cleanup.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981
  1. /*
  2. * MTRR (Memory Type Range Register) cleanup
  3. *
  4. * Copyright (C) 2009 Yinghai Lu
  5. *
  6. * This library is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Library General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2 of the License, or (at your option) any later version.
  10. *
  11. * This library is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Library General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Library General Public
  17. * License along with this library; if not, write to the Free
  18. * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19. */
  20. #include <linux/module.h>
  21. #include <linux/init.h>
  22. #include <linux/pci.h>
  23. #include <linux/smp.h>
  24. #include <linux/cpu.h>
  25. #include <linux/mutex.h>
  26. #include <linux/uaccess.h>
  27. #include <linux/kvm_para.h>
  28. #include <linux/range.h>
  29. #include <asm/processor.h>
  30. #include <asm/e820.h>
  31. #include <asm/mtrr.h>
  32. #include <asm/msr.h>
  33. #include "mtrr.h"
  34. struct var_mtrr_range_state {
  35. unsigned long base_pfn;
  36. unsigned long size_pfn;
  37. mtrr_type type;
  38. };
  39. struct var_mtrr_state {
  40. unsigned long range_startk;
  41. unsigned long range_sizek;
  42. unsigned long chunk_sizek;
  43. unsigned long gran_sizek;
  44. unsigned int reg;
  45. };
  46. /* Should be related to MTRR_VAR_RANGES nums */
  47. #define RANGE_NUM 256
  48. static struct range __initdata range[RANGE_NUM];
  49. static int __initdata nr_range;
  50. static struct var_mtrr_range_state __initdata range_state[RANGE_NUM];
  51. static int __initdata debug_print;
  52. #define Dprintk(x...) do { if (debug_print) printk(KERN_DEBUG x); } while (0)
  53. #define BIOS_BUG_MSG KERN_WARNING \
  54. "WARNING: BIOS bug: VAR MTRR %d contains strange UC entry under 1M, check with your system vendor!\n"
  55. static int __init
  56. x86_get_mtrr_mem_range(struct range *range, int nr_range,
  57. unsigned long extra_remove_base,
  58. unsigned long extra_remove_size)
  59. {
  60. unsigned long base, size;
  61. mtrr_type type;
  62. int i;
  63. for (i = 0; i < num_var_ranges; i++) {
  64. type = range_state[i].type;
  65. if (type != MTRR_TYPE_WRBACK)
  66. continue;
  67. base = range_state[i].base_pfn;
  68. size = range_state[i].size_pfn;
  69. nr_range = add_range_with_merge(range, RANGE_NUM, nr_range,
  70. base, base + size);
  71. }
  72. if (debug_print) {
  73. printk(KERN_DEBUG "After WB checking\n");
  74. for (i = 0; i < nr_range; i++)
  75. printk(KERN_DEBUG "MTRR MAP PFN: %016llx - %016llx\n",
  76. range[i].start, range[i].end);
  77. }
  78. /* Take out UC ranges: */
  79. for (i = 0; i < num_var_ranges; i++) {
  80. type = range_state[i].type;
  81. if (type != MTRR_TYPE_UNCACHABLE &&
  82. type != MTRR_TYPE_WRPROT)
  83. continue;
  84. size = range_state[i].size_pfn;
  85. if (!size)
  86. continue;
  87. base = range_state[i].base_pfn;
  88. if (base < (1<<(20-PAGE_SHIFT)) && mtrr_state.have_fixed &&
  89. (mtrr_state.enabled & MTRR_STATE_MTRR_ENABLED) &&
  90. (mtrr_state.enabled & MTRR_STATE_MTRR_FIXED_ENABLED)) {
  91. /* Var MTRR contains UC entry below 1M? Skip it: */
  92. printk(BIOS_BUG_MSG, i);
  93. if (base + size <= (1<<(20-PAGE_SHIFT)))
  94. continue;
  95. size -= (1<<(20-PAGE_SHIFT)) - base;
  96. base = 1<<(20-PAGE_SHIFT);
  97. }
  98. subtract_range(range, RANGE_NUM, base, base + size);
  99. }
  100. if (extra_remove_size)
  101. subtract_range(range, RANGE_NUM, extra_remove_base,
  102. extra_remove_base + extra_remove_size);
  103. if (debug_print) {
  104. printk(KERN_DEBUG "After UC checking\n");
