mtrr.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719
  1. /*
  2. * vMTRR implementation
  3. *
  4. * Copyright (C) 2006 Qumranet, Inc.
  5. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  6. * Copyright(C) 2015 Intel Corporation.
  7. *
  8. * Authors:
  9. * Yaniv Kamay <yaniv@qumranet.com>
  10. * Avi Kivity <avi@qumranet.com>
  11. * Marcelo Tosatti <mtosatti@redhat.com>
  12. * Paolo Bonzini <pbonzini@redhat.com>
  13. * Xiao Guangrong <guangrong.xiao@linux.intel.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. */
  18. #include <linux/kvm_host.h>
  19. #include <asm/mtrr.h>
  20. #include "cpuid.h"
  21. #include "mmu.h"
  22. #define IA32_MTRR_DEF_TYPE_E (1ULL << 11)
  23. #define IA32_MTRR_DEF_TYPE_FE (1ULL << 10)
  24. #define IA32_MTRR_DEF_TYPE_TYPE_MASK (0xff)
  25. static bool msr_mtrr_valid(unsigned msr)
  26. {
  27. switch (msr) {
  28. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  29. case MSR_MTRRfix64K_00000:
  30. case MSR_MTRRfix16K_80000:
  31. case MSR_MTRRfix16K_A0000:
  32. case MSR_MTRRfix4K_C0000:
  33. case MSR_MTRRfix4K_C8000:
  34. case MSR_MTRRfix4K_D0000:
  35. case MSR_MTRRfix4K_D8000:
  36. case MSR_MTRRfix4K_E0000:
  37. case MSR_MTRRfix4K_E8000:
  38. case MSR_MTRRfix4K_F0000:
  39. case MSR_MTRRfix4K_F8000:
  40. case MSR_MTRRdefType:
  41. case MSR_IA32_CR_PAT:
  42. return true;
  43. case 0x2f8:
  44. return true;
  45. }
  46. return false;
  47. }
  48. static bool valid_pat_type(unsigned t)
  49. {
  50. return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
  51. }
  52. static bool valid_mtrr_type(unsigned t)
  53. {
  54. return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
  55. }
  56. bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  57. {
  58. int i;
  59. u64 mask;
  60. if (!msr_mtrr_valid(msr))
  61. return false;
  62. if (msr == MSR_IA32_CR_PAT) {
  63. for (i = 0; i < 8; i++)
  64. if (!valid_pat_type((data >> (i * 8)) & 0xff))
  65. return false;
  66. return true;
  67. } else if (msr == MSR_MTRRdefType) {
  68. if (data & ~0xcff)
  69. return false;
  70. return valid_mtrr_type(data & 0xff);
  71. } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
  72. for (i = 0; i < 8 ; i++)
  73. if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
  74. return false;
  75. return true;
  76. }
  77. /* variable MTRRs */
  78. WARN_ON(!(msr >= 0x200 && msr < 0x200 + 2 * KVM_NR_VAR_MTRR));
  79. mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
  80. if ((msr & 1) == 0) {
  81. /* MTRR base */
  82. if (!valid_mtrr_type(data & 0xff))
  83. return false;
  84. mask |= 0xf00;
  85. } else
  86. /* MTRR mask */
  87. mask |= 0x7ff;
  88. if (data & mask) {
  89. kvm_inject_gp(vcpu, 0);
  90. return false;
  91. }
  92. return true;
  93. }
  94. EXPORT_SYMBOL_GPL(kvm_mtrr_valid);
  95. static bool mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
  96. {
  97. return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_E);
  98. }
  99. static bool fixed_mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
  100. {
  101. return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_FE);
  102. }
  103. static u8 mtrr_default_type(struct kvm_mtrr *mtrr_state)
  104. {
  105. return mtrr_state->deftype & IA32_MTRR_DEF_TYPE_TYPE_MASK;
  106. }
  107. static u8 mtrr_disabled_type(void)
  108. {
  109. /*
  110. * Intel SDM 11.11.2.2: all MTRRs are disabled when
  111. * IA32_MTRR_DEF_TYPE.E bit is cleared, and the UC
  112. * memory type is applied to all of physical memory.
  113. */
  114. return MTRR_TYPE_UNCACHABLE;
  115. }
  116. /*
  117. * Three terms are used in the following code:
  118. * - segment, it indicates the address segments covered by fixed MTRRs.
  119. * - unit, it corresponds to the MSR entry in the segment.
  120. * - range, a range is covered in one memory cache type.
