multiorder.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718
  1. /*
  2. * multiorder.c: Multi-order radix tree entry testing
  3. * Copyright (c) 2016 Intel Corporation
  4. * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
  5. * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
  6. *
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms and conditions of the GNU General Public License,
  9. * version 2, as published by the Free Software Foundation.
  10. *
  11. * This program is distributed in the hope it will be useful, but WITHOUT
  12. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  14. * more details.
  15. */
  16. #include <linux/radix-tree.h>
  17. #include <linux/slab.h>
  18. #include <linux/errno.h>
  19. #include <pthread.h>
  20. #include "test.h"
  21. #define for_each_index(i, base, order) \
  22. for (i = base; i < base + (1 << order); i++)
  23. static void __multiorder_tag_test(int index, int order)
  24. {
  25. RADIX_TREE(tree, GFP_KERNEL);
  26. int base, err, i;
  27. /* our canonical entry */
  28. base = index & ~((1 << order) - 1);
  29. printv(2, "Multiorder tag test with index %d, canonical entry %d\n",
  30. index, base);
  31. err = item_insert_order(&tree, index, order);
  32. assert(!err);
  33. /*
  34. * Verify we get collisions for covered indices. We try and fail to
  35. * insert a value entry so we don't leak memory via
  36. * item_insert_order().
  37. */
  38. for_each_index(i, base, order) {
  39. err = __radix_tree_insert(&tree, i, order, xa_mk_value(0xA0));
  40. assert(err == -EEXIST);
  41. }
  42. for_each_index(i, base, order) {
  43. assert(!radix_tree_tag_get(&tree, i, 0));
  44. assert(!radix_tree_tag_get(&tree, i, 1));
  45. }
  46. assert(radix_tree_tag_set(&tree, index, 0));
  47. for_each_index(i, base, order) {
  48. assert(radix_tree_tag_get(&tree, i, 0));
  49. assert(!radix_tree_tag_get(&tree, i, 1));
  50. }
  51. assert(tag_tagged_items(&tree, NULL, 0, ~0UL, 10, 0, 1) == 1);
  52. assert(radix_tree_tag_clear(&tree, index, 0));
  53. for_each_index(i, base, order) {
  54. assert(!radix_tree_tag_get(&tree, i, 0));
  55. assert(radix_tree_tag_get(&tree, i, 1));
  56. }
  57. assert(radix_tree_tag_clear(&tree, index, 1));
  58. assert(!radix_tree_tagged(&tree, 0));
  59. assert(!radix_tree_tagged(&tree, 1));
  60. item_kill_tree(&tree);
  61. }
  62. static void __multiorder_tag_test2(unsigned order, unsigned long index2)
  63. {
  64. RADIX_TREE(tree, GFP_KERNEL);
  65. unsigned long index = (1 << order);
  66. index2 += index;
  67. assert(item_insert_order(&tree, 0, order) == 0);
  68. assert(item_insert(&tree, index2) == 0);
  69. assert(radix_tree_tag_set(&tree, 0, 0));
  70. assert(radix_tree_tag_set(&tree, index2, 0));
  71. assert(tag_tagged_items(&tree, NULL, 0, ~0UL, 10, 0, 1) == 2);
  72. item_kill_tree(&tree);
  73. }
  74. static void multiorder_tag_tests(void)
  75. {
  76. int i, j;
  77. /* test multi-order entry for indices 0-7 with no sibling pointers */
  78. __multiorder_tag_test(0, 3);
  79. __multiorder_tag_test(5, 3);
  80. /* test multi-order entry for indices 8-15 with no sibling pointers */
  81. __multiorder_tag_test(8, 3);
  82. __multiorder_tag_test(15, 3);
  83. /*
  84. * Our order 5 entry covers indices 0-31 in a tree with height=2.
  85. * This is broken up as follows:
  86. * 0-7: canonical entry
  87. * 8-15: sibling 1
  88. * 16-23: sibling 2
  89. * 24-31: sibling 3
  90. */
  91. __multiorder_tag_test(0, 5);
  92. __multiorder_tag_test(29, 5);
  93. /* same test, but with indices 32-63 */
  94. __multiorder_tag_test(32, 5);
  95. __multiorder_tag_test(44, 5);
  96. /*
  97. * Our order 8 entry covers indices 0-255 in a tree with height=3.