  105. for (i = 0; i < RANGE_NUM; i++) {
  106. if (!range[i].end)
  107. continue;
  108. printk(KERN_DEBUG "MTRR MAP PFN: %016llx - %016llx\n",
  109. range[i].start, range[i].end);
  110. }
  111. }
  112. /* sort the ranges */
  113. nr_range = clean_sort_range(range, RANGE_NUM);
  114. if (debug_print) {
  115. printk(KERN_DEBUG "After sorting\n");
  116. for (i = 0; i < nr_range; i++)
  117. printk(KERN_DEBUG "MTRR MAP PFN: %016llx - %016llx\n",
  118. range[i].start, range[i].end);
  119. }
  120. return nr_range;
  121. }
  122. #ifdef CONFIG_MTRR_SANITIZER
  123. static unsigned long __init sum_ranges(struct range *range, int nr_range)
  124. {
  125. unsigned long sum = 0;
  126. int i;
  127. for (i = 0; i < nr_range; i++)
  128. sum += range[i].end - range[i].start;
  129. return sum;
  130. }
  131. static int enable_mtrr_cleanup __initdata =
  132. CONFIG_MTRR_SANITIZER_ENABLE_DEFAULT;
  133. static int __init disable_mtrr_cleanup_setup(char *str)
  134. {
  135. enable_mtrr_cleanup = 0;
  136. return 0;
  137. }
  138. early_param("disable_mtrr_cleanup", disable_mtrr_cleanup_setup);
  139. static int __init enable_mtrr_cleanup_setup(char *str)
  140. {
  141. enable_mtrr_cleanup = 1;
  142. return 0;
  143. }
  144. early_param("enable_mtrr_cleanup", enable_mtrr_cleanup_setup);
  145. static int __init mtrr_cleanup_debug_setup(char *str)
  146. {
  147. debug_print = 1;
  148. return 0;
  149. }
  150. early_param("mtrr_cleanup_debug", mtrr_cleanup_debug_setup);
  151. static void __init
  152. set_var_mtrr(unsigned int reg, unsigned long basek, unsigned long sizek,
  153. unsigned char type, unsigned int address_bits)
  154. {
  155. u32 base_lo, base_hi, mask_lo, mask_hi;
  156. u64 base, mask;
  157. if (!sizek) {
  158. fill_mtrr_var_range(reg, 0, 0, 0, 0);
  159. return;
  160. }
  161. mask = (1ULL << address_bits) - 1;
  162. mask &= ~((((u64)sizek) << 10) - 1);
  163. base = ((u64)basek) << 10;
  164. base |= type;
  165. mask |= 0x800;
  166. base_lo = base & ((1ULL<<32) - 1);
  167. base_hi = base >> 32;
  168. mask_lo = mask & ((1ULL<<32) - 1);
  169. mask_hi = mask >> 32;
  170. fill_mtrr_var_range(reg, base_lo, base_hi, mask_lo, mask_hi);
  171. }
  172. static void __init
  173. save_var_mtrr(unsigned int reg, unsigned long basek, unsigned long sizek,
  174. unsigned char type)
  175. {
  176. range_state[reg].base_pfn = basek >> (PAGE_SHIFT - 10);
  177. range_state[reg].size_pfn = sizek >> (PAGE_SHIFT - 10);
  178. range_state[reg].type = type;
  179. }
  180. static void __init set_var_mtrr_all(unsigned int address_bits)
  181. {
  182. unsigned long basek, sizek;
  183. unsigned char type;
  184. unsigned int reg;
  185. for (reg = 0; reg < num_var_ranges; reg++) {
  186. basek = range_state[reg].base_pfn << (PAGE_SHIFT - 10);
  187. sizek = range_state[reg].size_pfn << (PAGE_SHIFT - 10);
  188. type = range_state[reg].type;
  189. set_var_mtrr(reg, basek, sizek, type, address_bits);
  190. }
  191. }
  192. static unsigned long to_size_factor(unsigned long sizek, char *factorp)
  193. {
  194. unsigned long base = sizek;
  195. char factor;
  196. if (base & ((1<<10) - 1)) {
  197. /* Not MB-aligned: */
  198. factor = 'K';
  199. } else if (base & ((1<<20) - 1)) {
  200. factor = 'M';
  201. base >>= 10;
  202. } else {
  203. factor = 'G';
  204. base >>= 20;
  205. }
  206. *factorp = factor;
  207. return base;
  208. }
  209. static unsigned int __init
  210. range_to_mtrr(unsigned int reg, unsigned long range_startk,
  211. unsigned long range_sizek, unsigned char type)
  212. {
  213. if (!range_sizek || (reg >= num_var_ranges))
  214. return reg;
  215. while (range_sizek) {
  216. unsigned long max_align, align;
  217. unsigned long sizek;
