edac_mc.c 34 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310
  1. /*
  2. * edac_mc kernel module
  3. * (C) 2005, 2006 Linux Networx (http://lnxi.com)
  4. * This file may be distributed under the terms of the
  5. * GNU General Public License.
  6. *
  7. * Written by Thayne Harbaugh
  8. * Based on work by Dan Hollis <goemon at anime dot net> and others.
  9. * http://www.anime.net/~goemon/linux-ecc/
  10. *
  11. * Modified by Dave Peterson and Doug Thompson
  12. *
  13. */
  14. #include <linux/module.h>
  15. #include <linux/proc_fs.h>
  16. #include <linux/kernel.h>
  17. #include <linux/types.h>
  18. #include <linux/smp.h>
  19. #include <linux/init.h>
  20. #include <linux/sysctl.h>
  21. #include <linux/highmem.h>
  22. #include <linux/timer.h>
  23. #include <linux/slab.h>
  24. #include <linux/jiffies.h>
  25. #include <linux/spinlock.h>
  26. #include <linux/list.h>
  27. #include <linux/ctype.h>
  28. #include <linux/edac.h>
  29. #include <linux/bitops.h>
  30. #include <asm/uaccess.h>
  31. #include <asm/page.h>
  32. #include "edac_core.h"
  33. #include "edac_module.h"
  34. #include <ras/ras_event.h>
  35. #ifdef CONFIG_EDAC_ATOMIC_SCRUB
  36. #include <asm/edac.h>
  37. #else
  38. #define edac_atomic_scrub(va, size) do { } while (0)
  39. #endif
  40. /* lock to memory controller's control array */
  41. static DEFINE_MUTEX(mem_ctls_mutex);
  42. static LIST_HEAD(mc_devices);
  43. /*
  44. * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
  45. * apei/ghes and i7core_edac to be used at the same time.
  46. */
  47. static void const *edac_mc_owner;
  48. static struct bus_type mc_bus[EDAC_MAX_MCS];
  49. unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf,
  50. unsigned len)
  51. {
  52. struct mem_ctl_info *mci = dimm->mci;
  53. int i, n, count = 0;
  54. char *p = buf;
  55. for (i = 0; i < mci->n_layers; i++) {
  56. n = snprintf(p, len, "%s %d ",
  57. edac_layer_name[mci->layers[i].type],
  58. dimm->location[i]);
  59. p += n;
  60. len -= n;
  61. count += n;
  62. if (!len)
  63. break;
  64. }
  65. return count;
  66. }
  67. #ifdef CONFIG_EDAC_DEBUG
  68. static void edac_mc_dump_channel(struct rank_info *chan)
  69. {
  70. edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx);
  71. edac_dbg(4, " channel = %p\n", chan);
  72. edac_dbg(4, " channel->csrow = %p\n", chan->csrow);
  73. edac_dbg(4, " channel->dimm = %p\n", chan->dimm);
  74. }
  75. static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
  76. {
  77. char location[80];
  78. edac_dimm_info_location(dimm, location, sizeof(location));
  79. edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
  80. dimm->mci->csbased ? "rank" : "dimm",
  81. number, location, dimm->csrow, dimm->cschannel);
  82. edac_dbg(4, " dimm = %p\n", dimm);
  83. edac_dbg(4, " dimm->label = '%s'\n", dimm->label);
  84. edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
  85. edac_dbg(4, " dimm->grain = %d\n", dimm->grain);
  86. edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
  87. }
  88. static void edac_mc_dump_csrow(struct csrow_info *csrow)
  89. {
  90. edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
  91. edac_dbg(4, " csrow = %p\n", csrow);
  92. edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page);
  93. edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page);
  94. edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask);
  95. edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels);
  96. edac_dbg(4, " csrow->channels = %p\n", csrow->channels);
  97. edac_dbg(4, " csrow->mci = %p\n", csrow->mci);
  98. }
  99. static void edac_mc_dump_mci(struct mem_ctl_info *mci)
  100. {
  101. edac_dbg(3, "\tmci = %p\n", mci);
  102. edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
  103. edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
  104. edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
  105. edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
  106. edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
  107. mci->nr_csrows, mci->csrows);
  108. edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
  109. mci->tot_dimms, mci->dimms);
  110. edac_dbg(3, "\tdev = %p\n", mci->pdev);
  111. edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
  112. mci->mod_name, mci->ctl_name);
  113. edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
  114. }
  115. #endif /* CONFIG_EDAC_DEBUG */
  116. const char * const edac_mem_types[] = {
  117. [MEM_EMPTY] = "Empty csrow",
  118. [MEM_RESERVED] = "Reserved csrow type",
  119. [MEM_UNKNOWN] = "Unknown csrow type",
  120. [MEM_FPM] = "Fast page mode RAM",
  121. [MEM_EDO] = "Extended data out RAM",
  122. [MEM_BEDO] = "Burst Extended data out RAM",
  123. [MEM_SDR] = "Single data rate SDRAM",
  124. [MEM_RDR] = "Registered single data rate SDRAM",
  125. [MEM_DDR] = "Double data rate SDRAM",
  126. [MEM_RDDR] = "Registered Double data rate SDRAM",
  127. [MEM_RMBS] = "Rambus DRAM",
  128. [MEM_DDR2] = "Unbuffered DDR2 RAM",
  129. [MEM_FB_DDR2] = "Fully buffered DDR2",
  130. [MEM_RDDR2] = "Registered DDR2 RAM",
  131. [MEM_XDR] = "Rambus XDR",
  132. [MEM_DDR3] = "Unbuffered DDR3 RAM",
  133. [MEM_RDDR3] = "Registered DDR3 RAM",
  134. [MEM_LRDDR3] = "Load-Reduced DDR3 RAM",
  135. [MEM_DDR4] = "Unbuffered DDR4 RAM",
  136. [MEM_RDDR4] = "Registered DDR4 RAM",
  137. };
  138. EXPORT_SYMBOL_GPL(edac_mem_types);
  139. /**
  140. * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
  141. * @p: pointer to a pointer with the memory offset to be used. At
  142. * return, this will be incremented to point to the next offset
  143. * @size: Size of the data structure to be reserved
  144. * @n_elems: Number of elements that should be reserved
  145. *
  146. * If 'size' is a constant, the compiler will optimize this whole function
  147. * down to either a no-op or the addition of a constant to the value of '*p'.
