cipher.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796
  1. /*
  2. * Cipher algorithms supported by the CESA: DES, 3DES and AES.
  3. *
  4. * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
  5. * Author: Arnaud Ebalard <arno@natisbad.org>
  6. *
  7. * This work is based on an initial version written by
  8. * Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
  9. *
  10. * This program is free software; you can redistribute it and/or modify it
  11. * under the terms of the GNU General Public License version 2 as published
  12. * by the Free Software Foundation.
  13. */
  14. #include <crypto/aes.h>
  15. #include <crypto/des.h>
  16. #include "cesa.h"
  17. struct mv_cesa_des_ctx {
  18. struct mv_cesa_ctx base;
  19. u8 key[DES_KEY_SIZE];
  20. };
  21. struct mv_cesa_des3_ctx {
  22. struct mv_cesa_ctx base;
  23. u8 key[DES3_EDE_KEY_SIZE];
  24. };
  25. struct mv_cesa_aes_ctx {
  26. struct mv_cesa_ctx base;
  27. struct crypto_aes_ctx aes;
  28. };
  29. struct mv_cesa_ablkcipher_dma_iter {
  30. struct mv_cesa_dma_iter base;
  31. struct mv_cesa_sg_dma_iter src;
  32. struct mv_cesa_sg_dma_iter dst;
  33. };
  34. static inline void
  35. mv_cesa_ablkcipher_req_iter_init(struct mv_cesa_ablkcipher_dma_iter *iter,
  36. struct ablkcipher_request *req)
  37. {
  38. mv_cesa_req_dma_iter_init(&iter->base, req->nbytes);
  39. mv_cesa_sg_dma_iter_init(&iter->src, req->src, DMA_TO_DEVICE);
  40. mv_cesa_sg_dma_iter_init(&iter->dst, req->dst, DMA_FROM_DEVICE);
  41. }
  42. static inline bool
  43. mv_cesa_ablkcipher_req_iter_next_op(struct mv_cesa_ablkcipher_dma_iter *iter)
  44. {
  45. iter->src.op_offset = 0;
  46. iter->dst.op_offset = 0;
  47. return mv_cesa_req_dma_iter_next_op(&iter->base);
  48. }
  49. static inline void
  50. mv_cesa_ablkcipher_dma_cleanup(struct ablkcipher_request *req)
  51. {
  52. struct mv_cesa_ablkcipher_req *creq = ablkcipher_request_ctx(req);
  53. if (req->dst != req->src) {
  54. dma_unmap_sg(cesa_dev->dev, req->dst, creq->dst_nents,
  55. DMA_FROM_DEVICE);
  56. dma_unmap_sg(cesa_dev->dev, req->src, creq->src_nents,
  57. DMA_TO_DEVICE);
  58. } else {
  59. dma_unmap_sg(cesa_dev->dev, req->src, creq->src_nents,
  60. DMA_BIDIRECTIONAL);
  61. }
  62. mv_cesa_dma_cleanup(&creq->req.dma);
  63. }
  64. static inline void mv_cesa_ablkcipher_cleanup(struct ablkcipher_request *req)
  65. {
  66. struct mv_cesa_ablkcipher_req *creq = ablkcipher_request_ctx(req);
  67. if (creq->req.base.type == CESA_DMA_REQ)
  68. mv_cesa_ablkcipher_dma_cleanup(req);
  69. }
  70. static void mv_cesa_ablkcipher_std_step(struct ablkcipher_request *req)
  71. {
  72. struct mv_cesa_ablkcipher_req *creq = ablkcipher_request_ctx(req);
  73. struct mv_cesa_ablkcipher_std_req *sreq = &creq->req.std;
  74. struct mv_cesa_engine *engine = sreq->base.engine;
  75. size_t len = min_t(size_t, req->nbytes - sreq->offset,
  76. CESA_SA_SRAM_PAYLOAD_SIZE);
  77. len = sg_pcopy_to_buffer(req->src, creq->src_nents,
  78. engine->sram + CESA_SA_DATA_SRAM_OFFSET,
  79. len, sreq->offset);
