  1407. intel_no_fbc_reason_str(dev_priv->fbc.no_fbc_reason));
  1408. if (INTEL_INFO(dev_priv)->gen >= 7)
  1409. seq_printf(m, "Compressing: %s\n",
  1410. yesno(I915_READ(FBC_STATUS2) &
  1411. FBC_COMPRESSION_MASK));
  1412. mutex_unlock(&dev_priv->fbc.lock);
  1413. intel_runtime_pm_put(dev_priv);
  1414. return 0;
  1415. }
  1416. static int i915_fbc_fc_get(void *data, u64 *val)
  1417. {
  1418. struct drm_device *dev = data;
  1419. struct drm_i915_private *dev_priv = dev->dev_private;
  1420. if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
  1421. return -ENODEV;
  1422. *val = dev_priv->fbc.false_color;
  1423. return 0;
  1424. }
  1425. static int i915_fbc_fc_set(void *data, u64 val)
  1426. {
  1427. struct drm_device *dev = data;
  1428. struct drm_i915_private *dev_priv = dev->dev_private;
  1429. u32 reg;
  1430. if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
  1431. return -ENODEV;
  1432. mutex_lock(&dev_priv->fbc.lock);
  1433. reg = I915_READ(ILK_DPFC_CONTROL);
  1434. dev_priv->fbc.false_color = val;
  1435. I915_WRITE(ILK_DPFC_CONTROL, val ?
  1436. (reg | FBC_CTL_FALSE_COLOR) :
  1437. (reg & ~FBC_CTL_FALSE_COLOR));
  1438. mutex_unlock(&dev_priv->fbc.lock);
  1439. return 0;
  1440. }
  1441. DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
  1442. i915_fbc_fc_get, i915_fbc_fc_set,
  1443. "%llu\n");
  1444. static int i915_ips_status(struct seq_file *m, void *unused)
  1445. {
  1446. struct drm_info_node *node = m->private;
  1447. struct drm_device *dev = node->minor->dev;
  1448. struct drm_i915_private *dev_priv = dev->dev_private;
  1449. if (!HAS_IPS(dev)) {
  1450. seq_puts(m, "not supported\n");
  1451. return 0;
  1452. }
  1453. intel_runtime_pm_get(dev_priv);
  1454. seq_printf(m, "Enabled by kernel parameter: %s\n",
  1455. yesno(i915.enable_ips));
  1456. if (INTEL_INFO(dev)->gen >= 8) {
  1457. seq_puts(m, "Currently: unknown\n");
  1458. } else {
  1459. if (I915_READ(IPS_CTL) & IPS_ENABLE)
  1460. seq_puts(m, "Currently: enabled\n");
  1461. else
  1462. seq_puts(m, "Currently: disabled\n");
  1463. }
  1464. intel_runtime_pm_put(dev_priv);
  1465. return 0;
  1466. }
  1467. static int i915_sr_status(struct seq_file *m, void *unused)
  1468. {
  1469. struct drm_info_node *node = m->private;
  1470. struct drm_device *dev = node->minor->dev;
  1471. struct drm_i915_private *dev_priv = dev->dev_private;
  1472. bool sr_enabled = false;
  1473. intel_runtime_pm_get(dev_priv);
  1474. if (HAS_PCH_SPLIT(dev))
  1475. sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
  1476. else if (IS_CRESTLINE(dev) || IS_G4X(dev) ||
  1477. IS_I945G(dev) || IS_I945GM(dev))
  1478. sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
  1479. else if (IS_I915GM(dev))
  1480. sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
  1481. else if (IS_PINEVIEW(dev))
  1482. sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
  1483. else if (IS_VALLEYVIEW(dev))
  1484. sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
  1485. intel_runtime_pm_put(dev_priv);
  1486. seq_printf(m, "self-refresh: %s\n",
  1487. sr_enabled ? "enabled" : "disabled");
  1488. return 0;
  1489. }
  1490. static int i915_emon_status(struct seq_file *m, void *unused)
  1491. {
  1492. struct drm_info_node *node = m->private;
  1493. struct drm_device *dev = node->minor->dev;
  1494. struct drm_i915_private *dev_priv = dev->dev_private;
  1495. unsigned long temp, chipset, gfx;
  1496. int ret;
  1497. if (!IS_GEN5(dev))
  1498. return -ENODEV;
  1499. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1500. if (ret)
  1501. return ret;
  1502. temp = i915_mch_val(dev_priv);
  1503. chipset = i915_chipset_val(dev_priv);
  1504. gfx = i915_gfx_val(dev_priv);
  1505. mutex_unlock(&dev->struct_mutex);
  1506. seq_printf(m, "GMCH temp: %ld\n", temp);
  1507. seq_printf(m, "Chipset power: %ld\n", chipset);
  1508. seq_printf(m, "GFX power: %ld\n", gfx);
  1509. seq_printf(m, "Total power: %ld\n", chipset + gfx);
  1510. return 0;
  1511. }
  1512. static int i915_ring_freq_table(struct seq_file *m, void *unused)
  1513. {
  1514. struct drm_info_node *node = m->private;
  1515. struct drm_device *dev = node->minor->dev;
  1516. struct drm_i915_private *dev_priv = dev->dev_private;
  1517. int ret = 0;
  1518. int gpu_freq, ia_freq;
  1519. unsigned int max_gpu_freq, min_gpu_freq;
  1520. if (!HAS_CORE_RING_FREQ(dev)) {
  1521. seq_puts(m, "unsupported on this chipset\n");
  1522. return 0;
  1523. }
  1524. intel_runtime_pm_get(dev_priv);
  1525. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  1526. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  1527. if (ret)
  1528. goto out;
  1529. if (IS_SKYLAKE(dev)) {
  1530. /* Convert GT frequency to 50 HZ units */
  1531. min_gpu_freq =
  1532. dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
  1533. max_gpu_freq =
  1534. dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
  1535. } else {
  1536. min_gpu_freq = dev_priv->rps.min_freq_softlimit;
  1537. max_gpu_freq = dev_priv->rps.max_freq_softlimit;
  1538. }
  1539. seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
  1540. for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
  1541. ia_freq = gpu_freq;
  1542. sandybridge_pcode_read(dev_priv,
  1543. GEN6_PCODE_READ_MIN_FREQ_TABLE,
  1544. &ia_freq);
  1545. seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
  1546. intel_gpu_freq(dev_priv, (gpu_freq *
  1547. (IS_SKYLAKE(dev) ? GEN9_FREQ_SCALER : 1))),
  1548. ((ia_freq >> 0) & 0xff) * 100,
  1549. ((ia_freq >> 8) & 0xff) * 100);
  1550. }
  1551. mutex_unlock(&dev_priv->rps.hw_lock);
  1552. out:
  1553. intel_runtime_pm_put(dev_priv);
  1554. return ret;
  1555. }
  1556. static int i915_opregion(struct seq_file *m, void *unused)
  1557. {
  1558. struct drm_info_node *node = m->private;
  1559. struct drm_device *dev = node->minor->dev;
  1560. struct drm_i915_private *dev_priv = dev->dev_private;
  1561. struct intel_opregion *opregion = &dev_priv->opregion;
  1562. void *data = kmalloc(OPREGION_SIZE, GFP_KERNEL);
  1563. int ret;
  1564. if (data == NULL)
  1565. return -ENOMEM;
  1566. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1567. if (ret)
  1568. goto out;
  1569. if (opregion->header) {
  1570. memcpy_fromio(data, opregion->header, OPREGION_SIZE);
  1571. seq_write(m, data, OPREGION_SIZE);
  1572. }
  1573. mutex_unlock(&dev->struct_mutex);
  1574. out:
  1575. kfree(data);
  1576. return 0;
  1577. }
  1578. static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
  1579. {
  1580. struct drm_info_node *node = m->private;
  1581. struct drm_device *dev = node->minor->dev;
  1582. struct intel_fbdev *ifbdev = NULL;
  1583. struct intel_framebuffer *fb;
  1584. struct drm_framebuffer *drm_fb;
  1585. #ifdef CONFIG_DRM_FBDEV_EMULATION
  1586. struct drm_i915_private *dev_priv = dev->dev_private;
  1587. ifbdev = dev_priv->fbdev;
  1588. fb = to_intel_framebuffer(ifbdev->helper.fb);
  1589. seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
  1590. fb->base.width,
  1591. fb->base.height,
  1592. fb->base.depth,
  1593. fb->base.bits_per_pixel,
  1594. fb->base.modifier[0],
  1595. atomic_read(&fb->base.refcount.refcount));
  1596. describe_obj(m, fb->obj);
  1597. seq_putc(m, '\n');
  1598. #endif
  1599. mutex_lock(&dev->mode_config.fb_lock);
  1600. drm_for_each_fb(drm_fb, dev) {
  1601. fb = to_intel_framebuffer(drm_fb);
  1602. if (ifbdev && &fb->base == ifbdev->helper.fb)
  1603. continue;
  1604. seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
  1605. fb->base.width,
  1606. fb->base.height,
  1607. fb->base.depth,
  1608. fb->base.bits_per_pixel,
  1609. fb->base.modifier[0],
  1610. atomic_read(&fb->base.refcount.refcount));
  1611. describe_obj(m, fb->obj);
  1612. seq_putc(m, '\n');
  1613. }
  1614. mutex_unlock(&dev->mode_config.fb_lock);
  1615. return 0;
  1616. }
  1617. static void describe_ctx_ringbuf(struct seq_file *m,
  1618. struct intel_ringbuffer *ringbuf)
  1619. {
  1620. seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
  1621. ringbuf->space, ringbuf->head, ringbuf->tail,
  1622. ringbuf->last_retired_head);
  1623. }
  1624. static int i915_context_status(struct seq_file *m, void *unused)
  1625. {
  1626. struct drm_info_node *node = m->private;
  1627. struct drm_device *dev = node->minor->dev;
  1628. struct drm_i915_private *dev_priv = dev->dev_private;
  1629. struct intel_engine_cs *ring;
  1630. struct intel_context *ctx;
  1631. int ret, i;
  1632. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1633. if (ret)
  1634. return ret;
  1635. list_for_each_entry(ctx, &dev_priv->context_list, link) {
  1636. if (!i915.enable_execlists &&
  1637. ctx->legacy_hw_ctx.rcs_state == NULL)
  1638. continue;
  1639. seq_puts(m, "HW context ");
  1640. describe_ctx(m, ctx);
  1641. for_each_ring(ring, dev_priv, i) {
  1642. if (ring->default_context == ctx)
  1643. seq_printf(m, "(default context %s) ",
  1644. ring->name);
  1645. }
  1646. if (i915.enable_execlists) {
  1647. seq_putc(m, '\n');
  1648. for_each_ring(ring, dev_priv, i) {
  1649. struct drm_i915_gem_object *ctx_obj =
  1650. ctx->engine[i].state;
  1651. struct intel_ringbuffer *ringbuf =
  1652. ctx->engine[i].ringbuf;
  1653. seq_printf(m, "%s: ", ring->name);
  1654. if (ctx_obj)
  1655. describe_obj(m, ctx_obj);
  1656. if (ringbuf)
  1657. describe_ctx_ringbuf(m, ringbuf);
  1658. seq_putc(m, '\n');
  1659. }
  1660. } else {
  1661. describe_obj(m, ctx->legacy_hw_ctx.rcs_state);
  1662. }
  1663. seq_putc(m, '\n');
  1664. }
  1665. mutex_unlock(&dev->struct_mutex);
  1666. return 0;
  1667. }
  1668. static void i915_dump_lrc_obj(struct seq_file *m,
  1669. struct intel_engine_cs *ring,
  1670. struct drm_i915_gem_object *ctx_obj)
  1671. {
  1672. struct page *page;
  1673. uint32_t *reg_state;
  1674. int j;
  1675. unsigned long ggtt_offset = 0;
  1676. if (ctx_obj == NULL) {
  1677. seq_printf(m, "Context on %s with no gem object\n",
  1678. ring->name);
  1679. return;
  1680. }
  1681. seq_printf(m, "CONTEXT: %s %u\n", ring->name,
  1682. intel_execlists_ctx_id(ctx_obj));
  1683. if (!i915_gem_obj_ggtt_bound(ctx_obj))
  1684. seq_puts(m, "\tNot bound in GGTT\n");
  1685. else
  1686. ggtt_offset = i915_gem_obj_ggtt_offset(ctx_obj);
  1687. if (i915_gem_object_get_pages(ctx_obj)) {
  1688. seq_puts(m, "\tFailed to get pages for context object\n");
  1689. return;
  1690. }
  1691. page = i915_gem_object_get_page(ctx_obj, 1);
  1692. if (!WARN_ON(page == NULL)) {
  1693. reg_state = kmap_atomic(page);
  1694. for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
  1695. seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
  1696. ggtt_offset + 4096 + (j * 4),
  1697. reg_state[j], reg_state[j + 1],
  1698. reg_state[j + 2], reg_state[j + 3]);
  1699. }
  1700. kunmap_atomic(reg_state);
  1701. }
  1702. seq_putc(m, '\n');
  1703. }
  1704. static int i915_dump_lrc(struct seq_file *m, void *unused)
  1705. {
  1706. struct drm_info_node *node = (struct drm_info_node *) m->private;
  1707. struct drm_device *dev = node->minor->dev;
  1708. struct drm_i915_private *dev_priv = dev->dev_private;
  1709. struct intel_engine_cs *ring;
  1710. struct intel_context *ctx;
  1711. int ret, i;
  1712. if (!i915.enable_execlists) {
  1713. seq_printf(m, "Logical Ring Contexts are disabled\n");
  1714. return 0;
  1715. }
  1716. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1717. if (ret)
  1718. return ret;
  1719. list_for_each_entry(ctx, &dev_priv->context_list, link) {
  1720. for_each_ring(ring, dev_priv, i) {
  1721. if (ring->default_context != ctx)
  1722. i915_dump_lrc_obj(m, ring,
  1723. ctx->engine[i].state);
  1724. }
  1725. }
  1726. mutex_unlock(&dev->struct_mutex);
  1727. return 0;
  1728. }
  1729. static int i915_execlists(struct seq_file *m, void *data)
  1730. {
  1731. struct drm_info_node *node = (struct drm_info_node *)m->private;
  1732. struct drm_device *dev = node->minor->dev;
  1733. struct drm_i915_private *dev_priv = dev->dev_private;
  1734. struct intel_engine_cs *ring;
  1735. u32 status_pointer;
  1736. u8 read_pointer;
  1737. u8 write_pointer;
  1738. u32 status;
  1739. u32 ctx_id;
  1740. struct list_head *cursor;
  1741. int ring_id, i;
  1742. int ret;
  1743. if (!i915.enable_execlists) {
  1744. seq_puts(m, "Logical Ring Contexts are disabled\n");
  1745. return 0;
  1746. }
  1747. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1748. if (ret)
  1749. return ret;
  1750. intel_runtime_pm_get(dev_priv);
  1751. for_each_ring(ring, dev_priv, ring_id) {
  1752. struct drm_i915_gem_request *head_req = NULL;
