prom.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825
  1. /*
  2. * Procedures for creating, accessing and interpreting the device tree.
  3. *
  4. * Paul Mackerras August 1996.
  5. * Copyright (C) 1996-2005 Paul Mackerras.
  6. *
  7. * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
  8. * {engebret|bergner}@us.ibm.com
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License
  12. * as published by the Free Software Foundation; either version
  13. * 2 of the License, or (at your option) any later version.
  14. */
  15. #undef DEBUG
  16. #include <stdarg.h>
  17. #include <linux/kernel.h>
  18. #include <linux/string.h>
  19. #include <linux/init.h>
  20. #include <linux/threads.h>
  21. #include <linux/spinlock.h>
  22. #include <linux/types.h>
  23. #include <linux/pci.h>
  24. #include <linux/stringify.h>
  25. #include <linux/delay.h>
  26. #include <linux/initrd.h>
  27. #include <linux/bitops.h>
  28. #include <linux/export.h>
  29. #include <linux/kexec.h>
  30. #include <linux/irq.h>
  31. #include <linux/memblock.h>
  32. #include <linux/of.h>
  33. #include <linux/of_fdt.h>
  34. #include <linux/libfdt.h>
  35. #include <asm/prom.h>
  36. #include <asm/rtas.h>
  37. #include <asm/page.h>
  38. #include <asm/processor.h>
  39. #include <asm/irq.h>
  40. #include <asm/io.h>
  41. #include <asm/kdump.h>
  42. #include <asm/smp.h>
  43. #include <asm/mmu.h>
  44. #include <asm/paca.h>
  45. #include <asm/pgtable.h>
  46. #include <asm/iommu.h>
  47. #include <asm/btext.h>
  48. #include <asm/sections.h>
  49. #include <asm/machdep.h>
  50. #include <asm/pci-bridge.h>
  51. #include <asm/kexec.h>
  52. #include <asm/opal.h>
  53. #include <asm/fadump.h>
  54. #include <asm/debug.h>
  55. #include <mm/mmu_decl.h>
  56. #ifdef DEBUG
  57. #define DBG(fmt...) printk(KERN_ERR fmt)
  58. #else
  59. #define DBG(fmt...)
  60. #endif
  61. #ifdef CONFIG_PPC64
  62. int __initdata iommu_is_off;
  63. int __initdata iommu_force_on;
  64. unsigned long tce_alloc_start, tce_alloc_end;
  65. u64 ppc64_rma_size;
  66. #endif
  67. static phys_addr_t first_memblock_size;
  68. static int __initdata boot_cpu_count;
  69. static int __init early_parse_mem(char *p)
  70. {
  71. if (!p)
  72. return 1;
  73. memory_limit = PAGE_ALIGN(memparse(p, &p));
  74. DBG("memory limit = 0x%llx\n", memory_limit);
  75. return 0;
  76. }
  77. early_param("mem", early_parse_mem);
  78. /*
  79. * overlaps_initrd - check for overlap with page aligned extension of
  80. * initrd.
  81. */
  82. static inline int overlaps_initrd(unsigned long start, unsigned long size)
  83. {
  84. #ifdef CONFIG_BLK_DEV_INITRD
  85. if (!initrd_start)
  86. return 0;
  87. return (start + size) > _ALIGN_DOWN(initrd_start, PAGE_SIZE) &&
  88. start <= _ALIGN_UP(initrd_end, PAGE_SIZE);
  89. #else
  90. return 0;
  91. #endif
  92. }
  93. /**
  94. * move_device_tree - move tree to an unused area, if needed.
  95. *
  96. * The device tree may be allocated beyond our memory limit, or inside the
  97. * crash kernel region for kdump, or within the page aligned range of initrd.
  98. * If so, move it out of the way.