  80. sreq->size = len;
  81. mv_cesa_set_crypt_op_len(&sreq->op, len);
  82. /* FIXME: only update enc_len field */
  83. if (!sreq->skip_ctx) {
  84. memcpy(engine->sram, &sreq->op, sizeof(sreq->op));
  85. sreq->skip_ctx = true;
  86. } else {
  87. memcpy(engine->sram, &sreq->op, sizeof(sreq->op.desc));
  88. }
  89. mv_cesa_set_int_mask(engine, CESA_SA_INT_ACCEL0_DONE);
  90. writel(CESA_SA_CFG_PARA_DIS, engine->regs + CESA_SA_CFG);
  91. writel(CESA_SA_CMD_EN_CESA_SA_ACCL0, engine->regs + CESA_SA_CMD);
  92. }
  93. static int mv_cesa_ablkcipher_std_process(struct ablkcipher_request *req,
  94. u32 status)
  95. {
  96. struct mv_cesa_ablkcipher_req *creq = ablkcipher_request_ctx(req);
  97. struct mv_cesa_ablkcipher_std_req *sreq = &creq->req.std;
  98. struct mv_cesa_engine *engine = sreq->base.engine;
  99. size_t len;
  100. len = sg_pcopy_from_buffer(req->dst, creq->dst_nents,
  101. engine->sram + CESA_SA_DATA_SRAM_OFFSET,
  102. sreq->size, sreq->offset);
  103. sreq->offset += len;
  104. if (sreq->offset < req->nbytes)
  105. return -EINPROGRESS;
  106. return 0;
  107. }
  108. static int mv_cesa_ablkcipher_process(struct crypto_async_request *req,
  109. u32 status)
  110. {
  111. struct ablkcipher_request *ablkreq = ablkcipher_request_cast(req);
  112. struct mv_cesa_ablkcipher_req *creq = ablkcipher_request_ctx(ablkreq);
  113. struct mv_cesa_ablkcipher_std_req *sreq = &creq->req.std;
  114. struct mv_cesa_engine *engine = sreq->base.engine;
  115. int ret;
  116. if (creq->req.base.type == CESA_DMA_REQ)
  117. ret = mv_cesa_dma_process(&creq->req.dma, status);
  118. else
  119. ret = mv_cesa_ablkcipher_std_process(ablkreq, status);
  120. if (ret)
  121. return ret;
  122. memcpy(ablkreq->info, engine->sram + CESA_SA_CRYPT_IV_SRAM_OFFSET,
  123. crypto_ablkcipher_ivsize(crypto_ablkcipher_reqtfm(ablkreq)));
  124. return 0;
  125. }
  126. static void mv_cesa_ablkcipher_step(struct crypto_async_request *req)
  127. {
  128. struct ablkcipher_request *ablkreq = ablkcipher_request_cast(req);
  129. struct mv_cesa_ablkcipher_req *creq = ablkcipher_request_ctx(ablkreq);
  130. if (creq->req.base.type == CESA_DMA_REQ)
  131. mv_cesa_dma_step(&creq->req.dma);
  132. else
  133. mv_cesa_ablkcipher_std_step(ablkreq);
  134. }
  135. static inline void
  136. mv_cesa_ablkcipher_dma_prepare(struct ablkcipher_request *req)
  137. {
  138. struct mv_cesa_ablkcipher_req *creq = ablkcipher_request_ctx(req);
  139. struct mv_cesa_tdma_req *dreq = &creq->req.dma;
  140. mv_cesa_dma_prepare(dreq, dreq->base.engine);
  141. }
  142. static inline void
  143. mv_cesa_ablkcipher_std_prepare(struct ablkcipher_request *req)
  144. {
  145. struct mv_cesa_ablkcipher_req *creq = ablkcipher_request_ctx(req);
  146. struct mv_cesa_ablkcipher_std_req *sreq = &creq->req.std;
  147. struct mv_cesa_engine *engine = sreq->base.engine;
  148. sreq->size = 0;
  149. sreq->offset = 0;
  150. mv_cesa_adjust_op(engine, &sreq->op);
  151. memcpy(engine->sram, &sreq->op, sizeof(sreq->op));
  152. }