  98. * This is broken up as follows:
  99. * 0-63: canonical entry
  100. * 64-127: sibling 1
  101. * 128-191: sibling 2
  102. * 192-255: sibling 3
  103. */
  104. __multiorder_tag_test(0, 8);
  105. __multiorder_tag_test(190, 8);
  106. /* same test, but with indices 256-511 */
  107. __multiorder_tag_test(256, 8);
  108. __multiorder_tag_test(300, 8);
  109. __multiorder_tag_test(0x12345678UL, 8);
  110. for (i = 1; i < 10; i++)
  111. for (j = 0; j < (10 << i); j++)
  112. __multiorder_tag_test2(i, j);
  113. }
  114. static void multiorder_check(unsigned long index, int order)
  115. {
  116. unsigned long i;
  117. unsigned long min = index & ~((1UL << order) - 1);
  118. unsigned long max = min + (1UL << order);
  119. void **slot;
  120. struct item *item2 = item_create(min, order);
  121. RADIX_TREE(tree, GFP_KERNEL);
  122. printv(2, "Multiorder index %ld, order %d\n", index, order);
  123. assert(item_insert_order(&tree, index, order) == 0);
  124. for (i = min; i < max; i++) {
  125. struct item *item = item_lookup(&tree, i);
  126. assert(item != 0);
  127. assert(item->index == index);
  128. }
  129. for (i = 0; i < min; i++)
  130. item_check_absent(&tree, i);
  131. for (i = max; i < 2*max; i++)
  132. item_check_absent(&tree, i);
  133. for (i = min; i < max; i++)
  134. assert(radix_tree_insert(&tree, i, item2) == -EEXIST);
  135. slot = radix_tree_lookup_slot(&tree, index);
  136. free(*slot);
  137. radix_tree_replace_slot(&tree, slot, item2);
  138. for (i = min; i < max; i++) {
  139. struct item *item = item_lookup(&tree, i);
  140. assert(item != 0);
  141. assert(item->index == min);
  142. }
  143. assert(item_delete(&tree, min) != 0);
  144. for (i = 0; i < 2*max; i++)
  145. item_check_absent(&tree, i);
  146. }
  147. static void multiorder_shrink(unsigned long index, int order)
  148. {
  149. unsigned long i;
  150. unsigned long max = 1 << order;
  151. RADIX_TREE(tree, GFP_KERNEL);
  152. struct radix_tree_node *node;
  153. printv(2, "Multiorder shrink index %ld, order %d\n", index, order);
  154. assert(item_insert_order(&tree, 0, order) == 0);
  155. node = tree.rnode;
  156. assert(item_insert(&tree, index) == 0);
  157. assert(node != tree.rnode);
  158. assert(item_delete(&tree, index) != 0);
  159. assert(node == tree.rnode);
  160. for (i = 0; i < max; i++) {
  161. struct item *item = item_lookup(&tree, i);
  162. assert(item != 0);
  163. assert(item->index == 0);
  164. }
  165. for (i = max; i < 2*max; i++)
  166. item_check_absent(&tree, i);
  167. if (!item_delete(&tree, 0)) {
  168. printv(2, "failed to delete index %ld (order %d)\n", index, order);
  169. abort();
  170. }
  171. for (i = 0; i < 2*max; i++)
  172. item_check_absent(&tree, i);
  173. }
  174. static void multiorder_insert_bug(void)
  175. {
  176. RADIX_TREE(tree, GFP_KERNEL);
  177. item_insert(&tree, 0);
  178. radix_tree_tag_set(&tree, 0, 0);
  179. item_insert_order(&tree, 3 << 6, 6);
  180. item_kill_tree(&tree);
  181. }
  182. void multiorder_iteration(void)
  183. {
  184. RADIX_TREE(tree, GFP_KERNEL);
  185. struct radix_tree_iter iter;
  186. void **slot;
  187. int i, j, err;
  188. printv(1, "Multiorder iteration test\n");
  189. #define NUM_ENTRIES 11
  190. int index[NUM_ENTRIES] = {0, 2, 4, 8, 16, 32, 34, 36, 64, 72, 128};
  191. int order[NUM_ENTRIES] = {1, 1, 2, 3, 4, 1, 0, 1, 3, 0, 7};
  192. for (i = 0; i < NUM_ENTRIES; i++) {
  193. err = item_insert_order(&tree, index[i], order[i]);
  194. assert(!err);
  195. }
  196. for (j = 0; j < 256; j++) {
  197. for (i = 0; i < NUM_ENTRIES; i++)
  198. if (j <= (index[i] | ((1 << order[i]) - 1)))
  199. break;
  200. radix_tree_for_each_slot(slot, &tree, &iter, j) {
  201. int height = order[i] / RADIX_TREE_MAP_SHIFT;