  218. /* Compute the maximum size with which we can make a range: */
  219. if (range_startk)
  220. max_align = __ffs(range_startk);
  221. else
  222. max_align = BITS_PER_LONG - 1;
  223. align = __fls(range_sizek);
  224. if (align > max_align)
  225. align = max_align;
  226. sizek = 1UL << align;
  227. if (debug_print) {
  228. char start_factor = 'K', size_factor = 'K';
  229. unsigned long start_base, size_base;
  230. start_base = to_size_factor(range_startk, &start_factor);
  231. size_base = to_size_factor(sizek, &size_factor);
  232. Dprintk("Setting variable MTRR %d, "
  233. "base: %ld%cB, range: %ld%cB, type %s\n",
  234. reg, start_base, start_factor,
  235. size_base, size_factor,
  236. (type == MTRR_TYPE_UNCACHABLE) ? "UC" :
  237. ((type == MTRR_TYPE_WRBACK) ? "WB" : "Other")
  238. );
  239. }
  240. save_var_mtrr(reg++, range_startk, sizek, type);
  241. range_startk += sizek;
  242. range_sizek -= sizek;
  243. if (reg >= num_var_ranges)
  244. break;
  245. }
  246. return reg;
  247. }
  248. static unsigned __init
  249. range_to_mtrr_with_hole(struct var_mtrr_state *state, unsigned long basek,
  250. unsigned long sizek)
  251. {
  252. unsigned long hole_basek, hole_sizek;
  253. unsigned long second_basek, second_sizek;
  254. unsigned long range0_basek, range0_sizek;
  255. unsigned long range_basek, range_sizek;
  256. unsigned long chunk_sizek;
  257. unsigned long gran_sizek;
  258. hole_basek = 0;
  259. hole_sizek = 0;
  260. second_basek = 0;
  261. second_sizek = 0;
  262. chunk_sizek = state->chunk_sizek;
  263. gran_sizek = state->gran_sizek;
  264. /* Align with gran size, prevent small block used up MTRRs: */
  265. range_basek = ALIGN(state->range_startk, gran_sizek);
  266. if ((range_basek > basek) && basek)
  267. return second_sizek;
  268. state->range_sizek -= (range_basek - state->range_startk);
  269. range_sizek = ALIGN(state->range_sizek, gran_sizek);
  270. while (range_sizek > state->range_sizek) {
  271. range_sizek -= gran_sizek;
  272. if (!range_sizek)
  273. return 0;
  274. }
  275. state->range_sizek = range_sizek;
  276. /* Try to append some small hole: */
  277. range0_basek = state->range_startk;
  278. range0_sizek = ALIGN(state->range_sizek, chunk_sizek);
  279. /* No increase: */
  280. if (range0_sizek == state->range_sizek) {
  281. Dprintk("rangeX: %016lx - %016lx\n",
  282. range0_basek<<10,
  283. (range0_basek + state->range_sizek)<<10);
  284. state->reg = range_to_mtrr(state->reg, range0_basek,
  285. state->range_sizek, MTRR_TYPE_WRBACK);
  286. return 0;
  287. }
  288. /* Only cut back when it is not the last: */
  289. if (sizek) {
  290. while (range0_basek + range0_sizek > (basek + sizek)) {
  291. if (range0_sizek >= chunk_sizek)
  292. range0_sizek -= chunk_sizek;
  293. else
  294. range0_sizek = 0;
  295. if (!range0_sizek)
  296. break;
  297. }
  298. }
  299. second_try:
  300. range_basek = range0_basek + range0_sizek;
  301. /* One hole in the middle: */
  302. if (range_basek > basek && range_basek <= (basek + sizek))
  303. second_sizek = range_basek - basek;
  304. if (range0_sizek > state->range_sizek) {
  305. /* One hole in middle or at the end: */
  306. hole_sizek = range0_sizek - state->range_sizek - second_sizek;
  307. /* Hole size should be less than half of range0 size: */
  308. if (hole_sizek >= (range0_sizek >> 1) &&
  309. range0_sizek >= chunk_sizek) {
  310. range0_sizek -= chunk_sizek;
  311. second_sizek = 0;
  312. hole_sizek = 0;
  313. goto second_try;
  314. }
  315. }
  316. if (range0_sizek) {
  317. Dprintk("range0: %016lx - %016lx\n",
  318. range0_basek<<10,
  319. (range0_basek + range0_sizek)<<10);
  320. state->reg = range_to_mtrr(state->reg, range0_basek,