  148. *
  149. * The 'p' pointer is absolutely needed to keep the proper advancing
  150. * further in memory to the proper offsets when allocating the struct along
  151. * with its embedded structs, as edac_device_alloc_ctl_info() does it
  152. * above, for example.
  153. *
  154. * At return, the pointer 'p' will be incremented to be used on a next call
  155. * to this function.
  156. */
  157. void *edac_align_ptr(void **p, unsigned size, int n_elems)
  158. {
  159. unsigned align, r;
  160. void *ptr = *p;
  161. *p += size * n_elems;
  162. /*
  163. * 'p' can possibly be an unaligned item X such that sizeof(X) is
  164. * 'size'. Adjust 'p' so that its alignment is at least as
  165. * stringent as what the compiler would provide for X and return
  166. * the aligned result.
  167. * Here we assume that the alignment of a "long long" is the most
  168. * stringent alignment that the compiler will ever provide by default.
  169. * As far as I know, this is a reasonable assumption.
  170. */
  171. if (size > sizeof(long))
  172. align = sizeof(long long);
  173. else if (size > sizeof(int))
  174. align = sizeof(long);
  175. else if (size > sizeof(short))
  176. align = sizeof(int);
  177. else if (size > sizeof(char))
  178. align = sizeof(short);
  179. else
  180. return (char *)ptr;
  181. r = (unsigned long)p % align;
  182. if (r == 0)
  183. return (char *)ptr;
  184. *p += align - r;
  185. return (void *)(((unsigned long)ptr) + align - r);
  186. }
  187. static void _edac_mc_free(struct mem_ctl_info *mci)
  188. {
  189. int i, chn, row;
  190. struct csrow_info *csr;
  191. const unsigned int tot_dimms = mci->tot_dimms;
  192. const unsigned int tot_channels = mci->num_cschannel;
  193. const unsigned int tot_csrows = mci->nr_csrows;
  194. if (mci->dimms) {
  195. for (i = 0; i < tot_dimms; i++)
  196. kfree(mci->dimms[i]);
  197. kfree(mci->dimms);
  198. }
  199. if (mci->csrows) {
  200. for (row = 0; row < tot_csrows; row++) {
  201. csr = mci->csrows[row];
  202. if (csr) {
  203. if (csr->channels) {
  204. for (chn = 0; chn < tot_channels; chn++)
  205. kfree(csr->channels[chn]);
  206. kfree(csr->channels);
  207. }
  208. kfree(csr);
  209. }
  210. }
  211. kfree(mci->csrows);
  212. }
  213. kfree(mci);
  214. }
  215. /**
  216. * edac_mc_alloc: Allocate and partially fill a struct mem_ctl_info structure
  217. * @mc_num: Memory controller number
  218. * @n_layers: Number of MC hierarchy layers
  219. * layers: Describes each layer as seen by the Memory Controller
  220. * @size_pvt: size of private storage needed
  221. *
  222. *
  223. * Everything is kmalloc'ed as one big chunk - more efficient.
  224. * Only can be used if all structures have the same lifetime - otherwise
  225. * you have to allocate and initialize your own structures.
  226. *
  227. * Use edac_mc_free() to free mc structures allocated by this function.
  228. *
  229. * NOTE: drivers handle multi-rank memories in different ways: in some
  230. * drivers, one multi-rank memory stick is mapped as one entry, while, in
  231. * others, a single multi-rank memory stick would be mapped into several
  232. * entries. Currently, this function will allocate multiple struct dimm_info
  233. * on such scenarios, as grouping the multiple ranks require drivers change.
  234. *
  235. * Returns:
  236. * On failure: NULL
  237. * On success: struct mem_ctl_info pointer
  238. */
  239. struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
  240. unsigned n_layers,
  241. struct edac_mc_layer *layers,
  242. unsigned sz_pvt)
  243. {
  244. struct mem_ctl_info *mci;
  245. struct edac_mc_layer *layer;
  246. struct csrow_info *csr;
  247. struct rank_info *chan;
  248. struct dimm_info *dimm;
  249. u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
  250. unsigned pos[EDAC_MAX_LAYERS];
  251. unsigned size, tot_dimms = 1, count = 1;
  252. unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
  253. void *pvt, *p, *ptr = NULL;
  254. int i, j, row, chn, n, len, off;
  255. bool per_rank = false;
  256. BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
  257. /*
  258. * Calculate the total amount of dimms and csrows/cschannels while
  259. * in the old API emulation mode
  260. */
  261. for (i = 0; i < n_layers; i++) {
  262. tot_dimms *= layers[i].size;
  263. if (layers[i].is_virt_csrow)
  264. tot_csrows *= layers[i].size;
  265. else
  266. tot_channels *= layers[i].size;
  267. if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
  268. per_rank = true;
  269. }
  270. /* Figure out the offsets of the various items from the start of an mc
  271. * structure. We want the alignment of each item to be at least as
  272. * stringent as what the compiler would provide if we could simply
  273. * hardcode everything into a single struct.