  202. int shift = height * RADIX_TREE_MAP_SHIFT;
  203. unsigned long mask = (1UL << order[i]) - 1;
  204. struct item *item = *slot;
  205. assert((iter.index | mask) == (index[i] | mask));
  206. assert(iter.shift == shift);
  207. assert(!radix_tree_is_internal_node(item));
  208. assert((item->index | mask) == (index[i] | mask));
  209. assert(item->order == order[i]);
  210. i++;
  211. }
  212. }
  213. item_kill_tree(&tree);
  214. }
  215. void multiorder_tagged_iteration(void)
  216. {
  217. RADIX_TREE(tree, GFP_KERNEL);
  218. struct radix_tree_iter iter;
  219. void **slot;
  220. int i, j;
  221. printv(1, "Multiorder tagged iteration test\n");
  222. #define MT_NUM_ENTRIES 9
  223. int index[MT_NUM_ENTRIES] = {0, 2, 4, 16, 32, 40, 64, 72, 128};
  224. int order[MT_NUM_ENTRIES] = {1, 0, 2, 4, 3, 1, 3, 0, 7};
  225. #define TAG_ENTRIES 7
  226. int tag_index[TAG_ENTRIES] = {0, 4, 16, 40, 64, 72, 128};
  227. for (i = 0; i < MT_NUM_ENTRIES; i++)
  228. assert(!item_insert_order(&tree, index[i], order[i]));
  229. assert(!radix_tree_tagged(&tree, 1));
  230. for (i = 0; i < TAG_ENTRIES; i++)
  231. assert(radix_tree_tag_set(&tree, tag_index[i], 1));
  232. for (j = 0; j < 256; j++) {
  233. int k;
  234. for (i = 0; i < TAG_ENTRIES; i++) {
  235. for (k = i; index[k] < tag_index[i]; k++)
  236. ;
  237. if (j <= (index[k] | ((1 << order[k]) - 1)))
  238. break;
  239. }
  240. radix_tree_for_each_tagged(slot, &tree, &iter, j, 1) {
  241. unsigned long mask;
  242. struct item *item = *slot;
  243. for (k = i; index[k] < tag_index[i]; k++)
  244. ;
  245. mask = (1UL << order[k]) - 1;
  246. assert((iter.index | mask) == (tag_index[i] | mask));
  247. assert(!radix_tree_is_internal_node(item));
  248. assert((item->index | mask) == (tag_index[i] | mask));
  249. assert(item->order == order[k]);
  250. i++;
  251. }
  252. }
  253. assert(tag_tagged_items(&tree, NULL, 0, ~0UL, TAG_ENTRIES, 1, 2) ==
  254. TAG_ENTRIES);
  255. for (j = 0; j < 256; j++) {
  256. int mask, k;
  257. for (i = 0; i < TAG_ENTRIES; i++) {
  258. for (k = i; index[k] < tag_index[i]; k++)
  259. ;
  260. if (j <= (index[k] | ((1 << order[k]) - 1)))
  261. break;
  262. }
  263. radix_tree_for_each_tagged(slot, &tree, &iter, j, 2) {
  264. struct item *item = *slot;
  265. for (k = i; index[k] < tag_index[i]; k++)
  266. ;
  267. mask = (1 << order[k]) - 1;
  268. assert((iter.index | mask) == (tag_index[i] | mask));
  269. assert(!radix_tree_is_internal_node(item));
  270. assert((item->index | mask) == (tag_index[i] | mask));
  271. assert(item->order == order[k]);
  272. i++;
  273. }
  274. }
  275. assert(tag_tagged_items(&tree, NULL, 1, ~0UL, MT_NUM_ENTRIES * 2, 1, 0)
  276. == TAG_ENTRIES);
  277. i = 0;
  278. radix_tree_for_each_tagged(slot, &tree, &iter, 0, 0) {
  279. assert(iter.index == tag_index[i]);
  280. i++;
  281. }
  282. item_kill_tree(&tree);
  283. }
  284. /*
  285. * Basic join checks: make sure we can't find an entry in the tree after
  286. * a larger entry has replaced it
  287. */
  288. static void multiorder_join1(unsigned long index,
  289. unsigned order1, unsigned order2)
  290. {
  291. unsigned long loc;
  292. void *item, *item2 = item_create(index + 1, order1);
  293. RADIX_TREE(tree, GFP_KERNEL);
  294. item_insert_order(&tree, index, order2);
  295. item = radix_tree_lookup(&tree, index);
  296. radix_tree_join(&tree, index + 1, order1, item2);
  297. loc = find_item(&tree, item);
  298. if (loc == -1)
  299. free(item);
  300. item = radix_tree_lookup(&tree, index + 1);
  301. assert(item == item2);
  302. item_kill_tree(&tree);
  303. }
  304. /*
  305. * Check that the accounting of value entries is handled correctly
  306. * by joining a value entry to a normal pointer.