  99. */
  100. static void __init move_device_tree(void)
  101. {
  102. unsigned long start, size;
  103. void *p;
  104. DBG("-> move_device_tree\n");
  105. start = __pa(initial_boot_params);
  106. size = fdt_totalsize(initial_boot_params);
  107. if ((memory_limit && (start + size) > PHYSICAL_START + memory_limit) ||
  108. overlaps_crashkernel(start, size) ||
  109. overlaps_initrd(start, size)) {
  110. p = __va(memblock_alloc(size, PAGE_SIZE));
  111. memcpy(p, initial_boot_params, size);
  112. initial_boot_params = p;
  113. DBG("Moved device tree to 0x%p\n", p);
  114. }
  115. DBG("<- move_device_tree\n");
  116. }
  117. /*
  118. * ibm,pa-features is a per-cpu property that contains a string of
  119. * attribute descriptors, each of which has a 2 byte header plus up
  120. * to 254 bytes worth of processor attribute bits. First header
  121. * byte specifies the number of bytes following the header.
  122. * Second header byte is an "attribute-specifier" type, of which
  123. * zero is the only currently-defined value.
  124. * Implementation: Pass in the byte and bit offset for the feature
  125. * that we are interested in. The function will return -1 if the
  126. * pa-features property is missing, or a 1/0 to indicate if the feature
  127. * is supported/not supported. Note that the bit numbers are
  128. * big-endian to match the definition in PAPR.
  129. */
  130. static struct ibm_pa_feature {
  131. unsigned long cpu_features; /* CPU_FTR_xxx bit */
  132. unsigned long mmu_features; /* MMU_FTR_xxx bit */
  133. unsigned int cpu_user_ftrs; /* PPC_FEATURE_xxx bit */
  134. unsigned char pabyte; /* byte number in ibm,pa-features */
  135. unsigned char pabit; /* bit number (big-endian) */
  136. unsigned char invert; /* if 1, pa bit set => clear feature */
  137. } ibm_pa_features[] __initdata = {
  138. {0, 0, PPC_FEATURE_HAS_MMU, 0, 0, 0},
  139. {0, 0, PPC_FEATURE_HAS_FPU, 0, 1, 0},
  140. {CPU_FTR_CTRL, 0, 0, 0, 3, 0},
  141. {CPU_FTR_NOEXECUTE, 0, 0, 0, 6, 0},
  142. {CPU_FTR_NODSISRALIGN, 0, 0, 1, 1, 1},
  143. {0, MMU_FTR_CI_LARGE_PAGE, 0, 1, 2, 0},
  144. {CPU_FTR_REAL_LE, PPC_FEATURE_TRUE_LE, 5, 0, 0},
  145. /*
  146. * If the kernel doesn't support TM (ie. CONFIG_PPC_TRANSACTIONAL_MEM=n),
  147. * we don't want to turn on CPU_FTR_TM here, so we use CPU_FTR_TM_COMP
  148. * which is 0 if the kernel doesn't support TM.