  274. */
  275. mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
  276. layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
  277. for (i = 0; i < n_layers; i++) {
  278. count *= layers[i].size;
  279. edac_dbg(4, "errcount layer %d size %d\n", i, count);
  280. ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
  281. ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
  282. tot_errcount += 2 * count;
  283. }
  284. edac_dbg(4, "allocating %d error counters\n", tot_errcount);
  285. pvt = edac_align_ptr(&ptr, sz_pvt, 1);
  286. size = ((unsigned long)pvt) + sz_pvt;
  287. edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
  288. size,
  289. tot_dimms,
  290. per_rank ? "ranks" : "dimms",
  291. tot_csrows * tot_channels);
  292. mci = kzalloc(size, GFP_KERNEL);
  293. if (mci == NULL)
  294. return NULL;
  295. /* Adjust pointers so they point within the memory we just allocated
  296. * rather than an imaginary chunk of memory located at address 0.
  297. */
  298. layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
  299. for (i = 0; i < n_layers; i++) {
  300. mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
  301. mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
  302. }
  303. pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
  304. /* setup index and various internal pointers */
  305. mci->mc_idx = mc_num;
  306. mci->tot_dimms = tot_dimms;
  307. mci->pvt_info = pvt;
  308. mci->n_layers = n_layers;
  309. mci->layers = layer;
  310. memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
  311. mci->nr_csrows = tot_csrows;
  312. mci->num_cschannel = tot_channels;
  313. mci->csbased = per_rank;
  314. /*
  315. * Alocate and fill the csrow/channels structs
  316. */
  317. mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
  318. if (!mci->csrows)
  319. goto error;
  320. for (row = 0; row < tot_csrows; row++) {
  321. csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
  322. if (!csr)
  323. goto error;
  324. mci->csrows[row] = csr;
  325. csr->csrow_idx = row;
  326. csr->mci = mci;
  327. csr->nr_channels = tot_channels;
  328. csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
  329. GFP_KERNEL);
  330. if (!csr->channels)
  331. goto error;
  332. for (chn = 0; chn < tot_channels; chn++) {
  333. chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
  334. if (!chan)
  335. goto error;
  336. csr->channels[chn] = chan;
  337. chan->chan_idx = chn;
  338. chan->csrow = csr;
  339. }
  340. }
  341. /*
  342. * Allocate and fill the dimm structs
  343. */
  344. mci->dimms = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
  345. if (!mci->dimms)
  346. goto error;
  347. memset(&pos, 0, sizeof(pos));
  348. row = 0;
  349. chn = 0;
  350. for (i = 0; i < tot_dimms; i++) {
  351. chan = mci->csrows[row]->channels[chn];
  352. off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
  353. if (off < 0 || off >= tot_dimms) {
  354. edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
  355. goto error;
  356. }
  357. dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
  358. if (!dimm)
  359. goto error;
  360. mci->dimms[off] = dimm;
  361. dimm->mci = mci;
  362. /*
  363. * Copy DIMM location and initialize it.
  364. */
  365. len = sizeof(dimm->label);
  366. p = dimm->label;
  367. n = snprintf(p, len, "mc#%u", mc_num);
  368. p += n;
  369. len -= n;
  370. for (j = 0; j < n_layers; j++) {
  371. n = snprintf(p, len, "%s#%u",
  372. edac_layer_name[layers[j].type],
  373. pos[j]);
  374. p += n;
  375. len -= n;
  376. dimm->location[j] = pos[j];
  377. if (len <= 0)
  378. break;
  379. }
  380. /* Link it to the csrows old API data */
  381. chan->dimm = dimm;
  382. dimm->csrow = row;
  383. dimm->cschannel = chn;
  384. /* Increment csrow location */
  385. if (layers[0].is_virt_csrow) {
  386. chn++;
  387. if (chn == tot_channels) {
  388. chn = 0;
  389. row++;
  390. }
  391. } else {
  392. row++;
  393. if (row == tot_csrows) {
  394. row = 0;
  395. chn++;
  396. }
  397. }
  398. /* Increment dimm location */
  399. for (j = n_layers - 1; j >= 0; j--) {
  400. pos[j]++;
  401. if (pos[j] < layers[j].size)
  402. break;
  403. pos[j] = 0;
  404. }
  405. }
  406. mci->op_state = OP_ALLOC;
  407. return mci;
  408. error:
  409. _edac_mc_free(mci);
  410. return NULL;
  411. }
  412. EXPORT_SYMBOL_GPL(edac_mc_alloc);
  413. /**
  414. * edac_mc_free
  415. * 'Free' a previously allocated 'mci' structure
  416. * @mci: pointer to a struct mem_ctl_info structure
  417. */
  418. void edac_mc_free(struct mem_ctl_info *mci)
  419. {
  420. edac_dbg(1, "\n");
  421. /* If we're not yet registered with sysfs free only what was allocated
  422. * in edac_mc_alloc().