  307. */
  308. static void multiorder_join2(unsigned order1, unsigned order2)
  309. {
  310. RADIX_TREE(tree, GFP_KERNEL);
  311. struct radix_tree_node *node;
  312. void *item1 = item_create(0, order1);
  313. void *item2;
  314. item_insert_order(&tree, 0, order2);
  315. radix_tree_insert(&tree, 1 << order2, xa_mk_value(5));
  316. item2 = __radix_tree_lookup(&tree, 1 << order2, &node, NULL);
  317. assert(item2 == xa_mk_value(5));
  318. assert(node->exceptional == 1);
  319. item2 = radix_tree_lookup(&tree, 0);
  320. free(item2);
  321. radix_tree_join(&tree, 0, order1, item1);
  322. item2 = __radix_tree_lookup(&tree, 1 << order2, &node, NULL);
  323. assert(item2 == item1);
  324. assert(node->exceptional == 0);
  325. item_kill_tree(&tree);
  326. }
  327. /*
  328. * This test revealed an accounting bug for value entries at one point.
  329. * Nodes were being freed back into the pool with an elevated exception count
  330. * by radix_tree_join() and then radix_tree_split() was failing to zero the
  331. * count of exceptional entries.
  332. */
  333. static void multiorder_join3(unsigned int order)
  334. {
  335. RADIX_TREE(tree, GFP_KERNEL);
  336. struct radix_tree_node *node;
  337. void **slot;
  338. struct radix_tree_iter iter;
  339. unsigned long i;
  340. for (i = 0; i < (1 << order); i++) {
  341. radix_tree_insert(&tree, i, xa_mk_value(5));
  342. }
  343. radix_tree_join(&tree, 0, order, xa_mk_value(7));
  344. rcu_barrier();
  345. radix_tree_split(&tree, 0, 0);
  346. radix_tree_for_each_slot(slot, &tree, &iter, 0) {
  347. radix_tree_iter_replace(&tree, &iter, slot, xa_mk_value(5));
  348. }
  349. __radix_tree_lookup(&tree, 0, &node, NULL);
  350. assert(node->exceptional == node->count);
  351. item_kill_tree(&tree);
  352. }
  353. static void multiorder_join(void)
  354. {
  355. int i, j, idx;
  356. for (idx = 0; idx < 1024; idx = idx * 2 + 3) {
  357. for (i = 1; i < 15; i++) {
  358. for (j = 0; j < i; j++) {
  359. multiorder_join1(idx, i, j);
  360. }
  361. }
  362. }
  363. for (i = 1; i < 15; i++) {
  364. for (j = 0; j < i; j++) {
  365. multiorder_join2(i, j);
  366. }
  367. }
  368. for (i = 3; i < 10; i++) {
  369. multiorder_join3(i);
  370. }
  371. }
  372. static void check_mem(unsigned old_order, unsigned new_order, unsigned alloc)
  373. {
  374. struct radix_tree_preload *rtp = &radix_tree_preloads;
  375. if (rtp->nr != 0)
  376. printv(2, "split(%u %u) remaining %u\n", old_order, new_order,
  377. rtp->nr);
  378. /*
  379. * Can't check for equality here as some nodes may have been
  380. * RCU-freed while we ran. But we should never finish with more
  381. * nodes allocated since they should have all been preloaded.