  153. static inline void mv_cesa_ablkcipher_prepare(struct crypto_async_request *req,
  154. struct mv_cesa_engine *engine)
  155. {
  156. struct ablkcipher_request *ablkreq = ablkcipher_request_cast(req);
  157. struct mv_cesa_ablkcipher_req *creq = ablkcipher_request_ctx(ablkreq);
  158. creq->req.base.engine = engine;
  159. if (creq->req.base.type == CESA_DMA_REQ)
  160. mv_cesa_ablkcipher_dma_prepare(ablkreq);
  161. else
  162. mv_cesa_ablkcipher_std_prepare(ablkreq);
  163. }
  164. static inline void
  165. mv_cesa_ablkcipher_req_cleanup(struct crypto_async_request *req)
  166. {
  167. struct ablkcipher_request *ablkreq = ablkcipher_request_cast(req);
  168. mv_cesa_ablkcipher_cleanup(ablkreq);
  169. }
  170. static const struct mv_cesa_req_ops mv_cesa_ablkcipher_req_ops = {
  171. .step = mv_cesa_ablkcipher_step,
  172. .process = mv_cesa_ablkcipher_process,
  173. .prepare = mv_cesa_ablkcipher_prepare,
  174. .cleanup = mv_cesa_ablkcipher_req_cleanup,
  175. };
  176. static int mv_cesa_ablkcipher_cra_init(struct crypto_tfm *tfm)
  177. {
  178. struct mv_cesa_aes_ctx *ctx = crypto_tfm_ctx(tfm);
  179. ctx->base.ops = &mv_cesa_ablkcipher_req_ops;
  180. tfm->crt_ablkcipher.reqsize = sizeof(struct mv_cesa_ablkcipher_req);
  181. return 0;
  182. }
  183. static int mv_cesa_aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
  184. unsigned int len)
  185. {
  186. struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
  187. struct mv_cesa_aes_ctx *ctx = crypto_tfm_ctx(tfm);
  188. int remaining;
  189. int offset;
  190. int ret;
  191. int i;
  192. ret = crypto_aes_expand_key(&ctx->aes, key, len);
  193. if (ret) {
  194. crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
  195. return ret;
  196. }
  197. remaining = (ctx->aes.key_length - 16) / 4;
  198. offset = ctx->aes.key_length + 24 - remaining;
  199. for (i = 0; i < remaining; i++)
  200. ctx->aes.key_dec[4 + i] =
  201. cpu_to_le32(ctx->aes.key_enc[offset + i]);
  202. return 0;
  203. }
  204. static int mv_cesa_des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
  205. unsigned int len)
  206. {
  207. struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
  208. struct mv_cesa_des_ctx *ctx = crypto_tfm_ctx(tfm);
  209. u32 tmp[DES_EXPKEY_WORDS];
  210. int ret;
  211. if (len != DES_KEY_SIZE) {
  212. crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
  213. return -EINVAL;
  214. }
  215. ret = des_ekey(tmp, key);
  216. if (!ret && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
  217. tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
  218. return -EINVAL;
  219. }
  220. memcpy(ctx->key, key, DES_KEY_SIZE);
  221. return 0;
  222. }
  223. static int mv_cesa_des3_ede_setkey(struct crypto_ablkcipher *cipher,
  224. const u8 *key, unsigned int len)
  225. {
  226. struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
  227. struct mv_cesa_des_ctx *ctx = crypto_tfm_ctx(tfm);
  228. if (len != DES3_EDE_KEY_SIZE) {
  229. crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
  230. return -EINVAL;
  231. }