  423. */
  424. if (!device_is_registered(&mci->dev)) {
  425. _edac_mc_free(mci);
  426. return;
  427. }
  428. /* the mci instance is freed here, when the sysfs object is dropped */
  429. edac_unregister_sysfs(mci);
  430. }
  431. EXPORT_SYMBOL_GPL(edac_mc_free);
  432. /**
  433. * find_mci_by_dev
  434. *
  435. * scan list of controllers looking for the one that manages
  436. * the 'dev' device
  437. * @dev: pointer to a struct device related with the MCI
  438. */
  439. struct mem_ctl_info *find_mci_by_dev(struct device *dev)
  440. {
  441. struct mem_ctl_info *mci;
  442. struct list_head *item;
  443. edac_dbg(3, "\n");
  444. list_for_each(item, &mc_devices) {
  445. mci = list_entry(item, struct mem_ctl_info, link);
  446. if (mci->pdev == dev)
  447. return mci;
  448. }
  449. return NULL;
  450. }
  451. EXPORT_SYMBOL_GPL(find_mci_by_dev);
  452. /*
  453. * handler for EDAC to check if NMI type handler has asserted interrupt
  454. */
  455. static int edac_mc_assert_error_check_and_clear(void)
  456. {
  457. int old_state;
  458. if (edac_op_state == EDAC_OPSTATE_POLL)
  459. return 1;
  460. old_state = edac_err_assert;
  461. edac_err_assert = 0;
  462. return old_state;
  463. }
  464. /*
  465. * edac_mc_workq_function
  466. * performs the operation scheduled by a workq request
  467. */
  468. static void edac_mc_workq_function(struct work_struct *work_req)
  469. {
  470. struct delayed_work *d_work = to_delayed_work(work_req);
  471. struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
  472. mutex_lock(&mem_ctls_mutex);
  473. /* if this control struct has movd to offline state, we are done */
  474. if (mci->op_state == OP_OFFLINE) {
  475. mutex_unlock(&mem_ctls_mutex);
  476. return;
  477. }
  478. /* Only poll controllers that are running polled and have a check */
  479. if (edac_mc_assert_error_check_and_clear() && (mci->edac_check != NULL))
  480. mci->edac_check(mci);
  481. mutex_unlock(&mem_ctls_mutex);
  482. /* Reschedule */
  483. queue_delayed_work(edac_workqueue, &mci->work,
  484. msecs_to_jiffies(edac_mc_get_poll_msec()));
  485. }
  486. /*
  487. * edac_mc_workq_setup
  488. * initialize a workq item for this mci
  489. * passing in the new delay period in msec
  490. *
  491. * locking model:
  492. *
  493. * called with the mem_ctls_mutex held
  494. */
  495. static void edac_mc_workq_setup(struct mem_ctl_info *mci, unsigned msec,
  496. bool init)
  497. {
  498. edac_dbg(0, "\n");
  499. /* if this instance is not in the POLL state, then simply return */
  500. if (mci->op_state != OP_RUNNING_POLL)
  501. return;
  502. if (init)
  503. INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
  504. mod_delayed_work(edac_workqueue, &mci->work, msecs_to_jiffies(msec));
  505. }
  506. /*
  507. * edac_mc_workq_teardown
  508. * stop the workq processing on this mci
  509. *
  510. * locking model:
  511. *
  512. * called WITHOUT lock held
  513. */
  514. static void edac_mc_workq_teardown(struct mem_ctl_info *mci)
  515. {
  516. int status;
  517. if (mci->op_state != OP_RUNNING_POLL)
  518. return;
  519. status = cancel_delayed_work(&mci->work);
  520. if (status == 0) {
  521. edac_dbg(0, "not canceled, flush the queue\n");
  522. /* workq instance might be running, wait for it */
  523. flush_workqueue(edac_workqueue);
  524. }
  525. }
  526. /*
  527. * edac_mc_reset_delay_period(unsigned long value)
  528. *
  529. * user space has updated our poll period value, need to
  530. * reset our workq delays
  531. */
  532. void edac_mc_reset_delay_period(unsigned long value)
  533. {
  534. struct mem_ctl_info *mci;
  535. struct list_head *item;
  536. mutex_lock(&mem_ctls_mutex);
  537. list_for_each(item, &mc_devices) {
  538. mci = list_entry(item, struct mem_ctl_info, link);
  539. edac_mc_workq_setup(mci, value, false);
  540. }
  541. mutex_unlock(&mem_ctls_mutex);
  542. }
  543. /* Return 0 on success, 1 on failure.
  544. * Before calling this function, caller must
  545. * assign a unique value to mci->mc_idx.
  546. *
  547. * locking model:
  548. *
  549. * called with the mem_ctls_mutex lock held
  550. */
  551. static int add_mc_to_global_list(struct mem_ctl_info *mci)
  552. {
  553. struct list_head *item, *insert_before;
  554. struct mem_ctl_info *p;
  555. insert_before = &mc_devices;
  556. p = find_mci_by_dev(mci->pdev);
  557. if (unlikely(p != NULL))
  558. goto fail0;
  559. list_for_each(item, &mc_devices) {
  560. p = list_entry(item, struct mem_ctl_info, link);
  561. if (p->mc_idx >= mci->mc_idx) {
  562. if (unlikely(p->mc_idx == mci->mc_idx))
  563. goto fail1;
  564. insert_before = item;
  565. break;
  566. }
  567. }
  568. list_add_tail_rcu(&mci->link, insert_before);
  569. atomic_inc(&edac_handlers);
  570. return 0;
  571. fail0:
  572. edac_printk(KERN_WARNING, EDAC_MC,
  573. "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
  574. edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
  575. return 1;
  576. fail1:
  577. edac_printk(KERN_WARNING, EDAC_MC,
  578. "bug in low-level driver: attempt to assign\n"
  579. " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
  580. return 1;
  581. }
  582. static int del_mc_from_global_list(struct mem_ctl_info *mci)
  583. {
  584. int handlers = atomic_dec_return(&edac_handlers);
  585. list_del_rcu(&mci->link);
  586. /* these are for safe removal of devices from global list while
  587. * NMI handlers may be traversing list
  588. */
  589. synchronize_rcu();
  590. INIT_LIST_HEAD(&mci->link);
  591. return handlers;
  592. }
  593. /**
  594. * edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'.