  121. */
  122. struct fixed_mtrr_segment {
  123. u64 start;
  124. u64 end;
  125. int range_shift;
  126. /* the start position in kvm_mtrr.fixed_ranges[]. */
  127. int range_start;
  128. };
  129. static struct fixed_mtrr_segment fixed_seg_table[] = {
  130. /* MSR_MTRRfix64K_00000, 1 unit. 64K fixed mtrr. */
  131. {
  132. .start = 0x0,
  133. .end = 0x80000,
  134. .range_shift = 16, /* 64K */
  135. .range_start = 0,
  136. },
  137. /*
  138. * MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000, 2 units,
  139. * 16K fixed mtrr.
  140. */
  141. {
  142. .start = 0x80000,
  143. .end = 0xc0000,
  144. .range_shift = 14, /* 16K */
  145. .range_start = 8,
  146. },
  147. /*
  148. * MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000, 8 units,
  149. * 4K fixed mtrr.
  150. */
  151. {
  152. .start = 0xc0000,
  153. .end = 0x100000,
  154. .range_shift = 12, /* 12K */
  155. .range_start = 24,
  156. }
  157. };
  158. /*
  159. * The size of unit is covered in one MSR, one MSR entry contains
  160. * 8 ranges so that unit size is always 8 * 2^range_shift.
  161. */
  162. static u64 fixed_mtrr_seg_unit_size(int seg)
  163. {
  164. return 8 << fixed_seg_table[seg].range_shift;
  165. }
  166. static bool fixed_msr_to_seg_unit(u32 msr, int *seg, int *unit)
  167. {
  168. switch (msr) {
  169. case MSR_MTRRfix64K_00000:
  170. *seg = 0;
  171. *unit = 0;
  172. break;
  173. case MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000:
  174. *seg = 1;
  175. *unit = msr - MSR_MTRRfix16K_80000;
  176. break;
  177. case MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000:
  178. *seg = 2;
  179. *unit = msr - MSR_MTRRfix4K_C0000;
  180. break;
  181. default:
  182. return false;
  183. }
  184. return true;
  185. }
  186. static void fixed_mtrr_seg_unit_range(int seg, int unit, u64 *start, u64 *end)
  187. {
  188. struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
  189. u64 unit_size = fixed_mtrr_seg_unit_size(seg);
  190. *start = mtrr_seg->start + unit * unit_size;
  191. *end = *start + unit_size;
  192. WARN_ON(*end > mtrr_seg->end);
  193. }
  194. static int fixed_mtrr_seg_unit_range_index(int seg, int unit)
  195. {
  196. struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
  197. WARN_ON(mtrr_seg->start + unit * fixed_mtrr_seg_unit_size(seg)
  198. > mtrr_seg->end);
  199. /* each unit has 8 ranges. */
  200. return mtrr_seg->range_start + 8 * unit;
  201. }
  202. static int fixed_mtrr_seg_end_range_index(int seg)
  203. {
  204. struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
  205. int n;
  206. n = (mtrr_seg->end - mtrr_seg->start) >> mtrr_seg->range_shift;
  207. return mtrr_seg->range_start + n - 1;
  208. }
  209. static bool fixed_msr_to_range(u32 msr, u64 *start, u64 *end)
  210. {
  211. int seg, unit;
  212. if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
  213. return false;
  214. fixed_mtrr_seg_unit_range(seg, unit, start, end);
  215. return true;
  216. }
  217. static int fixed_msr_to_range_index(u32 msr)
  218. {
  219. int seg, unit;
  220. if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
  221. return -1;
  222. return fixed_mtrr_seg_unit_range_index(seg, unit);
  223. }
  224. static int fixed_mtrr_addr_to_seg(u64 addr)
  225. {
  226. struct fixed_mtrr_segment *mtrr_seg;
  227. int seg, seg_num = ARRAY_SIZE(fixed_seg_table);
  228. for (seg = 0; seg < seg_num; seg++) {
  229. mtrr_seg = &fixed_seg_table[seg];
  230. if (mtrr_seg->start >= addr && addr < mtrr_seg->end)
  231. return seg;
  232. }
  233. return -1;
  234. }
  235. static int fixed_mtrr_addr_seg_to_range_index(u64 addr, int seg)
  236. {
  237. struct fixed_mtrr_segment *mtrr_seg;
  238. int index;
  239. mtrr_seg = &fixed_seg_table[seg];
  240. index = mtrr_seg->range_start;
  241. index += (addr - mtrr_seg->start) >> mtrr_seg->range_shift;
  242. return index;
  243. }
  244. static u64 fixed_mtrr_range_end_addr(int seg, int index)
  245. {
  246. struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
  247. int pos = index - mtrr_seg->range_start;
  248. return mtrr_seg->start + ((pos + 1) << mtrr_seg->range_shift);
  249. }
  250. static void var_mtrr_range(struct kvm_mtrr_range *range, u64 *start, u64 *end)
  251. {
  252. u64 mask;
  253. *start = range->base & PAGE_MASK;
  254. mask = range->mask & PAGE_MASK;
  255. mask |= ~0ULL << boot_cpu_data.x86_phys_bits;
  256. /* This cannot overflow because writing to the reserved bits of
  257. * variable MTRRs causes a #GP.
