time.c 29 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127
  1. /*
  2. * Common time routines among all ppc machines.
  3. *
  4. * Written by Cort Dougan (cort@cs.nmt.edu) to merge
  5. * Paul Mackerras' version and mine for PReP and Pmac.
  6. * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
  7. * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
  8. *
  9. * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
  10. * to make clock more stable (2.4.0-test5). The only thing
  11. * that this code assumes is that the timebases have been synchronized
  12. * by firmware on SMP and are never stopped (never do sleep
  13. * on SMP then, nap and doze are OK).
  14. *
  15. * Speeded up do_gettimeofday by getting rid of references to
  16. * xtime (which required locks for consistency). (mikejc@us.ibm.com)
  17. *
  18. * TODO (not necessarily in this file):
  19. * - improve precision and reproducibility of timebase frequency
  20. * measurement at boot time.
  21. * - for astronomical applications: add a new function to get
  22. * non ambiguous timestamps even around leap seconds. This needs
  23. * a new timestamp format and a good name.
  24. *
  25. * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
  26. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  27. *
  28. * This program is free software; you can redistribute it and/or
  29. * modify it under the terms of the GNU General Public License
  30. * as published by the Free Software Foundation; either version
  31. * 2 of the License, or (at your option) any later version.
  32. */
  33. #include <linux/errno.h>
  34. #include <linux/export.h>
  35. #include <linux/sched.h>
  36. #include <linux/kernel.h>
  37. #include <linux/param.h>
  38. #include <linux/string.h>
  39. #include <linux/mm.h>
  40. #include <linux/interrupt.h>
  41. #include <linux/timex.h>
  42. #include <linux/kernel_stat.h>
  43. #include <linux/time.h>
  44. #include <linux/clockchips.h>
  45. #include <linux/init.h>
  46. #include <linux/profile.h>
  47. #include <linux/cpu.h>
  48. #include <linux/security.h>
  49. #include <linux/percpu.h>
  50. #include <linux/rtc.h>
  51. #include <linux/jiffies.h>
  52. #include <linux/posix-timers.h>
  53. #include <linux/irq.h>
  54. #include <linux/delay.h>
  55. #include <linux/irq_work.h>
  56. #include <linux/clk-provider.h>
  57. #include <asm/trace.h>
  58. #include <asm/io.h>
  59. #include <asm/processor.h>
  60. #include <asm/nvram.h>
  61. #include <asm/cache.h>
  62. #include <asm/machdep.h>
  63. #include <asm/uaccess.h>
  64. #include <asm/time.h>
  65. #include <asm/prom.h>
  66. #include <asm/irq.h>
  67. #include <asm/div64.h>
  68. #include <asm/smp.h>
  69. #include <asm/vdso_datapage.h>
  70. #include <asm/firmware.h>
  71. #include <asm/cputime.h>
  72. /* powerpc clocksource/clockevent code */
  73. #include <linux/clockchips.h>
  74. #include <linux/timekeeper_internal.h>
  75. static cycle_t rtc_read(struct clocksource *);
  76. static struct clocksource clocksource_rtc = {
  77. .name = "rtc",
  78. .rating = 400,
  79. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  80. .mask = CLOCKSOURCE_MASK(64),
  81. .read = rtc_read,
  82. };
  83. static cycle_t timebase_read(struct clocksource *);
  84. static struct clocksource clocksource_timebase = {
  85. .name = "timebase",
  86. .rating = 400,
  87. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  88. .mask = CLOCKSOURCE_MASK(64),
  89. .read = timebase_read,
  90. };
  91. #define DECREMENTER_MAX 0x7fffffff
  92. static int decrementer_set_next_event(unsigned long evt,
  93. struct clock_event_device *dev);
  94. static int decrementer_shutdown(struct clock_event_device *evt);
  95. struct clock_event_device decrementer_clockevent = {
  96. .name = "decrementer",
  97. .rating = 200,
  98. .irq = 0,
  99. .set_next_event = decrementer_set_next_event,
  100. .set_state_shutdown = decrementer_shutdown,
  101. .tick_resume = decrementer_shutdown,
  102. .features = CLOCK_EVT_FEAT_ONESHOT |
  103. CLOCK_EVT_FEAT_C3STOP,
  104. };
  105. EXPORT_SYMBOL(decrementer_clockevent);
  106. DEFINE_PER_CPU(u64, decrementers_next_tb);
  107. static DEFINE_PER_CPU(struct clock_event_device, decrementers);
  108. #define XSEC_PER_SEC (1024*1024)
  109. #ifdef CONFIG_PPC64
  110. #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
  111. #else
  112. /* compute ((xsec << 12) * max) >> 32 */
  113. #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
  114. #endif
  115. unsigned long tb_ticks_per_jiffy;
  116. unsigned long tb_ticks_per_usec = 100; /* sane default */
  117. EXPORT_SYMBOL(tb_ticks_per_usec);
  118. unsigned long tb_ticks_per_sec;
  119. EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
  120. DEFINE_SPINLOCK(rtc_lock);
  121. EXPORT_SYMBOL_GPL(rtc_lock);
  122. static u64 tb_to_ns_scale __read_mostly;
  123. static unsigned tb_to_ns_shift __read_mostly;
  124. static u64 boot_tb __read_mostly;
  125. extern struct timezone sys_tz;
  126. static long timezone_offset;
  127. unsigned long ppc_proc_freq;
  128. EXPORT_SYMBOL_GPL(ppc_proc_freq);
  129. unsigned long ppc_tb_freq;
  130. EXPORT_SYMBOL_GPL(ppc_tb_freq);
  131. #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
  132. /*
  133. * Factors for converting from cputime_t (timebase ticks) to
  134. * jiffies, microseconds, seconds, and clock_t (1/USER_HZ seconds).