  595. *
  596. * If found, return a pointer to the structure.
  597. * Else return NULL.
  598. *
  599. * Caller must hold mem_ctls_mutex.
  600. */
  601. struct mem_ctl_info *edac_mc_find(int idx)
  602. {
  603. struct list_head *item;
  604. struct mem_ctl_info *mci;
  605. list_for_each(item, &mc_devices) {
  606. mci = list_entry(item, struct mem_ctl_info, link);
  607. if (mci->mc_idx >= idx) {
  608. if (mci->mc_idx == idx)
  609. return mci;
  610. break;
  611. }
  612. }
  613. return NULL;
  614. }
  615. EXPORT_SYMBOL(edac_mc_find);
  616. /**
  617. * edac_mc_add_mc_with_groups: Insert the 'mci' structure into the mci
  618. * global list and create sysfs entries associated with mci structure
  619. * @mci: pointer to the mci structure to be added to the list
  620. * @groups: optional attribute groups for the driver-specific sysfs entries
  621. *
  622. * Return:
  623. * 0 Success
  624. * !0 Failure
  625. */
  626. /* FIXME - should a warning be printed if no error detection? correction? */
  627. int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
  628. const struct attribute_group **groups)
  629. {
  630. int ret = -EINVAL;
  631. edac_dbg(0, "\n");
  632. if (mci->mc_idx >= EDAC_MAX_MCS) {
  633. pr_warn_once("Too many memory controllers: %d\n", mci->mc_idx);
  634. return -ENODEV;
  635. }
  636. #ifdef CONFIG_EDAC_DEBUG
  637. if (edac_debug_level >= 3)
  638. edac_mc_dump_mci(mci);
  639. if (edac_debug_level >= 4) {
  640. int i;
  641. for (i = 0; i < mci->nr_csrows; i++) {
  642. struct csrow_info *csrow = mci->csrows[i];
  643. u32 nr_pages = 0;
  644. int j;
  645. for (j = 0; j < csrow->nr_channels; j++)
  646. nr_pages += csrow->channels[j]->dimm->nr_pages;
  647. if (!nr_pages)
  648. continue;
  649. edac_mc_dump_csrow(csrow);
  650. for (j = 0; j < csrow->nr_channels; j++)
  651. if (csrow->channels[j]->dimm->nr_pages)
  652. edac_mc_dump_channel(csrow->channels[j]);
  653. }
  654. for (i = 0; i < mci->tot_dimms; i++)
  655. if (mci->dimms[i]->nr_pages)
  656. edac_mc_dump_dimm(mci->dimms[i], i);
  657. }
  658. #endif
  659. mutex_lock(&mem_ctls_mutex);
  660. if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
  661. ret = -EPERM;
  662. goto fail0;
  663. }
  664. if (add_mc_to_global_list(mci))
  665. goto fail0;
  666. /* set load time so that error rate can be tracked */
  667. mci->start_time = jiffies;
  668. mci->bus = &mc_bus[mci->mc_idx];
  669. if (edac_create_sysfs_mci_device(mci, groups)) {
  670. edac_mc_printk(mci, KERN_WARNING,
  671. "failed to create sysfs device\n");
  672. goto fail1;
  673. }
  674. /* If there IS a check routine, then we are running POLLED */
  675. if (mci->edac_check != NULL) {
  676. /* This instance is NOW RUNNING */
  677. mci->op_state = OP_RUNNING_POLL;
  678. edac_mc_workq_setup(mci, edac_mc_get_poll_msec(), true);
  679. } else {
  680. mci->op_state = OP_RUNNING_INTERRUPT;
  681. }
  682. /* Report action taken */
  683. edac_mc_printk(mci, KERN_INFO,
  684. "Giving out device to module %s controller %s: DEV %s (%s)\n",
  685. mci->mod_name, mci->ctl_name, mci->dev_name,
  686. edac_op_state_to_string(mci->op_state));
  687. edac_mc_owner = mci->mod_name;
  688. mutex_unlock(&mem_ctls_mutex);
  689. return 0;
  690. fail1:
  691. del_mc_from_global_list(mci);
  692. fail0:
  693. mutex_unlock(&mem_ctls_mutex);
  694. return ret;
  695. }
  696. EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups);
  697. /**
  698. * edac_mc_del_mc: Remove sysfs entries for specified mci structure and
  699. * remove mci structure from global list
  700. * @pdev: Pointer to 'struct device' representing mci structure to remove.
  701. *
  702. * Return pointer to removed mci structure, or NULL if device not found.
