radix-tree.c 62 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294
  1. /*
  2. * Copyright (C) 2001 Momchil Velikov
  3. * Portions Copyright (C) 2001 Christoph Hellwig
  4. * Copyright (C) 2005 SGI, Christoph Lameter
  5. * Copyright (C) 2006 Nick Piggin
  6. * Copyright (C) 2012 Konstantin Khlebnikov
  7. * Copyright (C) 2016 Intel, Matthew Wilcox
  8. * Copyright (C) 2016 Intel, Ross Zwisler
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License as
  12. * published by the Free Software Foundation; either version 2, or (at
  13. * your option) any later version.
  14. *
  15. * This program is distributed in the hope that it will be useful, but
  16. * WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, write to the Free Software
  22. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  23. */
  24. #include <linux/bitmap.h>
  25. #include <linux/bitops.h>
  26. #include <linux/bug.h>
  27. #include <linux/cpu.h>
  28. #include <linux/errno.h>
  29. #include <linux/export.h>
  30. #include <linux/idr.h>
  31. #include <linux/init.h>
  32. #include <linux/kernel.h>
  33. #include <linux/kmemleak.h>
  34. #include <linux/percpu.h>
  35. #include <linux/preempt.h> /* in_interrupt() */
  36. #include <linux/radix-tree.h>
  37. #include <linux/rcupdate.h>
  38. #include <linux/slab.h>
  39. #include <linux/string.h>
  40. /* Number of nodes in fully populated tree of given height */
  41. static unsigned long height_to_maxnodes[RADIX_TREE_MAX_PATH + 1] __read_mostly;
  42. /*
  43. * Radix tree node cache.
  44. */
  45. static struct kmem_cache *radix_tree_node_cachep;
  46. /*
  47. * The radix tree is variable-height, so an insert operation not only has
  48. * to build the branch to its corresponding item, it also has to build the
  49. * branch to existing items if the size has to be increased (by
  50. * radix_tree_extend).
  51. *
  52. * The worst case is a zero height tree with just a single item at index 0,
  53. * and then inserting an item at index ULONG_MAX. This requires 2 new branches
  54. * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
  55. * Hence:
  56. */
  57. #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
  58. /*
  59. * The IDR does not have to be as high as the radix tree since it uses
  60. * signed integers, not unsigned longs.
  61. */
  62. #define IDR_INDEX_BITS (8 /* CHAR_BIT */ * sizeof(int) - 1)
  63. #define IDR_MAX_PATH (DIV_ROUND_UP(IDR_INDEX_BITS, \
  64. RADIX_TREE_MAP_SHIFT))
  65. #define IDR_PRELOAD_SIZE (IDR_MAX_PATH * 2 - 1)
  66. /*
  67. * The IDA is even shorter since it uses a bitmap at the last level.
  68. */
  69. #define IDA_INDEX_BITS (8 * sizeof(int) - 1 - ilog2(IDA_BITMAP_BITS))
  70. #define IDA_MAX_PATH (DIV_ROUND_UP(IDA_INDEX_BITS, \
  71. RADIX_TREE_MAP_SHIFT))
  72. #define IDA_PRELOAD_SIZE (IDA_MAX_PATH * 2 - 1)
  73. /*
  74. * Per-cpu pool of preloaded nodes
  75. */
  76. struct radix_tree_preload {
  77. unsigned nr;
  78. /* nodes->parent points to next preallocated node */
  79. struct radix_tree_node *nodes;
  80. };
  81. static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
  82. static inline struct radix_tree_node *entry_to_node(void *ptr)
  83. {
  84. return (void *)((unsigned long)ptr & ~RADIX_TREE_INTERNAL_NODE);
  85. }
  86. static inline void *node_to_entry(void *ptr)
  87. {
  88. return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
  89. }
  90. #define RADIX_TREE_RETRY node_to_entry(NULL)
  91. #ifdef CONFIG_RADIX_TREE_MULTIORDER
  92. /* Sibling slots point directly to another slot in the same node */
  93. static inline
  94. bool is_sibling_entry(const struct radix_tree_node *parent, void *node)
  95. {
  96. void __rcu **ptr = node;