  135. * These are all stored as 0.64 fixed-point binary fractions.
  136. */
  137. u64 __cputime_jiffies_factor;
  138. EXPORT_SYMBOL(__cputime_jiffies_factor);
  139. u64 __cputime_usec_factor;
  140. EXPORT_SYMBOL(__cputime_usec_factor);
  141. u64 __cputime_sec_factor;
  142. EXPORT_SYMBOL(__cputime_sec_factor);
  143. u64 __cputime_clockt_factor;
  144. EXPORT_SYMBOL(__cputime_clockt_factor);
  145. DEFINE_PER_CPU(unsigned long, cputime_last_delta);
  146. DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
  147. cputime_t cputime_one_jiffy;
  148. void (*dtl_consumer)(struct dtl_entry *, u64);
  149. static void calc_cputime_factors(void)
  150. {
  151. struct div_result res;
  152. div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
  153. __cputime_jiffies_factor = res.result_low;
  154. div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
  155. __cputime_usec_factor = res.result_low;
  156. div128_by_32(1, 0, tb_ticks_per_sec, &res);
  157. __cputime_sec_factor = res.result_low;
  158. div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
  159. __cputime_clockt_factor = res.result_low;
  160. }
  161. /*
  162. * Read the SPURR on systems that have it, otherwise the PURR,
  163. * or if that doesn't exist return the timebase value passed in.
  164. */
  165. static u64 read_spurr(u64 tb)
  166. {
  167. if (cpu_has_feature(CPU_FTR_SPURR))
  168. return mfspr(SPRN_SPURR);
  169. if (cpu_has_feature(CPU_FTR_PURR))
  170. return mfspr(SPRN_PURR);
  171. return tb;
  172. }
  173. #ifdef CONFIG_PPC_SPLPAR
  174. /*
  175. * Scan the dispatch trace log and count up the stolen time.
  176. * Should be called with interrupts disabled.
  177. */
  178. static u64 scan_dispatch_log(u64 stop_tb)
  179. {
  180. u64 i = local_paca->dtl_ridx;
  181. struct dtl_entry *dtl = local_paca->dtl_curr;
  182. struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
  183. struct lppaca *vpa = local_paca->lppaca_ptr;
  184. u64 tb_delta;
  185. u64 stolen = 0;
  186. u64 dtb;
  187. if (!dtl)
  188. return 0;
  189. if (i == be64_to_cpu(vpa->dtl_idx))
  190. return 0;
  191. while (i < be64_to_cpu(vpa->dtl_idx)) {
  192. dtb = be64_to_cpu(dtl->timebase);
  193. tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) +
  194. be32_to_cpu(dtl->ready_to_enqueue_time);
  195. barrier();
  196. if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
  197. /* buffer has overflowed */
  198. i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
  199. dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
  200. continue;
  201. }
  202. if (dtb > stop_tb)
  203. break;
  204. if (dtl_consumer)
  205. dtl_consumer(dtl, i);
  206. stolen += tb_delta;
  207. ++i;
  208. ++dtl;
  209. if (dtl == dtl_end)
  210. dtl = local_paca->dispatch_log;
  211. }
  212. local_paca->dtl_ridx = i;
  213. local_paca->dtl_curr = dtl;
  214. return stolen;
  215. }
  216. /*
  217. * Accumulate stolen time by scanning the dispatch trace log.
  218. * Called on entry from user mode.