  149. */
  150. {CPU_FTR_TM_COMP, 0, 0, 22, 0, 0},
  151. };
  152. static void __init scan_features(unsigned long node, const unsigned char *ftrs,
  153. unsigned long tablelen,
  154. struct ibm_pa_feature *fp,
  155. unsigned long ft_size)
  156. {
  157. unsigned long i, len, bit;
  158. /* find descriptor with type == 0 */
  159. for (;;) {
  160. if (tablelen < 3)
  161. return;
  162. len = 2 + ftrs[0];
  163. if (tablelen < len)
  164. return; /* descriptor 0 not found */
  165. if (ftrs[1] == 0)
  166. break;
  167. tablelen -= len;
  168. ftrs += len;
  169. }
  170. /* loop over bits we know about */
  171. for (i = 0; i < ft_size; ++i, ++fp) {
  172. if (fp->pabyte >= ftrs[0])
  173. continue;
  174. bit = (ftrs[2 + fp->pabyte] >> (7 - fp->pabit)) & 1;
  175. if (bit ^ fp->invert) {
  176. cur_cpu_spec->cpu_features |= fp->cpu_features;
  177. cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftrs;
  178. cur_cpu_spec->mmu_features |= fp->mmu_features;
  179. } else {
  180. cur_cpu_spec->cpu_features &= ~fp->cpu_features;
  181. cur_cpu_spec->cpu_user_features &= ~fp->cpu_user_ftrs;
  182. cur_cpu_spec->mmu_features &= ~fp->mmu_features;
  183. }
  184. }
  185. }
  186. static void __init check_cpu_pa_features(unsigned long node)
  187. {
  188. const unsigned char *pa_ftrs;
  189. int tablelen;
  190. pa_ftrs = of_get_flat_dt_prop(node, "ibm,pa-features", &tablelen);
  191. if (pa_ftrs == NULL)
  192. return;
  193. scan_features(node, pa_ftrs, tablelen,
  194. ibm_pa_features, ARRAY_SIZE(ibm_pa_features));
  195. }
  196. #ifdef CONFIG_PPC_STD_MMU_64
  197. static void __init init_mmu_slb_size(unsigned long node)
  198. {
  199. const __be32 *slb_size_ptr;
  200. slb_size_ptr = of_get_flat_dt_prop(node, "slb-size", NULL) ? :
  201. of_get_flat_dt_prop(node, "ibm,slb-size", NULL);
  202. if (slb_size_ptr)
  203. mmu_slb_size = be32_to_cpup(slb_size_ptr);
  204. }
  205. #else
  206. #define init_mmu_slb_size(node) do { } while(0)
  207. #endif
  208. static struct feature_property {
  209. const char *name;
  210. u32 min_value;
  211. unsigned long cpu_feature;
  212. unsigned long cpu_user_ftr;
  213. } feature_properties[] __initdata = {
  214. #ifdef CONFIG_ALTIVEC
  215. {"altivec", 0, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC},
  216. {"ibm,vmx", 1, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC},
  217. #endif /* CONFIG_ALTIVEC */
  218. #ifdef CONFIG_VSX
  219. /* Yes, this _really_ is ibm,vmx == 2 to enable VSX */
  220. {"ibm,vmx", 2, CPU_FTR_VSX, PPC_FEATURE_HAS_VSX},
  221. #endif /* CONFIG_VSX */
  222. #ifdef CONFIG_PPC64
  223. {"ibm,dfp", 1, 0, PPC_FEATURE_HAS_DFP},
  224. {"ibm,purr", 1, CPU_FTR_PURR, 0},
  225. {"ibm,spurr", 1, CPU_FTR_SPURR, 0},
  226. #endif /* CONFIG_PPC64 */
  227. };
  228. #if defined(CONFIG_44x) && defined(CONFIG_PPC_FPU)
  229. static inline void identical_pvr_fixup(unsigned long node)
  230. {
  231. unsigned int pvr;
  232. const char *model = of_get_flat_dt_prop(node, "model", NULL);
  233. /*
  234. * Since 440GR(x)/440EP(x) processors have the same pvr,
  235. * we check the node path and set bit 28 in the cur_cpu_spec
  236. * pvr for EP(x) processor version. This bit is always 0 in
  237. * the "real" pvr. Then we call identify_cpu again with
  238. * the new logical pvr to enable FPU support.