  97. return (parent->slots <= ptr) &&
  98. (ptr < parent->slots + RADIX_TREE_MAP_SIZE);
  99. }
  100. #else
  101. static inline
  102. bool is_sibling_entry(const struct radix_tree_node *parent, void *node)
  103. {
  104. return false;
  105. }
  106. #endif
  107. static inline unsigned long
  108. get_slot_offset(const struct radix_tree_node *parent, void __rcu **slot)
  109. {
  110. return parent ? slot - parent->slots : 0;
  111. }
  112. static unsigned int radix_tree_descend(const struct radix_tree_node *parent,
  113. struct radix_tree_node **nodep, unsigned long index)
  114. {
  115. unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
  116. void __rcu **entry = rcu_dereference_raw(parent->slots[offset]);
  117. #ifdef CONFIG_RADIX_TREE_MULTIORDER
  118. if (radix_tree_is_internal_node(entry)) {
  119. if (is_sibling_entry(parent, entry)) {
  120. void __rcu **sibentry;
  121. sibentry = (void __rcu **) entry_to_node(entry);
  122. offset = get_slot_offset(parent, sibentry);
  123. entry = rcu_dereference_raw(*sibentry);
  124. }
  125. }
  126. #endif
  127. *nodep = (void *)entry;
  128. return offset;
  129. }
  130. static inline gfp_t root_gfp_mask(const struct radix_tree_root *root)
  131. {
  132. return root->gfp_mask & (__GFP_BITS_MASK & ~GFP_ZONEMASK);
  133. }
  134. static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
  135. int offset)
  136. {
  137. __set_bit(offset, node->tags[tag]);
  138. }
  139. static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
  140. int offset)
  141. {
  142. __clear_bit(offset, node->tags[tag]);
  143. }
  144. static inline int tag_get(const struct radix_tree_node *node, unsigned int tag,
  145. int offset)
  146. {
  147. return test_bit(offset, node->tags[tag]);
  148. }
  149. static inline void root_tag_set(struct radix_tree_root *root, unsigned tag)
  150. {
  151. root->gfp_mask |= (__force gfp_t)(1 << (tag + ROOT_TAG_SHIFT));
  152. }
  153. static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
  154. {
  155. root->gfp_mask &= (__force gfp_t)~(1 << (tag + ROOT_TAG_SHIFT));
  156. }
  157. static inline void root_tag_clear_all(struct radix_tree_root *root)
  158. {
  159. root->gfp_mask &= (1 << ROOT_TAG_SHIFT) - 1;
  160. }
  161. static inline int root_tag_get(const struct radix_tree_root *root, unsigned tag)
  162. {
  163. return (__force int)root->gfp_mask & (1 << (tag + ROOT_TAG_SHIFT));
  164. }
  165. static inline unsigned root_tags_get(const struct radix_tree_root *root)
  166. {
  167. return (__force unsigned)root->gfp_mask >> ROOT_TAG_SHIFT;
  168. }
  169. static inline bool is_idr(const struct radix_tree_root *root)
  170. {
  171. return !!(root->gfp_mask & ROOT_IS_IDR);
  172. }
  173. /*
  174. * Returns 1 if any slot in the node has this tag set.
  175. * Otherwise returns 0.
  176. */
  177. static inline int any_tag_set(const struct radix_tree_node *node,
  178. unsigned int tag)
  179. {
  180. unsigned idx;
  181. for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
  182. if (node->tags[tag][idx])
  183. return 1;
  184. }
  185. return 0;
  186. }
  187. static inline void all_tag_set(struct radix_tree_node *node, unsigned int tag)
  188. {
  189. bitmap_fill(node->tags[tag], RADIX_TREE_MAP_SIZE);
  190. }
  191. /**
  192. * radix_tree_find_next_bit - find the next set bit in a memory region
  193. *
  194. * @addr: The address to base the search on
  195. * @size: The bitmap size in bits
  196. * @offset: The bitnumber to start searching at
  197. *
  198. * Unrollable variant of find_next_bit() for constant size arrays.
  199. * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
  200. * Returns next bit offset, or size if nothing found.