  219. */
  220. void accumulate_stolen_time(void)
  221. {
  222. u64 sst, ust;
  223. u8 save_soft_enabled = local_paca->soft_enabled;
  224. /* We are called early in the exception entry, before
  225. * soft/hard_enabled are sync'ed to the expected state
  226. * for the exception. We are hard disabled but the PACA
  227. * needs to reflect that so various debug stuff doesn't
  228. * complain
  229. */
  230. local_paca->soft_enabled = 0;
  231. sst = scan_dispatch_log(local_paca->starttime_user);
  232. ust = scan_dispatch_log(local_paca->starttime);
  233. local_paca->system_time -= sst;
  234. local_paca->user_time -= ust;
  235. local_paca->stolen_time += ust + sst;
  236. local_paca->soft_enabled = save_soft_enabled;
  237. }
  238. static inline u64 calculate_stolen_time(u64 stop_tb)
  239. {
  240. u64 stolen = 0;
  241. if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx)) {
  242. stolen = scan_dispatch_log(stop_tb);
  243. get_paca()->system_time -= stolen;
  244. }
  245. stolen += get_paca()->stolen_time;
  246. get_paca()->stolen_time = 0;
  247. return stolen;
  248. }
  249. #else /* CONFIG_PPC_SPLPAR */
  250. static inline u64 calculate_stolen_time(u64 stop_tb)
  251. {
  252. return 0;
  253. }
  254. #endif /* CONFIG_PPC_SPLPAR */
  255. /*
  256. * Account time for a transition between system, hard irq
  257. * or soft irq state.
  258. */
  259. static u64 vtime_delta(struct task_struct *tsk,
  260. u64 *sys_scaled, u64 *stolen)
  261. {
  262. u64 now, nowscaled, deltascaled;
  263. u64 udelta, delta, user_scaled;
  264. WARN_ON_ONCE(!irqs_disabled());
  265. now = mftb();
  266. nowscaled = read_spurr(now);
  267. get_paca()->system_time += now - get_paca()->starttime;
  268. get_paca()->starttime = now;
  269. deltascaled = nowscaled - get_paca()->startspurr;
  270. get_paca()->startspurr = nowscaled;
  271. *stolen = calculate_stolen_time(now);
  272. delta = get_paca()->system_time;
  273. get_paca()->system_time = 0;
  274. udelta = get_paca()->user_time - get_paca()->utime_sspurr;
  275. get_paca()->utime_sspurr = get_paca()->user_time;
  276. /*
  277. * Because we don't read the SPURR on every kernel entry/exit,
  278. * deltascaled includes both user and system SPURR ticks.
  279. * Apportion these ticks to system SPURR ticks and user
  280. * SPURR ticks in the same ratio as the system time (delta)
  281. * and user time (udelta) values obtained from the timebase
  282. * over the same interval. The system ticks get accounted here;
  283. * the user ticks get saved up in paca->user_time_scaled to be
  284. * used by account_process_tick.
  285. */
  286. *sys_scaled = delta;
  287. user_scaled = udelta;
  288. if (deltascaled != delta + udelta) {
  289. if (udelta) {
  290. *sys_scaled = deltascaled * delta / (delta + udelta);
  291. user_scaled = deltascaled - *sys_scaled;
  292. } else {
  293. *sys_scaled = deltascaled;
  294. }
  295. }
  296. get_paca()->user_time_scaled += user_scaled;
  297. return delta;
  298. }
  299. void vtime_account_system(struct task_struct *tsk)
  300. {
  301. u64 delta, sys_scaled, stolen;
  302. delta = vtime_delta(tsk, &sys_scaled, &stolen);
  303. account_system_time(tsk, 0, delta, sys_scaled);
  304. if (stolen)
  305. account_steal_time(stolen);
  306. }
  307. EXPORT_SYMBOL_GPL(vtime_account_system);
  308. void vtime_account_idle(struct task_struct *tsk)
  309. {
  310. u64 delta, sys_scaled, stolen;
  311. delta = vtime_delta(tsk, &sys_scaled, &stolen);
  312. account_idle_time(delta + stolen);
  313. }
  314. /*
  315. * Transfer the user time accumulated in the paca
  316. * by the exception entry and exit code to the generic
  317. * process user time records.
  318. * Must be called with interrupts disabled.
  319. * Assumes that vtime_account_system/idle() has been called
  320. * recently (i.e. since the last entry from usermode) so that
  321. * get_paca()->user_time_scaled is up to date.