  239. */
  240. if (model && strstr(model, "440EP")) {
  241. pvr = cur_cpu_spec->pvr_value | 0x8;
  242. identify_cpu(0, pvr);
  243. DBG("Using logical pvr %x for %s\n", pvr, model);
  244. }
  245. }
  246. #else
  247. #define identical_pvr_fixup(node) do { } while(0)
  248. #endif
  249. static void __init check_cpu_feature_properties(unsigned long node)
  250. {
  251. unsigned long i;
  252. struct feature_property *fp = feature_properties;
  253. const __be32 *prop;
  254. for (i = 0; i < ARRAY_SIZE(feature_properties); ++i, ++fp) {
  255. prop = of_get_flat_dt_prop(node, fp->name, NULL);
  256. if (prop && be32_to_cpup(prop) >= fp->min_value) {
  257. cur_cpu_spec->cpu_features |= fp->cpu_feature;
  258. cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftr;
  259. }
  260. }
  261. }
  262. static int __init early_init_dt_scan_cpus(unsigned long node,
  263. const char *uname, int depth,
  264. void *data)
  265. {
  266. const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
  267. const __be32 *prop;
  268. const __be32 *intserv;
  269. int i, nthreads;
  270. int len;
  271. int found = -1;
  272. int found_thread = 0;
  273. /* We are scanning "cpu" nodes only */
  274. if (type == NULL || strcmp(type, "cpu") != 0)
  275. return 0;
  276. /* Get physical cpuid */
  277. intserv = of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", &len);
  278. if (!intserv)
  279. intserv = of_get_flat_dt_prop(node, "reg", &len);
  280. nthreads = len / sizeof(int);
  281. /*
  282. * Now see if any of these threads match our boot cpu.
  283. * NOTE: This must match the parsing done in smp_setup_cpu_maps.
  284. */
  285. for (i = 0; i < nthreads; i++) {
  286. /*
  287. * version 2 of the kexec param format adds the phys cpuid of
  288. * booted proc.
  289. */
  290. if (fdt_version(initial_boot_params) >= 2) {
  291. if (be32_to_cpu(intserv[i]) ==
  292. fdt_boot_cpuid_phys(initial_boot_params)) {
  293. found = boot_cpu_count;
  294. found_thread = i;
  295. }
  296. } else {
  297. /*
  298. * Check if it's the boot-cpu, set it's hw index now,
  299. * unfortunately this format did not support booting
  300. * off secondary threads.
  301. */
  302. if (of_get_flat_dt_prop(node,
  303. "linux,boot-cpu", NULL) != NULL)
  304. found = boot_cpu_count;
  305. }
  306. #ifdef CONFIG_SMP
  307. /* logical cpu id is always 0 on UP kernels */
  308. boot_cpu_count++;
  309. #endif
  310. }
  311. /* Not the boot CPU */
  312. if (found < 0)
  313. return 0;
  314. DBG("boot cpu: logical %d physical %d\n", found,
  315. be32_to_cpu(intserv[found_thread]));
  316. boot_cpuid = found;
  317. set_hard_smp_processor_id(found, be32_to_cpu(intserv[found_thread]));
  318. /*
  319. * PAPR defines "logical" PVR values for cpus that
  320. * meet various levels of the architecture:
  321. * 0x0f000001 Architecture version 2.04
  322. * 0x0f000002 Architecture version 2.05
  323. * If the cpu-version property in the cpu node contains
  324. * such a value, we call identify_cpu again with the
  325. * logical PVR value in order to use the cpu feature
  326. * bits appropriate for the architecture level.
  327. *
  328. * A POWER6 partition in "POWER6 architected" mode
  329. * uses the 0x0f000002 PVR value; in POWER5+ mode
  330. * it uses 0x0f000001.