  1753. int count = 0;
  1754. unsigned long flags;
  1755. seq_printf(m, "%s\n", ring->name);
  1756. status = I915_READ(RING_EXECLIST_STATUS(ring));
  1757. ctx_id = I915_READ(RING_EXECLIST_STATUS(ring) + 4);
  1758. seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
  1759. status, ctx_id);
  1760. status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
  1761. seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
  1762. read_pointer = ring->next_context_status_buffer;
  1763. write_pointer = status_pointer & 0x07;
  1764. if (read_pointer > write_pointer)
  1765. write_pointer += 6;
  1766. seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
  1767. read_pointer, write_pointer);
  1768. for (i = 0; i < 6; i++) {
  1769. status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) + 8*i);
  1770. ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) + 8*i + 4);
  1771. seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
  1772. i, status, ctx_id);
  1773. }
  1774. spin_lock_irqsave(&ring->execlist_lock, flags);
  1775. list_for_each(cursor, &ring->execlist_queue)
  1776. count++;
  1777. head_req = list_first_entry_or_null(&ring->execlist_queue,
  1778. struct drm_i915_gem_request, execlist_link);
  1779. spin_unlock_irqrestore(&ring->execlist_lock, flags);
  1780. seq_printf(m, "\t%d requests in queue\n", count);
  1781. if (head_req) {
  1782. struct drm_i915_gem_object *ctx_obj;
  1783. ctx_obj = head_req->ctx->engine[ring_id].state;
  1784. seq_printf(m, "\tHead request id: %u\n",
  1785. intel_execlists_ctx_id(ctx_obj));
  1786. seq_printf(m, "\tHead request tail: %u\n",
  1787. head_req->tail);
  1788. }
  1789. seq_putc(m, '\n');
  1790. }
  1791. intel_runtime_pm_put(dev_priv);
  1792. mutex_unlock(&dev->struct_mutex);
  1793. return 0;
  1794. }
  1795. static const char *swizzle_string(unsigned swizzle)
  1796. {
  1797. switch (swizzle) {
  1798. case I915_BIT_6_SWIZZLE_NONE:
  1799. return "none";
  1800. case I915_BIT_6_SWIZZLE_9:
  1801. return "bit9";
  1802. case I915_BIT_6_SWIZZLE_9_10:
  1803. return "bit9/bit10";
  1804. case I915_BIT_6_SWIZZLE_9_11:
  1805. return "bit9/bit11";
  1806. case I915_BIT_6_SWIZZLE_9_10_11:
  1807. return "bit9/bit10/bit11";
  1808. case I915_BIT_6_SWIZZLE_9_17:
  1809. return "bit9/bit17";
  1810. case I915_BIT_6_SWIZZLE_9_10_17:
  1811. return "bit9/bit10/bit17";
  1812. case I915_BIT_6_SWIZZLE_UNKNOWN:
  1813. return "unknown";
  1814. }
  1815. return "bug";
  1816. }
  1817. static int i915_swizzle_info(struct seq_file *m, void *data)
  1818. {
  1819. struct drm_info_node *node = m->private;
  1820. struct drm_device *dev = node->minor->dev;
  1821. struct drm_i915_private *dev_priv = dev->dev_private;
  1822. int ret;
  1823. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1824. if (ret)
  1825. return ret;
  1826. intel_runtime_pm_get(dev_priv);
  1827. seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
  1828. swizzle_string(dev_priv->mm.bit_6_swizzle_x));
  1829. seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
  1830. swizzle_string(dev_priv->mm.bit_6_swizzle_y));
  1831. if (IS_GEN3(dev) || IS_GEN4(dev)) {
  1832. seq_printf(m, "DDC = 0x%08x\n",
  1833. I915_READ(DCC));
  1834. seq_printf(m, "DDC2 = 0x%08x\n",
  1835. I915_READ(DCC2));
  1836. seq_printf(m, "C0DRB3 = 0x%04x\n",
  1837. I915_READ16(C0DRB3));
  1838. seq_printf(m, "C1DRB3 = 0x%04x\n",
  1839. I915_READ16(C1DRB3));
  1840. } else if (INTEL_INFO(dev)->gen >= 6) {
  1841. seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
  1842. I915_READ(MAD_DIMM_C0));
  1843. seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
  1844. I915_READ(MAD_DIMM_C1));
  1845. seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
  1846. I915_READ(MAD_DIMM_C2));
  1847. seq_printf(m, "TILECTL = 0x%08x\n",
  1848. I915_READ(TILECTL));
  1849. if (INTEL_INFO(dev)->gen >= 8)
  1850. seq_printf(m, "GAMTARBMODE = 0x%08x\n",
  1851. I915_READ(GAMTARBMODE));
  1852. else
  1853. seq_printf(m, "ARB_MODE = 0x%08x\n",
  1854. I915_READ(ARB_MODE));
  1855. seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
  1856. I915_READ(DISP_ARB_CTL));
  1857. }
  1858. if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
  1859. seq_puts(m, "L-shaped memory detected\n");
  1860. intel_runtime_pm_put(dev_priv);
  1861. mutex_unlock(&dev->struct_mutex);
  1862. return 0;
  1863. }
  1864. static int per_file_ctx(int id, void *ptr, void *data)
  1865. {
  1866. struct intel_context *ctx = ptr;
  1867. struct seq_file *m = data;
  1868. struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
  1869. if (!ppgtt) {
  1870. seq_printf(m, " no ppgtt for context %d\n",
  1871. ctx->user_handle);
  1872. return 0;
  1873. }
  1874. if (i915_gem_context_is_default(ctx))
  1875. seq_puts(m, " default context:\n");
  1876. else
  1877. seq_printf(m, " context %d:\n", ctx->user_handle);
  1878. ppgtt->debug_dump(ppgtt, m);
  1879. return 0;
  1880. }
  1881. static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
  1882. {
  1883. struct drm_i915_private *dev_priv = dev->dev_private;
  1884. struct intel_engine_cs *ring;
  1885. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  1886. int unused, i;
  1887. if (!ppgtt)
  1888. return;
  1889. for_each_ring(ring, dev_priv, unused) {
  1890. seq_printf(m, "%s\n", ring->name);
  1891. for (i = 0; i < 4; i++) {
  1892. u32 offset = 0x270 + i * 8;
  1893. u64 pdp = I915_READ(ring->mmio_base + offset + 4);
  1894. pdp <<= 32;
  1895. pdp |= I915_READ(ring->mmio_base + offset);
  1896. seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
  1897. }
  1898. }
  1899. }
  1900. static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
  1901. {
  1902. struct drm_i915_private *dev_priv = dev->dev_private;
  1903. struct intel_engine_cs *ring;
  1904. struct drm_file *file;
  1905. int i;
  1906. if (INTEL_INFO(dev)->gen == 6)
  1907. seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
  1908. for_each_ring(ring, dev_priv, i) {
  1909. seq_printf(m, "%s\n", ring->name);
  1910. if (INTEL_INFO(dev)->gen == 7)
  1911. seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
  1912. seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
  1913. seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
  1914. seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
  1915. }
  1916. if (dev_priv->mm.aliasing_ppgtt) {
  1917. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  1918. seq_puts(m, "aliasing PPGTT:\n");
  1919. seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
  1920. ppgtt->debug_dump(ppgtt, m);
  1921. }
  1922. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  1923. struct drm_i915_file_private *file_priv = file->driver_priv;
  1924. seq_printf(m, "proc: %s\n",
  1925. get_pid_task(file->pid, PIDTYPE_PID)->comm);
  1926. idr_for_each(&file_priv->context_idr, per_file_ctx, m);
  1927. }
  1928. seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
  1929. }
  1930. static int i915_ppgtt_info(struct seq_file *m, void *data)
  1931. {
  1932. struct drm_info_node *node = m->private;
  1933. struct drm_device *dev = node->minor->dev;
  1934. struct drm_i915_private *dev_priv = dev->dev_private;
  1935. int ret = mutex_lock_interruptible(&dev->struct_mutex);
  1936. if (ret)
  1937. return ret;
  1938. intel_runtime_pm_get(dev_priv);
  1939. if (INTEL_INFO(dev)->gen >= 8)
  1940. gen8_ppgtt_info(m, dev);
  1941. else if (INTEL_INFO(dev)->gen >= 6)
  1942. gen6_ppgtt_info(m, dev);
  1943. intel_runtime_pm_put(dev_priv);
  1944. mutex_unlock(&dev->struct_mutex);
  1945. return 0;
  1946. }
  1947. static int count_irq_waiters(struct drm_i915_private *i915)
  1948. {
  1949. struct intel_engine_cs *ring;
  1950. int count = 0;
  1951. int i;
  1952. for_each_ring(ring, i915, i)
  1953. count += ring->irq_refcount;
  1954. return count;
  1955. }
  1956. static int i915_rps_boost_info(struct seq_file *m, void *data)
  1957. {
  1958. struct drm_info_node *node = m->private;
  1959. struct drm_device *dev = node->minor->dev;
  1960. struct drm_i915_private *dev_priv = dev->dev_private;
  1961. struct drm_file *file;
  1962. seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
  1963. seq_printf(m, "GPU busy? %d\n", dev_priv->mm.busy);
  1964. seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
  1965. seq_printf(m, "Frequency requested %d; min hard:%d, soft:%d; max soft:%d, hard:%d\n",
  1966. intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
  1967. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
  1968. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
  1969. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
  1970. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  1971. spin_lock(&dev_priv->rps.client_lock);
  1972. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  1973. struct drm_i915_file_private *file_priv = file->driver_priv;
  1974. struct task_struct *task;
  1975. rcu_read_lock();
  1976. task = pid_task(file->pid, PIDTYPE_PID);
  1977. seq_printf(m, "%s [%d]: %d boosts%s\n",
  1978. task ? task->comm : "<unknown>",
  1979. task ? task->pid : -1,
  1980. file_priv->rps.boosts,
  1981. list_empty(&file_priv->rps.link) ? "" : ", active");
  1982. rcu_read_unlock();
  1983. }
  1984. seq_printf(m, "Semaphore boosts: %d%s\n",
  1985. dev_priv->rps.semaphores.boosts,
  1986. list_empty(&dev_priv->rps.semaphores.link) ? "" : ", active");
  1987. seq_printf(m, "MMIO flip boosts: %d%s\n",
  1988. dev_priv->rps.mmioflips.boosts,
  1989. list_empty(&dev_priv->rps.mmioflips.link) ? "" : ", active");
  1990. seq_printf(m, "Kernel boosts: %d\n", dev_priv->rps.boosts);
  1991. spin_unlock(&dev_priv->rps.client_lock);
  1992. return 0;
  1993. }
  1994. static int i915_llc(struct seq_file *m, void *data)
  1995. {
  1996. struct drm_info_node *node = m->private;
  1997. struct drm_device *dev = node->minor->dev;
  1998. struct drm_i915_private *dev_priv = dev->dev_private;
  1999. /* Size calculation for LLC is a bit of a pain. Ignore for now. */
  2000. seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
  2001. seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size);
  2002. return 0;
  2003. }
  2004. static int i915_edp_psr_status(struct seq_file *m, void *data)
  2005. {
  2006. struct drm_info_node *node = m->private;
  2007. struct drm_device *dev = node->minor->dev;
  2008. struct drm_i915_private *dev_priv = dev->dev_private;
  2009. u32 psrperf = 0;
  2010. u32 stat[3];
  2011. enum pipe pipe;
  2012. bool enabled = false;
  2013. if (!HAS_PSR(dev)) {
  2014. seq_puts(m, "PSR not supported\n");
  2015. return 0;
  2016. }
  2017. intel_runtime_pm_get(dev_priv);
  2018. mutex_lock(&dev_priv->psr.lock);
  2019. seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
  2020. seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
  2021. seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
  2022. seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
  2023. seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
  2024. dev_priv->psr.busy_frontbuffer_bits);
  2025. seq_printf(m, "Re-enable work scheduled: %s\n",
  2026. yesno(work_busy(&dev_priv->psr.work.work)));
  2027. if (HAS_DDI(dev))
  2028. enabled = I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
  2029. else {
  2030. for_each_pipe(dev_priv, pipe) {
  2031. stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
  2032. VLV_EDP_PSR_CURR_STATE_MASK;
  2033. if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
  2034. (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
  2035. enabled = true;
  2036. }
  2037. }
  2038. seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
  2039. if (!HAS_DDI(dev))
  2040. for_each_pipe(dev_priv, pipe) {
  2041. if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
  2042. (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
  2043. seq_printf(m, " pipe %c", pipe_name(pipe));
  2044. }
  2045. seq_puts(m, "\n");
  2046. /* CHV PSR has no kind of performance counter */
  2047. if (HAS_DDI(dev)) {
  2048. psrperf = I915_READ(EDP_PSR_PERF_CNT(dev)) &
  2049. EDP_PSR_PERF_CNT_MASK;
  2050. seq_printf(m, "Performance_Counter: %u\n", psrperf);
  2051. }
  2052. mutex_unlock(&dev_priv->psr.lock);
  2053. intel_runtime_pm_put(dev_priv);
  2054. return 0;
  2055. }
  2056. static int i915_sink_crc(struct seq_file *m, void *data)
  2057. {
  2058. struct drm_info_node *node = m->private;
  2059. struct drm_device *dev = node->minor->dev;
  2060. struct intel_encoder *encoder;
  2061. struct intel_connector *connector;
  2062. struct intel_dp *intel_dp = NULL;
  2063. int ret;
  2064. u8 crc[6];
  2065. drm_modeset_lock_all(dev);