  258. */
  259. *end = (*start | ~mask) + 1;
  260. }
  261. static void update_mtrr(struct kvm_vcpu *vcpu, u32 msr)
  262. {
  263. struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
  264. gfn_t start, end;
  265. int index;
  266. if (msr == MSR_IA32_CR_PAT || !tdp_enabled ||
  267. !kvm_arch_has_noncoherent_dma(vcpu->kvm))
  268. return;
  269. if (!mtrr_is_enabled(mtrr_state) && msr != MSR_MTRRdefType)
  270. return;
  271. /* fixed MTRRs. */
  272. if (fixed_msr_to_range(msr, &start, &end)) {
  273. if (!fixed_mtrr_is_enabled(mtrr_state))
  274. return;
  275. } else if (msr == MSR_MTRRdefType) {
  276. start = 0x0;
  277. end = ~0ULL;
  278. } else {
  279. /* variable range MTRRs. */
  280. index = (msr - 0x200) / 2;
  281. var_mtrr_range(&mtrr_state->var_ranges[index], &start, &end);
  282. }
  283. kvm_zap_gfn_range(vcpu->kvm, gpa_to_gfn(start), gpa_to_gfn(end));
  284. }
  285. static bool var_mtrr_range_is_valid(struct kvm_mtrr_range *range)
  286. {
  287. return (range->mask & (1 << 11)) != 0;
  288. }
  289. static void set_var_mtrr_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  290. {
  291. struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
  292. struct kvm_mtrr_range *tmp, *cur;
  293. int index, is_mtrr_mask;
  294. index = (msr - 0x200) / 2;
  295. is_mtrr_mask = msr - 0x200 - 2 * index;
  296. cur = &mtrr_state->var_ranges[index];
  297. /* remove the entry if it's in the list. */
  298. if (var_mtrr_range_is_valid(cur))
  299. list_del(&mtrr_state->var_ranges[index].node);
  300. if (!is_mtrr_mask)
  301. cur->base = data;
  302. else
  303. cur->mask = data;
  304. /* add it to the list if it's enabled. */
  305. if (var_mtrr_range_is_valid(cur)) {
  306. list_for_each_entry(tmp, &mtrr_state->head, node)
  307. if (cur->base >= tmp->base)
  308. break;
  309. list_add_tail(&cur->node, &tmp->node);
  310. }
  311. }
  312. int kvm_mtrr_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  313. {
  314. int index;
  315. if (!kvm_mtrr_valid(vcpu, msr, data))
  316. return 1;
  317. index = fixed_msr_to_range_index(msr);
  318. if (index >= 0)
  319. *(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index] = data;
  320. else if (msr == MSR_MTRRdefType)
  321. vcpu->arch.mtrr_state.deftype = data;
  322. else if (msr == MSR_IA32_CR_PAT)
  323. vcpu->arch.pat = data;
  324. else
  325. set_var_mtrr_msr(vcpu, msr, data);
  326. update_mtrr(vcpu, msr);
  327. return 0;
  328. }
  329. int kvm_mtrr_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  330. {
  331. int index;
  332. /* MSR_MTRRcap is a readonly MSR. */
  333. if (msr == MSR_MTRRcap) {
  334. /*
  335. * SMRR = 0
  336. * WC = 1
  337. * FIX = 1
  338. * VCNT = KVM_NR_VAR_MTRR
  339. */
  340. *pdata = 0x500 | KVM_NR_VAR_MTRR;
  341. return 0;
  342. }
  343. if (!msr_mtrr_valid(msr))
  344. return 1;
  345. index = fixed_msr_to_range_index(msr);
  346. if (index >= 0)
  347. *pdata = *(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index];
  348. else if (msr == MSR_MTRRdefType)
  349. *pdata = vcpu->arch.mtrr_state.deftype;
  350. else if (msr == MSR_IA32_CR_PAT)
  351. *pdata = vcpu->arch.pat;
  352. else { /* Variable MTRRs */
  353. int is_mtrr_mask;
  354. index = (msr - 0x200) / 2;
  355. is_mtrr_mask = msr - 0x200 - 2 * index;
  356. if (!is_mtrr_mask)
  357. *pdata = vcpu->arch.mtrr_state.var_ranges[index].base;
  358. else
  359. *pdata = vcpu->arch.mtrr_state.var_ranges[index].mask;
  360. }
  361. return 0;
  362. }
  363. void kvm_vcpu_mtrr_init(struct kvm_vcpu *vcpu)
  364. {
  365. INIT_LIST_HEAD(&vcpu->arch.mtrr_state.head);
  366. }