  322. */
  323. void vtime_account_user(struct task_struct *tsk)
  324. {
  325. cputime_t utime, utimescaled;
  326. utime = get_paca()->user_time;
  327. utimescaled = get_paca()->user_time_scaled;
  328. get_paca()->user_time = 0;
  329. get_paca()->user_time_scaled = 0;
  330. get_paca()->utime_sspurr = 0;
  331. account_user_time(tsk, utime, utimescaled);
  332. }
  333. #else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
  334. #define calc_cputime_factors()
  335. #endif
  336. void __delay(unsigned long loops)
  337. {
  338. unsigned long start;
  339. int diff;
  340. if (__USE_RTC()) {
  341. start = get_rtcl();
  342. do {
  343. /* the RTCL register wraps at 1000000000 */
  344. diff = get_rtcl() - start;
  345. if (diff < 0)
  346. diff += 1000000000;
  347. } while (diff < loops);
  348. } else {
  349. start = get_tbl();
  350. while (get_tbl() - start < loops)
  351. HMT_low();
  352. HMT_medium();
  353. }
  354. }
  355. EXPORT_SYMBOL(__delay);
  356. void udelay(unsigned long usecs)
  357. {
  358. __delay(tb_ticks_per_usec * usecs);
  359. }
  360. EXPORT_SYMBOL(udelay);
  361. #ifdef CONFIG_SMP
  362. unsigned long profile_pc(struct pt_regs *regs)
  363. {
  364. unsigned long pc = instruction_pointer(regs);
  365. if (in_lock_functions(pc))
  366. return regs->link;
  367. return pc;
  368. }
  369. EXPORT_SYMBOL(profile_pc);
  370. #endif
  371. #ifdef CONFIG_IRQ_WORK
  372. /*
  373. * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
  374. */
  375. #ifdef CONFIG_PPC64
  376. static inline unsigned long test_irq_work_pending(void)
  377. {
  378. unsigned long x;
  379. asm volatile("lbz %0,%1(13)"
  380. : "=r" (x)
  381. : "i" (offsetof(struct paca_struct, irq_work_pending)));
  382. return x;
  383. }
  384. static inline void set_irq_work_pending_flag(void)
  385. {
  386. asm volatile("stb %0,%1(13)" : :
  387. "r" (1),
  388. "i" (offsetof(struct paca_struct, irq_work_pending)));
  389. }
  390. static inline void clear_irq_work_pending(void)
  391. {
  392. asm volatile("stb %0,%1(13)" : :
  393. "r" (0),
  394. "i" (offsetof(struct paca_struct, irq_work_pending)));
  395. }
  396. #else /* 32-bit */
  397. DEFINE_PER_CPU(u8, irq_work_pending);
  398. #define set_irq_work_pending_flag() __this_cpu_write(irq_work_pending, 1)
  399. #define test_irq_work_pending() __this_cpu_read(irq_work_pending)
  400. #define clear_irq_work_pending() __this_cpu_write(irq_work_pending, 0)
  401. #endif /* 32 vs 64 bit */
  402. void arch_irq_work_raise(void)
  403. {
  404. preempt_disable();
  405. set_irq_work_pending_flag();
  406. set_dec(1);
  407. preempt_enable();
  408. }
  409. #else /* CONFIG_IRQ_WORK */
  410. #define test_irq_work_pending() 0
  411. #define clear_irq_work_pending()
  412. #endif /* CONFIG_IRQ_WORK */
  413. static void __timer_interrupt(void)
  414. {
  415. struct pt_regs *regs = get_irq_regs();
  416. u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
  417. struct clock_event_device *evt = this_cpu_ptr(&decrementers);
  418. u64 now;
  419. trace_timer_interrupt_entry(regs);
  420. if (test_irq_work_pending()) {
  421. clear_irq_work_pending();
  422. irq_work_run();
  423. }
  424. now = get_tb_or_rtc();
  425. if (now >= *next_tb) {
  426. *next_tb = ~(u64)0;
  427. if (evt->event_handler)
  428. evt->event_handler(evt);
  429. __this_cpu_inc(irq_stat.timer_irqs_event);
  430. } else {
  431. now = *next_tb - now;
  432. if (now <= DECREMENTER_MAX)
  433. set_dec((int)now);
  434. /* We may have raced with new irq work */
  435. if (test_irq_work_pending())
  436. set_dec(1);
  437. __this_cpu_inc(irq_stat.timer_irqs_others);
  438. }
  439. #ifdef CONFIG_PPC64
  440. /* collect purr register values often, for accurate calculations */
  441. if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
  442. struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
  443. cu->current_tb = mfspr(SPRN_PURR);
  444. }
  445. #endif
  446. trace_timer_interrupt_exit(regs);
  447. }
  448. /*
  449. * timer_interrupt - gets called when the decrementer overflows,
  450. * with interrupts disabled.