  2066. for_each_intel_connector(dev, connector) {
  2067. if (connector->base.dpms != DRM_MODE_DPMS_ON)
  2068. continue;
  2069. if (!connector->base.encoder)
  2070. continue;
  2071. encoder = to_intel_encoder(connector->base.encoder);
  2072. if (encoder->type != INTEL_OUTPUT_EDP)
  2073. continue;
  2074. intel_dp = enc_to_intel_dp(&encoder->base);
  2075. ret = intel_dp_sink_crc(intel_dp, crc);
  2076. if (ret)
  2077. goto out;
  2078. seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
  2079. crc[0], crc[1], crc[2],
  2080. crc[3], crc[4], crc[5]);
  2081. goto out;
  2082. }
  2083. ret = -ENODEV;
  2084. out:
  2085. drm_modeset_unlock_all(dev);
  2086. return ret;
  2087. }
  2088. static int i915_energy_uJ(struct seq_file *m, void *data)
  2089. {
  2090. struct drm_info_node *node = m->private;
  2091. struct drm_device *dev = node->minor->dev;
  2092. struct drm_i915_private *dev_priv = dev->dev_private;
  2093. u64 power;
  2094. u32 units;
  2095. if (INTEL_INFO(dev)->gen < 6)
  2096. return -ENODEV;
  2097. intel_runtime_pm_get(dev_priv);
  2098. rdmsrl(MSR_RAPL_POWER_UNIT, power);
  2099. power = (power & 0x1f00) >> 8;
  2100. units = 1000000 / (1 << power); /* convert to uJ */
  2101. power = I915_READ(MCH_SECP_NRG_STTS);
  2102. power *= units;
  2103. intel_runtime_pm_put(dev_priv);
  2104. seq_printf(m, "%llu", (long long unsigned)power);
  2105. return 0;
  2106. }
  2107. static int i915_runtime_pm_status(struct seq_file *m, void *unused)
  2108. {
  2109. struct drm_info_node *node = m->private;
  2110. struct drm_device *dev = node->minor->dev;
  2111. struct drm_i915_private *dev_priv = dev->dev_private;
  2112. if (!HAS_RUNTIME_PM(dev)) {
  2113. seq_puts(m, "not supported\n");
  2114. return 0;
  2115. }
  2116. seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
  2117. seq_printf(m, "IRQs disabled: %s\n",
  2118. yesno(!intel_irqs_enabled(dev_priv)));
  2119. #ifdef CONFIG_PM
  2120. seq_printf(m, "Usage count: %d\n",
  2121. atomic_read(&dev->dev->power.usage_count));
  2122. #else
  2123. seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
  2124. #endif
  2125. return 0;
  2126. }
  2127. static const char *power_domain_str(enum intel_display_power_domain domain)
  2128. {
  2129. switch (domain) {
  2130. case POWER_DOMAIN_PIPE_A:
  2131. return "PIPE_A";
  2132. case POWER_DOMAIN_PIPE_B:
  2133. return "PIPE_B";
  2134. case POWER_DOMAIN_PIPE_C:
  2135. return "PIPE_C";
  2136. case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
  2137. return "PIPE_A_PANEL_FITTER";
  2138. case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
  2139. return "PIPE_B_PANEL_FITTER";
  2140. case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
  2141. return "PIPE_C_PANEL_FITTER";
  2142. case POWER_DOMAIN_TRANSCODER_A:
  2143. return "TRANSCODER_A";
  2144. case POWER_DOMAIN_TRANSCODER_B:
  2145. return "TRANSCODER_B";
  2146. case POWER_DOMAIN_TRANSCODER_C:
  2147. return "TRANSCODER_C";
  2148. case POWER_DOMAIN_TRANSCODER_EDP:
  2149. return "TRANSCODER_EDP";
  2150. case POWER_DOMAIN_PORT_DDI_A_2_LANES:
  2151. return "PORT_DDI_A_2_LANES";
  2152. case POWER_DOMAIN_PORT_DDI_A_4_LANES:
  2153. return "PORT_DDI_A_4_LANES";
  2154. case POWER_DOMAIN_PORT_DDI_B_2_LANES:
  2155. return "PORT_DDI_B_2_LANES";
  2156. case POWER_DOMAIN_PORT_DDI_B_4_LANES:
  2157. return "PORT_DDI_B_4_LANES";
  2158. case POWER_DOMAIN_PORT_DDI_C_2_LANES:
  2159. return "PORT_DDI_C_2_LANES";
  2160. case POWER_DOMAIN_PORT_DDI_C_4_LANES:
  2161. return "PORT_DDI_C_4_LANES";
  2162. case POWER_DOMAIN_PORT_DDI_D_2_LANES:
  2163. return "PORT_DDI_D_2_LANES";
  2164. case POWER_DOMAIN_PORT_DDI_D_4_LANES:
  2165. return "PORT_DDI_D_4_LANES";
  2166. case POWER_DOMAIN_PORT_DDI_E_2_LANES:
  2167. return "PORT_DDI_E_2_LANES";
  2168. case POWER_DOMAIN_PORT_DSI:
  2169. return "PORT_DSI";
  2170. case POWER_DOMAIN_PORT_CRT:
  2171. return "PORT_CRT";
  2172. case POWER_DOMAIN_PORT_OTHER:
  2173. return "PORT_OTHER";
  2174. case POWER_DOMAIN_VGA:
  2175. return "VGA";
  2176. case POWER_DOMAIN_AUDIO:
  2177. return "AUDIO";
  2178. case POWER_DOMAIN_PLLS:
  2179. return "PLLS";
  2180. case POWER_DOMAIN_AUX_A:
  2181. return "AUX_A";
  2182. case POWER_DOMAIN_AUX_B:
  2183. return "AUX_B";
  2184. case POWER_DOMAIN_AUX_C:
  2185. return "AUX_C";
  2186. case POWER_DOMAIN_AUX_D:
  2187. return "AUX_D";
  2188. case POWER_DOMAIN_INIT:
  2189. return "INIT";
  2190. default:
  2191. MISSING_CASE(domain);
  2192. return "?";
  2193. }
  2194. }
  2195. static int i915_power_domain_info(struct seq_file *m, void *unused)
  2196. {
  2197. struct drm_info_node *node = m->private;
  2198. struct drm_device *dev = node->minor->dev;
  2199. struct drm_i915_private *dev_priv = dev->dev_private;
  2200. struct i915_power_domains *power_domains = &dev_priv->power_domains;
  2201. int i;
  2202. mutex_lock(&power_domains->lock);
  2203. seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
  2204. for (i = 0; i < power_domains->power_well_count; i++) {
  2205. struct i915_power_well *power_well;
  2206. enum intel_display_power_domain power_domain;
  2207. power_well = &power_domains->power_wells[i];
  2208. seq_printf(m, "%-25s %d\n", power_well->name,
  2209. power_well->count);
  2210. for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
  2211. power_domain++) {
  2212. if (!(BIT(power_domain) & power_well->domains))
  2213. continue;
  2214. seq_printf(m, " %-23s %d\n",
  2215. power_domain_str(power_domain),
  2216. power_domains->domain_use_count[power_domain]);
  2217. }
  2218. }
  2219. mutex_unlock(&power_domains->lock);
  2220. return 0;
  2221. }
  2222. static void intel_seq_print_mode(struct seq_file *m, int tabs,
  2223. struct drm_display_mode *mode)
  2224. {
  2225. int i;
  2226. for (i = 0; i < tabs; i++)
  2227. seq_putc(m, '\t');
  2228. seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
  2229. mode->base.id, mode->name,
  2230. mode->vrefresh, mode->clock,
  2231. mode->hdisplay, mode->hsync_start,
  2232. mode->hsync_end, mode->htotal,
  2233. mode->vdisplay, mode->vsync_start,
  2234. mode->vsync_end, mode->vtotal,
  2235. mode->type, mode->flags);
  2236. }
  2237. static void intel_encoder_info(struct seq_file *m,
  2238. struct intel_crtc *intel_crtc,
  2239. struct intel_encoder *intel_encoder)
  2240. {
  2241. struct drm_info_node *node = m->private;
  2242. struct drm_device *dev = node->minor->dev;
  2243. struct drm_crtc *crtc = &intel_crtc->base;
  2244. struct intel_connector *intel_connector;
  2245. struct drm_encoder *encoder;
  2246. encoder = &intel_encoder->base;
  2247. seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
  2248. encoder->base.id, encoder->name);
  2249. for_each_connector_on_encoder(dev, encoder, intel_connector) {
  2250. struct drm_connector *connector = &intel_connector->base;
  2251. seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
  2252. connector->base.id,
  2253. connector->name,
  2254. drm_get_connector_status_name(connector->status));
  2255. if (connector->status == connector_status_connected) {
  2256. struct drm_display_mode *mode = &crtc->mode;
  2257. seq_printf(m, ", mode:\n");
  2258. intel_seq_print_mode(m, 2, mode);
  2259. } else {
  2260. seq_putc(m, '\n');
  2261. }
  2262. }
  2263. }
  2264. static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
  2265. {
  2266. struct drm_info_node *node = m->private;
  2267. struct drm_device *dev = node->minor->dev;
  2268. struct drm_crtc *crtc = &intel_crtc->base;
  2269. struct intel_encoder *intel_encoder;
  2270. if (crtc->primary->fb)
  2271. seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
  2272. crtc->primary->fb->base.id, crtc->x, crtc->y,
  2273. crtc->primary->fb->width, crtc->primary->fb->height);
  2274. else
  2275. seq_puts(m, "\tprimary plane disabled\n");
  2276. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  2277. intel_encoder_info(m, intel_crtc, intel_encoder);
  2278. }
  2279. static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
  2280. {
  2281. struct drm_display_mode *mode = panel->fixed_mode;
  2282. seq_printf(m, "\tfixed mode:\n");
  2283. intel_seq_print_mode(m, 2, mode);
  2284. }
  2285. static void intel_dp_info(struct seq_file *m,
  2286. struct intel_connector *intel_connector)
  2287. {
  2288. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2289. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  2290. seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
  2291. seq_printf(m, "\taudio support: %s\n", intel_dp->has_audio ? "yes" :
  2292. "no");
  2293. if (intel_encoder->type == INTEL_OUTPUT_EDP)
  2294. intel_panel_info(m, &intel_connector->panel);
  2295. }
  2296. static void intel_hdmi_info(struct seq_file *m,
  2297. struct intel_connector *intel_connector)
  2298. {
  2299. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2300. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
  2301. seq_printf(m, "\taudio support: %s\n", intel_hdmi->has_audio ? "yes" :
  2302. "no");
  2303. }
  2304. static void intel_lvds_info(struct seq_file *m,
  2305. struct intel_connector *intel_connector)
  2306. {
  2307. intel_panel_info(m, &intel_connector->panel);
  2308. }
  2309. static void intel_connector_info(struct seq_file *m,
  2310. struct drm_connector *connector)
  2311. {
  2312. struct intel_connector *intel_connector = to_intel_connector(connector);
  2313. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2314. struct drm_display_mode *mode;
  2315. seq_printf(m, "connector %d: type %s, status: %s\n",
  2316. connector->base.id, connector->name,
  2317. drm_get_connector_status_name(connector->status));
  2318. if (connector->status == connector_status_connected) {
  2319. seq_printf(m, "\tname: %s\n", connector->display_info.name);
  2320. seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
  2321. connector->display_info.width_mm,
  2322. connector->display_info.height_mm);
  2323. seq_printf(m, "\tsubpixel order: %s\n",
  2324. drm_get_subpixel_order_name(connector->display_info.subpixel_order));
  2325. seq_printf(m, "\tCEA rev: %d\n",
  2326. connector->display_info.cea_rev);
  2327. }
  2328. if (intel_encoder) {
  2329. if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
  2330. intel_encoder->type == INTEL_OUTPUT_EDP)
  2331. intel_dp_info(m, intel_connector);
  2332. else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
  2333. intel_hdmi_info(m, intel_connector);
  2334. else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
  2335. intel_lvds_info(m, intel_connector);
  2336. }
  2337. seq_printf(m, "\tmodes:\n");
  2338. list_for_each_entry(mode, &connector->modes, head)
  2339. intel_seq_print_mode(m, 2, mode);
  2340. }
  2341. static bool cursor_active(struct drm_device *dev, int pipe)
  2342. {
  2343. struct drm_i915_private *dev_priv = dev->dev_private;
  2344. u32 state;
  2345. if (IS_845G(dev) || IS_I865G(dev))
  2346. state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
  2347. else
  2348. state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
  2349. return state;
  2350. }
  2351. static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
  2352. {
  2353. struct drm_i915_private *dev_priv = dev->dev_private;
  2354. u32 pos;
  2355. pos = I915_READ(CURPOS(pipe));
  2356. *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
  2357. if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
  2358. *x = -*x;
  2359. *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
  2360. if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
  2361. *y = -*y;
  2362. return cursor_active(dev, pipe);
  2363. }
  2364. static int i915_display_info(struct seq_file *m, void *unused)
  2365. {
  2366. struct drm_info_node *node = m->private;
  2367. struct drm_device *dev = node->minor->dev;
  2368. struct drm_i915_private *dev_priv = dev->dev_private;
  2369. struct intel_crtc *crtc;
  2370. struct drm_connector *connector;
  2371. intel_runtime_pm_get(dev_priv);
  2372. drm_modeset_lock_all(dev);
  2373. seq_printf(m, "CRTC info\n");
  2374. seq_printf(m, "---------\n");
  2375. for_each_intel_crtc(dev, crtc) {
  2376. bool active;
  2377. struct intel_crtc_state *pipe_config;
  2378. int x, y;
  2379. pipe_config = to_intel_crtc_state(crtc->base.state);
  2380. seq_printf(m, "CRTC %d: pipe: %c, active=%s (size=%dx%d)\n",
  2381. crtc->base.base.id, pipe_name(crtc->pipe),
  2382. yesno(pipe_config->base.active),
  2383. pipe_config->pipe_src_w, pipe_config->pipe_src_h);
  2384. if (pipe_config->base.active) {
  2385. intel_crtc_info(m, crtc);
  2386. active = cursor_position(dev, crtc->pipe, &x, &y);