  703. */
  704. struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
  705. {
  706. struct mem_ctl_info *mci;
  707. edac_dbg(0, "\n");
  708. mutex_lock(&mem_ctls_mutex);
  709. /* find the requested mci struct in the global list */
  710. mci = find_mci_by_dev(dev);
  711. if (mci == NULL) {
  712. mutex_unlock(&mem_ctls_mutex);
  713. return NULL;
  714. }
  715. if (!del_mc_from_global_list(mci))
  716. edac_mc_owner = NULL;
  717. mutex_unlock(&mem_ctls_mutex);
  718. /* flush workq processes */
  719. edac_mc_workq_teardown(mci);
  720. /* marking MCI offline */
  721. mci->op_state = OP_OFFLINE;
  722. /* remove from sysfs */
  723. edac_remove_sysfs_mci_device(mci);
  724. edac_printk(KERN_INFO, EDAC_MC,
  725. "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
  726. mci->mod_name, mci->ctl_name, edac_dev_name(mci));
  727. return mci;
  728. }
  729. EXPORT_SYMBOL_GPL(edac_mc_del_mc);
  730. static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
  731. u32 size)
  732. {
  733. struct page *pg;
  734. void *virt_addr;
  735. unsigned long flags = 0;
  736. edac_dbg(3, "\n");
  737. /* ECC error page was not in our memory. Ignore it. */
  738. if (!pfn_valid(page))
  739. return;
  740. /* Find the actual page structure then map it and fix */
  741. pg = pfn_to_page(page);
  742. if (PageHighMem(pg))
  743. local_irq_save(flags);
  744. virt_addr = kmap_atomic(pg);
  745. /* Perform architecture specific atomic scrub operation */
  746. edac_atomic_scrub(virt_addr + offset, size);
  747. /* Unmap and complete */
  748. kunmap_atomic(virt_addr);
  749. if (PageHighMem(pg))
  750. local_irq_restore(flags);
  751. }
  752. /* FIXME - should return -1 */
  753. int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
  754. {
  755. struct csrow_info **csrows = mci->csrows;
  756. int row, i, j, n;
  757. edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
  758. row = -1;
  759. for (i = 0; i < mci->nr_csrows; i++) {
  760. struct csrow_info *csrow = csrows[i];
  761. n = 0;
  762. for (j = 0; j < csrow->nr_channels; j++) {
  763. struct dimm_info *dimm = csrow->channels[j]->dimm;
  764. n += dimm->nr_pages;
  765. }
  766. if (n == 0)
  767. continue;
  768. edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
  769. mci->mc_idx,
  770. csrow->first_page, page, csrow->last_page,
  771. csrow->page_mask);
  772. if ((page >= csrow->first_page) &&
  773. (page <= csrow->last_page) &&
  774. ((page & csrow->page_mask) ==
  775. (csrow->first_page & csrow->page_mask))) {
  776. row = i;
  777. break;
  778. }
  779. }
  780. if (row == -1)
  781. edac_mc_printk(mci, KERN_ERR,
  782. "could not look up page error address %lx\n",
  783. (unsigned long)page);
  784. return row;
  785. }
  786. EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
  787. const char *edac_layer_name[] = {
  788. [EDAC_MC_LAYER_BRANCH] = "branch",
  789. [EDAC_MC_LAYER_CHANNEL] = "channel",
  790. [EDAC_MC_LAYER_SLOT] = "slot",
  791. [EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
  792. [EDAC_MC_LAYER_ALL_MEM] = "memory",
  793. };
  794. EXPORT_SYMBOL_GPL(edac_layer_name);
  795. static void edac_inc_ce_error(struct mem_ctl_info *mci,
  796. bool enable_per_layer_report,
  797. const int pos[EDAC_MAX_LAYERS],
  798. const u16 count)
  799. {
  800. int i, index = 0;
  801. mci->ce_mc += count;
  802. if (!enable_per_layer_report) {
  803. mci->ce_noinfo_count += count;
  804. return;
  805. }
  806. for (i = 0; i < mci->n_layers; i++) {
  807. if (pos[i] < 0)
  808. break;
  809. index += pos[i];
  810. mci->ce_per_layer[i][index] += count;
  811. if (i < mci->n_layers - 1)
  812. index *= mci->layers[i + 1].size;
  813. }
  814. }
  815. static void edac_inc_ue_error(struct mem_ctl_info *mci,
  816. bool enable_per_layer_report,
  817. const int pos[EDAC_MAX_LAYERS],
  818. const u16 count)
  819. {
  820. int i, index = 0;
  821. mci->ue_mc += count;
  822. if (!enable_per_layer_report) {
  823. mci->ce_noinfo_count += count;
  824. return;
  825. }
  826. for (i = 0; i < mci->n_layers; i++) {
  827. if (pos[i] < 0)
  828. break;
  829. index += pos[i];
  830. mci->ue_per_layer[i][index] += count;
  831. if (i < mci->n_layers - 1)
  832. index *= mci->layers[i + 1].size;
  833. }
  834. }
  835. static void edac_ce_error(struct mem_ctl_info *mci,
  836. const u16 error_count,
  837. const int pos[EDAC_MAX_LAYERS],
  838. const char *msg,
  839. const char *location,
  840. const char *label,
  841. const char *detail,
  842. const char *other_detail,
  843. const bool enable_per_layer_report,
  844. const unsigned long page_frame_number,
  845. const unsigned long offset_in_page,
  846. long grain)
  847. {
  848. unsigned long remapped_page;
  849. char *msg_aux = "";
  850. if (*msg)
  851. msg_aux = " ";
  852. if (edac_mc_get_log_ce()) {
  853. if (other_detail && *other_detail)
  854. edac_mc_printk(mci, KERN_WARNING,
  855. "%d CE %s%son %s (%s %s - %s)\n",
  856. error_count, msg, msg_aux, label,
  857. location, detail, other_detail);
  858. else
  859. edac_mc_printk(mci, KERN_WARNING,
  860. "%d CE %s%son %s (%s %s)\n",
  861. error_count, msg, msg_aux, label,
  862. location, detail);
  863. }
  864. edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
  865. if (mci->scrub_mode == SCRUB_SW_SRC) {
  866. /*
  867. * Some memory controllers (called MCs below) can remap
  868. * memory so that it is still available at a different
  869. * address when PCI devices map into memory.