  451. */
  452. void timer_interrupt(struct pt_regs * regs)
  453. {
  454. struct pt_regs *old_regs;
  455. u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
  456. /* Ensure a positive value is written to the decrementer, or else
  457. * some CPUs will continue to take decrementer exceptions.
  458. */
  459. set_dec(DECREMENTER_MAX);
  460. /* Some implementations of hotplug will get timer interrupts while
  461. * offline, just ignore these and we also need to set
  462. * decrementers_next_tb as MAX to make sure __check_irq_replay
  463. * don't replay timer interrupt when return, otherwise we'll trap
  464. * here infinitely :(
  465. */
  466. if (!cpu_online(smp_processor_id())) {
  467. *next_tb = ~(u64)0;
  468. return;
  469. }
  470. /* Conditionally hard-enable interrupts now that the DEC has been
  471. * bumped to its maximum value
  472. */
  473. may_hard_irq_enable();
  474. #if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
  475. if (atomic_read(&ppc_n_lost_interrupts) != 0)
  476. do_IRQ(regs);
  477. #endif
  478. old_regs = set_irq_regs(regs);
  479. irq_enter();
  480. __timer_interrupt();
  481. irq_exit();
  482. set_irq_regs(old_regs);
  483. }
  484. /*
  485. * Hypervisor decrementer interrupts shouldn't occur but are sometimes
  486. * left pending on exit from a KVM guest. We don't need to do anything
  487. * to clear them, as they are edge-triggered.
  488. */
  489. void hdec_interrupt(struct pt_regs *regs)
  490. {
  491. }
  492. #ifdef CONFIG_SUSPEND
  493. static void generic_suspend_disable_irqs(void)
  494. {
  495. /* Disable the decrementer, so that it doesn't interfere
  496. * with suspending.
  497. */
  498. set_dec(DECREMENTER_MAX);
  499. local_irq_disable();
  500. set_dec(DECREMENTER_MAX);
  501. }
  502. static void generic_suspend_enable_irqs(void)
  503. {
  504. local_irq_enable();
  505. }
  506. /* Overrides the weak version in kernel/power/main.c */
  507. void arch_suspend_disable_irqs(void)
  508. {
  509. if (ppc_md.suspend_disable_irqs)
  510. ppc_md.suspend_disable_irqs();
  511. generic_suspend_disable_irqs();
  512. }
  513. /* Overrides the weak version in kernel/power/main.c */
  514. void arch_suspend_enable_irqs(void)
  515. {
  516. generic_suspend_enable_irqs();
  517. if (ppc_md.suspend_enable_irqs)
  518. ppc_md.suspend_enable_irqs();
  519. }
  520. #endif
  521. unsigned long long tb_to_ns(unsigned long long ticks)
  522. {
  523. return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift;
  524. }
  525. EXPORT_SYMBOL_GPL(tb_to_ns);
  526. /*
  527. * Scheduler clock - returns current time in nanosec units.
  528. *
  529. * Note: mulhdu(a, b) (multiply high double unsigned) returns
  530. * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
  531. * are 64-bit unsigned numbers.
  532. */
  533. unsigned long long sched_clock(void)
  534. {
  535. if (__USE_RTC())
  536. return get_rtc();
  537. return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
  538. }
  539. #ifdef CONFIG_PPC_PSERIES
  540. /*
  541. * Running clock - attempts to give a view of time passing for a virtualised
  542. * kernels.
  543. * Uses the VTB register if available otherwise a next best guess.
  544. */
  545. unsigned long long running_clock(void)
  546. {
  547. /*
  548. * Don't read the VTB as a host since KVM does not switch in host
  549. * timebase into the VTB when it takes a guest off the CPU, reading the
  550. * VTB would result in reading 'last switched out' guest VTB.
  551. *
  552. * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it
  553. * would be unsafe to rely only on the #ifdef above.
  554. */
  555. if (firmware_has_feature(FW_FEATURE_LPAR) &&
  556. cpu_has_feature(CPU_FTR_ARCH_207S))
  557. return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
  558. /*
  559. * This is a next best approximation without a VTB.
  560. * On a host which is running bare metal there should never be any stolen
  561. * time and on a host which doesn't do any virtualisation TB *should* equal
  562. * VTB so it makes no difference anyway.