  382. */
  383. if (nr_allocated > alloc)
  384. printv(2, "split(%u %u) allocated %u %u\n", old_order, new_order,
  385. alloc, nr_allocated);
  386. }
  387. static void __multiorder_split(int old_order, int new_order)
  388. {
  389. RADIX_TREE(tree, GFP_ATOMIC);
  390. void **slot;
  391. struct radix_tree_iter iter;
  392. unsigned alloc;
  393. struct item *item;
  394. radix_tree_preload(GFP_KERNEL);
  395. assert(item_insert_order(&tree, 0, old_order) == 0);
  396. radix_tree_preload_end();
  397. /* Wipe out the preloaded cache or it'll confuse check_mem() */
  398. radix_tree_cpu_dead(0);
  399. item = radix_tree_tag_set(&tree, 0, 2);
  400. radix_tree_split_preload(old_order, new_order, GFP_KERNEL);
  401. alloc = nr_allocated;
  402. radix_tree_split(&tree, 0, new_order);
  403. check_mem(old_order, new_order, alloc);
  404. radix_tree_for_each_slot(slot, &tree, &iter, 0) {
  405. radix_tree_iter_replace(&tree, &iter, slot,
  406. item_create(iter.index, new_order));
  407. }
  408. radix_tree_preload_end();
  409. item_kill_tree(&tree);
  410. free(item);
  411. }
  412. static void __multiorder_split2(int old_order, int new_order)
  413. {
  414. RADIX_TREE(tree, GFP_KERNEL);
  415. void **slot;
  416. struct radix_tree_iter iter;
  417. struct radix_tree_node *node;
  418. void *item;
  419. __radix_tree_insert(&tree, 0, old_order, xa_mk_value(5));
  420. item = __radix_tree_lookup(&tree, 0, &node, NULL);
  421. assert(item == xa_mk_value(5));
  422. assert(node->exceptional > 0);
  423. radix_tree_split(&tree, 0, new_order);
  424. radix_tree_for_each_slot(slot, &tree, &iter, 0) {
  425. radix_tree_iter_replace(&tree, &iter, slot,
  426. item_create(iter.index, new_order));
  427. }
  428. item = __radix_tree_lookup(&tree, 0, &node, NULL);
  429. assert(item != xa_mk_value(5));
  430. assert(node->exceptional == 0);
  431. item_kill_tree(&tree);
  432. }
  433. static void __multiorder_split3(int old_order, int new_order)
  434. {
  435. RADIX_TREE(tree, GFP_KERNEL);
  436. void **slot;
  437. struct radix_tree_iter iter;
  438. struct radix_tree_node *node;
  439. void *item;
  440. __radix_tree_insert(&tree, 0, old_order, xa_mk_value(5));
  441. item = __radix_tree_lookup(&tree, 0, &node, NULL);
  442. assert(item == xa_mk_value(5));
  443. assert(node->exceptional > 0);
  444. radix_tree_split(&tree, 0, new_order);
  445. radix_tree_for_each_slot(slot, &tree, &iter, 0) {
  446. radix_tree_iter_replace(&tree, &iter, slot, xa_mk_value(7));
  447. }
  448. item = __radix_tree_lookup(&tree, 0, &node, NULL);
  449. assert(item == xa_mk_value(7));
  450. assert(node->exceptional > 0);
  451. item_kill_tree(&tree);
  452. __radix_tree_insert(&tree, 0, old_order, xa_mk_value(5));
  453. item = __radix_tree_lookup(&tree, 0, &node, NULL);
  454. assert(item == xa_mk_value(5));
  455. assert(node->exceptional > 0);
  456. radix_tree_split(&tree, 0, new_order);
  457. radix_tree_for_each_slot(slot, &tree, &iter, 0) {
  458. if (iter.index == (1 << new_order))
  459. radix_tree_iter_replace(&tree, &iter, slot,
  460. xa_mk_value(7));
  461. else
  462. radix_tree_iter_replace(&tree, &iter, slot, NULL);
  463. }
  464. item = __radix_tree_lookup(&tree, 1 << new_order, &node, NULL);
  465. assert(item == xa_mk_value(7));
  466. assert(node->count == node->exceptional);
  467. do {
  468. node = node->parent;
  469. if (!node)
  470. break;