  331. */
  332. prop = of_get_flat_dt_prop(node, "cpu-version", NULL);
  333. if (prop && (be32_to_cpup(prop) & 0xff000000) == 0x0f000000)
  334. identify_cpu(0, be32_to_cpup(prop));
  335. identical_pvr_fixup(node);
  336. check_cpu_feature_properties(node);
  337. check_cpu_pa_features(node);
  338. init_mmu_slb_size(node);
  339. #ifdef CONFIG_PPC64
  340. if (nthreads > 1)
  341. cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
  342. else
  343. cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
  344. #endif
  345. return 0;
  346. }
  347. static int __init early_init_dt_scan_chosen_ppc(unsigned long node,
  348. const char *uname,
  349. int depth, void *data)
  350. {
  351. const unsigned long *lprop; /* All these set by kernel, so no need to convert endian */
  352. /* Use common scan routine to determine if this is the chosen node */
  353. if (early_init_dt_scan_chosen(node, uname, depth, data) == 0)
  354. return 0;
  355. #ifdef CONFIG_PPC64
  356. /* check if iommu is forced on or off */
  357. if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
  358. iommu_is_off = 1;
  359. if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
  360. iommu_force_on = 1;
  361. #endif
  362. /* mem=x on the command line is the preferred mechanism */
  363. lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL);
  364. if (lprop)
  365. memory_limit = *lprop;
  366. #ifdef CONFIG_PPC64
  367. lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
  368. if (lprop)
  369. tce_alloc_start = *lprop;
  370. lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
  371. if (lprop)
  372. tce_alloc_end = *lprop;
  373. #endif
  374. #ifdef CONFIG_KEXEC
  375. lprop = of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL);
  376. if (lprop)
  377. crashk_res.start = *lprop;
  378. lprop = of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL);
  379. if (lprop)
  380. crashk_res.end = crashk_res.start + *lprop - 1;
  381. #endif
  382. /* break now */
  383. return 1;
  384. }
  385. #ifdef CONFIG_PPC_PSERIES
  386. /*
  387. * Interpret the ibm,dynamic-memory property in the
  388. * /ibm,dynamic-reconfiguration-memory node.
  389. * This contains a list of memory blocks along with NUMA affinity
  390. * information.
  391. */
  392. static int __init early_init_dt_scan_drconf_memory(unsigned long node)
  393. {
  394. const __be32 *dm, *ls, *usm;
  395. int l;
  396. unsigned long n, flags;
  397. u64 base, size, memblock_size;
  398. unsigned int is_kexec_kdump = 0, rngs;
  399. ls = of_get_flat_dt_prop(node, "ibm,lmb-size", &l);
  400. if (ls == NULL || l < dt_root_size_cells * sizeof(__be32))
  401. return 0;
  402. memblock_size = dt_mem_next_cell(dt_root_size_cells, &ls);
  403. dm = of_get_flat_dt_prop(node, "ibm,dynamic-memory", &l);
  404. if (dm == NULL || l < sizeof(__be32))
  405. return 0;
  406. n = of_read_number(dm++, 1); /* number of entries */
  407. if (l < (n * (dt_root_addr_cells + 4) + 1) * sizeof(__be32))
  408. return 0;
  409. /* check if this is a kexec/kdump kernel. */
  410. usm = of_get_flat_dt_prop(node, "linux,drconf-usable-memory",
  411. &l);
  412. if (usm != NULL)
  413. is_kexec_kdump = 1;
  414. for (; n != 0; --n) {
  415. base = dt_mem_next_cell(dt_root_addr_cells, &dm);
  416. flags = of_read_number(&dm[3], 1);
  417. /* skip DRC index, pad, assoc. list index, flags */
  418. dm += 4;
  419. /* skip this block if the reserved bit is set in flags
  420. or if the block is not assigned to this partition */
  421. if ((flags & DRCONF_MEM_RESERVED) ||
  422. !(flags & DRCONF_MEM_ASSIGNED))
  423. continue;
  424. size = memblock_size;
  425. rngs = 1;
  426. if (is_kexec_kdump) {
  427. /*
  428. * For each memblock in ibm,dynamic-memory, a corresponding
  429. * entry in linux,drconf-usable-memory property contains
  430. * a counter 'p' followed by 'p' (base, size) duple.