  2387. seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
  2388. yesno(crtc->cursor_base),
  2389. x, y, crtc->base.cursor->state->crtc_w,
  2390. crtc->base.cursor->state->crtc_h,
  2391. crtc->cursor_addr, yesno(active));
  2392. }
  2393. seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
  2394. yesno(!crtc->cpu_fifo_underrun_disabled),
  2395. yesno(!crtc->pch_fifo_underrun_disabled));
  2396. }
  2397. seq_printf(m, "\n");
  2398. seq_printf(m, "Connector info\n");
  2399. seq_printf(m, "--------------\n");
  2400. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  2401. intel_connector_info(m, connector);
  2402. }
  2403. drm_modeset_unlock_all(dev);
  2404. intel_runtime_pm_put(dev_priv);
  2405. return 0;
  2406. }
  2407. static int i915_semaphore_status(struct seq_file *m, void *unused)
  2408. {
  2409. struct drm_info_node *node = (struct drm_info_node *) m->private;
  2410. struct drm_device *dev = node->minor->dev;
  2411. struct drm_i915_private *dev_priv = dev->dev_private;
  2412. struct intel_engine_cs *ring;
  2413. int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  2414. int i, j, ret;
  2415. if (!i915_semaphore_is_enabled(dev)) {
  2416. seq_puts(m, "Semaphores are disabled\n");
  2417. return 0;
  2418. }
  2419. ret = mutex_lock_interruptible(&dev->struct_mutex);
  2420. if (ret)
  2421. return ret;
  2422. intel_runtime_pm_get(dev_priv);
  2423. if (IS_BROADWELL(dev)) {
  2424. struct page *page;
  2425. uint64_t *seqno;
  2426. page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
  2427. seqno = (uint64_t *)kmap_atomic(page);
  2428. for_each_ring(ring, dev_priv, i) {
  2429. uint64_t offset;
  2430. seq_printf(m, "%s\n", ring->name);
  2431. seq_puts(m, " Last signal:");
  2432. for (j = 0; j < num_rings; j++) {
  2433. offset = i * I915_NUM_RINGS + j;
  2434. seq_printf(m, "0x%08llx (0x%02llx) ",
  2435. seqno[offset], offset * 8);
  2436. }
  2437. seq_putc(m, '\n');
  2438. seq_puts(m, " Last wait: ");
  2439. for (j = 0; j < num_rings; j++) {
  2440. offset = i + (j * I915_NUM_RINGS);
  2441. seq_printf(m, "0x%08llx (0x%02llx) ",
  2442. seqno[offset], offset * 8);
  2443. }
  2444. seq_putc(m, '\n');
  2445. }
  2446. kunmap_atomic(seqno);
  2447. } else {
  2448. seq_puts(m, " Last signal:");
  2449. for_each_ring(ring, dev_priv, i)
  2450. for (j = 0; j < num_rings; j++)
  2451. seq_printf(m, "0x%08x\n",
  2452. I915_READ(ring->semaphore.mbox.signal[j]));
  2453. seq_putc(m, '\n');
  2454. }
  2455. seq_puts(m, "\nSync seqno:\n");
  2456. for_each_ring(ring, dev_priv, i) {
  2457. for (j = 0; j < num_rings; j++) {
  2458. seq_printf(m, " 0x%08x ", ring->semaphore.sync_seqno[j]);
  2459. }
  2460. seq_putc(m, '\n');
  2461. }
  2462. seq_putc(m, '\n');
  2463. intel_runtime_pm_put(dev_priv);
  2464. mutex_unlock(&dev->struct_mutex);
  2465. return 0;
  2466. }
  2467. static int i915_shared_dplls_info(struct seq_file *m, void *unused)
  2468. {
  2469. struct drm_info_node *node = (struct drm_info_node *) m->private;
  2470. struct drm_device *dev = node->minor->dev;
  2471. struct drm_i915_private *dev_priv = dev->dev_private;
  2472. int i;
  2473. drm_modeset_lock_all(dev);
  2474. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2475. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  2476. seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
  2477. seq_printf(m, " crtc_mask: 0x%08x, active: %d, on: %s\n",
  2478. pll->config.crtc_mask, pll->active, yesno(pll->on));
  2479. seq_printf(m, " tracked hardware state:\n");
  2480. seq_printf(m, " dpll: 0x%08x\n", pll->config.hw_state.dpll);
  2481. seq_printf(m, " dpll_md: 0x%08x\n",
  2482. pll->config.hw_state.dpll_md);
  2483. seq_printf(m, " fp0: 0x%08x\n", pll->config.hw_state.fp0);
  2484. seq_printf(m, " fp1: 0x%08x\n", pll->config.hw_state.fp1);
  2485. seq_printf(m, " wrpll: 0x%08x\n", pll->config.hw_state.wrpll);
  2486. }
  2487. drm_modeset_unlock_all(dev);
  2488. return 0;
  2489. }
  2490. static int i915_wa_registers(struct seq_file *m, void *unused)
  2491. {
  2492. int i;
  2493. int ret;
  2494. struct drm_info_node *node = (struct drm_info_node *) m->private;
  2495. struct drm_device *dev = node->minor->dev;
  2496. struct drm_i915_private *dev_priv = dev->dev_private;
  2497. ret = mutex_lock_interruptible(&dev->struct_mutex);
  2498. if (ret)
  2499. return ret;
  2500. intel_runtime_pm_get(dev_priv);
  2501. seq_printf(m, "Workarounds applied: %d\n", dev_priv->workarounds.count);
  2502. for (i = 0; i < dev_priv->workarounds.count; ++i) {
  2503. u32 addr, mask, value, read;
  2504. bool ok;
  2505. addr = dev_priv->workarounds.reg[i].addr;
  2506. mask = dev_priv->workarounds.reg[i].mask;
  2507. value = dev_priv->workarounds.reg[i].value;
  2508. read = I915_READ(addr);
  2509. ok = (value & mask) == (read & mask);
  2510. seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
  2511. addr, value, mask, read, ok ? "OK" : "FAIL");
  2512. }
  2513. intel_runtime_pm_put(dev_priv);
  2514. mutex_unlock(&dev->struct_mutex);
  2515. return 0;
  2516. }
  2517. static int i915_ddb_info(struct seq_file *m, void *unused)
  2518. {
  2519. struct drm_info_node *node = m->private;
  2520. struct drm_device *dev = node->minor->dev;
  2521. struct drm_i915_private *dev_priv = dev->dev_private;
  2522. struct skl_ddb_allocation *ddb;
  2523. struct skl_ddb_entry *entry;
  2524. enum pipe pipe;
  2525. int plane;
  2526. if (INTEL_INFO(dev)->gen < 9)
  2527. return 0;
  2528. drm_modeset_lock_all(dev);
  2529. ddb = &dev_priv->wm.skl_hw.ddb;
  2530. seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
  2531. for_each_pipe(dev_priv, pipe) {
  2532. seq_printf(m, "Pipe %c\n", pipe_name(pipe));
  2533. for_each_plane(dev_priv, pipe, plane) {
  2534. entry = &ddb->plane[pipe][plane];
  2535. seq_printf(m, " Plane%-8d%8u%8u%8u\n", plane + 1,
  2536. entry->start, entry->end,
  2537. skl_ddb_entry_size(entry));
  2538. }
  2539. entry = &ddb->cursor[pipe];
  2540. seq_printf(m, " %-13s%8u%8u%8u\n", "Cursor", entry->start,
  2541. entry->end, skl_ddb_entry_size(entry));
  2542. }
  2543. drm_modeset_unlock_all(dev);
  2544. return 0;
  2545. }
  2546. static void drrs_status_per_crtc(struct seq_file *m,
  2547. struct drm_device *dev, struct intel_crtc *intel_crtc)
  2548. {
  2549. struct intel_encoder *intel_encoder;
  2550. struct drm_i915_private *dev_priv = dev->dev_private;
  2551. struct i915_drrs *drrs = &dev_priv->drrs;
  2552. int vrefresh = 0;
  2553. for_each_encoder_on_crtc(dev, &intel_crtc->base, intel_encoder) {
  2554. /* Encoder connected on this CRTC */
  2555. switch (intel_encoder->type) {
  2556. case INTEL_OUTPUT_EDP:
  2557. seq_puts(m, "eDP:\n");
  2558. break;
  2559. case INTEL_OUTPUT_DSI:
  2560. seq_puts(m, "DSI:\n");
  2561. break;
  2562. case INTEL_OUTPUT_HDMI:
  2563. seq_puts(m, "HDMI:\n");
  2564. break;
  2565. case INTEL_OUTPUT_DISPLAYPORT:
  2566. seq_puts(m, "DP:\n");
  2567. break;
  2568. default:
  2569. seq_printf(m, "Other encoder (id=%d).\n",
  2570. intel_encoder->type);
  2571. return;
  2572. }
  2573. }
  2574. if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
  2575. seq_puts(m, "\tVBT: DRRS_type: Static");
  2576. else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
  2577. seq_puts(m, "\tVBT: DRRS_type: Seamless");
  2578. else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
  2579. seq_puts(m, "\tVBT: DRRS_type: None");
  2580. else
  2581. seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
  2582. seq_puts(m, "\n\n");
  2583. if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
  2584. struct intel_panel *panel;
  2585. mutex_lock(&drrs->mutex);
  2586. /* DRRS Supported */
  2587. seq_puts(m, "\tDRRS Supported: Yes\n");
  2588. /* disable_drrs() will make drrs->dp NULL */
  2589. if (!drrs->dp) {
  2590. seq_puts(m, "Idleness DRRS: Disabled");
  2591. mutex_unlock(&drrs->mutex);
  2592. return;
  2593. }
  2594. panel = &drrs->dp->attached_connector->panel;
  2595. seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
  2596. drrs->busy_frontbuffer_bits);
  2597. seq_puts(m, "\n\t\t");
  2598. if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
  2599. seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
  2600. vrefresh = panel->fixed_mode->vrefresh;
  2601. } else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
  2602. seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
  2603. vrefresh = panel->downclock_mode->vrefresh;
  2604. } else {
  2605. seq_printf(m, "DRRS_State: Unknown(%d)\n",
  2606. drrs->refresh_rate_type);
  2607. mutex_unlock(&drrs->mutex);
  2608. return;
  2609. }
  2610. seq_printf(m, "\t\tVrefresh: %d", vrefresh);
  2611. seq_puts(m, "\n\t\t");
  2612. mutex_unlock(&drrs->mutex);
  2613. } else {
  2614. /* DRRS not supported. Print the VBT parameter*/
  2615. seq_puts(m, "\tDRRS Supported : No");
  2616. }
  2617. seq_puts(m, "\n");
  2618. }
  2619. static int i915_drrs_status(struct seq_file *m, void *unused)
  2620. {
  2621. struct drm_info_node *node = m->private;
  2622. struct drm_device *dev = node->minor->dev;
  2623. struct intel_crtc *intel_crtc;
  2624. int active_crtc_cnt = 0;
  2625. for_each_intel_crtc(dev, intel_crtc) {
  2626. drm_modeset_lock(&intel_crtc->base.mutex, NULL);
  2627. if (intel_crtc->base.state->active) {
  2628. active_crtc_cnt++;
  2629. seq_printf(m, "\nCRTC %d: ", active_crtc_cnt);
  2630. drrs_status_per_crtc(m, dev, intel_crtc);
  2631. }
  2632. drm_modeset_unlock(&intel_crtc->base.mutex);
  2633. }
  2634. if (!active_crtc_cnt)
  2635. seq_puts(m, "No active crtc found\n");
  2636. return 0;
  2637. }
  2638. struct pipe_crc_info {
  2639. const char *name;
  2640. struct drm_device *dev;
  2641. enum pipe pipe;
  2642. };
  2643. static int i915_dp_mst_info(struct seq_file *m, void *unused)
  2644. {
  2645. struct drm_info_node *node = (struct drm_info_node *) m->private;
  2646. struct drm_device *dev = node->minor->dev;
  2647. struct drm_encoder *encoder;
  2648. struct intel_encoder *intel_encoder;
  2649. struct intel_digital_port *intel_dig_port;
  2650. drm_modeset_lock_all(dev);
  2651. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  2652. intel_encoder = to_intel_encoder(encoder);
  2653. if (intel_encoder->type != INTEL_OUTPUT_DISPLAYPORT)
  2654. continue;
  2655. intel_dig_port = enc_to_dig_port(encoder);
  2656. if (!intel_dig_port->dp.can_mst)
  2657. continue;
  2658. drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
  2659. }
  2660. drm_modeset_unlock_all(dev);
  2661. return 0;
  2662. }
  2663. static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
  2664. {
  2665. struct pipe_crc_info *info = inode->i_private;
  2666. struct drm_i915_private *dev_priv = info->dev->dev_private;
  2667. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
  2668. if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
  2669. return -ENODEV;
  2670. spin_lock_irq(&pipe_crc->lock);
  2671. if (pipe_crc->opened) {
  2672. spin_unlock_irq(&pipe_crc->lock);
  2673. return -EBUSY; /* already open */
  2674. }
  2675. pipe_crc->opened = true;
  2676. filep->private_data = inode->i_private;
  2677. spin_unlock_irq(&pipe_crc->lock);
  2678. return 0;
  2679. }
  2680. static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
  2681. {
  2682. struct pipe_crc_info *info = inode->i_private;
  2683. struct drm_i915_private *dev_priv = info->dev->dev_private;
  2684. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
  2685. spin_lock_irq(&pipe_crc->lock);
  2686. pipe_crc->opened = false;
  2687. spin_unlock_irq(&pipe_crc->lock);
  2688. return 0;
  2689. }
  2690. /* (6 fields, 8 chars each, space separated (5) + '\n') */
  2691. #define PIPE_CRC_LINE_LEN (6 * 8 + 5 + 1)
  2692. /* account for \'0' */
  2693. #define PIPE_CRC_BUFFER_LEN (PIPE_CRC_LINE_LEN + 1)
  2694. static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
  2695. {
  2696. assert_spin_locked(&pipe_crc->lock);
  2697. return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
  2698. INTEL_PIPE_CRC_ENTRIES_NR);
  2699. }
  2700. static ssize_t
  2701. i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
  2702. loff_t *pos)
  2703. {
  2704. struct pipe_crc_info *info = filep->private_data;
  2705. struct drm_device *dev = info->dev;
  2706. struct drm_i915_private *dev_priv = dev->dev_private;
  2707. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
  2708. char buf[PIPE_CRC_BUFFER_LEN];
  2709. int n_entries;
  2710. ssize_t bytes_read;
  2711. /*
  2712. * Don't allow user space to provide buffers not big enough to hold
  2713. * a line of data.