  870. * MC's that can't do this, lose the memory where PCI
  871. * devices are mapped. This mapping is MC-dependent
  872. * and so we call back into the MC driver for it to
  873. * map the MC page to a physical (CPU) page which can
  874. * then be mapped to a virtual page - which can then
  875. * be scrubbed.
  876. */
  877. remapped_page = mci->ctl_page_to_phys ?
  878. mci->ctl_page_to_phys(mci, page_frame_number) :
  879. page_frame_number;
  880. edac_mc_scrub_block(remapped_page,
  881. offset_in_page, grain);
  882. }
  883. }
  884. static void edac_ue_error(struct mem_ctl_info *mci,
  885. const u16 error_count,
  886. const int pos[EDAC_MAX_LAYERS],
  887. const char *msg,
  888. const char *location,
  889. const char *label,
  890. const char *detail,
  891. const char *other_detail,
  892. const bool enable_per_layer_report)
  893. {
  894. char *msg_aux = "";
  895. if (*msg)
  896. msg_aux = " ";
  897. if (edac_mc_get_log_ue()) {
  898. if (other_detail && *other_detail)
  899. edac_mc_printk(mci, KERN_WARNING,
  900. "%d UE %s%son %s (%s %s - %s)\n",
  901. error_count, msg, msg_aux, label,
  902. location, detail, other_detail);
  903. else
  904. edac_mc_printk(mci, KERN_WARNING,
  905. "%d UE %s%son %s (%s %s)\n",
  906. error_count, msg, msg_aux, label,
  907. location, detail);
  908. }
  909. if (edac_mc_get_panic_on_ue()) {
  910. if (other_detail && *other_detail)
  911. panic("UE %s%son %s (%s%s - %s)\n",
  912. msg, msg_aux, label, location, detail, other_detail);
  913. else
  914. panic("UE %s%son %s (%s%s)\n",
  915. msg, msg_aux, label, location, detail);
  916. }
  917. edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
  918. }
  919. /**
  920. * edac_raw_mc_handle_error - reports a memory event to userspace without doing
  921. * anything to discover the error location
  922. *
  923. * @type: severity of the error (CE/UE/Fatal)
  924. * @mci: a struct mem_ctl_info pointer
  925. * @e: error description
  926. *
  927. * This raw function is used internally by edac_mc_handle_error(). It should
  928. * only be called directly when the hardware error come directly from BIOS,
  929. * like in the case of APEI GHES driver.
  930. */
  931. void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,
  932. struct mem_ctl_info *mci,
  933. struct edac_raw_error_desc *e)
  934. {
  935. char detail[80];
  936. int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
  937. /* Memory type dependent details about the error */
  938. if (type == HW_EVENT_ERR_CORRECTED) {
  939. snprintf(detail, sizeof(detail),
  940. "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
  941. e->page_frame_number, e->offset_in_page,
  942. e->grain, e->syndrome);
  943. edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label,
  944. detail, e->other_detail, e->enable_per_layer_report,
  945. e->page_frame_number, e->offset_in_page, e->grain);
  946. } else {
  947. snprintf(detail, sizeof(detail),
  948. "page:0x%lx offset:0x%lx grain:%ld",
  949. e->page_frame_number, e->offset_in_page, e->grain);
  950. edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label,
  951. detail, e->other_detail, e->enable_per_layer_report);
  952. }
  953. }
  954. EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
  955. /**
  956. * edac_mc_handle_error - reports a memory event to userspace
  957. *
  958. * @type: severity of the error (CE/UE/Fatal)
  959. * @mci: a struct mem_ctl_info pointer
  960. * @error_count: Number of errors of the same type
  961. * @page_frame_number: mem page where the error occurred
  962. * @offset_in_page: offset of the error inside the page
  963. * @syndrome: ECC syndrome
  964. * @top_layer: Memory layer[0] position
  965. * @mid_layer: Memory layer[1] position
  966. * @low_layer: Memory layer[2] position
  967. * @msg: Message meaningful to the end users that
  968. * explains the event
  969. * @other_detail: Technical details about the event that
  970. * may help hardware manufacturers and
  971. * EDAC developers to analyse the event
  972. */
  973. void edac_mc_handle_error(const enum hw_event_mc_err_type type,
  974. struct mem_ctl_info *mci,
  975. const u16 error_count,
  976. const unsigned long page_frame_number,
  977. const unsigned long offset_in_page,
  978. const unsigned long syndrome,
  979. const int top_layer,
  980. const int mid_layer,
  981. const int low_layer,
  982. const char *msg,
  983. const char *other_detail)
  984. {
  985. char *p;
  986. int row = -1, chan = -1;
  987. int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
  988. int i, n_labels = 0;
  989. u8 grain_bits;
  990. struct edac_raw_error_desc *e = &mci->error_desc;
  991. edac_dbg(3, "MC%d\n", mci->mc_idx);
  992. /* Fills the error report buffer */
  993. memset(e, 0, sizeof (*e));
  994. e->error_count = error_count;
  995. e->top_layer = top_layer;
  996. e->mid_layer = mid_layer;
  997. e->low_layer = low_layer;
  998. e->page_frame_number = page_frame_number;
  999. e->offset_in_page = offset_in_page;
  1000. e->syndrome = syndrome;
  1001. e->msg = msg;
  1002. e->other_detail = other_detail;
  1003. /*
  1004. * Check if the event report is consistent and if the memory
  1005. * location is known. If it is known, enable_per_layer_report will be
  1006. * true, the DIMM(s) label info will be filled and the per-layer
  1007. * error counters will be incremented.