  367. struct mtrr_iter {
  368. /* input fields. */
  369. struct kvm_mtrr *mtrr_state;
  370. u64 start;
  371. u64 end;
  372. /* output fields. */
  373. int mem_type;
  374. /* mtrr is completely disabled? */
  375. bool mtrr_disabled;
  376. /* [start, end) is not fully covered in MTRRs? */
  377. bool partial_map;
  378. /* private fields. */
  379. union {
  380. /* used for fixed MTRRs. */
  381. struct {
  382. int index;
  383. int seg;
  384. };
  385. /* used for var MTRRs. */
  386. struct {
  387. struct kvm_mtrr_range *range;
  388. /* max address has been covered in var MTRRs. */
  389. u64 start_max;
  390. };
  391. };
  392. bool fixed;
  393. };
  394. static bool mtrr_lookup_fixed_start(struct mtrr_iter *iter)
  395. {
  396. int seg, index;
  397. if (!fixed_mtrr_is_enabled(iter->mtrr_state))
  398. return false;
  399. seg = fixed_mtrr_addr_to_seg(iter->start);
  400. if (seg < 0)
  401. return false;
  402. iter->fixed = true;
  403. index = fixed_mtrr_addr_seg_to_range_index(iter->start, seg);
  404. iter->index = index;
  405. iter->seg = seg;
  406. return true;
  407. }
  408. static bool match_var_range(struct mtrr_iter *iter,
  409. struct kvm_mtrr_range *range)
  410. {
  411. u64 start, end;
  412. var_mtrr_range(range, &start, &end);
  413. if (!(start >= iter->end || end <= iter->start)) {
  414. iter->range = range;
  415. /*
  416. * the function is called when we do kvm_mtrr.head walking.
  417. * Range has the minimum base address which interleaves
  418. * [looker->start_max, looker->end).
  419. */
  420. iter->partial_map |= iter->start_max < start;
  421. /* update the max address has been covered. */
  422. iter->start_max = max(iter->start_max, end);
  423. return true;
  424. }
  425. return false;
  426. }
  427. static void __mtrr_lookup_var_next(struct mtrr_iter *iter)
  428. {
  429. struct kvm_mtrr *mtrr_state = iter->mtrr_state;
  430. list_for_each_entry_continue(iter->range, &mtrr_state->head, node)
  431. if (match_var_range(iter, iter->range))
  432. return;
  433. iter->range = NULL;
  434. iter->partial_map |= iter->start_max < iter->end;
  435. }
  436. static void mtrr_lookup_var_start(struct mtrr_iter *iter)
  437. {
  438. struct kvm_mtrr *mtrr_state = iter->mtrr_state;
  439. iter->fixed = false;
  440. iter->start_max = iter->start;
  441. iter->range = list_prepare_entry(iter->range, &mtrr_state->head, node);
  442. __mtrr_lookup_var_next(iter);
  443. }
  444. static void mtrr_lookup_fixed_next(struct mtrr_iter *iter)
  445. {
  446. /* terminate the lookup. */
  447. if (fixed_mtrr_range_end_addr(iter->seg, iter->index) >= iter->end) {
  448. iter->fixed = false;
  449. iter->range = NULL;
  450. return;
  451. }
  452. iter->index++;
  453. /* have looked up for all fixed MTRRs. */
  454. if (iter->index >= ARRAY_SIZE(iter->mtrr_state->fixed_ranges))
  455. return mtrr_lookup_var_start(iter);
  456. /* switch to next segment. */
  457. if (iter->index > fixed_mtrr_seg_end_range_index(iter->seg))
  458. iter->seg++;
  459. }
  460. static void mtrr_lookup_var_next(struct mtrr_iter *iter)
  461. {
  462. __mtrr_lookup_var_next(iter);
  463. }
  464. static void mtrr_lookup_start(struct mtrr_iter *iter)
  465. {
  466. if (!mtrr_is_enabled(iter->mtrr_state)) {
  467. iter->mtrr_disabled = true;
  468. return;
  469. }
  470. if (!mtrr_lookup_fixed_start(iter))
  471. mtrr_lookup_var_start(iter);
  472. }
  473. static void mtrr_lookup_init(struct mtrr_iter *iter,
  474. struct kvm_mtrr *mtrr_state, u64 start, u64 end)
  475. {
  476. iter->mtrr_state = mtrr_state;
  477. iter->start = start;