  321. range0_sizek, MTRR_TYPE_WRBACK);
  322. }
  323. if (range0_sizek < state->range_sizek) {
  324. /* Need to handle left over range: */
  325. range_sizek = state->range_sizek - range0_sizek;
  326. Dprintk("range: %016lx - %016lx\n",
  327. range_basek<<10,
  328. (range_basek + range_sizek)<<10);
  329. state->reg = range_to_mtrr(state->reg, range_basek,
  330. range_sizek, MTRR_TYPE_WRBACK);
  331. }
  332. if (hole_sizek) {
  333. hole_basek = range_basek - hole_sizek - second_sizek;
  334. Dprintk("hole: %016lx - %016lx\n",
  335. hole_basek<<10,
  336. (hole_basek + hole_sizek)<<10);
  337. state->reg = range_to_mtrr(state->reg, hole_basek,
  338. hole_sizek, MTRR_TYPE_UNCACHABLE);
  339. }
  340. return second_sizek;
  341. }
  342. static void __init
  343. set_var_mtrr_range(struct var_mtrr_state *state, unsigned long base_pfn,
  344. unsigned long size_pfn)
  345. {
  346. unsigned long basek, sizek;
  347. unsigned long second_sizek = 0;
  348. if (state->reg >= num_var_ranges)
  349. return;
  350. basek = base_pfn << (PAGE_SHIFT - 10);
  351. sizek = size_pfn << (PAGE_SHIFT - 10);
  352. /* See if I can merge with the last range: */
  353. if ((basek <= 1024) ||
  354. (state->range_startk + state->range_sizek == basek)) {
  355. unsigned long endk = basek + sizek;
  356. state->range_sizek = endk - state->range_startk;
  357. return;
  358. }
  359. /* Write the range mtrrs: */
  360. if (state->range_sizek != 0)
  361. second_sizek = range_to_mtrr_with_hole(state, basek, sizek);
  362. /* Allocate an msr: */
  363. state->range_startk = basek + second_sizek;
  364. state->range_sizek = sizek - second_sizek;
  365. }
  366. /* Mininum size of mtrr block that can take hole: */
  367. static u64 mtrr_chunk_size __initdata = (256ULL<<20);
  368. static int __init parse_mtrr_chunk_size_opt(char *p)
  369. {
  370. if (!p)
  371. return -EINVAL;
  372. mtrr_chunk_size = memparse(p, &p);
  373. return 0;
  374. }
  375. early_param("mtrr_chunk_size", parse_mtrr_chunk_size_opt);
  376. /* Granularity of mtrr of block: */
  377. static u64 mtrr_gran_size __initdata;
  378. static int __init parse_mtrr_gran_size_opt(char *p)
  379. {
  380. if (!p)
  381. return -EINVAL;
  382. mtrr_gran_size = memparse(p, &p);
  383. return 0;
  384. }
  385. early_param("mtrr_gran_size", parse_mtrr_gran_size_opt);
  386. static unsigned long nr_mtrr_spare_reg __initdata =
  387. CONFIG_MTRR_SANITIZER_SPARE_REG_NR_DEFAULT;
  388. static int __init parse_mtrr_spare_reg(char *arg)
  389. {
  390. if (arg)
  391. nr_mtrr_spare_reg = simple_strtoul(arg, NULL, 0);
  392. return 0;
  393. }
  394. early_param("mtrr_spare_reg_nr", parse_mtrr_spare_reg);
  395. static int __init
  396. x86_setup_var_mtrrs(struct range *range, int nr_range,
  397. u64 chunk_size, u64 gran_size)
  398. {
  399. struct var_mtrr_state var_state;
  400. int num_reg;
  401. int i;
  402. var_state.range_startk = 0;
  403. var_state.range_sizek = 0;
  404. var_state.reg = 0;
  405. var_state.chunk_sizek = chunk_size >> 10;
  406. var_state.gran_sizek = gran_size >> 10;
  407. memset(range_state, 0, sizeof(range_state));
  408. /* Write the range: */
  409. for (i = 0; i < nr_range; i++) {
  410. set_var_mtrr_range(&var_state, range[i].start,
  411. range[i].end - range[i].start);
  412. }
  413. /* Write the last range: */
  414. if (var_state.range_sizek != 0)
  415. range_to_mtrr_with_hole(&var_state, 0, 0);
  416. num_reg = var_state.reg;
  417. /* Clear out the extra MTRR's: */
  418. while (var_state.reg < num_var_ranges) {
  419. save_var_mtrr(var_state.reg, 0, 0, 0);
  420. var_state.reg++;
  421. }
  422. return num_reg;
  423. }
  424. struct mtrr_cleanup_result {