  232. memcpy(ctx->key, key, DES3_EDE_KEY_SIZE);
  233. return 0;
  234. }
  235. static int mv_cesa_ablkcipher_dma_req_init(struct ablkcipher_request *req,
  236. const struct mv_cesa_op_ctx *op_templ)
  237. {
  238. struct mv_cesa_ablkcipher_req *creq = ablkcipher_request_ctx(req);
  239. gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
  240. GFP_KERNEL : GFP_ATOMIC;
  241. struct mv_cesa_tdma_req *dreq = &creq->req.dma;
  242. struct mv_cesa_ablkcipher_dma_iter iter;
  243. struct mv_cesa_tdma_chain chain;
  244. bool skip_ctx = false;
  245. int ret;
  246. dreq->base.type = CESA_DMA_REQ;
  247. dreq->chain.first = NULL;
  248. dreq->chain.last = NULL;
  249. if (req->src != req->dst) {
  250. ret = dma_map_sg(cesa_dev->dev, req->src, creq->src_nents,
  251. DMA_TO_DEVICE);
  252. if (!ret)
  253. return -ENOMEM;
  254. ret = dma_map_sg(cesa_dev->dev, req->dst, creq->dst_nents,
  255. DMA_FROM_DEVICE);
  256. if (!ret) {
  257. ret = -ENOMEM;
  258. goto err_unmap_src;
  259. }
  260. } else {
  261. ret = dma_map_sg(cesa_dev->dev, req->src, creq->src_nents,
  262. DMA_BIDIRECTIONAL);
  263. if (!ret)
  264. return -ENOMEM;
  265. }
  266. mv_cesa_tdma_desc_iter_init(&chain);
  267. mv_cesa_ablkcipher_req_iter_init(&iter, req);
  268. do {
  269. struct mv_cesa_op_ctx *op;
  270. op = mv_cesa_dma_add_op(&chain, op_templ, skip_ctx, flags);
  271. if (IS_ERR(op)) {
  272. ret = PTR_ERR(op);
  273. goto err_free_tdma;
  274. }
  275. skip_ctx = true;
  276. mv_cesa_set_crypt_op_len(op, iter.base.op_len);
  277. /* Add input transfers */
  278. ret = mv_cesa_dma_add_op_transfers(&chain, &iter.base,
  279. &iter.src, flags);
  280. if (ret)
  281. goto err_free_tdma;
  282. /* Add dummy desc to launch the crypto operation */
  283. ret = mv_cesa_dma_add_dummy_launch(&chain, flags);
  284. if (ret)
  285. goto err_free_tdma;
  286. /* Add output transfers */
  287. ret = mv_cesa_dma_add_op_transfers(&chain, &iter.base,
  288. &iter.dst, flags);
  289. if (ret)
  290. goto err_free_tdma;
  291. } while (mv_cesa_ablkcipher_req_iter_next_op(&iter));
  292. dreq->chain = chain;
  293. return 0;
  294. err_free_tdma:
  295. mv_cesa_dma_cleanup(dreq);
  296. if (req->dst != req->src)
  297. dma_unmap_sg(cesa_dev->dev, req->dst, creq->dst_nents,
  298. DMA_FROM_DEVICE);
  299. err_unmap_src:
  300. dma_unmap_sg(cesa_dev->dev, req->src, creq->src_nents,
  301. req->dst != req->src ? DMA_TO_DEVICE : DMA_BIDIRECTIONAL);
  302. return ret;
  303. }
  304. static inline int
  305. mv_cesa_ablkcipher_std_req_init(struct ablkcipher_request *req,
  306. const struct mv_cesa_op_ctx *op_templ)
  307. {
  308. struct mv_cesa_ablkcipher_req *creq = ablkcipher_request_ctx(req);
  309. struct mv_cesa_ablkcipher_std_req *sreq = &creq->req.std;
  310. sreq->base.type = CESA_STD_REQ;
  311. sreq->op = *op_templ;
  312. sreq->skip_ctx = false;
  313. return 0;
  314. }
  315. static int mv_cesa_ablkcipher_req_init(struct ablkcipher_request *req,
  316. struct mv_cesa_op_ctx *tmpl)
  317. {
  318. struct mv_cesa_ablkcipher_req *creq = ablkcipher_request_ctx(req);