  2714. */
  2715. if (count < PIPE_CRC_LINE_LEN)
  2716. return -EINVAL;
  2717. if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
  2718. return 0;
  2719. /* nothing to read */
  2720. spin_lock_irq(&pipe_crc->lock);
  2721. while (pipe_crc_data_count(pipe_crc) == 0) {
  2722. int ret;
  2723. if (filep->f_flags & O_NONBLOCK) {
  2724. spin_unlock_irq(&pipe_crc->lock);
  2725. return -EAGAIN;
  2726. }
  2727. ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
  2728. pipe_crc_data_count(pipe_crc), pipe_crc->lock);
  2729. if (ret) {
  2730. spin_unlock_irq(&pipe_crc->lock);
  2731. return ret;
  2732. }
  2733. }
  2734. /* We now have one or more entries to read */
  2735. n_entries = count / PIPE_CRC_LINE_LEN;
  2736. bytes_read = 0;
  2737. while (n_entries > 0) {
  2738. struct intel_pipe_crc_entry *entry =
  2739. &pipe_crc->entries[pipe_crc->tail];
  2740. int ret;
  2741. if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
  2742. INTEL_PIPE_CRC_ENTRIES_NR) < 1)
  2743. break;
  2744. BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
  2745. pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
  2746. bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
  2747. "%8u %8x %8x %8x %8x %8x\n",
  2748. entry->frame, entry->crc[0],
  2749. entry->crc[1], entry->crc[2],
  2750. entry->crc[3], entry->crc[4]);
  2751. spin_unlock_irq(&pipe_crc->lock);
  2752. ret = copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN);
  2753. if (ret == PIPE_CRC_LINE_LEN)
  2754. return -EFAULT;
  2755. user_buf += PIPE_CRC_LINE_LEN;
  2756. n_entries--;
  2757. spin_lock_irq(&pipe_crc->lock);
  2758. }
  2759. spin_unlock_irq(&pipe_crc->lock);
  2760. return bytes_read;
  2761. }
  2762. static const struct file_operations i915_pipe_crc_fops = {
  2763. .owner = THIS_MODULE,
  2764. .open = i915_pipe_crc_open,
  2765. .read = i915_pipe_crc_read,
  2766. .release = i915_pipe_crc_release,
  2767. };
  2768. static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
  2769. {
  2770. .name = "i915_pipe_A_crc",
  2771. .pipe = PIPE_A,
  2772. },
  2773. {
  2774. .name = "i915_pipe_B_crc",
  2775. .pipe = PIPE_B,
  2776. },
  2777. {
  2778. .name = "i915_pipe_C_crc",
  2779. .pipe = PIPE_C,
  2780. },
  2781. };
  2782. static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
  2783. enum pipe pipe)
  2784. {
  2785. struct drm_device *dev = minor->dev;
  2786. struct dentry *ent;
  2787. struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
  2788. info->dev = dev;
  2789. ent = debugfs_create_file(info->name, S_IRUGO, root, info,
  2790. &i915_pipe_crc_fops);
  2791. if (!ent)
  2792. return -ENOMEM;
  2793. return drm_add_fake_info_node(minor, ent, info);
  2794. }
  2795. static const char * const pipe_crc_sources[] = {
  2796. "none",
  2797. "plane1",
  2798. "plane2",
  2799. "pf",
  2800. "pipe",
  2801. "TV",
  2802. "DP-B",
  2803. "DP-C",
  2804. "DP-D",
  2805. "auto",
  2806. };
  2807. static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
  2808. {
  2809. BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
  2810. return pipe_crc_sources[source];
  2811. }
  2812. static int display_crc_ctl_show(struct seq_file *m, void *data)
  2813. {
  2814. struct drm_device *dev = m->private;
  2815. struct drm_i915_private *dev_priv = dev->dev_private;
  2816. int i;
  2817. for (i = 0; i < I915_MAX_PIPES; i++)
  2818. seq_printf(m, "%c %s\n", pipe_name(i),
  2819. pipe_crc_source_name(dev_priv->pipe_crc[i].source));
  2820. return 0;
  2821. }
  2822. static int display_crc_ctl_open(struct inode *inode, struct file *file)
  2823. {
  2824. struct drm_device *dev = inode->i_private;
  2825. return single_open(file, display_crc_ctl_show, dev);
  2826. }
  2827. static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
  2828. uint32_t *val)
  2829. {
  2830. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
  2831. *source = INTEL_PIPE_CRC_SOURCE_PIPE;
  2832. switch (*source) {
  2833. case INTEL_PIPE_CRC_SOURCE_PIPE:
  2834. *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
  2835. break;
  2836. case INTEL_PIPE_CRC_SOURCE_NONE:
  2837. *val = 0;
  2838. break;
  2839. default:
  2840. return -EINVAL;
  2841. }
  2842. return 0;
  2843. }
  2844. static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
  2845. enum intel_pipe_crc_source *source)
  2846. {
  2847. struct intel_encoder *encoder;
  2848. struct intel_crtc *crtc;
  2849. struct intel_digital_port *dig_port;
  2850. int ret = 0;
  2851. *source = INTEL_PIPE_CRC_SOURCE_PIPE;
  2852. drm_modeset_lock_all(dev);
  2853. for_each_intel_encoder(dev, encoder) {
  2854. if (!encoder->base.crtc)
  2855. continue;
  2856. crtc = to_intel_crtc(encoder->base.crtc);
  2857. if (crtc->pipe != pipe)
  2858. continue;
  2859. switch (encoder->type) {
  2860. case INTEL_OUTPUT_TVOUT:
  2861. *source = INTEL_PIPE_CRC_SOURCE_TV;
  2862. break;
  2863. case INTEL_OUTPUT_DISPLAYPORT:
  2864. case INTEL_OUTPUT_EDP:
  2865. dig_port = enc_to_dig_port(&encoder->base);
  2866. switch (dig_port->port) {
  2867. case PORT_B:
  2868. *source = INTEL_PIPE_CRC_SOURCE_DP_B;
  2869. break;
  2870. case PORT_C:
  2871. *source = INTEL_PIPE_CRC_SOURCE_DP_C;
  2872. break;
  2873. case PORT_D:
  2874. *source = INTEL_PIPE_CRC_SOURCE_DP_D;
  2875. break;
  2876. default:
  2877. WARN(1, "nonexisting DP port %c\n",
  2878. port_name(dig_port->port));
  2879. break;
  2880. }
  2881. break;
  2882. default:
  2883. break;
  2884. }
  2885. }
  2886. drm_modeset_unlock_all(dev);
  2887. return ret;
  2888. }
  2889. static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
  2890. enum pipe pipe,
  2891. enum intel_pipe_crc_source *source,
  2892. uint32_t *val)
  2893. {
  2894. struct drm_i915_private *dev_priv = dev->dev_private;
  2895. bool need_stable_symbols = false;
  2896. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
  2897. int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
  2898. if (ret)
  2899. return ret;
  2900. }
  2901. switch (*source) {
  2902. case INTEL_PIPE_CRC_SOURCE_PIPE:
  2903. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
  2904. break;
  2905. case INTEL_PIPE_CRC_SOURCE_DP_B:
  2906. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
  2907. need_stable_symbols = true;
  2908. break;
  2909. case INTEL_PIPE_CRC_SOURCE_DP_C:
  2910. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
  2911. need_stable_symbols = true;
  2912. break;
  2913. case INTEL_PIPE_CRC_SOURCE_DP_D:
  2914. if (!IS_CHERRYVIEW(dev))
  2915. return -EINVAL;
  2916. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
  2917. need_stable_symbols = true;
  2918. break;
  2919. case INTEL_PIPE_CRC_SOURCE_NONE:
  2920. *val = 0;
  2921. break;
  2922. default:
  2923. return -EINVAL;
  2924. }
  2925. /*
  2926. * When the pipe CRC tap point is after the transcoders we need
  2927. * to tweak symbol-level features to produce a deterministic series of
  2928. * symbols for a given frame. We need to reset those features only once
  2929. * a frame (instead of every nth symbol):
  2930. * - DC-balance: used to ensure a better clock recovery from the data
  2931. * link (SDVO)
  2932. * - DisplayPort scrambling: used for EMI reduction
  2933. */
  2934. if (need_stable_symbols) {
  2935. uint32_t tmp = I915_READ(PORT_DFT2_G4X);
  2936. tmp |= DC_BALANCE_RESET_VLV;
  2937. switch (pipe) {
  2938. case PIPE_A:
  2939. tmp |= PIPE_A_SCRAMBLE_RESET;
  2940. break;
  2941. case PIPE_B:
  2942. tmp |= PIPE_B_SCRAMBLE_RESET;
  2943. break;
  2944. case PIPE_C:
  2945. tmp |= PIPE_C_SCRAMBLE_RESET;
  2946. break;
  2947. default:
  2948. return -EINVAL;
  2949. }
  2950. I915_WRITE(PORT_DFT2_G4X, tmp);
  2951. }
  2952. return 0;
  2953. }
  2954. static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
  2955. enum pipe pipe,
  2956. enum intel_pipe_crc_source *source,
  2957. uint32_t *val)
  2958. {
  2959. struct drm_i915_private *dev_priv = dev->dev_private;
  2960. bool need_stable_symbols = false;
  2961. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
  2962. int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
  2963. if (ret)
  2964. return ret;
  2965. }
  2966. switch (*source) {
  2967. case INTEL_PIPE_CRC_SOURCE_PIPE:
  2968. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
  2969. break;
  2970. case INTEL_PIPE_CRC_SOURCE_TV:
  2971. if (!SUPPORTS_TV(dev))
  2972. return -EINVAL;
  2973. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
  2974. break;
  2975. case INTEL_PIPE_CRC_SOURCE_DP_B:
  2976. if (!IS_G4X(dev))
  2977. return -EINVAL;
  2978. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
  2979. need_stable_symbols = true;
  2980. break;
  2981. case INTEL_PIPE_CRC_SOURCE_DP_C:
  2982. if (!IS_G4X(dev))
  2983. return -EINVAL;
  2984. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
  2985. need_stable_symbols = true;
  2986. break;
  2987. case INTEL_PIPE_CRC_SOURCE_DP_D:
  2988. if (!IS_G4X(dev))
  2989. return -EINVAL;
  2990. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
  2991. need_stable_symbols = true;
  2992. break;
  2993. case INTEL_PIPE_CRC_SOURCE_NONE:
  2994. *val = 0;
  2995. break;
  2996. default:
  2997. return -EINVAL;
  2998. }
  2999. /*
  3000. * When the pipe CRC tap point is after the transcoders we need
  3001. * to tweak symbol-level features to produce a deterministic series of
  3002. * symbols for a given frame. We need to reset those features only once
  3003. * a frame (instead of every nth symbol):
  3004. * - DC-balance: used to ensure a better clock recovery from the data
  3005. * link (SDVO)
  3006. * - DisplayPort scrambling: used for EMI reduction
  3007. */
  3008. if (need_stable_symbols) {
  3009. uint32_t tmp = I915_READ(PORT_DFT2_G4X);
  3010. WARN_ON(!IS_G4X(dev));
  3011. I915_WRITE(PORT_DFT_I9XX,
  3012. I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
  3013. if (pipe == PIPE_A)
  3014. tmp |= PIPE_A_SCRAMBLE_RESET;
  3015. else
  3016. tmp |= PIPE_B_SCRAMBLE_RESET;
  3017. I915_WRITE(PORT_DFT2_G4X, tmp);
  3018. }
  3019. return 0;
  3020. }
  3021. static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
  3022. enum pipe pipe)
  3023. {
  3024. struct drm_i915_private *dev_priv = dev->dev_private;
  3025. uint32_t tmp = I915_READ(PORT_DFT2_G4X);
  3026. switch (pipe) {
  3027. case PIPE_A:
  3028. tmp &= ~PIPE_A_SCRAMBLE_RESET;
  3029. break;
  3030. case PIPE_B:
  3031. tmp &= ~PIPE_B_SCRAMBLE_RESET;
  3032. break;
  3033. case PIPE_C:
  3034. tmp &= ~PIPE_C_SCRAMBLE_RESET;
  3035. break;
  3036. default:
  3037. return;
  3038. }
  3039. if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
  3040. tmp &= ~DC_BALANCE_RESET_VLV;
  3041. I915_WRITE(PORT_DFT2_G4X, tmp);
  3042. }
  3043. static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
  3044. enum pipe pipe)
  3045. {
  3046. struct drm_i915_private *dev_priv = dev->dev_private;
  3047. uint32_t tmp = I915_READ(PORT_DFT2_G4X);
  3048. if (pipe == PIPE_A)
  3049. tmp &= ~PIPE_A_SCRAMBLE_RESET;
  3050. else
  3051. tmp &= ~PIPE_B_SCRAMBLE_RESET;
  3052. I915_WRITE(PORT_DFT2_G4X, tmp);
  3053. if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
  3054. I915_WRITE(PORT_DFT_I9XX,
  3055. I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
  3056. }
  3057. }
  3058. static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
  3059. uint32_t *val)
  3060. {
  3061. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
  3062. *source = INTEL_PIPE_CRC_SOURCE_PIPE;
  3063. switch (*source) {
  3064. case INTEL_PIPE_CRC_SOURCE_PLANE1:
  3065. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
  3066. break;
  3067. case INTEL_PIPE_CRC_SOURCE_PLANE2:
  3068. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
  3069. break;
  3070. case INTEL_PIPE_CRC_SOURCE_PIPE:
  3071. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
  3072. break;
  3073. case INTEL_PIPE_CRC_SOURCE_NONE:
  3074. *val = 0;
  3075. break;
  3076. default:
  3077. return -EINVAL;
  3078. }
  3079. return 0;
  3080. }
  3081. static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev, bool enable)
  3082. {
  3083. struct drm_i915_private *dev_priv = dev->dev_private;
  3084. struct intel_crtc *crtc =
  3085. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
  3086. struct intel_crtc_state *pipe_config;
  3087. struct drm_atomic_state *state;
  3088. int ret = 0;
  3089. drm_modeset_lock_all(dev);
  3090. state = drm_atomic_state_alloc(dev);
  3091. if (!state) {
  3092. ret = -ENOMEM;
  3093. goto out;
  3094. }
  3095. state->acquire_ctx = drm_modeset_legacy_acquire_ctx(&crtc->base);
  3096. pipe_config = intel_atomic_get_crtc_state(state, crtc);
  3097. if (IS_ERR(pipe_config)) {
  3098. ret = PTR_ERR(pipe_config);
  3099. goto out;
  3100. }
  3101. pipe_config->pch_pfit.force_thru = enable;
  3102. if (pipe_config->cpu_transcoder == TRANSCODER_EDP &&
  3103. pipe_config->pch_pfit.enabled != enable)
  3104. pipe_config->base.connectors_changed = true;
  3105. ret = drm_atomic_commit(state);
  3106. out:
  3107. drm_modeset_unlock_all(dev);
  3108. WARN(ret, "Toggling workaround to %i returns %i\n", enable, ret);
  3109. if (ret)
  3110. drm_atomic_state_free(state);
  3111. }
  3112. static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
  3113. enum pipe pipe,
  3114. enum intel_pipe_crc_source *source,
  3115. uint32_t *val)
  3116. {
  3117. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
  3118. *source = INTEL_PIPE_CRC_SOURCE_PF;
  3119. switch (*source) {
  3120. case INTEL_PIPE_CRC_SOURCE_PLANE1:
  3121. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
  3122. break;
  3123. case INTEL_PIPE_CRC_SOURCE_PLANE2:
  3124. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
  3125. break;
  3126. case INTEL_PIPE_CRC_SOURCE_PF:
  3127. if (IS_HASWELL(dev) && pipe == PIPE_A)
  3128. hsw_trans_edp_pipe_A_crc_wa(dev, true);
  3129. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
  3130. break;
  3131. case INTEL_PIPE_CRC_SOURCE_NONE:
  3132. *val = 0;
  3133. break;
  3134. default:
  3135. return -EINVAL;
  3136. }
  3137. return 0;
  3138. }
  3139. static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
  3140. enum intel_pipe_crc_source source)
  3141. {
  3142. struct drm_i915_private *dev_priv = dev->dev_private;
  3143. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
  3144. struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev,
  3145. pipe));
  3146. u32 val = 0; /* shut up gcc */
  3147. int ret;
  3148. if (pipe_crc->source == source)
  3149. return 0;
  3150. /* forbid changing the source without going back to 'none' */
  3151. if (pipe_crc->source && source)
  3152. return -EINVAL;
  3153. if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe))) {
  3154. DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
  3155. return -EIO;
  3156. }
  3157. if (IS_GEN2(dev))
  3158. ret = i8xx_pipe_crc_ctl_reg(&source, &val);
  3159. else if (INTEL_INFO(dev)->gen < 5)
  3160. ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
  3161. else if (IS_VALLEYVIEW(dev))
  3162. ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
  3163. else if (IS_GEN5(dev) || IS_GEN6(dev))
  3164. ret = ilk_pipe_crc_ctl_reg(&source, &val);
  3165. else
  3166. ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
  3167. if (ret != 0)
  3168. return ret;
  3169. /* none -> real source transition */
  3170. if (source) {
  3171. struct intel_pipe_crc_entry *entries;
  3172. DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
  3173. pipe_name(pipe), pipe_crc_source_name(source));
  3174. entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
  3175. sizeof(pipe_crc->entries[0]),
  3176. GFP_KERNEL);
  3177. if (!entries)
  3178. return -ENOMEM;
  3179. /*
  3180. * When IPS gets enabled, the pipe CRC changes. Since IPS gets
  3181. * enabled and disabled dynamically based on package C states,
  3182. * user space can't make reliable use of the CRCs, so let's just
  3183. * completely disable it.