  471. assert(node->count == 1);
  472. assert(node->exceptional == 0);
  473. } while (1);
  474. item_kill_tree(&tree);
  475. }
  476. static void multiorder_split(void)
  477. {
  478. int i, j;
  479. for (i = 3; i < 11; i++)
  480. for (j = 0; j < i; j++) {
  481. __multiorder_split(i, j);
  482. __multiorder_split2(i, j);
  483. __multiorder_split3(i, j);
  484. }
  485. }
  486. static void multiorder_account(void)
  487. {
  488. RADIX_TREE(tree, GFP_KERNEL);
  489. struct radix_tree_node *node;
  490. void **slot;
  491. item_insert_order(&tree, 0, 5);
  492. __radix_tree_insert(&tree, 1 << 5, 5, xa_mk_value(5));
  493. __radix_tree_lookup(&tree, 0, &node, NULL);
  494. assert(node->count == node->exceptional * 2);
  495. radix_tree_delete(&tree, 1 << 5);
  496. assert(node->exceptional == 0);
  497. __radix_tree_insert(&tree, 1 << 5, 5, xa_mk_value(5));
  498. __radix_tree_lookup(&tree, 1 << 5, &node, &slot);
  499. assert(node->count == node->exceptional * 2);
  500. __radix_tree_replace(&tree, node, slot, NULL, NULL);
  501. assert(node->exceptional == 0);
  502. item_kill_tree(&tree);
  503. }
  504. bool stop_iteration = false;
  505. static void *creator_func(void *ptr)
  506. {
  507. /* 'order' is set up to ensure we have sibling entries */
  508. unsigned int order = RADIX_TREE_MAP_SHIFT - 1;
  509. struct radix_tree_root *tree = ptr;
  510. int i;
  511. for (i = 0; i < 10000; i++) {
  512. item_insert_order(tree, 0, order);
  513. item_delete_rcu(tree, 0);
  514. }
  515. stop_iteration = true;
  516. return NULL;
  517. }
  518. static void *iterator_func(void *ptr)
  519. {
  520. struct radix_tree_root *tree = ptr;
  521. struct radix_tree_iter iter;
  522. struct item *item;
  523. void **slot;
  524. while (!stop_iteration) {
  525. rcu_read_lock();
  526. radix_tree_for_each_slot(slot, tree, &iter, 0) {
  527. item = radix_tree_deref_slot(slot);
  528. if (!item)
  529. continue;
  530. if (radix_tree_deref_retry(item)) {
  531. slot = radix_tree_iter_retry(&iter);
  532. continue;
  533. }
  534. item_sanity(item, iter.index);
  535. }
  536. rcu_read_unlock();
  537. }
  538. return NULL;
  539. }
  540. static void multiorder_iteration_race(void)
  541. {
  542. const int num_threads = sysconf(_SC_NPROCESSORS_ONLN);
  543. pthread_t worker_thread[num_threads];
  544. RADIX_TREE(tree, GFP_KERNEL);
  545. int i;
  546. pthread_create(&worker_thread[0], NULL, &creator_func, &tree);
  547. for (i = 1; i < num_threads; i++)
  548. pthread_create(&worker_thread[i], NULL, &iterator_func, &tree);
  549. for (i = 0; i < num_threads; i++)
  550. pthread_join(worker_thread[i], NULL);
  551. item_kill_tree(&tree);
  552. }
  553. void multiorder_checks(void)
  554. {
  555. int i;
  556. for (i = 0; i < 20; i++) {
  557. multiorder_check(200, i);
  558. multiorder_check(0, i);
  559. multiorder_check((1UL << i) + 1, i);
  560. }
  561. for (i = 0; i < 15; i++)
  562. multiorder_shrink((1UL << (i + RADIX_TREE_MAP_SHIFT)), i);
  563. multiorder_insert_bug();
  564. multiorder_tag_tests();
  565. multiorder_iteration();
  566. multiorder_tagged_iteration();
  567. multiorder_join();
  568. multiorder_split();
  569. multiorder_account();
  570. multiorder_iteration_race();
  571. radix_tree_cpu_dead(0);
  572. }
  573. int __weak main(void)
  574. {
  575. radix_tree_init();
  576. multiorder_checks();
  577. return 0;
  578. }