  431. * Now read the counter from
  432. * linux,drconf-usable-memory property
  433. */
  434. rngs = dt_mem_next_cell(dt_root_size_cells, &usm);
  435. if (!rngs) /* there are no (base, size) duple */
  436. continue;
  437. }
  438. do {
  439. if (is_kexec_kdump) {
  440. base = dt_mem_next_cell(dt_root_addr_cells,
  441. &usm);
  442. size = dt_mem_next_cell(dt_root_size_cells,
  443. &usm);
  444. }
  445. if (iommu_is_off) {
  446. if (base >= 0x80000000ul)
  447. continue;
  448. if ((base + size) > 0x80000000ul)
  449. size = 0x80000000ul - base;
  450. }
  451. memblock_add(base, size);
  452. } while (--rngs);
  453. }
  454. memblock_dump_all();
  455. return 0;
  456. }
  457. #else
  458. #define early_init_dt_scan_drconf_memory(node) 0
  459. #endif /* CONFIG_PPC_PSERIES */
  460. static int __init early_init_dt_scan_memory_ppc(unsigned long node,
  461. const char *uname,
  462. int depth, void *data)
  463. {
  464. if (depth == 1 &&
  465. strcmp(uname, "ibm,dynamic-reconfiguration-memory") == 0)
  466. return early_init_dt_scan_drconf_memory(node);
  467. return early_init_dt_scan_memory(node, uname, depth, data);
  468. }
  469. /*
  470. * For a relocatable kernel, we need to get the memstart_addr first,
  471. * then use it to calculate the virtual kernel start address. This has
  472. * to happen at a very early stage (before machine_init). In this case,
  473. * we just want to get the memstart_address and would not like to mess the
  474. * memblock at this stage. So introduce a variable to skip the memblock_add()
  475. * for this reason.
  476. */
  477. #ifdef CONFIG_RELOCATABLE
  478. static int add_mem_to_memblock = 1;
  479. #else
  480. #define add_mem_to_memblock 1
  481. #endif
  482. void __init early_init_dt_add_memory_arch(u64 base, u64 size)
  483. {
  484. #ifdef CONFIG_PPC64
  485. if (iommu_is_off) {
  486. if (base >= 0x80000000ul)
  487. return;
  488. if ((base + size) > 0x80000000ul)
  489. size = 0x80000000ul - base;
  490. }
  491. #endif
  492. /* Keep track of the beginning of memory -and- the size of
  493. * the very first block in the device-tree as it represents
  494. * the RMA on ppc64 server
  495. */
  496. if (base < memstart_addr) {
  497. memstart_addr = base;
  498. first_memblock_size = size;
  499. }
  500. /* Add the chunk to the MEMBLOCK list */
  501. if (add_mem_to_memblock)
  502. memblock_add(base, size);
  503. }
  504. static void __init early_reserve_mem_dt(void)
  505. {
  506. unsigned long i, dt_root;
  507. int len;
  508. const __be32 *prop;
  509. early_init_fdt_reserve_self();
  510. early_init_fdt_scan_reserved_mem();
  511. dt_root = of_get_flat_dt_root();
  512. prop = of_get_flat_dt_prop(dt_root, "reserved-ranges", &len);
  513. if (!prop)
  514. return;
  515. DBG("Found new-style reserved-ranges\n");
  516. /* Each reserved range is an (address,size) pair, 2 cells each,
  517. * totalling 4 cells per range. */
  518. for (i = 0; i < len / (sizeof(*prop) * 4); i++) {
  519. u64 base, size;
  520. base = of_read_number(prop + (i * 4) + 0, 2);
  521. size = of_read_number(prop + (i * 4) + 2, 2);
  522. if (size) {
  523. DBG("reserving: %llx -> %llx\n", base, size);
  524. memblock_reserve(base, size);
  525. }
  526. }
  527. }
  528. static void __init early_reserve_mem(void)
  529. {
  530. __be64 *reserve_map;
  531. reserve_map = (__be64 *)(((unsigned long)initial_boot_params) +
  532. fdt_off_mem_rsvmap(initial_boot_params));
  533. /* Look for the new "reserved-regions" property in the DT */