  3184. */
  3185. hsw_disable_ips(crtc);
  3186. spin_lock_irq(&pipe_crc->lock);
  3187. kfree(pipe_crc->entries);
  3188. pipe_crc->entries = entries;
  3189. pipe_crc->head = 0;
  3190. pipe_crc->tail = 0;
  3191. spin_unlock_irq(&pipe_crc->lock);
  3192. }
  3193. pipe_crc->source = source;
  3194. I915_WRITE(PIPE_CRC_CTL(pipe), val);
  3195. POSTING_READ(PIPE_CRC_CTL(pipe));
  3196. /* real source -> none transition */
  3197. if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
  3198. struct intel_pipe_crc_entry *entries;
  3199. struct intel_crtc *crtc =
  3200. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  3201. DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
  3202. pipe_name(pipe));
  3203. drm_modeset_lock(&crtc->base.mutex, NULL);
  3204. if (crtc->base.state->active)
  3205. intel_wait_for_vblank(dev, pipe);
  3206. drm_modeset_unlock(&crtc->base.mutex);
  3207. spin_lock_irq(&pipe_crc->lock);
  3208. entries = pipe_crc->entries;
  3209. pipe_crc->entries = NULL;
  3210. pipe_crc->head = 0;
  3211. pipe_crc->tail = 0;
  3212. spin_unlock_irq(&pipe_crc->lock);
  3213. kfree(entries);
  3214. if (IS_G4X(dev))
  3215. g4x_undo_pipe_scramble_reset(dev, pipe);
  3216. else if (IS_VALLEYVIEW(dev))
  3217. vlv_undo_pipe_scramble_reset(dev, pipe);
  3218. else if (IS_HASWELL(dev) && pipe == PIPE_A)
  3219. hsw_trans_edp_pipe_A_crc_wa(dev, false);
  3220. hsw_enable_ips(crtc);
  3221. }
  3222. return 0;
  3223. }
  3224. /*
  3225. * Parse pipe CRC command strings:
  3226. * command: wsp* object wsp+ name wsp+ source wsp*
  3227. * object: 'pipe'
  3228. * name: (A | B | C)
  3229. * source: (none | plane1 | plane2 | pf)
  3230. * wsp: (#0x20 | #0x9 | #0xA)+
  3231. *
  3232. * eg.:
  3233. * "pipe A plane1" -> Start CRC computations on plane1 of pipe A
  3234. * "pipe A none" -> Stop CRC
  3235. */
  3236. static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
  3237. {
  3238. int n_words = 0;
  3239. while (*buf) {
  3240. char *end;
  3241. /* skip leading white space */
  3242. buf = skip_spaces(buf);
  3243. if (!*buf)
  3244. break; /* end of buffer */
  3245. /* find end of word */
  3246. for (end = buf; *end && !isspace(*end); end++)
  3247. ;
  3248. if (n_words == max_words) {
  3249. DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
  3250. max_words);
  3251. return -EINVAL; /* ran out of words[] before bytes */
  3252. }
  3253. if (*end)
  3254. *end++ = '\0';
  3255. words[n_words++] = buf;
  3256. buf = end;
  3257. }
  3258. return n_words;
  3259. }
  3260. enum intel_pipe_crc_object {
  3261. PIPE_CRC_OBJECT_PIPE,
  3262. };
  3263. static const char * const pipe_crc_objects[] = {
  3264. "pipe",
  3265. };
  3266. static int
  3267. display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
  3268. {
  3269. int i;
  3270. for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
  3271. if (!strcmp(buf, pipe_crc_objects[i])) {
  3272. *o = i;
  3273. return 0;
  3274. }
  3275. return -EINVAL;
  3276. }
  3277. static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
  3278. {
  3279. const char name = buf[0];
  3280. if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
  3281. return -EINVAL;
  3282. *pipe = name - 'A';
  3283. return 0;
  3284. }
  3285. static int
  3286. display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
  3287. {
  3288. int i;
  3289. for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
  3290. if (!strcmp(buf, pipe_crc_sources[i])) {
  3291. *s = i;
  3292. return 0;
  3293. }
  3294. return -EINVAL;
  3295. }
  3296. static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
  3297. {
  3298. #define N_WORDS 3
  3299. int n_words;
  3300. char *words[N_WORDS];
  3301. enum pipe pipe;
  3302. enum intel_pipe_crc_object object;
  3303. enum intel_pipe_crc_source source;
  3304. n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
  3305. if (n_words != N_WORDS) {
  3306. DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
  3307. N_WORDS);
  3308. return -EINVAL;
  3309. }
  3310. if (display_crc_ctl_parse_object(words[0], &object) < 0) {
  3311. DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
  3312. return -EINVAL;
  3313. }
  3314. if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
  3315. DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
  3316. return -EINVAL;
  3317. }
  3318. if (display_crc_ctl_parse_source(words[2], &source) < 0) {
  3319. DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
  3320. return -EINVAL;
  3321. }
  3322. return pipe_crc_set_source(dev, pipe, source);
  3323. }
  3324. static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
  3325. size_t len, loff_t *offp)
  3326. {
  3327. struct seq_file *m = file->private_data;
  3328. struct drm_device *dev = m->private;
  3329. char *tmpbuf;
  3330. int ret;
  3331. if (len == 0)
  3332. return 0;
  3333. if (len > PAGE_SIZE - 1) {
  3334. DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
  3335. PAGE_SIZE);
  3336. return -E2BIG;
  3337. }
  3338. tmpbuf = kmalloc(len + 1, GFP_KERNEL);
  3339. if (!tmpbuf)
  3340. return -ENOMEM;
  3341. if (copy_from_user(tmpbuf, ubuf, len)) {
  3342. ret = -EFAULT;
  3343. goto out;
  3344. }
  3345. tmpbuf[len] = '\0';
  3346. ret = display_crc_ctl_parse(dev, tmpbuf, len);
  3347. out:
  3348. kfree(tmpbuf);
  3349. if (ret < 0)
  3350. return ret;
  3351. *offp += len;
  3352. return len;
  3353. }
  3354. static const struct file_operations i915_display_crc_ctl_fops = {
  3355. .owner = THIS_MODULE,
  3356. .open = display_crc_ctl_open,
  3357. .read = seq_read,
  3358. .llseek = seq_lseek,
  3359. .release = single_release,
  3360. .write = display_crc_ctl_write
  3361. };
  3362. static ssize_t i915_displayport_test_active_write(struct file *file,
  3363. const char __user *ubuf,
  3364. size_t len, loff_t *offp)
  3365. {
  3366. char *input_buffer;
  3367. int status = 0;
  3368. struct drm_device *dev;
  3369. struct drm_connector *connector;
  3370. struct list_head *connector_list;
  3371. struct intel_dp *intel_dp;
  3372. int val = 0;
  3373. dev = ((struct seq_file *)file->private_data)->private;
  3374. connector_list = &dev->mode_config.connector_list;
  3375. if (len == 0)
  3376. return 0;
  3377. input_buffer = kmalloc(len + 1, GFP_KERNEL);
  3378. if (!input_buffer)
  3379. return -ENOMEM;
  3380. if (copy_from_user(input_buffer, ubuf, len)) {
  3381. status = -EFAULT;
  3382. goto out;
  3383. }
  3384. input_buffer[len] = '\0';
  3385. DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
  3386. list_for_each_entry(connector, connector_list, head) {
  3387. if (connector->connector_type !=
  3388. DRM_MODE_CONNECTOR_DisplayPort)
  3389. continue;
  3390. if (connector->status == connector_status_connected &&
  3391. connector->encoder != NULL) {
  3392. intel_dp = enc_to_intel_dp(connector->encoder);
  3393. status = kstrtoint(input_buffer, 10, &val);
  3394. if (status < 0)
  3395. goto out;
  3396. DRM_DEBUG_DRIVER("Got %d for test active\n", val);
  3397. /* To prevent erroneous activation of the compliance
  3398. * testing code, only accept an actual value of 1 here
  3399. */
  3400. if (val == 1)
  3401. intel_dp->compliance_test_active = 1;
  3402. else
  3403. intel_dp->compliance_test_active = 0;
  3404. }
  3405. }
  3406. out:
  3407. kfree(input_buffer);
  3408. if (status < 0)
  3409. return status;
  3410. *offp += len;
  3411. return len;
  3412. }
  3413. static int i915_displayport_test_active_show(struct seq_file *m, void *data)
  3414. {
  3415. struct drm_device *dev = m->private;
  3416. struct drm_connector *connector;
  3417. struct list_head *connector_list = &dev->mode_config.connector_list;
  3418. struct intel_dp *intel_dp;
  3419. list_for_each_entry(connector, connector_list, head) {
  3420. if (connector->connector_type !=
  3421. DRM_MODE_CONNECTOR_DisplayPort)
  3422. continue;
  3423. if (connector->status == connector_status_connected &&
  3424. connector->encoder != NULL) {
  3425. intel_dp = enc_to_intel_dp(connector->encoder);
  3426. if (intel_dp->compliance_test_active)
  3427. seq_puts(m, "1");
  3428. else
  3429. seq_puts(m, "0");
  3430. } else
  3431. seq_puts(m, "0");
  3432. }
  3433. return 0;
  3434. }
  3435. static int i915_displayport_test_active_open(struct inode *inode,
  3436. struct file *file)
  3437. {
  3438. struct drm_device *dev = inode->i_private;
  3439. return single_open(file, i915_displayport_test_active_show, dev);
  3440. }
  3441. static const struct file_operations i915_displayport_test_active_fops = {
  3442. .owner = THIS_MODULE,
  3443. .open = i915_displayport_test_active_open,
  3444. .read = seq_read,
  3445. .llseek = seq_lseek,
  3446. .release = single_release,
  3447. .write = i915_displayport_test_active_write
  3448. };
  3449. static int i915_displayport_test_data_show(struct seq_file *m, void *data)
  3450. {
  3451. struct drm_device *dev = m->private;
  3452. struct drm_connector *connector;
  3453. struct list_head *connector_list = &dev->mode_config.connector_list;
  3454. struct intel_dp *intel_dp;
  3455. list_for_each_entry(connector, connector_list, head) {
  3456. if (connector->connector_type !=
  3457. DRM_MODE_CONNECTOR_DisplayPort)
  3458. continue;
  3459. if (connector->status == connector_status_connected &&
  3460. connector->encoder != NULL) {
  3461. intel_dp = enc_to_intel_dp(connector->encoder);
  3462. seq_printf(m, "%lx", intel_dp->compliance_test_data);
  3463. } else
  3464. seq_puts(m, "0");
  3465. }
  3466. return 0;
  3467. }
  3468. static int i915_displayport_test_data_open(struct inode *inode,
  3469. struct file *file)
  3470. {
  3471. struct drm_device *dev = inode->i_private;
  3472. return single_open(file, i915_displayport_test_data_show, dev);
  3473. }
  3474. static const struct file_operations i915_displayport_test_data_fops = {
  3475. .owner = THIS_MODULE,
  3476. .open = i915_displayport_test_data_open,
  3477. .read = seq_read,
  3478. .llseek = seq_lseek,
  3479. .release = single_release
  3480. };
  3481. static int i915_displayport_test_type_show(struct seq_file *m, void *data)
  3482. {
  3483. struct drm_device *dev = m->private;
  3484. struct drm_connector *connector;
  3485. struct list_head *connector_list = &dev->mode_config.connector_list;
  3486. struct intel_dp *intel_dp;
  3487. list_for_each_entry(connector, connector_list, head) {
  3488. if (connector->connector_type !=
  3489. DRM_MODE_CONNECTOR_DisplayPort)
  3490. continue;
  3491. if (connector->status == connector_status_connected &&
  3492. connector->encoder != NULL) {
  3493. intel_dp = enc_to_intel_dp(connector->encoder);
  3494. seq_printf(m, "%02lx", intel_dp->compliance_test_type);
  3495. } else
  3496. seq_puts(m, "0");
  3497. }
  3498. return 0;
  3499. }
  3500. static int i915_displayport_test_type_open(struct inode *inode,
  3501. struct file *file)
  3502. {
  3503. struct drm_device *dev = inode->i_private;
  3504. return single_open(file, i915_displayport_test_type_show, dev);
  3505. }
  3506. static const struct file_operations i915_displayport_test_type_fops = {
  3507. .owner = THIS_MODULE,
  3508. .open = i915_displayport_test_type_open,
  3509. .read = seq_read,
  3510. .llseek = seq_lseek,
  3511. .release = single_release
  3512. };
  3513. static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
  3514. {
  3515. struct drm_device *dev = m->private;
  3516. int level;
  3517. int num_levels;
  3518. if (IS_CHERRYVIEW(dev))
  3519. num_levels = 3;
  3520. else if (IS_VALLEYVIEW(dev))
  3521. num_levels = 1;
  3522. else
  3523. num_levels = ilk_wm_max_level(dev) + 1;
  3524. drm_modeset_lock_all(dev);
  3525. for (level = 0; level < num_levels; level++) {
  3526. unsigned int latency = wm[level];
  3527. /*
  3528. * - WM1+ latency values in 0.5us units
  3529. * - latencies are in us on gen9/vlv/chv
  3530. */
  3531. if (INTEL_INFO(dev)->gen >= 9 || IS_VALLEYVIEW(dev))
  3532. latency *= 10;
  3533. else if (level > 0)
  3534. latency *= 5;
  3535. seq_printf(m, "WM%d %u (%u.%u usec)\n",
  3536. level, wm[level], latency / 10, latency % 10);
  3537. }
  3538. drm_modeset_unlock_all(dev);
  3539. }
  3540. static int pri_wm_latency_show(struct seq_file *m, void *data)
  3541. {
  3542. struct drm_device *dev = m->private;
  3543. struct drm_i915_private *dev_priv = dev->dev_private;
  3544. const uint16_t *latencies;
  3545. if (INTEL_INFO(dev)->gen >= 9)
  3546. latencies = dev_priv->wm.skl_latency;
  3547. else
  3548. latencies = to_i915(dev)->wm.pri_latency;
  3549. wm_latency_show(m, latencies);
  3550. return 0;
  3551. }
  3552. static int spr_wm_latency_show(struct seq_file *m, void *data)
  3553. {
  3554. struct drm_device *dev = m->private;
  3555. struct drm_i915_private *dev_priv = dev->dev_private;
  3556. const uint16_t *latencies;
  3557. if (INTEL_INFO(dev)->gen >= 9)
  3558. latencies = dev_priv->wm.skl_latency;
  3559. else