  425. unsigned long gran_sizek;
  426. unsigned long chunk_sizek;
  427. unsigned long lose_cover_sizek;
  428. unsigned int num_reg;
  429. int bad;
  430. };
  431. /*
  432. * gran_size: 64K, 128K, 256K, 512K, 1M, 2M, ..., 2G
  433. * chunk size: gran_size, ..., 2G
  434. * so we need (1+16)*8
  435. */
  436. #define NUM_RESULT 136
  437. #define PSHIFT (PAGE_SHIFT - 10)
  438. static struct mtrr_cleanup_result __initdata result[NUM_RESULT];
  439. static unsigned long __initdata min_loss_pfn[RANGE_NUM];
  440. static void __init print_out_mtrr_range_state(void)
  441. {
  442. char start_factor = 'K', size_factor = 'K';
  443. unsigned long start_base, size_base;
  444. mtrr_type type;
  445. int i;
  446. for (i = 0; i < num_var_ranges; i++) {
  447. size_base = range_state[i].size_pfn << (PAGE_SHIFT - 10);
  448. if (!size_base)
  449. continue;
  450. size_base = to_size_factor(size_base, &size_factor),
  451. start_base = range_state[i].base_pfn << (PAGE_SHIFT - 10);
  452. start_base = to_size_factor(start_base, &start_factor),
  453. type = range_state[i].type;
  454. printk(KERN_DEBUG "reg %d, base: %ld%cB, range: %ld%cB, type %s\n",
  455. i, start_base, start_factor,
  456. size_base, size_factor,
  457. (type == MTRR_TYPE_UNCACHABLE) ? "UC" :
  458. ((type == MTRR_TYPE_WRPROT) ? "WP" :
  459. ((type == MTRR_TYPE_WRBACK) ? "WB" : "Other"))
  460. );
  461. }
  462. }
  463. static int __init mtrr_need_cleanup(void)
  464. {
  465. int i;
  466. mtrr_type type;
  467. unsigned long size;
  468. /* Extra one for all 0: */
  469. int num[MTRR_NUM_TYPES + 1];
  470. /* Check entries number: */
  471. memset(num, 0, sizeof(num));
  472. for (i = 0; i < num_var_ranges; i++) {
  473. type = range_state[i].type;
  474. size = range_state[i].size_pfn;
  475. if (type >= MTRR_NUM_TYPES)
  476. continue;
  477. if (!size)
  478. type = MTRR_NUM_TYPES;
  479. num[type]++;
  480. }
  481. /* Check if we got UC entries: */
  482. if (!num[MTRR_TYPE_UNCACHABLE])
  483. return 0;
  484. /* Check if we only had WB and UC */
  485. if (num[MTRR_TYPE_WRBACK] + num[MTRR_TYPE_UNCACHABLE] !=
  486. num_var_ranges - num[MTRR_NUM_TYPES])
  487. return 0;
  488. return 1;
  489. }
  490. static unsigned long __initdata range_sums;
  491. static void __init
  492. mtrr_calc_range_state(u64 chunk_size, u64 gran_size,
  493. unsigned long x_remove_base,
  494. unsigned long x_remove_size, int i)
  495. {
  496. static struct range range_new[RANGE_NUM];
  497. unsigned long range_sums_new;
  498. static int nr_range_new;
  499. int num_reg;
  500. /* Convert ranges to var ranges state: */
  501. num_reg = x86_setup_var_mtrrs(range, nr_range, chunk_size, gran_size);
  502. /* We got new setting in range_state, check it: */
  503. memset(range_new, 0, sizeof(range_new));
  504. nr_range_new = x86_get_mtrr_mem_range(range_new, 0,
  505. x_remove_base, x_remove_size);
  506. range_sums_new = sum_ranges(range_new, nr_range_new);
  507. result[i].chunk_sizek = chunk_size >> 10;
  508. result[i].gran_sizek = gran_size >> 10;
  509. result[i].num_reg = num_reg;
  510. if (range_sums < range_sums_new) {
  511. result[i].lose_cover_sizek = (range_sums_new - range_sums) << PSHIFT;
  512. result[i].bad = 1;
  513. } else {
  514. result[i].lose_cover_sizek = (range_sums - range_sums_new) << PSHIFT;
  515. }
  516. /* Double check it: */
  517. if (!result[i].bad && !result[i].lose_cover_sizek) {
  518. if (nr_range_new != nr_range || memcmp(range, range_new, sizeof(range)))
  519. result[i].bad = 1;
  520. }
  521. if (!result[i].bad && (range_sums - range_sums_new < min_loss_pfn[num_reg]))
  522. min_loss_pfn[num_reg] = range_sums - range_sums_new;
  523. }
  524. static void __init mtrr_print_out_one_result(int i)
