nommu.c 9.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393
  1. /*
  2. * linux/arch/arm/mm/nommu.c
  3. *
  4. * ARM uCLinux supporting functions.
  5. */
  6. #include <linux/module.h>
  7. #include <linux/mm.h>
  8. #include <linux/pagemap.h>
  9. #include <linux/io.h>
  10. #include <linux/memblock.h>
  11. #include <linux/kernel.h>
  12. #include <asm/cacheflush.h>
  13. #include <asm/sections.h>
  14. #include <asm/page.h>
  15. #include <asm/setup.h>
  16. #include <asm/traps.h>
  17. #include <asm/mach/arch.h>
  18. #include <asm/cputype.h>
  19. #include <asm/mpu.h>
  20. #include <asm/procinfo.h>
  21. #include "mm.h"
  22. #ifdef CONFIG_ARM_MPU
  23. struct mpu_rgn_info mpu_rgn_info;
  24. /* Region number */
  25. static void rgnr_write(u32 v)
  26. {
  27. asm("mcr p15, 0, %0, c6, c2, 0" : : "r" (v));
  28. }
  29. /* Data-side / unified region attributes */
  30. /* Region access control register */
  31. static void dracr_write(u32 v)
  32. {
  33. asm("mcr p15, 0, %0, c6, c1, 4" : : "r" (v));
  34. }
  35. /* Region size register */
  36. static void drsr_write(u32 v)
  37. {
  38. asm("mcr p15, 0, %0, c6, c1, 2" : : "r" (v));
  39. }
  40. /* Region base address register */
  41. static void drbar_write(u32 v)
  42. {
  43. asm("mcr p15, 0, %0, c6, c1, 0" : : "r" (v));
  44. }
  45. static u32 drbar_read(void)
  46. {
  47. u32 v;
  48. asm("mrc p15, 0, %0, c6, c1, 0" : "=r" (v));
  49. return v;
  50. }
  51. /* Optional instruction-side region attributes */
  52. /* I-side Region access control register */
  53. static void iracr_write(u32 v)
  54. {
  55. asm("mcr p15, 0, %0, c6, c1, 5" : : "r" (v));
  56. }
  57. /* I-side Region size register */
  58. static void irsr_write(u32 v)
  59. {
  60. asm("mcr p15, 0, %0, c6, c1, 3" : : "r" (v));
  61. }
  62. /* I-side Region base address register */
  63. static void irbar_write(u32 v)
  64. {
  65. asm("mcr p15, 0, %0, c6, c1, 1" : : "r" (v));
  66. }
  67. static unsigned long irbar_read(void)
  68. {
  69. unsigned long v;
  70. asm("mrc p15, 0, %0, c6, c1, 1" : "=r" (v));
  71. return v;
  72. }
  73. /* MPU initialisation functions */
  74. void __init sanity_check_meminfo_mpu(void)
  75. {
  76. int i;
  77. phys_addr_t phys_offset = PHYS_OFFSET;
  78. phys_addr_t aligned_region_size, specified_mem_size, rounded_mem_size;
  79. struct memblock_region *reg;
  80. bool first = true;
  81. phys_addr_t mem_start;
  82. phys_addr_t mem_end;
  83. for_each_memblock(memory, reg) {
  84. if (first) {
  85. /*
  86. * Initially only use memory continuous from
  87. * PHYS_OFFSET */
  88. if (reg->base != phys_offset)
  89. panic("First memory bank must be contiguous from PHYS_OFFSET");
  90. mem_start = reg->base;
  91. mem_end = reg->base + reg->size;
  92. specified_mem_size = reg->size;
  93. first = false;
  94. } else {
  95. /*
  96. * memblock auto merges contiguous blocks, remove
  97. * all blocks afterwards
  98. */
  99. pr_notice("Ignoring RAM after %pa, memory at %pa ignored\n",
  100. &mem_start, &reg->base);
  101. memblock_remove(reg->base, reg->size);
  102. }
  103. }
  104. /*
  105. * MPU has curious alignment requirements: Size must be power of 2, and
  106. * region start must be aligned to the region size
  107. */
  108. if (phys_offset != 0)
  109. pr_info("PHYS_OFFSET != 0 => MPU Region size constrained by alignment requirements\n");
  110. /*
  111. * Maximum aligned region might overflow phys_addr_t if phys_offset is
  112. * 0. Hence we keep everything below 4G until we take the smaller of
  113. * the aligned_region_size and rounded_mem_size, one of which is
  114. * guaranteed to be smaller than the maximum physical address.