  3560. latencies = to_i915(dev)->wm.spr_latency;
  3561. wm_latency_show(m, latencies);
  3562. return 0;
  3563. }
  3564. static int cur_wm_latency_show(struct seq_file *m, void *data)
  3565. {
  3566. struct drm_device *dev = m->private;
  3567. struct drm_i915_private *dev_priv = dev->dev_private;
  3568. const uint16_t *latencies;
  3569. if (INTEL_INFO(dev)->gen >= 9)
  3570. latencies = dev_priv->wm.skl_latency;
  3571. else
  3572. latencies = to_i915(dev)->wm.cur_latency;
  3573. wm_latency_show(m, latencies);
  3574. return 0;
  3575. }
  3576. static int pri_wm_latency_open(struct inode *inode, struct file *file)
  3577. {
  3578. struct drm_device *dev = inode->i_private;
  3579. if (INTEL_INFO(dev)->gen < 5)
  3580. return -ENODEV;
  3581. return single_open(file, pri_wm_latency_show, dev);
  3582. }
  3583. static int spr_wm_latency_open(struct inode *inode, struct file *file)
  3584. {
  3585. struct drm_device *dev = inode->i_private;
  3586. if (HAS_GMCH_DISPLAY(dev))
  3587. return -ENODEV;
  3588. return single_open(file, spr_wm_latency_show, dev);
  3589. }
  3590. static int cur_wm_latency_open(struct inode *inode, struct file *file)
  3591. {
  3592. struct drm_device *dev = inode->i_private;
  3593. if (HAS_GMCH_DISPLAY(dev))
  3594. return -ENODEV;
  3595. return single_open(file, cur_wm_latency_show, dev);
  3596. }
  3597. static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
  3598. size_t len, loff_t *offp, uint16_t wm[8])
  3599. {
  3600. struct seq_file *m = file->private_data;
  3601. struct drm_device *dev = m->private;
  3602. uint16_t new[8] = { 0 };
  3603. int num_levels;
  3604. int level;
  3605. int ret;
  3606. char tmp[32];
  3607. if (IS_CHERRYVIEW(dev))
  3608. num_levels = 3;
  3609. else if (IS_VALLEYVIEW(dev))
  3610. num_levels = 1;
  3611. else
  3612. num_levels = ilk_wm_max_level(dev) + 1;
  3613. if (len >= sizeof(tmp))
  3614. return -EINVAL;
  3615. if (copy_from_user(tmp, ubuf, len))
  3616. return -EFAULT;
  3617. tmp[len] = '\0';
  3618. ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
  3619. &new[0], &new[1], &new[2], &new[3],
  3620. &new[4], &new[5], &new[6], &new[7]);
  3621. if (ret != num_levels)
  3622. return -EINVAL;
  3623. drm_modeset_lock_all(dev);
  3624. for (level = 0; level < num_levels; level++)
  3625. wm[level] = new[level];
  3626. drm_modeset_unlock_all(dev);
  3627. return len;
  3628. }
  3629. static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
  3630. size_t len, loff_t *offp)
  3631. {
  3632. struct seq_file *m = file->private_data;
  3633. struct drm_device *dev = m->private;
  3634. struct drm_i915_private *dev_priv = dev->dev_private;
  3635. uint16_t *latencies;
  3636. if (INTEL_INFO(dev)->gen >= 9)
  3637. latencies = dev_priv->wm.skl_latency;
  3638. else
  3639. latencies = to_i915(dev)->wm.pri_latency;
  3640. return wm_latency_write(file, ubuf, len, offp, latencies);
  3641. }
  3642. static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
  3643. size_t len, loff_t *offp)
  3644. {
  3645. struct seq_file *m = file->private_data;
  3646. struct drm_device *dev = m->private;
  3647. struct drm_i915_private *dev_priv = dev->dev_private;
  3648. uint16_t *latencies;
  3649. if (INTEL_INFO(dev)->gen >= 9)
  3650. latencies = dev_priv->wm.skl_latency;
  3651. else
  3652. latencies = to_i915(dev)->wm.spr_latency;
  3653. return wm_latency_write(file, ubuf, len, offp, latencies);
  3654. }
  3655. static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
  3656. size_t len, loff_t *offp)
  3657. {
  3658. struct seq_file *m = file->private_data;
  3659. struct drm_device *dev = m->private;
  3660. struct drm_i915_private *dev_priv = dev->dev_private;
  3661. uint16_t *latencies;
  3662. if (INTEL_INFO(dev)->gen >= 9)
  3663. latencies = dev_priv->wm.skl_latency;
  3664. else
  3665. latencies = to_i915(dev)->wm.cur_latency;
  3666. return wm_latency_write(file, ubuf, len, offp, latencies);
  3667. }
  3668. static const struct file_operations i915_pri_wm_latency_fops = {
  3669. .owner = THIS_MODULE,
  3670. .open = pri_wm_latency_open,
  3671. .read = seq_read,
  3672. .llseek = seq_lseek,
  3673. .release = single_release,
  3674. .write = pri_wm_latency_write
  3675. };
  3676. static const struct file_operations i915_spr_wm_latency_fops = {
  3677. .owner = THIS_MODULE,
  3678. .open = spr_wm_latency_open,
  3679. .read = seq_read,
  3680. .llseek = seq_lseek,
  3681. .release = single_release,
  3682. .write = spr_wm_latency_write
  3683. };
  3684. static const struct file_operations i915_cur_wm_latency_fops = {
  3685. .owner = THIS_MODULE,
  3686. .open = cur_wm_latency_open,
  3687. .read = seq_read,
  3688. .llseek = seq_lseek,
  3689. .release = single_release,
  3690. .write = cur_wm_latency_write
  3691. };
  3692. static int
  3693. i915_wedged_get(void *data, u64 *val)
  3694. {
  3695. struct drm_device *dev = data;
  3696. struct drm_i915_private *dev_priv = dev->dev_private;
  3697. *val = atomic_read(&dev_priv->gpu_error.reset_counter);
  3698. return 0;
  3699. }
  3700. static int
  3701. i915_wedged_set(void *data, u64 val)
  3702. {
  3703. struct drm_device *dev = data;
  3704. struct drm_i915_private *dev_priv = dev->dev_private;
  3705. /*
  3706. * There is no safeguard against this debugfs entry colliding
  3707. * with the hangcheck calling same i915_handle_error() in
  3708. * parallel, causing an explosion. For now we assume that the
  3709. * test harness is responsible enough not to inject gpu hangs
  3710. * while it is writing to 'i915_wedged'
  3711. */
  3712. if (i915_reset_in_progress(&dev_priv->gpu_error))
  3713. return -EAGAIN;
  3714. intel_runtime_pm_get(dev_priv);
  3715. i915_handle_error(dev, val,
  3716. "Manually setting wedged to %llu", val);
  3717. intel_runtime_pm_put(dev_priv);
  3718. return 0;
  3719. }
  3720. DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
  3721. i915_wedged_get, i915_wedged_set,
  3722. "%llu\n");
  3723. static int
  3724. i915_ring_stop_get(void *data, u64 *val)
  3725. {
  3726. struct drm_device *dev = data;
  3727. struct drm_i915_private *dev_priv = dev->dev_private;
  3728. *val = dev_priv->gpu_error.stop_rings;
  3729. return 0;
  3730. }
  3731. static int
  3732. i915_ring_stop_set(void *data, u64 val)
  3733. {
  3734. struct drm_device *dev = data;
  3735. struct drm_i915_private *dev_priv = dev->dev_private;
  3736. int ret;
  3737. DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
  3738. ret = mutex_lock_interruptible(&dev->struct_mutex);
  3739. if (ret)
  3740. return ret;
  3741. dev_priv->gpu_error.stop_rings = val;
  3742. mutex_unlock(&dev->struct_mutex);
  3743. return 0;
  3744. }
  3745. DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
  3746. i915_ring_stop_get, i915_ring_stop_set,
  3747. "0x%08llx\n");
  3748. static int
  3749. i915_ring_missed_irq_get(void *data, u64 *val)
  3750. {
  3751. struct drm_device *dev = data;
  3752. struct drm_i915_private *dev_priv = dev->dev_private;
  3753. *val = dev_priv->gpu_error.missed_irq_rings;
  3754. return 0;
  3755. }
  3756. static int
  3757. i915_ring_missed_irq_set(void *data, u64 val)
  3758. {
  3759. struct drm_device *dev = data;
  3760. struct drm_i915_private *dev_priv = dev->dev_private;
  3761. int ret;
  3762. /* Lock against concurrent debugfs callers */
  3763. ret = mutex_lock_interruptible(&dev->struct_mutex);
  3764. if (ret)
  3765. return ret;
  3766. dev_priv->gpu_error.missed_irq_rings = val;
  3767. mutex_unlock(&dev->struct_mutex);
  3768. return 0;
  3769. }
  3770. DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
  3771. i915_ring_missed_irq_get, i915_ring_missed_irq_set,
  3772. "0x%08llx\n");
  3773. static int
  3774. i915_ring_test_irq_get(void *data, u64 *val)
  3775. {
  3776. struct drm_device *dev = data;
  3777. struct drm_i915_private *dev_priv = dev->dev_private;
  3778. *val = dev_priv->gpu_error.test_irq_rings;
  3779. return 0;
  3780. }
  3781. static int
  3782. i915_ring_test_irq_set(void *data, u64 val)
  3783. {
  3784. struct drm_device *dev = data;
  3785. struct drm_i915_private *dev_priv = dev->dev_private;
  3786. int ret;
  3787. DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
  3788. /* Lock against concurrent debugfs callers */
  3789. ret = mutex_lock_interruptible(&dev->struct_mutex);
  3790. if (ret)
  3791. return ret;
  3792. dev_priv->gpu_error.test_irq_rings = val;
  3793. mutex_unlock(&dev->struct_mutex);
  3794. return 0;
  3795. }
  3796. DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
  3797. i915_ring_test_irq_get, i915_ring_test_irq_set,
  3798. "0x%08llx\n");
  3799. #define DROP_UNBOUND 0x1
  3800. #define DROP_BOUND 0x2
  3801. #define DROP_RETIRE 0x4
  3802. #define DROP_ACTIVE 0x8
  3803. #define DROP_ALL (DROP_UNBOUND | \
  3804. DROP_BOUND | \
  3805. DROP_RETIRE | \
  3806. DROP_ACTIVE)
  3807. static int
  3808. i915_drop_caches_get(void *data, u64 *val)
  3809. {
  3810. *val = DROP_ALL;
  3811. return 0;
  3812. }
  3813. static int
  3814. i915_drop_caches_set(void *data, u64 val)
  3815. {
  3816. struct drm_device *dev = data;
  3817. struct drm_i915_private *dev_priv = dev->dev_private;
  3818. int ret;
  3819. DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
  3820. /* No need to check and wait for gpu resets, only libdrm auto-restarts
  3821. * on ioctls on -EAGAIN. */
  3822. ret = mutex_lock_interruptible(&dev->struct_mutex);
  3823. if (ret)
  3824. return ret;
  3825. if (val & DROP_ACTIVE) {
  3826. ret = i915_gpu_idle(dev);
  3827. if (ret)
  3828. goto unlock;
  3829. }
  3830. if (val & (DROP_RETIRE | DROP_ACTIVE))
  3831. i915_gem_retire_requests(dev);
  3832. if (val & DROP_BOUND)
  3833. i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
  3834. if (val & DROP_UNBOUND)
  3835. i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
  3836. unlock:
  3837. mutex_unlock(&dev->struct_mutex);
  3838. return ret;
  3839. }
  3840. DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
  3841. i915_drop_caches_get, i915_drop_caches_set,
  3842. "0x%08llx\n");
  3843. static int
  3844. i915_max_freq_get(void *data, u64 *val)
  3845. {
  3846. struct drm_device *dev = data;
  3847. struct drm_i915_private *dev_priv = dev->dev_private;
  3848. int ret;
  3849. if (INTEL_INFO(dev)->gen < 6)
  3850. return -ENODEV;
  3851. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  3852. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  3853. if (ret)
  3854. return ret;
  3855. *val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
  3856. mutex_unlock(&dev_priv->rps.hw_lock);
  3857. return 0;
  3858. }
  3859. static int
  3860. i915_max_freq_set(void *data, u64 val)
  3861. {
  3862. struct drm_device *dev = data;
  3863. struct drm_i915_private *dev_priv = dev->dev_private;
  3864. u32 hw_max, hw_min;
  3865. int ret;
  3866. if (INTEL_INFO(dev)->gen < 6)
  3867. return -ENODEV;
  3868. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  3869. DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
  3870. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  3871. if (ret)
  3872. return ret;
  3873. /*
  3874. * Turbo will still be enabled, but won't go above the set value.
  3875. */
  3876. val = intel_freq_opcode(dev_priv, val);
  3877. hw_max = dev_priv->rps.max_freq;
  3878. hw_min = dev_priv->rps.min_freq;
  3879. if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
  3880. mutex_unlock(&dev_priv->rps.hw_lock);
  3881. return -EINVAL;
  3882. }
  3883. dev_priv->rps.max_freq_softlimit = val;
  3884. intel_set_rps(dev, val);
  3885. mutex_unlock(&dev_priv->rps.hw_lock);
  3886. return 0;
  3887. }
  3888. DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
  3889. i915_max_freq_get, i915_max_freq_set,
  3890. "%llu\n");
  3891. static int
  3892. i915_min_freq_get(void *data, u64 *val)
  3893. {
  3894. struct drm_device *dev = data;
  3895. struct drm_i915_private *dev_priv = dev->dev_private;
  3896. int ret;
  3897. if (INTEL_INFO(dev)->gen < 6)
  3898. return -ENODEV;
  3899. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  3900. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  3901. if (ret)
  3902. return ret;
  3903. *val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
  3904. mutex_unlock(&dev_priv->rps.hw_lock);
  3905. return 0;
  3906. }
  3907. static int
  3908. i915_min_freq_set(void *data, u64 val)
  3909. {
  3910. struct drm_device *dev = data;
  3911. struct drm_i915_private *dev_priv = dev->dev_private;
  3912. u32 hw_max, hw_min;
  3913. int ret;
  3914. if (INTEL_INFO(dev)->gen < 6)
  3915. return -ENODEV;
  3916. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  3917. DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
  3918. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  3919. if (ret)
  3920. return ret;
  3921. /*
  3922. * Turbo will still be enabled, but won't go below the set value.