  563. */
  564. return local_clock() - cputime_to_nsecs(kcpustat_this_cpu->cpustat[CPUTIME_STEAL]);
  565. }
  566. #endif
  567. static int __init get_freq(char *name, int cells, unsigned long *val)
  568. {
  569. struct device_node *cpu;
  570. const __be32 *fp;
  571. int found = 0;
  572. /* The cpu node should have timebase and clock frequency properties */
  573. cpu = of_find_node_by_type(NULL, "cpu");
  574. if (cpu) {
  575. fp = of_get_property(cpu, name, NULL);
  576. if (fp) {
  577. found = 1;
  578. *val = of_read_ulong(fp, cells);
  579. }
  580. of_node_put(cpu);
  581. }
  582. return found;
  583. }
  584. static void start_cpu_decrementer(void)
  585. {
  586. #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
  587. /* Clear any pending timer interrupts */
  588. mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
  589. /* Enable decrementer interrupt */
  590. mtspr(SPRN_TCR, TCR_DIE);
  591. #endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
  592. }
  593. void __init generic_calibrate_decr(void)
  594. {
  595. ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
  596. if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
  597. !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
  598. printk(KERN_ERR "WARNING: Estimating decrementer frequency "
  599. "(not found)\n");
  600. }
  601. ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
  602. if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
  603. !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
  604. printk(KERN_ERR "WARNING: Estimating processor frequency "
  605. "(not found)\n");
  606. }
  607. }
  608. int update_persistent_clock(struct timespec now)
  609. {
  610. struct rtc_time tm;
  611. if (!ppc_md.set_rtc_time)
  612. return -ENODEV;
  613. to_tm(now.tv_sec + 1 + timezone_offset, &tm);
  614. tm.tm_year -= 1900;
  615. tm.tm_mon -= 1;
  616. return ppc_md.set_rtc_time(&tm);
  617. }
  618. static void __read_persistent_clock(struct timespec *ts)
  619. {
  620. struct rtc_time tm;
  621. static int first = 1;
  622. ts->tv_nsec = 0;
  623. /* XXX this is a litle fragile but will work okay in the short term */
  624. if (first) {
  625. first = 0;
  626. if (ppc_md.time_init)
  627. timezone_offset = ppc_md.time_init();
  628. /* get_boot_time() isn't guaranteed to be safe to call late */
  629. if (ppc_md.get_boot_time) {
  630. ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
  631. return;
  632. }
  633. }
  634. if (!ppc_md.get_rtc_time) {
  635. ts->tv_sec = 0;
  636. return;
  637. }
  638. ppc_md.get_rtc_time(&tm);
  639. ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
  640. tm.tm_hour, tm.tm_min, tm.tm_sec);
  641. }
  642. void read_persistent_clock(struct timespec *ts)
  643. {
  644. __read_persistent_clock(ts);
  645. /* Sanitize it in case real time clock is set below EPOCH */
  646. if (ts->tv_sec < 0) {
  647. ts->tv_sec = 0;
  648. ts->tv_nsec = 0;
  649. }
  650. }
  651. /* clocksource code */
  652. static cycle_t rtc_read(struct clocksource *cs)
  653. {
  654. return (cycle_t)get_rtc();
  655. }
  656. static cycle_t timebase_read(struct clocksource *cs)
  657. {
  658. return (cycle_t)get_tb();
  659. }
  660. void update_vsyscall_old(struct timespec *wall_time, struct timespec *wtm,
  661. struct clocksource *clock, u32 mult, cycle_t cycle_last)
  662. {
  663. u64 new_tb_to_xs, new_stamp_xsec;
  664. u32 frac_sec;
  665. if (clock != &clocksource_timebase)
  666. return;
  667. /* Make userspace gettimeofday spin until we're done. */
  668. ++vdso_data->tb_update_count;
  669. smp_mb();
  670. /* 19342813113834067 ~= 2^(20+64) / 1e9 */
  671. new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
  672. new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
  673. do_div(new_stamp_xsec, 1000000000);
  674. new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
  675. BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
  676. /* this is tv_nsec / 1e9 as a 0.32 fraction */
  677. frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;
  678. /*
  679. * tb_update_count is used to allow the userspace gettimeofday code
  680. * to assure itself that it sees a consistent view of the tb_to_xs and
  681. * stamp_xsec variables. It reads the tb_update_count, then reads
  682. * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
  683. * the two values of tb_update_count match and are even then the
  684. * tb_to_xs and stamp_xsec values are consistent. If not, then it
  685. * loops back and reads them again until this criteria is met.
  686. * We expect the caller to have done the first increment of
  687. * vdso_data->tb_update_count already.