  115. */
  116. aligned_region_size = (phys_offset - 1) ^ (phys_offset);
  117. /* Find the max power-of-two sized region that fits inside our bank */
  118. rounded_mem_size = (1 << __fls(specified_mem_size)) - 1;
  119. /* The actual region size is the smaller of the two */
  120. aligned_region_size = aligned_region_size < rounded_mem_size
  121. ? aligned_region_size + 1
  122. : rounded_mem_size + 1;
  123. if (aligned_region_size != specified_mem_size) {
  124. pr_warn("Truncating memory from %pa to %pa (MPU region constraints)",
  125. &specified_mem_size, &aligned_region_size);
  126. memblock_remove(mem_start + aligned_region_size,
  127. specified_mem_size - aligned_round_size);
  128. mem_end = mem_start + aligned_region_size;
  129. }
  130. pr_debug("MPU Region from %pa size %pa (end %pa))\n",
  131. &phys_offset, &aligned_region_size, &mem_end);
  132. }
  133. static int mpu_present(void)
  134. {
  135. return ((read_cpuid_ext(CPUID_EXT_MMFR0) & MMFR0_PMSA) == MMFR0_PMSAv7);
  136. }
  137. static int mpu_max_regions(void)
  138. {
  139. /*
  140. * We don't support a different number of I/D side regions so if we
  141. * have separate instruction and data memory maps then return
  142. * whichever side has a smaller number of supported regions.
  143. */
  144. u32 dregions, iregions, mpuir;
  145. mpuir = read_cpuid(CPUID_MPUIR);
  146. dregions = iregions = (mpuir & MPUIR_DREGION_SZMASK) >> MPUIR_DREGION;
  147. /* Check for separate d-side and i-side memory maps */
  148. if (mpuir & MPUIR_nU)
  149. iregions = (mpuir & MPUIR_IREGION_SZMASK) >> MPUIR_IREGION;
  150. /* Use the smallest of the two maxima */
  151. return min(dregions, iregions);
  152. }
  153. static int mpu_iside_independent(void)
  154. {
  155. /* MPUIR.nU specifies whether there is *not* a unified memory map */
  156. return read_cpuid(CPUID_MPUIR) & MPUIR_nU;
  157. }
  158. static int mpu_min_region_order(void)
  159. {
  160. u32 drbar_result, irbar_result;
  161. /* We've kept a region free for this probing */
  162. rgnr_write(MPU_PROBE_REGION);
  163. isb();
  164. /*
  165. * As per ARM ARM, write 0xFFFFFFFC to DRBAR to find the minimum
  166. * region order
  167. */
  168. drbar_write(0xFFFFFFFC);
  169. drbar_result = irbar_result = drbar_read();
  170. drbar_write(0x0);
  171. /* If the MPU is non-unified, we use the larger of the two minima*/
  172. if (mpu_iside_independent()) {
  173. irbar_write(0xFFFFFFFC);
  174. irbar_result = irbar_read();
  175. irbar_write(0x0);
  176. }
  177. isb(); /* Ensure that MPU region operations have completed */
  178. /* Return whichever result is larger */
  179. return __ffs(max(drbar_result, irbar_result));
  180. }
  181. static int mpu_setup_region(unsigned int number, phys_addr_t start,
  182. unsigned int size_order, unsigned int properties)
  183. {
  184. u32 size_data;
  185. /* We kept a region free for probing resolution of MPU regions*/
  186. if (number > mpu_max_regions() || number == MPU_PROBE_REGION)
  187. return -ENOENT;
  188. if (size_order > 32)
  189. return -ENOMEM;
  190. if (size_order < mpu_min_region_order())
  191. return -ENOMEM;
  192. /* Writing N to bits 5:1 (RSR_SZ) specifies region size 2^N+1 */
  193. size_data = ((size_order - 1) << MPU_RSR_SZ) | 1 << MPU_RSR_EN;
  194. dsb(); /* Ensure all previous data accesses occur with old mappings */
  195. rgnr_write(number);
  196. isb();
  197. drbar_write(start);
  198. dracr_write(properties);
  199. isb(); /* Propagate properties before enabling region */
  200. drsr_write(size_data);
  201. /* Check for independent I-side registers */
  202. if (mpu_iside_independent()) {
  203. irbar_write(start);
  204. iracr_write(properties);
  205. isb();
  206. irsr_write(size_data);
  207. }
  208. isb();
  209. /* Store region info (we treat i/d side the same, so only store d) */
  210. mpu_rgn_info.rgns[number].dracr = properties;
  211. mpu_rgn_info.rgns[number].drbar = start;
  212. mpu_rgn_info.rgns[number].drsr = size_data;
  213. return 0;
  214. }
  215. /*
  216. * Set up default MPU regions, doing nothing if there is no MPU
  217. */
  218. void __init mpu_setup(void)
  219. {
  220. int region_err;
  221. if (!mpu_present())
  222. return;
  223. region_err = mpu_setup_region(MPU_RAM_REGION, PHYS_OFFSET,
  224. ilog2(meminfo.bank[0].size),
  225. MPU_AP_PL1RW_PL0RW | MPU_RGN_NORMAL);
  226. if (region_err) {
  227. panic("MPU region initialization failure! %d", region_err);
  228. } else {
  229. pr_info("Using ARMv7 PMSA Compliant MPU. "
  230. "Region independence: %s, Max regions: %d\n",
  231. mpu_iside_independent() ? "Yes" : "No",
  232. mpu_max_regions());
  233. }
  234. }
  235. #else
  236. static void sanity_check_meminfo_mpu(void) {}
  237. static void __init mpu_setup(void) {}
  238. #endif /* CONFIG_ARM_MPU */
  239. void __init arm_mm_memblock_reserve(void)
  240. {
  241. #ifndef CONFIG_CPU_V7M
  242. /*
  243. * Register the exception vector page.