  478. iter->end = end;
  479. iter->mtrr_disabled = false;
  480. iter->partial_map = false;
  481. iter->fixed = false;
  482. iter->range = NULL;
  483. mtrr_lookup_start(iter);
  484. }
  485. static bool mtrr_lookup_okay(struct mtrr_iter *iter)
  486. {
  487. if (iter->fixed) {
  488. iter->mem_type = iter->mtrr_state->fixed_ranges[iter->index];
  489. return true;
  490. }
  491. if (iter->range) {
  492. iter->mem_type = iter->range->base & 0xff;
  493. return true;
  494. }
  495. return false;
  496. }
  497. static void mtrr_lookup_next(struct mtrr_iter *iter)
  498. {
  499. if (iter->fixed)
  500. mtrr_lookup_fixed_next(iter);
  501. else
  502. mtrr_lookup_var_next(iter);
  503. }
  504. #define mtrr_for_each_mem_type(_iter_, _mtrr_, _gpa_start_, _gpa_end_) \
  505. for (mtrr_lookup_init(_iter_, _mtrr_, _gpa_start_, _gpa_end_); \
  506. mtrr_lookup_okay(_iter_); mtrr_lookup_next(_iter_))
  507. u8 kvm_mtrr_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  508. {
  509. struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
  510. struct mtrr_iter iter;
  511. u64 start, end;
  512. int type = -1;
  513. const int wt_wb_mask = (1 << MTRR_TYPE_WRBACK)
  514. | (1 << MTRR_TYPE_WRTHROUGH);
  515. start = gfn_to_gpa(gfn);
  516. end = start + PAGE_SIZE;
  517. mtrr_for_each_mem_type(&iter, mtrr_state, start, end) {
  518. int curr_type = iter.mem_type;
  519. /*
  520. * Please refer to Intel SDM Volume 3: 11.11.4.1 MTRR
  521. * Precedences.
  522. */
  523. if (type == -1) {
  524. type = curr_type;
  525. continue;
  526. }
  527. /*
  528. * If two or more variable memory ranges match and the
  529. * memory types are identical, then that memory type is
  530. * used.
  531. */
  532. if (type == curr_type)
  533. continue;
  534. /*
  535. * If two or more variable memory ranges match and one of
  536. * the memory types is UC, the UC memory type used.
  537. */
  538. if (curr_type == MTRR_TYPE_UNCACHABLE)
  539. return MTRR_TYPE_UNCACHABLE;
  540. /*
  541. * If two or more variable memory ranges match and the
  542. * memory types are WT and WB, the WT memory type is used.
  543. */
  544. if (((1 << type) & wt_wb_mask) &&
  545. ((1 << curr_type) & wt_wb_mask)) {
  546. type = MTRR_TYPE_WRTHROUGH;
  547. continue;
  548. }
  549. /*
  550. * For overlaps not defined by the above rules, processor
  551. * behavior is undefined.
  552. */
  553. /* We use WB for this undefined behavior. :( */
  554. return MTRR_TYPE_WRBACK;
  555. }
  556. if (iter.mtrr_disabled)
  557. return mtrr_disabled_type();
  558. /* not contained in any MTRRs. */
  559. if (type == -1)
  560. return mtrr_default_type(mtrr_state);
  561. /*
  562. * We just check one page, partially covered by MTRRs is
  563. * impossible.
  564. */
  565. WARN_ON(iter.partial_map);
  566. return type;
  567. }
  568. EXPORT_SYMBOL_GPL(kvm_mtrr_get_guest_memory_type);
  569. bool kvm_mtrr_check_gfn_range_consistency(struct kvm_vcpu *vcpu, gfn_t gfn,
  570. int page_num)
  571. {
  572. struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
  573. struct mtrr_iter iter;
  574. u64 start, end;
  575. int type = -1;
  576. start = gfn_to_gpa(gfn);
  577. end = gfn_to_gpa(gfn + page_num);
  578. mtrr_for_each_mem_type(&iter, mtrr_state, start, end) {
  579. if (type == -1) {
  580. type = iter.mem_type;
  581. continue;
  582. }
  583. if (type != iter.mem_type)
  584. return false;
  585. }
  586. if (iter.mtrr_disabled)
  587. return true;
  588. if (!iter.partial_map)
  589. return true;
  590. if (type == -1)
  591. return true;
  592. return type == mtrr_default_type(mtrr_state);
  593. }