  688. */
  689. vdso_data->tb_orig_stamp = cycle_last;
  690. vdso_data->stamp_xsec = new_stamp_xsec;
  691. vdso_data->tb_to_xs = new_tb_to_xs;
  692. vdso_data->wtom_clock_sec = wtm->tv_sec;
  693. vdso_data->wtom_clock_nsec = wtm->tv_nsec;
  694. vdso_data->stamp_xtime = *wall_time;
  695. vdso_data->stamp_sec_fraction = frac_sec;
  696. smp_wmb();
  697. ++(vdso_data->tb_update_count);
  698. }
  699. void update_vsyscall_tz(void)
  700. {
  701. vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
  702. vdso_data->tz_dsttime = sys_tz.tz_dsttime;
  703. }
  704. static void __init clocksource_init(void)
  705. {
  706. struct clocksource *clock;
  707. if (__USE_RTC())
  708. clock = &clocksource_rtc;
  709. else
  710. clock = &clocksource_timebase;
  711. if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
  712. printk(KERN_ERR "clocksource: %s is already registered\n",
  713. clock->name);
  714. return;
  715. }
  716. printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
  717. clock->name, clock->mult, clock->shift);
  718. }
  719. static int decrementer_set_next_event(unsigned long evt,
  720. struct clock_event_device *dev)
  721. {
  722. __this_cpu_write(decrementers_next_tb, get_tb_or_rtc() + evt);
  723. set_dec(evt);
  724. /* We may have raced with new irq work */
  725. if (test_irq_work_pending())
  726. set_dec(1);
  727. return 0;
  728. }
  729. static int decrementer_shutdown(struct clock_event_device *dev)
  730. {
  731. decrementer_set_next_event(DECREMENTER_MAX, dev);
  732. return 0;
  733. }
  734. /* Interrupt handler for the timer broadcast IPI */
  735. void tick_broadcast_ipi_handler(void)
  736. {
  737. u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
  738. *next_tb = get_tb_or_rtc();
  739. __timer_interrupt();
  740. }
  741. static void register_decrementer_clockevent(int cpu)
  742. {
  743. struct clock_event_device *dec = &per_cpu(decrementers, cpu);
  744. *dec = decrementer_clockevent;
  745. dec->cpumask = cpumask_of(cpu);
  746. printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
  747. dec->name, dec->mult, dec->shift, cpu);
  748. clockevents_register_device(dec);
  749. }
  750. static void __init init_decrementer_clockevent(void)
  751. {
  752. int cpu = smp_processor_id();
  753. clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4);
  754. decrementer_clockevent.max_delta_ns =
  755. clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
  756. decrementer_clockevent.min_delta_ns =
  757. clockevent_delta2ns(2, &decrementer_clockevent);
  758. register_decrementer_clockevent(cpu);
  759. }
  760. void secondary_cpu_time_init(void)
  761. {
  762. /* Start the decrementer on CPUs that have manual control
  763. * such as BookE
  764. */
  765. start_cpu_decrementer();
  766. /* FIME: Should make unrelatred change to move snapshot_timebase
  767. * call here ! */
  768. register_decrementer_clockevent(smp_processor_id());
  769. }
  770. /* This function is only called on the boot processor */
  771. void __init time_init(void)
  772. {
  773. struct div_result res;
  774. u64 scale;
  775. unsigned shift;
  776. if (__USE_RTC()) {
  777. /* 601 processor: dec counts down by 128 every 128ns */
  778. ppc_tb_freq = 1000000000;
  779. } else {
  780. /* Normal PowerPC with timebase register */
  781. ppc_md.calibrate_decr();
  782. printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
  783. ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
  784. printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
  785. ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
  786. }
  787. tb_ticks_per_jiffy = ppc_tb_freq / HZ;
  788. tb_ticks_per_sec = ppc_tb_freq;
  789. tb_ticks_per_usec = ppc_tb_freq / 1000000;
  790. calc_cputime_factors();
  791. setup_cputime_one_jiffy();
  792. /*
  793. * Compute scale factor for sched_clock.
  794. * The calibrate_decr() function has set tb_ticks_per_sec,
  795. * which is the timebase frequency.
  796. * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
  797. * the 128-bit result as a 64.64 fixed-point number.
  798. * We then shift that number right until it is less than 1.0,
  799. * giving us the scale factor and shift count to use in
  800. * sched_clock().