  319. struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
  320. unsigned int blksize = crypto_ablkcipher_blocksize(tfm);
  321. int ret;
  322. if (!IS_ALIGNED(req->nbytes, blksize))
  323. return -EINVAL;
  324. creq->src_nents = sg_nents_for_len(req->src, req->nbytes);
  325. creq->dst_nents = sg_nents_for_len(req->dst, req->nbytes);
  326. mv_cesa_update_op_cfg(tmpl, CESA_SA_DESC_CFG_OP_CRYPT_ONLY,
  327. CESA_SA_DESC_CFG_OP_MSK);
  328. /* TODO: add a threshold for DMA usage */
  329. if (cesa_dev->caps->has_tdma)
  330. ret = mv_cesa_ablkcipher_dma_req_init(req, tmpl);
  331. else
  332. ret = mv_cesa_ablkcipher_std_req_init(req, tmpl);
  333. return ret;
  334. }
  335. static int mv_cesa_des_op(struct ablkcipher_request *req,
  336. struct mv_cesa_op_ctx *tmpl)
  337. {
  338. struct mv_cesa_des_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
  339. int ret;
  340. mv_cesa_update_op_cfg(tmpl, CESA_SA_DESC_CFG_CRYPTM_DES,
  341. CESA_SA_DESC_CFG_CRYPTM_MSK);
  342. memcpy(tmpl->ctx.blkcipher.key, ctx->key, DES_KEY_SIZE);
  343. ret = mv_cesa_ablkcipher_req_init(req, tmpl);
  344. if (ret)
  345. return ret;
  346. ret = mv_cesa_queue_req(&req->base);
  347. if (mv_cesa_req_needs_cleanup(&req->base, ret))
  348. mv_cesa_ablkcipher_cleanup(req);
  349. return ret;
  350. }
  351. static int mv_cesa_ecb_des_encrypt(struct ablkcipher_request *req)
  352. {
  353. struct mv_cesa_op_ctx tmpl;
  354. mv_cesa_set_op_cfg(&tmpl,
  355. CESA_SA_DESC_CFG_CRYPTCM_ECB |
  356. CESA_SA_DESC_CFG_DIR_ENC);
  357. return mv_cesa_des_op(req, &tmpl);
  358. }
  359. static int mv_cesa_ecb_des_decrypt(struct ablkcipher_request *req)
  360. {
  361. struct mv_cesa_op_ctx tmpl;
  362. mv_cesa_set_op_cfg(&tmpl,
  363. CESA_SA_DESC_CFG_CRYPTCM_ECB |
  364. CESA_SA_DESC_CFG_DIR_DEC);
  365. return mv_cesa_des_op(req, &tmpl);
  366. }
  367. struct crypto_alg mv_cesa_ecb_des_alg = {
  368. .cra_name = "ecb(des)",
  369. .cra_driver_name = "mv-ecb-des",
  370. .cra_priority = 300,
  371. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
  372. CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC,
  373. .cra_blocksize = DES_BLOCK_SIZE,
  374. .cra_ctxsize = sizeof(struct mv_cesa_des_ctx),
  375. .cra_alignmask = 0,
  376. .cra_type = &crypto_ablkcipher_type,
  377. .cra_module = THIS_MODULE,
  378. .cra_init = mv_cesa_ablkcipher_cra_init,
  379. .cra_u = {
  380. .ablkcipher = {
  381. .min_keysize = DES_KEY_SIZE,
  382. .max_keysize = DES_KEY_SIZE,
  383. .setkey = mv_cesa_des_setkey,
  384. .encrypt = mv_cesa_ecb_des_encrypt,
  385. .decrypt = mv_cesa_ecb_des_decrypt,
  386. },
  387. },
  388. };
  389. static int mv_cesa_cbc_des_op(struct ablkcipher_request *req,
  390. struct mv_cesa_op_ctx *tmpl)
  391. {
  392. mv_cesa_update_op_cfg(tmpl, CESA_SA_DESC_CFG_CRYPTCM_CBC,
  393. CESA_SA_DESC_CFG_CRYPTCM_MSK);
  394. memcpy(tmpl->ctx.blkcipher.iv, req->info, DES_BLOCK_SIZE);
  395. return mv_cesa_des_op(req, tmpl);
  396. }
  397. static int mv_cesa_cbc_des_encrypt(struct ablkcipher_request *req)