  3923. */
  3924. val = intel_freq_opcode(dev_priv, val);
  3925. hw_max = dev_priv->rps.max_freq;
  3926. hw_min = dev_priv->rps.min_freq;
  3927. if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
  3928. mutex_unlock(&dev_priv->rps.hw_lock);
  3929. return -EINVAL;
  3930. }
  3931. dev_priv->rps.min_freq_softlimit = val;
  3932. intel_set_rps(dev, val);
  3933. mutex_unlock(&dev_priv->rps.hw_lock);
  3934. return 0;
  3935. }
  3936. DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
  3937. i915_min_freq_get, i915_min_freq_set,
  3938. "%llu\n");
  3939. static int
  3940. i915_cache_sharing_get(void *data, u64 *val)
  3941. {
  3942. struct drm_device *dev = data;
  3943. struct drm_i915_private *dev_priv = dev->dev_private;
  3944. u32 snpcr;
  3945. int ret;
  3946. if (!(IS_GEN6(dev) || IS_GEN7(dev)))
  3947. return -ENODEV;
  3948. ret = mutex_lock_interruptible(&dev->struct_mutex);
  3949. if (ret)
  3950. return ret;
  3951. intel_runtime_pm_get(dev_priv);
  3952. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  3953. intel_runtime_pm_put(dev_priv);
  3954. mutex_unlock(&dev_priv->dev->struct_mutex);
  3955. *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
  3956. return 0;
  3957. }
  3958. static int
  3959. i915_cache_sharing_set(void *data, u64 val)
  3960. {
  3961. struct drm_device *dev = data;
  3962. struct drm_i915_private *dev_priv = dev->dev_private;
  3963. u32 snpcr;
  3964. if (!(IS_GEN6(dev) || IS_GEN7(dev)))
  3965. return -ENODEV;
  3966. if (val > 3)
  3967. return -EINVAL;
  3968. intel_runtime_pm_get(dev_priv);
  3969. DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
  3970. /* Update the cache sharing policy here as well */
  3971. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  3972. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  3973. snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
  3974. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  3975. intel_runtime_pm_put(dev_priv);
  3976. return 0;
  3977. }
  3978. DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
  3979. i915_cache_sharing_get, i915_cache_sharing_set,
  3980. "%llu\n");
  3981. struct sseu_dev_status {
  3982. unsigned int slice_total;
  3983. unsigned int subslice_total;
  3984. unsigned int subslice_per_slice;
  3985. unsigned int eu_total;
  3986. unsigned int eu_per_subslice;
  3987. };
  3988. static void cherryview_sseu_device_status(struct drm_device *dev,
  3989. struct sseu_dev_status *stat)
  3990. {
  3991. struct drm_i915_private *dev_priv = dev->dev_private;
  3992. const int ss_max = 2;
  3993. int ss;
  3994. u32 sig1[ss_max], sig2[ss_max];
  3995. sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
  3996. sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
  3997. sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
  3998. sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
  3999. for (ss = 0; ss < ss_max; ss++) {
  4000. unsigned int eu_cnt;
  4001. if (sig1[ss] & CHV_SS_PG_ENABLE)
  4002. /* skip disabled subslice */
  4003. continue;
  4004. stat->slice_total = 1;
  4005. stat->subslice_per_slice++;
  4006. eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
  4007. ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
  4008. ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
  4009. ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
  4010. stat->eu_total += eu_cnt;
  4011. stat->eu_per_subslice = max(stat->eu_per_subslice, eu_cnt);
  4012. }
  4013. stat->subslice_total = stat->subslice_per_slice;
  4014. }
  4015. static void gen9_sseu_device_status(struct drm_device *dev,
  4016. struct sseu_dev_status *stat)
  4017. {
  4018. struct drm_i915_private *dev_priv = dev->dev_private;
  4019. int s_max = 3, ss_max = 4;
  4020. int s, ss;
  4021. u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
  4022. /* BXT has a single slice and at most 3 subslices. */
  4023. if (IS_BROXTON(dev)) {
  4024. s_max = 1;
  4025. ss_max = 3;
  4026. }
  4027. for (s = 0; s < s_max; s++) {
  4028. s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
  4029. eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
  4030. eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
  4031. }
  4032. eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
  4033. GEN9_PGCTL_SSA_EU19_ACK |
  4034. GEN9_PGCTL_SSA_EU210_ACK |
  4035. GEN9_PGCTL_SSA_EU311_ACK;
  4036. eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
  4037. GEN9_PGCTL_SSB_EU19_ACK |
  4038. GEN9_PGCTL_SSB_EU210_ACK |
  4039. GEN9_PGCTL_SSB_EU311_ACK;
  4040. for (s = 0; s < s_max; s++) {
  4041. unsigned int ss_cnt = 0;
  4042. if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
  4043. /* skip disabled slice */
  4044. continue;
  4045. stat->slice_total++;
  4046. if (IS_SKYLAKE(dev))
  4047. ss_cnt = INTEL_INFO(dev)->subslice_per_slice;
  4048. for (ss = 0; ss < ss_max; ss++) {
  4049. unsigned int eu_cnt;
  4050. if (IS_BROXTON(dev) &&
  4051. !(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
  4052. /* skip disabled subslice */
  4053. continue;
  4054. if (IS_BROXTON(dev))
  4055. ss_cnt++;
  4056. eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
  4057. eu_mask[ss%2]);
  4058. stat->eu_total += eu_cnt;
  4059. stat->eu_per_subslice = max(stat->eu_per_subslice,
  4060. eu_cnt);
  4061. }
  4062. stat->subslice_total += ss_cnt;
  4063. stat->subslice_per_slice = max(stat->subslice_per_slice,
  4064. ss_cnt);
  4065. }
  4066. }
  4067. static int i915_sseu_status(struct seq_file *m, void *unused)
  4068. {
  4069. struct drm_info_node *node = (struct drm_info_node *) m->private;
  4070. struct drm_device *dev = node->minor->dev;
  4071. struct sseu_dev_status stat;
  4072. if ((INTEL_INFO(dev)->gen < 8) || IS_BROADWELL(dev))
  4073. return -ENODEV;
  4074. seq_puts(m, "SSEU Device Info\n");
  4075. seq_printf(m, " Available Slice Total: %u\n",
  4076. INTEL_INFO(dev)->slice_total);
  4077. seq_printf(m, " Available Subslice Total: %u\n",
  4078. INTEL_INFO(dev)->subslice_total);
  4079. seq_printf(m, " Available Subslice Per Slice: %u\n",
  4080. INTEL_INFO(dev)->subslice_per_slice);
  4081. seq_printf(m, " Available EU Total: %u\n",
  4082. INTEL_INFO(dev)->eu_total);
  4083. seq_printf(m, " Available EU Per Subslice: %u\n",
  4084. INTEL_INFO(dev)->eu_per_subslice);
  4085. seq_printf(m, " Has Slice Power Gating: %s\n",
  4086. yesno(INTEL_INFO(dev)->has_slice_pg));
  4087. seq_printf(m, " Has Subslice Power Gating: %s\n",
  4088. yesno(INTEL_INFO(dev)->has_subslice_pg));
  4089. seq_printf(m, " Has EU Power Gating: %s\n",
  4090. yesno(INTEL_INFO(dev)->has_eu_pg));
  4091. seq_puts(m, "SSEU Device Status\n");
  4092. memset(&stat, 0, sizeof(stat));
  4093. if (IS_CHERRYVIEW(dev)) {
  4094. cherryview_sseu_device_status(dev, &stat);
  4095. } else if (INTEL_INFO(dev)->gen >= 9) {
  4096. gen9_sseu_device_status(dev, &stat);
  4097. }
  4098. seq_printf(m, " Enabled Slice Total: %u\n",
  4099. stat.slice_total);
  4100. seq_printf(m, " Enabled Subslice Total: %u\n",
  4101. stat.subslice_total);
  4102. seq_printf(m, " Enabled Subslice Per Slice: %u\n",
  4103. stat.subslice_per_slice);
  4104. seq_printf(m, " Enabled EU Total: %u\n",
  4105. stat.eu_total);
  4106. seq_printf(m, " Enabled EU Per Subslice: %u\n",
  4107. stat.eu_per_subslice);
  4108. return 0;
  4109. }
  4110. static int i915_forcewake_open(struct inode *inode, struct file *file)
  4111. {
  4112. struct drm_device *dev = inode->i_private;
  4113. struct drm_i915_private *dev_priv = dev->dev_private;
  4114. if (INTEL_INFO(dev)->gen < 6)
  4115. return 0;
  4116. intel_runtime_pm_get(dev_priv);
  4117. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  4118. return 0;
  4119. }
  4120. static int i915_forcewake_release(struct inode *inode, struct file *file)
  4121. {
  4122. struct drm_device *dev = inode->i_private;
  4123. struct drm_i915_private *dev_priv = dev->dev_private;
  4124. if (INTEL_INFO(dev)->gen < 6)
  4125. return 0;
  4126. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  4127. intel_runtime_pm_put(dev_priv);
  4128. return 0;
  4129. }
  4130. static const struct file_operations i915_forcewake_fops = {
  4131. .owner = THIS_MODULE,
  4132. .open = i915_forcewake_open,
  4133. .release = i915_forcewake_release,
  4134. };
  4135. static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
  4136. {
  4137. struct drm_device *dev = minor->dev;
  4138. struct dentry *ent;
  4139. ent = debugfs_create_file("i915_forcewake_user",
  4140. S_IRUSR,
  4141. root, dev,
  4142. &i915_forcewake_fops);
  4143. if (!ent)
  4144. return -ENOMEM;
  4145. return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
  4146. }
  4147. static int i915_debugfs_create(struct dentry *root,
  4148. struct drm_minor *minor,
  4149. const char *name,
  4150. const struct file_operations *fops)
  4151. {
  4152. struct drm_device *dev = minor->dev;
  4153. struct dentry *ent;
  4154. ent = debugfs_create_file(name,
  4155. S_IRUGO | S_IWUSR,
  4156. root, dev,
  4157. fops);
  4158. if (!ent)
  4159. return -ENOMEM;
  4160. return drm_add_fake_info_node(minor, ent, fops);
  4161. }
  4162. static const struct drm_info_list i915_debugfs_list[] = {
  4163. {"i915_capabilities", i915_capabilities, 0},
  4164. {"i915_gem_objects", i915_gem_object_info, 0},
  4165. {"i915_gem_gtt", i915_gem_gtt_info, 0},
  4166. {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
  4167. {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
  4168. {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
  4169. {"i915_gem_stolen", i915_gem_stolen_list_info },
  4170. {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
  4171. {"i915_gem_request", i915_gem_request_info, 0},
  4172. {"i915_gem_seqno", i915_gem_seqno_info, 0},
  4173. {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
  4174. {"i915_gem_interrupt", i915_interrupt_info, 0},
  4175. {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
  4176. {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
  4177. {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
  4178. {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
  4179. {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
  4180. {"i915_frequency_info", i915_frequency_info, 0},
  4181. {"i915_hangcheck_info", i915_hangcheck_info, 0},
  4182. {"i915_drpc_info", i915_drpc_info, 0},
  4183. {"i915_emon_status", i915_emon_status, 0},
  4184. {"i915_ring_freq_table", i915_ring_freq_table, 0},
  4185. {"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
  4186. {"i915_fbc_status", i915_fbc_status, 0},
  4187. {"i915_ips_status", i915_ips_status, 0},
  4188. {"i915_sr_status", i915_sr_status, 0},
  4189. {"i915_opregion", i915_opregion, 0},
  4190. {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
  4191. {"i915_context_status", i915_context_status, 0},
  4192. {"i915_dump_lrc", i915_dump_lrc, 0},
  4193. {"i915_execlists", i915_execlists, 0},
  4194. {"i915_forcewake_domains", i915_forcewake_domains, 0},
  4195. {"i915_swizzle_info", i915_swizzle_info, 0},
  4196. {"i915_ppgtt_info", i915_ppgtt_info, 0},
  4197. {"i915_llc", i915_llc, 0},
  4198. {"i915_edp_psr_status", i915_edp_psr_status, 0},
  4199. {"i915_sink_crc_eDP1", i915_sink_crc, 0},
  4200. {"i915_energy_uJ", i915_energy_uJ, 0},
  4201. {"i915_runtime_pm_status", i915_runtime_pm_status, 0},
  4202. {"i915_power_domain_info", i915_power_domain_info, 0},
  4203. {"i915_display_info", i915_display_info, 0},
  4204. {"i915_semaphore_status", i915_semaphore_status, 0},
  4205. {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
  4206. {"i915_dp_mst_info", i915_dp_mst_info, 0},
  4207. {"i915_wa_registers", i915_wa_registers, 0},
  4208. {"i915_ddb_info", i915_ddb_info, 0},
  4209. {"i915_sseu_status", i915_sseu_status, 0},
  4210. {"i915_drrs_status", i915_drrs_status, 0},
  4211. {"i915_rps_boost_info", i915_rps_boost_info, 0},
  4212. };
  4213. #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
  4214. static const struct i915_debugfs_files {
  4215. const char *name;
  4216. const struct file_operations *fops;
  4217. } i915_debugfs_files[] = {
  4218. {"i915_wedged", &i915_wedged_fops},
  4219. {"i915_max_freq", &i915_max_freq_fops},
  4220. {"i915_min_freq", &i915_min_freq_fops},
  4221. {"i915_cache_sharing", &i915_cache_sharing_fops},
  4222. {"i915_ring_stop", &i915_ring_stop_fops},
  4223. {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
  4224. {"i915_ring_test_irq", &i915_ring_test_irq_fops},
  4225. {"i915_gem_drop_caches", &i915_drop_caches_fops},
  4226. {"i915_error_state", &i915_error_state_fops},
  4227. {"i915_next_seqno", &i915_next_seqno_fops},
  4228. {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
  4229. {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
  4230. {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
  4231. {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
  4232. {"i915_fbc_false_color", &i915_fbc_fc_fops},
  4233. {"i915_dp_test_data", &i915_displayport_test_data_fops},
  4234. {"i915_dp_test_type", &i915_displayport_test_type_fops},
  4235. {"i915_dp_test_active", &i915_displayport_test_active_fops}
  4236. };
  4237. void intel_display_crc_init(struct drm_device *dev)
  4238. {
  4239. struct drm_i915_private *dev_priv = dev->dev_private;
  4240. enum pipe pipe;
  4241. for_each_pipe(dev_priv, pipe) {
  4242. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
  4243. pipe_crc->opened = false;
  4244. spin_lock_init(&pipe_crc->lock);
  4245. init_waitqueue_head(&pipe_crc->wq);
  4246. }
  4247. }
  4248. int i915_debugfs_init(struct drm_minor *minor)
  4249. {
  4250. int ret, i;
  4251. ret = i915_forcewake_create(minor->debugfs_root, minor);
  4252. if (ret)
  4253. return ret;
  4254. for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
  4255. ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
  4256. if (ret)
  4257. return ret;
  4258. }
  4259. for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
  4260. ret = i915_debugfs_create(minor->debugfs_root, minor,
  4261. i915_debugfs_files[i].name,
  4262. i915_debugfs_files[i].fops);
  4263. if (ret)
  4264. return ret;
  4265. }
  4266. return drm_debugfs_create_files(i915_debugfs_list,
  4267. I915_DEBUGFS_ENTRIES,
  4268. minor->debugfs_root, minor);
  4269. }
  4270. void i915_debugfs_cleanup(struct drm_minor *minor)
  4271. {
  4272. int i;
  4273. drm_debugfs_remove_files(i915_debugfs_list,
  4274. I915_DEBUGFS_ENTRIES, minor);
  4275. drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
  4276. 1, minor);
  4277. for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
  4278. struct drm_info_list *info_list =
  4279. (struct drm_info_list *)&i915_pipe_crc_data[i];
  4280. drm_debugfs_remove_files(info_list, 1, minor);
  4281. }
  4282. for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
  4283. struct drm_info_list *info_list =
  4284. (struct drm_info_list *) i915_debugfs_files[i].fops;
  4285. drm_debugfs_remove_files(info_list, 1, minor);
  4286. }
  4287. }
  4288. struct dpcd_block {
  4289. /* DPCD dump start address. */
  4290. unsigned int offset;
  4291. /* DPCD dump end address, inclusive. If unset, .size will be used. */
  4292. unsigned int end;
  4293. /* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
  4294. size_t size;
  4295. /* Only valid for eDP. */
  4296. bool edp;
  4297. };
  4298. static const struct dpcd_block i915_dpcd_debug[] = {
  4299. { .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
  4300. { .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
  4301. { .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
  4302. { .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
  4303. { .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
  4304. { .offset = DP_SET_POWER },
  4305. { .offset = DP_EDP_DPCD_REV },
  4306. { .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
  4307. { .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
  4308. { .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
  4309. };
  4310. static int i915_dpcd_show(struct seq_file *m, void *data)
  4311. {
  4312. struct drm_connector *connector = m->private;
  4313. struct intel_dp *intel_dp =
  4314. enc_to_intel_dp(&intel_attached_encoder(connector)->base);
  4315. uint8_t buf[16];
  4316. ssize_t err;
  4317. int i;
  4318. if (connector->status != connector_status_connected)
  4319. return -ENODEV;
  4320. for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
  4321. const struct dpcd_block *b = &i915_dpcd_debug[i];
  4322. size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
  4323. if (b->edp &&
  4324. connector->connector_type != DRM_MODE_CONNECTOR_eDP)
  4325. continue;
  4326. /* low tech for now */
  4327. if (WARN_ON(size > sizeof(buf)))
  4328. continue;
  4329. err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
  4330. if (err <= 0) {
  4331. DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
  4332. size, b->offset, err);
  4333. continue;
  4334. }
  4335. seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
  4336. }
  4337. return 0;
  4338. }
  4339. static int i915_dpcd_open(struct inode *inode, struct file *file)
  4340. {
  4341. return single_open(file, i915_dpcd_show, inode->i_private);
  4342. }
  4343. static const struct file_operations i915_dpcd_fops = {
  4344. .owner = THIS_MODULE,
  4345. .open = i915_dpcd_open,
  4346. .read = seq_read,
  4347. .llseek = seq_lseek,
  4348. .release = single_release,
  4349. };
  4350. /**
  4351. * i915_debugfs_connector_add - add i915 specific connector debugfs files
  4352. * @connector: pointer to a registered drm_connector
  4353. *
  4354. * Cleanup will be done by drm_connector_unregister() through a call to
  4355. * drm_debugfs_connector_remove().
  4356. *
  4357. * Returns 0 on success, negative error codes on error.
  4358. */
  4359. int i915_debugfs_connector_add(struct drm_connector *connector)
  4360. {
  4361. struct dentry *root = connector->debugfs_entry;
  4362. /* The connector must have been registered beforehands. */
  4363. if (!root)
  4364. return -ENODEV;
  4365. if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
  4366. connector->connector_type == DRM_MODE_CONNECTOR_eDP)
  4367. debugfs_create_file("i915_dpcd", S_IRUGO, root, connector,
  4368. &i915_dpcd_fops);
  4369. return 0;
  4370. }