  525. {
  526. unsigned long gran_base, chunk_base, lose_base;
  527. char gran_factor, chunk_factor, lose_factor;
  528. gran_base = to_size_factor(result[i].gran_sizek, &gran_factor);
  529. chunk_base = to_size_factor(result[i].chunk_sizek, &chunk_factor);
  530. lose_base = to_size_factor(result[i].lose_cover_sizek, &lose_factor);
  531. pr_info("%sgran_size: %ld%c \tchunk_size: %ld%c \t",
  532. result[i].bad ? "*BAD*" : " ",
  533. gran_base, gran_factor, chunk_base, chunk_factor);
  534. pr_cont("num_reg: %d \tlose cover RAM: %s%ld%c\n",
  535. result[i].num_reg, result[i].bad ? "-" : "",
  536. lose_base, lose_factor);
  537. }
  538. static int __init mtrr_search_optimal_index(void)
  539. {
  540. int num_reg_good;
  541. int index_good;
  542. int i;
  543. if (nr_mtrr_spare_reg >= num_var_ranges)
  544. nr_mtrr_spare_reg = num_var_ranges - 1;
  545. num_reg_good = -1;
  546. for (i = num_var_ranges - nr_mtrr_spare_reg; i > 0; i--) {
  547. if (!min_loss_pfn[i])
  548. num_reg_good = i;
  549. }
  550. index_good = -1;
  551. if (num_reg_good != -1) {
  552. for (i = 0; i < NUM_RESULT; i++) {
  553. if (!result[i].bad &&
  554. result[i].num_reg == num_reg_good &&
  555. !result[i].lose_cover_sizek) {
  556. index_good = i;
  557. break;
  558. }
  559. }
  560. }
  561. return index_good;
  562. }
  563. int __init mtrr_cleanup(unsigned address_bits)
  564. {
  565. unsigned long x_remove_base, x_remove_size;
  566. unsigned long base, size, def, dummy;
  567. u64 chunk_size, gran_size;
  568. mtrr_type type;
  569. int index_good;
  570. int i;
  571. if (!is_cpu(INTEL) || enable_mtrr_cleanup < 1)
  572. return 0;
  573. rdmsr(MSR_MTRRdefType, def, dummy);
  574. def &= 0xff;
  575. if (def != MTRR_TYPE_UNCACHABLE)
  576. return 0;
  577. /* Get it and store it aside: */
  578. memset(range_state, 0, sizeof(range_state));
  579. for (i = 0; i < num_var_ranges; i++) {
  580. mtrr_if->get(i, &base, &size, &type);
  581. range_state[i].base_pfn = base;
  582. range_state[i].size_pfn = size;
  583. range_state[i].type = type;
  584. }
  585. /* Check if we need handle it and can handle it: */
  586. if (!mtrr_need_cleanup())
  587. return 0;
  588. /* Print original var MTRRs at first, for debugging: */
  589. printk(KERN_DEBUG "original variable MTRRs\n");
  590. print_out_mtrr_range_state();
  591. memset(range, 0, sizeof(range));
  592. x_remove_size = 0;
  593. x_remove_base = 1 << (32 - PAGE_SHIFT);
  594. if (mtrr_tom2)
  595. x_remove_size = (mtrr_tom2 >> PAGE_SHIFT) - x_remove_base;
  596. /*
  597. * [0, 1M) should always be covered by var mtrr with WB
  598. * and fixed mtrrs should take effect before var mtrr for it:
  599. */
  600. nr_range = add_range_with_merge(range, RANGE_NUM, 0, 0,
  601. 1ULL<<(20 - PAGE_SHIFT));
  602. /* add from var mtrr at last */
  603. nr_range = x86_get_mtrr_mem_range(range, nr_range,
  604. x_remove_base, x_remove_size);
  605. range_sums = sum_ranges(range, nr_range);
  606. printk(KERN_INFO "total RAM covered: %ldM\n",
  607. range_sums >> (20 - PAGE_SHIFT));
  608. if (mtrr_chunk_size && mtrr_gran_size) {
  609. i = 0;
  610. mtrr_calc_range_state(mtrr_chunk_size, mtrr_gran_size,
  611. x_remove_base, x_remove_size, i);
  612. mtrr_print_out_one_result(i);
  613. if (!result[i].bad) {
  614. set_var_mtrr_all(address_bits);
  615. printk(KERN_DEBUG "New variable MTRRs\n");
  616. print_out_mtrr_range_state();
  617. return 1;
  618. }
  619. printk(KERN_INFO "invalid mtrr_gran_size or mtrr_chunk_size, "
  620. "will find optimal one\n");
  621. }
  622. i = 0;
  623. memset(min_loss_pfn, 0xff, sizeof(min_loss_pfn));
  624. memset(result, 0, sizeof(result));