  534. early_reserve_mem_dt();
  535. #ifdef CONFIG_BLK_DEV_INITRD
  536. /* Then reserve the initrd, if any */
  537. if (initrd_start && (initrd_end > initrd_start)) {
  538. memblock_reserve(_ALIGN_DOWN(__pa(initrd_start), PAGE_SIZE),
  539. _ALIGN_UP(initrd_end, PAGE_SIZE) -
  540. _ALIGN_DOWN(initrd_start, PAGE_SIZE));
  541. }
  542. #endif /* CONFIG_BLK_DEV_INITRD */
  543. #ifdef CONFIG_PPC32
  544. /*
  545. * Handle the case where we might be booting from an old kexec
  546. * image that setup the mem_rsvmap as pairs of 32-bit values
  547. */
  548. if (be64_to_cpup(reserve_map) > 0xffffffffull) {
  549. u32 base_32, size_32;
  550. __be32 *reserve_map_32 = (__be32 *)reserve_map;
  551. DBG("Found old 32-bit reserve map\n");
  552. while (1) {
  553. base_32 = be32_to_cpup(reserve_map_32++);
  554. size_32 = be32_to_cpup(reserve_map_32++);
  555. if (size_32 == 0)
  556. break;
  557. DBG("reserving: %x -> %x\n", base_32, size_32);
  558. memblock_reserve(base_32, size_32);
  559. }
  560. return;
  561. }
  562. #endif
  563. }
  564. void __init early_init_devtree(void *params)
  565. {
  566. phys_addr_t limit;
  567. DBG(" -> early_init_devtree(%p)\n", params);
  568. /* Too early to BUG_ON(), do it by hand */
  569. if (!early_init_dt_verify(params))
  570. panic("BUG: Failed verifying flat device tree, bad version?");
  571. #ifdef CONFIG_PPC_RTAS
  572. /* Some machines might need RTAS info for debugging, grab it now. */
  573. of_scan_flat_dt(early_init_dt_scan_rtas, NULL);
  574. #endif
  575. #ifdef CONFIG_PPC_POWERNV
  576. /* Some machines might need OPAL info for debugging, grab it now. */
  577. of_scan_flat_dt(early_init_dt_scan_opal, NULL);
  578. #endif
  579. #ifdef CONFIG_FA_DUMP
  580. /* scan tree to see if dump is active during last boot */
  581. of_scan_flat_dt(early_init_dt_scan_fw_dump, NULL);
  582. #endif
  583. /* Retrieve various informations from the /chosen node of the
  584. * device-tree, including the platform type, initrd location and
  585. * size, TCE reserve, and more ...
  586. */
  587. of_scan_flat_dt(early_init_dt_scan_chosen_ppc, boot_command_line);
  588. /* Scan memory nodes and rebuild MEMBLOCKs */
  589. of_scan_flat_dt(early_init_dt_scan_root, NULL);
  590. of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL);
  591. parse_early_param();
  592. /* make sure we've parsed cmdline for mem= before this */
  593. if (memory_limit)
  594. first_memblock_size = min_t(u64, first_memblock_size, memory_limit);
  595. setup_initial_memory_limit(memstart_addr, first_memblock_size);
  596. /* Reserve MEMBLOCK regions used by kernel, initrd, dt, etc... */
  597. memblock_reserve(PHYSICAL_START, __pa(klimit) - PHYSICAL_START);
  598. /* If relocatable, reserve first 32k for interrupt vectors etc. */
  599. if (PHYSICAL_START > MEMORY_START)
  600. memblock_reserve(MEMORY_START, 0x8000);
  601. reserve_kdump_trampoline();
  602. #ifdef CONFIG_FA_DUMP
  603. /*
  604. * If we fail to reserve memory for firmware-assisted dump then
  605. * fallback to kexec based kdump.
  606. */
  607. if (fadump_reserve_mem() == 0)
  608. #endif
  609. reserve_crashkernel();
  610. early_reserve_mem();
  611. /* Ensure that total memory size is page-aligned. */
  612. limit = ALIGN(memory_limit ?: memblock_phys_mem_size(), PAGE_SIZE);
  613. memblock_enforce_memory_limit(limit);
  614. memblock_allow_resize();
  615. memblock_dump_all();
  616. DBG("Phys. mem: %llx\n", memblock_phys_mem_size());
  617. /* We may need to relocate the flat tree, do it now.