  1008. */
  1009. for (i = 0; i < mci->n_layers; i++) {
  1010. if (pos[i] >= (int)mci->layers[i].size) {
  1011. edac_mc_printk(mci, KERN_ERR,
  1012. "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
  1013. edac_layer_name[mci->layers[i].type],
  1014. pos[i], mci->layers[i].size);
  1015. /*
  1016. * Instead of just returning it, let's use what's
  1017. * known about the error. The increment routines and
  1018. * the DIMM filter logic will do the right thing by
  1019. * pointing the likely damaged DIMMs.
  1020. */
  1021. pos[i] = -1;
  1022. }
  1023. if (pos[i] >= 0)
  1024. e->enable_per_layer_report = true;
  1025. }
  1026. /*
  1027. * Get the dimm label/grain that applies to the match criteria.
  1028. * As the error algorithm may not be able to point to just one memory
  1029. * stick, the logic here will get all possible labels that could
  1030. * pottentially be affected by the error.
  1031. * On FB-DIMM memory controllers, for uncorrected errors, it is common
  1032. * to have only the MC channel and the MC dimm (also called "branch")
  1033. * but the channel is not known, as the memory is arranged in pairs,
  1034. * where each memory belongs to a separate channel within the same
  1035. * branch.
  1036. */
  1037. p = e->label;
  1038. *p = '\0';
  1039. for (i = 0; i < mci->tot_dimms; i++) {
  1040. struct dimm_info *dimm = mci->dimms[i];
  1041. if (top_layer >= 0 && top_layer != dimm->location[0])
  1042. continue;
  1043. if (mid_layer >= 0 && mid_layer != dimm->location[1])
  1044. continue;
  1045. if (low_layer >= 0 && low_layer != dimm->location[2])
  1046. continue;
  1047. /* get the max grain, over the error match range */
  1048. if (dimm->grain > e->grain)
  1049. e->grain = dimm->grain;
  1050. /*
  1051. * If the error is memory-controller wide, there's no need to
  1052. * seek for the affected DIMMs because the whole
  1053. * channel/memory controller/... may be affected.
  1054. * Also, don't show errors for empty DIMM slots.
  1055. */
  1056. if (e->enable_per_layer_report && dimm->nr_pages) {
  1057. if (n_labels >= EDAC_MAX_LABELS) {
  1058. e->enable_per_layer_report = false;
  1059. break;
  1060. }
  1061. n_labels++;
  1062. if (p != e->label) {
  1063. strcpy(p, OTHER_LABEL);
  1064. p += strlen(OTHER_LABEL);
  1065. }
  1066. strcpy(p, dimm->label);
  1067. p += strlen(p);
  1068. *p = '\0';
  1069. /*
  1070. * get csrow/channel of the DIMM, in order to allow
  1071. * incrementing the compat API counters
  1072. */
  1073. edac_dbg(4, "%s csrows map: (%d,%d)\n",
  1074. mci->csbased ? "rank" : "dimm",
  1075. dimm->csrow, dimm->cschannel);
  1076. if (row == -1)
  1077. row = dimm->csrow;
  1078. else if (row >= 0 && row != dimm->csrow)
  1079. row = -2;
  1080. if (chan == -1)
  1081. chan = dimm->cschannel;
  1082. else if (chan >= 0 && chan != dimm->cschannel)
  1083. chan = -2;
  1084. }
  1085. }
  1086. if (!e->enable_per_layer_report) {
  1087. strcpy(e->label, "any memory");
  1088. } else {
  1089. edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
  1090. if (p == e->label)
  1091. strcpy(e->label, "unknown memory");
  1092. if (type == HW_EVENT_ERR_CORRECTED) {
  1093. if (row >= 0) {
  1094. mci->csrows[row]->ce_count += error_count;
  1095. if (chan >= 0)
  1096. mci->csrows[row]->channels[chan]->ce_count += error_count;
  1097. }
  1098. } else
  1099. if (row >= 0)
  1100. mci->csrows[row]->ue_count += error_count;
  1101. }
  1102. /* Fill the RAM location data */
  1103. p = e->location;
  1104. for (i = 0; i < mci->n_layers; i++) {
  1105. if (pos[i] < 0)
  1106. continue;
  1107. p += sprintf(p, "%s:%d ",
  1108. edac_layer_name[mci->layers[i].type],
  1109. pos[i]);
  1110. }
  1111. if (p > e->location)
  1112. *(p - 1) = '\0';
  1113. /* Report the error via the trace interface */
  1114. grain_bits = fls_long(e->grain) + 1;
  1115. trace_mc_event(type, e->msg, e->label, e->error_count,
  1116. mci->mc_idx, e->top_layer, e->mid_layer, e->low_layer,
  1117. PAGES_TO_MiB(e->page_frame_number) | e->offset_in_page,
  1118. grain_bits, e->syndrome, e->other_detail);
  1119. edac_raw_mc_handle_error(type, mci, e);
  1120. }
  1121. EXPORT_SYMBOL_GPL(edac_mc_handle_error);