  625. for (gran_size = (1ULL<<16); gran_size < (1ULL<<32); gran_size <<= 1) {
  626. for (chunk_size = gran_size; chunk_size < (1ULL<<32);
  627. chunk_size <<= 1) {
  628. if (i >= NUM_RESULT)
  629. continue;
  630. mtrr_calc_range_state(chunk_size, gran_size,
  631. x_remove_base, x_remove_size, i);
  632. if (debug_print) {
  633. mtrr_print_out_one_result(i);
  634. printk(KERN_INFO "\n");
  635. }
  636. i++;
  637. }
  638. }
  639. /* Try to find the optimal index: */
  640. index_good = mtrr_search_optimal_index();
  641. if (index_good != -1) {
  642. printk(KERN_INFO "Found optimal setting for mtrr clean up\n");
  643. i = index_good;
  644. mtrr_print_out_one_result(i);
  645. /* Convert ranges to var ranges state: */
  646. chunk_size = result[i].chunk_sizek;
  647. chunk_size <<= 10;
  648. gran_size = result[i].gran_sizek;
  649. gran_size <<= 10;
  650. x86_setup_var_mtrrs(range, nr_range, chunk_size, gran_size);
  651. set_var_mtrr_all(address_bits);
  652. printk(KERN_DEBUG "New variable MTRRs\n");
  653. print_out_mtrr_range_state();
  654. return 1;
  655. } else {
  656. /* print out all */
  657. for (i = 0; i < NUM_RESULT; i++)
  658. mtrr_print_out_one_result(i);
  659. }
  660. printk(KERN_INFO "mtrr_cleanup: can not find optimal value\n");
  661. printk(KERN_INFO "please specify mtrr_gran_size/mtrr_chunk_size\n");
  662. return 0;
  663. }
  664. #else
  665. int __init mtrr_cleanup(unsigned address_bits)
  666. {
  667. return 0;
  668. }
  669. #endif
  670. static int disable_mtrr_trim;
  671. static int __init disable_mtrr_trim_setup(char *str)
  672. {
  673. disable_mtrr_trim = 1;
  674. return 0;
  675. }
  676. early_param("disable_mtrr_trim", disable_mtrr_trim_setup);
  677. /*
  678. * Newer AMD K8s and later CPUs have a special magic MSR way to force WB
  679. * for memory >4GB. Check for that here.
  680. * Note this won't check if the MTRRs < 4GB where the magic bit doesn't
  681. * apply to are wrong, but so far we don't know of any such case in the wild.
  682. */
  683. #define Tom2Enabled (1U << 21)
  684. #define Tom2ForceMemTypeWB (1U << 22)
  685. int __init amd_special_default_mtrr(void)
  686. {
  687. u32 l, h;
  688. if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD)
  689. return 0;
  690. if (boot_cpu_data.x86 < 0xf)
  691. return 0;
  692. /* In case some hypervisor doesn't pass SYSCFG through: */
  693. if (rdmsr_safe(MSR_K8_SYSCFG, &l, &h) < 0)
  694. return 0;
  695. /*
  696. * Memory between 4GB and top of mem is forced WB by this magic bit.
  697. * Reserved before K8RevF, but should be zero there.
  698. */
  699. if ((l & (Tom2Enabled | Tom2ForceMemTypeWB)) ==
  700. (Tom2Enabled | Tom2ForceMemTypeWB))
  701. return 1;
  702. return 0;
  703. }
  704. static u64 __init
  705. real_trim_memory(unsigned long start_pfn, unsigned long limit_pfn)
  706. {
  707. u64 trim_start, trim_size;
  708. trim_start = start_pfn;
  709. trim_start <<= PAGE_SHIFT;
  710. trim_size = limit_pfn;
  711. trim_size <<= PAGE_SHIFT;
  712. trim_size -= trim_start;
  713. return e820_update_range(trim_start, trim_size, E820_RAM, E820_RESERVED);
  714. }
  715. /**
  716. * mtrr_trim_uncached_memory - trim RAM not covered by MTRRs
  717. * @end_pfn: ending page frame number
  718. *
  719. * Some buggy BIOSes don't setup the MTRRs properly for systems with certain
  720. * memory configurations. This routine checks that the highest MTRR matches
  721. * the end of memory, to make sure the MTRRs having a write back type cover
  722. * all of the memory the kernel is intending to use. If not, it'll trim any
  723. * memory off the end by adjusting end_pfn, removing it from the kernel's
  724. * allocation pools, warning the user with an obnoxious message.