  398. {
  399. struct mv_cesa_op_ctx tmpl;
  400. mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_DIR_ENC);
  401. return mv_cesa_cbc_des_op(req, &tmpl);
  402. }
  403. static int mv_cesa_cbc_des_decrypt(struct ablkcipher_request *req)
  404. {
  405. struct mv_cesa_op_ctx tmpl;
  406. mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_DIR_DEC);
  407. return mv_cesa_cbc_des_op(req, &tmpl);
  408. }
  409. struct crypto_alg mv_cesa_cbc_des_alg = {
  410. .cra_name = "cbc(des)",
  411. .cra_driver_name = "mv-cbc-des",
  412. .cra_priority = 300,
  413. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
  414. CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC,
  415. .cra_blocksize = DES_BLOCK_SIZE,
  416. .cra_ctxsize = sizeof(struct mv_cesa_des_ctx),
  417. .cra_alignmask = 0,
  418. .cra_type = &crypto_ablkcipher_type,
  419. .cra_module = THIS_MODULE,
  420. .cra_init = mv_cesa_ablkcipher_cra_init,
  421. .cra_u = {
  422. .ablkcipher = {
  423. .min_keysize = DES_KEY_SIZE,
  424. .max_keysize = DES_KEY_SIZE,
  425. .ivsize = DES_BLOCK_SIZE,
  426. .setkey = mv_cesa_des_setkey,
  427. .encrypt = mv_cesa_cbc_des_encrypt,
  428. .decrypt = mv_cesa_cbc_des_decrypt,
  429. },
  430. },
  431. };
  432. static int mv_cesa_des3_op(struct ablkcipher_request *req,
  433. struct mv_cesa_op_ctx *tmpl)
  434. {
  435. struct mv_cesa_des3_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
  436. int ret;
  437. mv_cesa_update_op_cfg(tmpl, CESA_SA_DESC_CFG_CRYPTM_3DES,
  438. CESA_SA_DESC_CFG_CRYPTM_MSK);
  439. memcpy(tmpl->ctx.blkcipher.key, ctx->key, DES3_EDE_KEY_SIZE);
  440. ret = mv_cesa_ablkcipher_req_init(req, tmpl);
  441. if (ret)
  442. return ret;
  443. ret = mv_cesa_queue_req(&req->base);
  444. if (mv_cesa_req_needs_cleanup(&req->base, ret))
  445. mv_cesa_ablkcipher_cleanup(req);
  446. return ret;
  447. }
  448. static int mv_cesa_ecb_des3_ede_encrypt(struct ablkcipher_request *req)
  449. {
  450. struct mv_cesa_op_ctx tmpl;
  451. mv_cesa_set_op_cfg(&tmpl,
  452. CESA_SA_DESC_CFG_CRYPTCM_ECB |
  453. CESA_SA_DESC_CFG_3DES_EDE |
  454. CESA_SA_DESC_CFG_DIR_ENC);
  455. return mv_cesa_des3_op(req, &tmpl);
  456. }
  457. static int mv_cesa_ecb_des3_ede_decrypt(struct ablkcipher_request *req)
  458. {
  459. struct mv_cesa_op_ctx tmpl;
  460. mv_cesa_set_op_cfg(&tmpl,
  461. CESA_SA_DESC_CFG_CRYPTCM_ECB |
  462. CESA_SA_DESC_CFG_3DES_EDE |
  463. CESA_SA_DESC_CFG_DIR_DEC);
  464. return mv_cesa_des3_op(req, &tmpl);
  465. }
  466. struct crypto_alg mv_cesa_ecb_des3_ede_alg = {
  467. .cra_name = "ecb(des3_ede)",
  468. .cra_driver_name = "mv-ecb-des3-ede",
  469. .cra_priority = 300,
  470. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
  471. CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC,
  472. .cra_blocksize = DES3_EDE_BLOCK_SIZE,
  473. .cra_ctxsize = sizeof(struct mv_cesa_des3_ctx),
  474. .cra_alignmask = 0,
  475. .cra_type = &crypto_ablkcipher_type,
  476. .cra_module = THIS_MODULE,
  477. .cra_init = mv_cesa_ablkcipher_cra_init,
  478. .cra_u = {