  244. * some architectures which the DRAM is the exception vector to trap,
  245. * alloc_page breaks with error, although it is not NULL, but "0."
  246. */
  247. memblock_reserve(CONFIG_VECTORS_BASE, PAGE_SIZE);
  248. #else /* ifndef CONFIG_CPU_V7M */
  249. /*
  250. * There is no dedicated vector page on V7-M. So nothing needs to be
  251. * reserved here.
  252. */
  253. #endif
  254. }
  255. void __init sanity_check_meminfo(void)
  256. {
  257. phys_addr_t end;
  258. sanity_check_meminfo_mpu();
  259. end = memblock_end_of_DRAM();
  260. high_memory = __va(end - 1) + 1;
  261. memblock_set_current_limit(end);
  262. }
  263. /*
  264. * paging_init() sets up the page tables, initialises the zone memory
  265. * maps, and sets up the zero page, bad page and bad page tables.
  266. */
  267. void __init paging_init(const struct machine_desc *mdesc)
  268. {
  269. early_trap_init((void *)CONFIG_VECTORS_BASE);
  270. mpu_setup();
  271. bootmem_init();
  272. }
  273. /*
  274. * We don't need to do anything here for nommu machines.
  275. */
  276. void setup_mm_for_reboot(void)
  277. {
  278. }
  279. void flush_dcache_page(struct page *page)
  280. {
  281. __cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
  282. }
  283. EXPORT_SYMBOL(flush_dcache_page);
  284. void flush_kernel_dcache_page(struct page *page)
  285. {
  286. __cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
  287. }
  288. EXPORT_SYMBOL(flush_kernel_dcache_page);
  289. void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
  290. unsigned long uaddr, void *dst, const void *src,
  291. unsigned long len)
  292. {
  293. memcpy(dst, src, len);
  294. if (vma->vm_flags & VM_EXEC)
  295. __cpuc_coherent_user_range(uaddr, uaddr + len);
  296. }
  297. void __iomem *__arm_ioremap_pfn(unsigned long pfn, unsigned long offset,
  298. size_t size, unsigned int mtype)
  299. {
  300. if (pfn >= (0x100000000ULL >> PAGE_SHIFT))
  301. return NULL;
  302. return (void __iomem *) (offset + (pfn << PAGE_SHIFT));
  303. }
  304. EXPORT_SYMBOL(__arm_ioremap_pfn);
  305. void __iomem *__arm_ioremap_caller(phys_addr_t phys_addr, size_t size,
  306. unsigned int mtype, void *caller)
  307. {
  308. return (void __iomem *)phys_addr;
  309. }
  310. void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t, unsigned int, void *);
  311. void __iomem *ioremap(resource_size_t res_cookie, size_t size)
  312. {
  313. return __arm_ioremap_caller(res_cookie, size, MT_DEVICE,
  314. __builtin_return_address(0));
  315. }
  316. EXPORT_SYMBOL(ioremap);
  317. void __iomem *ioremap_cache(resource_size_t res_cookie, size_t size)
  318. {
  319. return __arm_ioremap_caller(res_cookie, size, MT_DEVICE_CACHED,
  320. __builtin_return_address(0));
  321. }
  322. EXPORT_SYMBOL(ioremap_cache);
  323. void __iomem *ioremap_wc(resource_size_t res_cookie, size_t size)
  324. {
  325. return __arm_ioremap_caller(res_cookie, size, MT_DEVICE_WC,
  326. __builtin_return_address(0));
  327. }
  328. EXPORT_SYMBOL(ioremap_wc);
  329. void __iounmap(volatile void __iomem *addr)
  330. {
  331. }
  332. EXPORT_SYMBOL(__iounmap);
  333. void (*arch_iounmap)(volatile void __iomem *);
  334. void iounmap(volatile void __iomem *addr)
  335. {
  336. }
  337. EXPORT_SYMBOL(iounmap);