  725. */
  726. int __init mtrr_trim_uncached_memory(unsigned long end_pfn)
  727. {
  728. unsigned long i, base, size, highest_pfn = 0, def, dummy;
  729. mtrr_type type;
  730. u64 total_trim_size;
  731. /* extra one for all 0 */
  732. int num[MTRR_NUM_TYPES + 1];
  733. /*
  734. * Make sure we only trim uncachable memory on machines that
  735. * support the Intel MTRR architecture:
  736. */
  737. if (!is_cpu(INTEL) || disable_mtrr_trim)
  738. return 0;
  739. rdmsr(MSR_MTRRdefType, def, dummy);
  740. def &= 0xff;
  741. if (def != MTRR_TYPE_UNCACHABLE)
  742. return 0;
  743. /* Get it and store it aside: */
  744. memset(range_state, 0, sizeof(range_state));
  745. for (i = 0; i < num_var_ranges; i++) {
  746. mtrr_if->get(i, &base, &size, &type);
  747. range_state[i].base_pfn = base;
  748. range_state[i].size_pfn = size;
  749. range_state[i].type = type;
  750. }
  751. /* Find highest cached pfn: */
  752. for (i = 0; i < num_var_ranges; i++) {
  753. type = range_state[i].type;
  754. if (type != MTRR_TYPE_WRBACK)
  755. continue;
  756. base = range_state[i].base_pfn;
  757. size = range_state[i].size_pfn;
  758. if (highest_pfn < base + size)
  759. highest_pfn = base + size;
  760. }
  761. /* kvm/qemu doesn't have mtrr set right, don't trim them all: */
  762. if (!highest_pfn) {
  763. printk(KERN_INFO "CPU MTRRs all blank - virtualized system.\n");
  764. return 0;
  765. }
  766. /* Check entries number: */
  767. memset(num, 0, sizeof(num));
  768. for (i = 0; i < num_var_ranges; i++) {
  769. type = range_state[i].type;
  770. if (type >= MTRR_NUM_TYPES)
  771. continue;
  772. size = range_state[i].size_pfn;
  773. if (!size)
  774. type = MTRR_NUM_TYPES;
  775. num[type]++;
  776. }
  777. /* No entry for WB? */
  778. if (!num[MTRR_TYPE_WRBACK])
  779. return 0;
  780. /* Check if we only had WB and UC: */
  781. if (num[MTRR_TYPE_WRBACK] + num[MTRR_TYPE_UNCACHABLE] !=
  782. num_var_ranges - num[MTRR_NUM_TYPES])
  783. return 0;
  784. memset(range, 0, sizeof(range));
  785. nr_range = 0;
  786. if (mtrr_tom2) {
  787. range[nr_range].start = (1ULL<<(32 - PAGE_SHIFT));
  788. range[nr_range].end = mtrr_tom2 >> PAGE_SHIFT;
  789. if (highest_pfn < range[nr_range].end)
  790. highest_pfn = range[nr_range].end;
  791. nr_range++;
  792. }
  793. nr_range = x86_get_mtrr_mem_range(range, nr_range, 0, 0);
  794. /* Check the head: */
  795. total_trim_size = 0;
  796. if (range[0].start)
  797. total_trim_size += real_trim_memory(0, range[0].start);
  798. /* Check the holes: */
  799. for (i = 0; i < nr_range - 1; i++) {
  800. if (range[i].end < range[i+1].start)
  801. total_trim_size += real_trim_memory(range[i].end,
  802. range[i+1].start);
  803. }
  804. /* Check the top: */
  805. i = nr_range - 1;
  806. if (range[i].end < end_pfn)
  807. total_trim_size += real_trim_memory(range[i].end,
  808. end_pfn);
  809. if (total_trim_size) {
  810. pr_warning("WARNING: BIOS bug: CPU MTRRs don't cover all of memory, losing %lluMB of RAM.\n", total_trim_size >> 20);
  811. if (!changed_by_mtrr_cleanup)
  812. WARN_ON(1);
  813. pr_info("update e820 for mtrr\n");
  814. update_e820();
  815. return 1;
  816. }
  817. return 0;
  818. }