  618. * FIXME .. and the initrd too? */
  619. move_device_tree();
  620. allocate_pacas();
  621. DBG("Scanning CPUs ...\n");
  622. /* Retrieve CPU related informations from the flat tree
  623. * (altivec support, boot CPU ID, ...)
  624. */
  625. of_scan_flat_dt(early_init_dt_scan_cpus, NULL);
  626. if (boot_cpuid < 0) {
  627. printk("Failed to identify boot CPU !\n");
  628. BUG();
  629. }
  630. #if defined(CONFIG_SMP) && defined(CONFIG_PPC64)
  631. /* We'll later wait for secondaries to check in; there are
  632. * NCPUS-1 non-boot CPUs :-)
  633. */
  634. spinning_secondaries = boot_cpu_count - 1;
  635. #endif
  636. #ifdef CONFIG_PPC_POWERNV
  637. /* Scan and build the list of machine check recoverable ranges */
  638. of_scan_flat_dt(early_init_dt_scan_recoverable_ranges, NULL);
  639. #endif
  640. DBG(" <- early_init_devtree()\n");
  641. }
  642. #ifdef CONFIG_RELOCATABLE
  643. /*
  644. * This function run before early_init_devtree, so we have to init
  645. * initial_boot_params.
  646. */
  647. void __init early_get_first_memblock_info(void *params, phys_addr_t *size)
  648. {
  649. /* Setup flat device-tree pointer */
  650. initial_boot_params = params;
  651. /*
  652. * Scan the memory nodes and set add_mem_to_memblock to 0 to avoid
  653. * mess the memblock.
  654. */
  655. add_mem_to_memblock = 0;
  656. of_scan_flat_dt(early_init_dt_scan_root, NULL);
  657. of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL);
  658. add_mem_to_memblock = 1;
  659. if (size)
  660. *size = first_memblock_size;
  661. }
  662. #endif
  663. /*******
  664. *
  665. * New implementation of the OF "find" APIs, return a refcounted
  666. * object, call of_node_put() when done. The device tree and list
  667. * are protected by a rw_lock.
  668. *
  669. * Note that property management will need some locking as well,
  670. * this isn't dealt with yet.
  671. *
  672. *******/
  673. /**
  674. * of_get_ibm_chip_id - Returns the IBM "chip-id" of a device
  675. * @np: device node of the device
  676. *
  677. * This looks for a property "ibm,chip-id" in the node or any
  678. * of its parents and returns its content, or -1 if it cannot
  679. * be found.
  680. */
  681. int of_get_ibm_chip_id(struct device_node *np)
  682. {
  683. of_node_get(np);
  684. while(np) {
  685. struct device_node *old = np;
  686. const __be32 *prop;
  687. prop = of_get_property(np, "ibm,chip-id", NULL);
  688. if (prop) {
  689. of_node_put(np);
  690. return be32_to_cpup(prop);
  691. }
  692. np = of_get_parent(np);
  693. of_node_put(old);
  694. }
  695. return -1;
  696. }
  697. EXPORT_SYMBOL(of_get_ibm_chip_id);
  698. /**
  699. * cpu_to_chip_id - Return the cpus chip-id
  700. * @cpu: The logical cpu number.
  701. *
  702. * Return the value of the ibm,chip-id property corresponding to the given
  703. * logical cpu number. If the chip-id can not be found, returns -1.
  704. */
  705. int cpu_to_chip_id(int cpu)
  706. {
  707. struct device_node *np;
  708. np = of_get_cpu_node(cpu, NULL);
  709. if (!np)
  710. return -1;
  711. of_node_put(np);
  712. return of_get_ibm_chip_id(np);
  713. }
  714. EXPORT_SYMBOL(cpu_to_chip_id);
  715. bool arch_match_cpu_phys_id(int cpu, u64 phys_id)
  716. {
  717. return (int)phys_id == get_hard_smp_processor_id(cpu);
  718. }