  479. .ablkcipher = {
  480. .min_keysize = DES3_EDE_KEY_SIZE,
  481. .max_keysize = DES3_EDE_KEY_SIZE,
  482. .ivsize = DES3_EDE_BLOCK_SIZE,
  483. .setkey = mv_cesa_des3_ede_setkey,
  484. .encrypt = mv_cesa_ecb_des3_ede_encrypt,
  485. .decrypt = mv_cesa_ecb_des3_ede_decrypt,
  486. },
  487. },
  488. };
  489. static int mv_cesa_cbc_des3_op(struct ablkcipher_request *req,
  490. struct mv_cesa_op_ctx *tmpl)
  491. {
  492. memcpy(tmpl->ctx.blkcipher.iv, req->info, DES3_EDE_BLOCK_SIZE);
  493. return mv_cesa_des3_op(req, tmpl);
  494. }
  495. static int mv_cesa_cbc_des3_ede_encrypt(struct ablkcipher_request *req)
  496. {
  497. struct mv_cesa_op_ctx tmpl;
  498. mv_cesa_set_op_cfg(&tmpl,
  499. CESA_SA_DESC_CFG_CRYPTCM_CBC |
  500. CESA_SA_DESC_CFG_3DES_EDE |
  501. CESA_SA_DESC_CFG_DIR_ENC);
  502. return mv_cesa_cbc_des3_op(req, &tmpl);
  503. }
  504. static int mv_cesa_cbc_des3_ede_decrypt(struct ablkcipher_request *req)
  505. {
  506. struct mv_cesa_op_ctx tmpl;
  507. mv_cesa_set_op_cfg(&tmpl,
  508. CESA_SA_DESC_CFG_CRYPTCM_CBC |
  509. CESA_SA_DESC_CFG_3DES_EDE |
  510. CESA_SA_DESC_CFG_DIR_DEC);
  511. return mv_cesa_cbc_des3_op(req, &tmpl);
  512. }
  513. struct crypto_alg mv_cesa_cbc_des3_ede_alg = {
  514. .cra_name = "cbc(des3_ede)",
  515. .cra_driver_name = "mv-cbc-des3-ede",
  516. .cra_priority = 300,
  517. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
  518. CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC,
  519. .cra_blocksize = DES3_EDE_BLOCK_SIZE,
  520. .cra_ctxsize = sizeof(struct mv_cesa_des3_ctx),
  521. .cra_alignmask = 0,
  522. .cra_type = &crypto_ablkcipher_type,
  523. .cra_module = THIS_MODULE,
  524. .cra_init = mv_cesa_ablkcipher_cra_init,
  525. .cra_u = {
  526. .ablkcipher = {
  527. .min_keysize = DES3_EDE_KEY_SIZE,
  528. .max_keysize = DES3_EDE_KEY_SIZE,
  529. .ivsize = DES3_EDE_BLOCK_SIZE,
  530. .setkey = mv_cesa_des3_ede_setkey,
  531. .encrypt = mv_cesa_cbc_des3_ede_encrypt,
  532. .decrypt = mv_cesa_cbc_des3_ede_decrypt,
  533. },
  534. },
  535. };
  536. static int mv_cesa_aes_op(struct ablkcipher_request *req,
  537. struct mv_cesa_op_ctx *tmpl)
  538. {
  539. struct mv_cesa_aes_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
  540. int ret, i;
  541. u32 *key;
  542. u32 cfg;
  543. cfg = CESA_SA_DESC_CFG_CRYPTM_AES;
  544. if (mv_cesa_get_op_cfg(tmpl) & CESA_SA_DESC_CFG_DIR_DEC)
  545. key = ctx->aes.key_dec;
  546. else
  547. key = ctx->aes.key_enc;
  548. for (i = 0; i < ctx->aes.key_length / sizeof(u32); i++)
  549. tmpl->ctx.blkcipher.key[i] = cpu_to_le32(key[i]);
  550. if (ctx->aes.key_length == 24)
  551. cfg |= CESA_SA_DESC_CFG_AES_LEN_192;
  552. else if (ctx->aes.key_length == 32)
  553. cfg |= CESA_SA_DESC_CFG_AES_LEN_256;
  554. mv_cesa_update_op_cfg(tmpl, cfg,
  555. CESA_SA_DESC_CFG_CRYPTM_MSK |
  556. CESA_SA_DESC_CFG_AES_LEN_MSK);
  557. ret = mv_cesa_ablkcipher_req_init(req, tmpl);
  558. if (ret)
  559. return ret;
  560. ret = mv_cesa_queue_req(&req->base);
  561. if (mv_cesa_req_needs_cleanup(&req->base, ret))