  801. */
  802. div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
  803. scale = res.result_low;
  804. for (shift = 0; res.result_high != 0; ++shift) {
  805. scale = (scale >> 1) | (res.result_high << 63);
  806. res.result_high >>= 1;
  807. }
  808. tb_to_ns_scale = scale;
  809. tb_to_ns_shift = shift;
  810. /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
  811. boot_tb = get_tb_or_rtc();
  812. /* If platform provided a timezone (pmac), we correct the time */
  813. if (timezone_offset) {
  814. sys_tz.tz_minuteswest = -timezone_offset / 60;
  815. sys_tz.tz_dsttime = 0;
  816. }
  817. vdso_data->tb_update_count = 0;
  818. vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
  819. /* Start the decrementer on CPUs that have manual control
  820. * such as BookE
  821. */
  822. start_cpu_decrementer();
  823. /* Register the clocksource */
  824. clocksource_init();
  825. init_decrementer_clockevent();
  826. tick_setup_hrtimer_broadcast();
  827. #ifdef CONFIG_COMMON_CLK
  828. of_clk_init(NULL);
  829. #endif
  830. }
  831. #define FEBRUARY 2
  832. #define STARTOFTIME 1970
  833. #define SECDAY 86400L
  834. #define SECYR (SECDAY * 365)
  835. #define leapyear(year) ((year) % 4 == 0 && \
  836. ((year) % 100 != 0 || (year) % 400 == 0))
  837. #define days_in_year(a) (leapyear(a) ? 366 : 365)
  838. #define days_in_month(a) (month_days[(a) - 1])
  839. static int month_days[12] = {
  840. 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
  841. };
  842. /*
  843. * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
  844. */
  845. void GregorianDay(struct rtc_time * tm)
  846. {
  847. int leapsToDate;
  848. int lastYear;
  849. int day;
  850. int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
  851. lastYear = tm->tm_year - 1;
  852. /*
  853. * Number of leap corrections to apply up to end of last year
  854. */
  855. leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
  856. /*
  857. * This year is a leap year if it is divisible by 4 except when it is
  858. * divisible by 100 unless it is divisible by 400
  859. *
  860. * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
  861. */
  862. day = tm->tm_mon > 2 && leapyear(tm->tm_year);
  863. day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
  864. tm->tm_mday;
  865. tm->tm_wday = day % 7;
  866. }
  867. EXPORT_SYMBOL_GPL(GregorianDay);
  868. void to_tm(int tim, struct rtc_time * tm)
  869. {
  870. register int i;
  871. register long hms, day;
  872. day = tim / SECDAY;
  873. hms = tim % SECDAY;
  874. /* Hours, minutes, seconds are easy */
  875. tm->tm_hour = hms / 3600;
  876. tm->tm_min = (hms % 3600) / 60;
  877. tm->tm_sec = (hms % 3600) % 60;
  878. /* Number of years in days */
  879. for (i = STARTOFTIME; day >= days_in_year(i); i++)
  880. day -= days_in_year(i);
  881. tm->tm_year = i;
  882. /* Number of months in days left */
  883. if (leapyear(tm->tm_year))
  884. days_in_month(FEBRUARY) = 29;
  885. for (i = 1; day >= days_in_month(i); i++)
  886. day -= days_in_month(i);
  887. days_in_month(FEBRUARY) = 28;
  888. tm->tm_mon = i;
  889. /* Days are what is left over (+1) from all that. */
  890. tm->tm_mday = day + 1;
  891. /*
  892. * Determine the day of week
  893. */
  894. GregorianDay(tm);
  895. }
  896. EXPORT_SYMBOL(to_tm);
  897. /*
  898. * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
  899. * result.
  900. */
  901. void div128_by_32(u64 dividend_high, u64 dividend_low,
  902. unsigned divisor, struct div_result *dr)
  903. {
  904. unsigned long a, b, c, d;
  905. unsigned long w, x, y, z;
  906. u64 ra, rb, rc;
  907. a = dividend_high >> 32;
  908. b = dividend_high & 0xffffffff;
  909. c = dividend_low >> 32;
  910. d = dividend_low & 0xffffffff;
  911. w = a / divisor;
  912. ra = ((u64)(a - (w * divisor)) << 32) + b;
  913. rb = ((u64) do_div(ra, divisor) << 32) + c;
  914. x = ra;
  915. rc = ((u64) do_div(rb, divisor) << 32) + d;
  916. y = rb;
  917. do_div(rc, divisor);
  918. z = rc;
  919. dr->result_high = ((u64)w << 32) + x;
  920. dr->result_low = ((u64)y << 32) + z;
  921. }
  922. /* We don't need to calibrate delay, we use the CPU timebase for that */
  923. void calibrate_delay(void)
  924. {
  925. /* Some generic code (such as spinlock debug) use loops_per_jiffy
  926. * as the number of __delay(1) in a jiffy, so make it so
  927. */
  928. loops_per_jiffy = tb_ticks_per_jiffy;
  929. }
  930. static int __init rtc_init(void)
  931. {
  932. struct platform_device *pdev;
  933. if (!ppc_md.get_rtc_time)
  934. return -ENODEV;
  935. pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
  936. return PTR_ERR_OR_ZERO(pdev);
  937. }
  938. device_initcall(rtc_init);