  562. mv_cesa_ablkcipher_cleanup(req);
  563. return ret;
  564. }
  565. static int mv_cesa_ecb_aes_encrypt(struct ablkcipher_request *req)
  566. {
  567. struct mv_cesa_op_ctx tmpl;
  568. mv_cesa_set_op_cfg(&tmpl,
  569. CESA_SA_DESC_CFG_CRYPTCM_ECB |
  570. CESA_SA_DESC_CFG_DIR_ENC);
  571. return mv_cesa_aes_op(req, &tmpl);
  572. }
  573. static int mv_cesa_ecb_aes_decrypt(struct ablkcipher_request *req)
  574. {
  575. struct mv_cesa_op_ctx tmpl;
  576. mv_cesa_set_op_cfg(&tmpl,
  577. CESA_SA_DESC_CFG_CRYPTCM_ECB |
  578. CESA_SA_DESC_CFG_DIR_DEC);
  579. return mv_cesa_aes_op(req, &tmpl);
  580. }
  581. struct crypto_alg mv_cesa_ecb_aes_alg = {
  582. .cra_name = "ecb(aes)",
  583. .cra_driver_name = "mv-ecb-aes",
  584. .cra_priority = 300,
  585. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
  586. CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC,
  587. .cra_blocksize = AES_BLOCK_SIZE,
  588. .cra_ctxsize = sizeof(struct mv_cesa_aes_ctx),
  589. .cra_alignmask = 0,
  590. .cra_type = &crypto_ablkcipher_type,
  591. .cra_module = THIS_MODULE,
  592. .cra_init = mv_cesa_ablkcipher_cra_init,
  593. .cra_u = {
  594. .ablkcipher = {
  595. .min_keysize = AES_MIN_KEY_SIZE,
  596. .max_keysize = AES_MAX_KEY_SIZE,
  597. .setkey = mv_cesa_aes_setkey,
  598. .encrypt = mv_cesa_ecb_aes_encrypt,
  599. .decrypt = mv_cesa_ecb_aes_decrypt,
  600. },
  601. },
  602. };
  603. static int mv_cesa_cbc_aes_op(struct ablkcipher_request *req,
  604. struct mv_cesa_op_ctx *tmpl)
  605. {
  606. mv_cesa_update_op_cfg(tmpl, CESA_SA_DESC_CFG_CRYPTCM_CBC,
  607. CESA_SA_DESC_CFG_CRYPTCM_MSK);
  608. memcpy(tmpl->ctx.blkcipher.iv, req->info, AES_BLOCK_SIZE);
  609. return mv_cesa_aes_op(req, tmpl);
  610. }
  611. static int mv_cesa_cbc_aes_encrypt(struct ablkcipher_request *req)
  612. {
  613. struct mv_cesa_op_ctx tmpl;
  614. mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_DIR_ENC);
  615. return mv_cesa_cbc_aes_op(req, &tmpl);
  616. }
  617. static int mv_cesa_cbc_aes_decrypt(struct ablkcipher_request *req)
  618. {
  619. struct mv_cesa_op_ctx tmpl;
  620. mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_DIR_DEC);
  621. return mv_cesa_cbc_aes_op(req, &tmpl);
  622. }
  623. struct crypto_alg mv_cesa_cbc_aes_alg = {
  624. .cra_name = "cbc(aes)",
  625. .cra_driver_name = "mv-cbc-aes",
  626. .cra_priority = 300,
  627. .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
  628. CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC,
  629. .cra_blocksize = AES_BLOCK_SIZE,
  630. .cra_ctxsize = sizeof(struct mv_cesa_aes_ctx),
  631. .cra_alignmask = 0,
  632. .cra_type = &crypto_ablkcipher_type,
  633. .cra_module = THIS_MODULE,
  634. .cra_init = mv_cesa_ablkcipher_cra_init,
  635. .cra_u = {
  636. .ablkcipher = {
  637. .min_keysize = AES_MIN_KEY_SIZE,
  638. .max_keysize = AES_MAX_KEY_SIZE,
  639. .ivsize = AES_BLOCK_SIZE,
  640. .setkey = mv_cesa_aes_setkey,
  641. .encrypt = mv_cesa_cbc_aes_encrypt,
  642. .decrypt = mv_cesa_cbc_aes_decrypt,
  643. },
  644. },
  645. };