  201. */
  202. static __always_inline unsigned long
  203. radix_tree_find_next_bit(struct radix_tree_node *node, unsigned int tag,
  204. unsigned long offset)
  205. {
  206. const unsigned long *addr = node->tags[tag];
  207. if (offset < RADIX_TREE_MAP_SIZE) {
  208. unsigned long tmp;
  209. addr += offset / BITS_PER_LONG;
  210. tmp = *addr >> (offset % BITS_PER_LONG);
  211. if (tmp)
  212. return __ffs(tmp) + offset;
  213. offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
  214. while (offset < RADIX_TREE_MAP_SIZE) {
  215. tmp = *++addr;
  216. if (tmp)
  217. return __ffs(tmp) + offset;
  218. offset += BITS_PER_LONG;
  219. }
  220. }
  221. return RADIX_TREE_MAP_SIZE;
  222. }
  223. static unsigned int iter_offset(const struct radix_tree_iter *iter)
  224. {
  225. return (iter->index >> iter_shift(iter)) & RADIX_TREE_MAP_MASK;
  226. }
  227. /*
  228. * The maximum index which can be stored in a radix tree
  229. */
  230. static inline unsigned long shift_maxindex(unsigned int shift)
  231. {
  232. return (RADIX_TREE_MAP_SIZE << shift) - 1;
  233. }
  234. static inline unsigned long node_maxindex(const struct radix_tree_node *node)
  235. {
  236. return shift_maxindex(node->shift);
  237. }
  238. static unsigned long next_index(unsigned long index,
  239. const struct radix_tree_node *node,
  240. unsigned long offset)
  241. {
  242. return (index & ~node_maxindex(node)) + (offset << node->shift);
  243. }
  244. #ifndef __KERNEL__
  245. static void dump_node(struct radix_tree_node *node, unsigned long index)
  246. {
  247. unsigned long i;
  248. pr_debug("radix node: %p offset %d indices %lu-%lu parent %p tags %lx %lx %lx shift %d count %d exceptional %d\n",
  249. node, node->offset, index, index | node_maxindex(node),
  250. node->parent,
  251. node->tags[0][0], node->tags[1][0], node->tags[2][0],
  252. node->shift, node->count, node->exceptional);
  253. for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
  254. unsigned long first = index | (i << node->shift);
  255. unsigned long last = first | ((1UL << node->shift) - 1);
  256. void *entry = node->slots[i];
  257. if (!entry)
  258. continue;
  259. if (entry == RADIX_TREE_RETRY) {
  260. pr_debug("radix retry offset %ld indices %lu-%lu parent %p\n",
  261. i, first, last, node);
  262. } else if (!radix_tree_is_internal_node(entry)) {
  263. pr_debug("radix entry %p offset %ld indices %lu-%lu parent %p\n",
  264. entry, i, first, last, node);
  265. } else if (is_sibling_entry(node, entry)) {
  266. pr_debug("radix sblng %p offset %ld indices %lu-%lu parent %p val %p\n",
  267. entry, i, first, last, node,
  268. *(void **)entry_to_node(entry));
  269. } else {
  270. dump_node(entry_to_node(entry), first);
  271. }
  272. }
  273. }
  274. /* For debug */
  275. static void radix_tree_dump(struct radix_tree_root *root)
  276. {
  277. pr_debug("radix root: %p rnode %p tags %x\n",
  278. root, root->rnode,
  279. root->gfp_mask >> ROOT_TAG_SHIFT);
  280. if (!radix_tree_is_internal_node(root->rnode))
  281. return;
  282. dump_node(entry_to_node(root->rnode), 0);
  283. }
  284. static void dump_ida_node(void *entry, unsigned long index)
  285. {
  286. unsigned long i;
  287. if (!entry)
  288. return;
  289. if (radix_tree_is_internal_node(entry)) {
  290. struct radix_tree_node *node = entry_to_node(entry);
  291. pr_debug("ida node: %p offset %d indices %lu-%lu parent %p free %lx shift %d count %d\n",
  292. node, node->offset, index * IDA_BITMAP_BITS,
  293. ((index | node_maxindex(node)) + 1) *
  294. IDA_BITMAP_BITS - 1,
  295. node->parent, node->tags[0][0], node->shift,
  296. node->count);
  297. for (i = 0; i < RADIX_TREE_MAP_SIZE; i++)
  298. dump_ida_node(node->slots[i],
  299. index | (i << node->shift));
  300. } else if (xa_is_value(entry)) {
  301. pr_debug("ida excp: %p offset %d indices %lu-%lu data %lx\n",
  302. entry, (int)(index & RADIX_TREE_MAP_MASK),
  303. index * IDA_BITMAP_BITS,
  304. index * IDA_BITMAP_BITS + BITS_PER_XA_VALUE,
  305. xa_to_value(entry));
  306. } else {
  307. struct ida_bitmap *bitmap = entry;
  308. pr_debug("ida btmp: %p offset %d indices %lu-%lu data", bitmap,
  309. (int)(index & RADIX_TREE_MAP_MASK),
  310. index * IDA_BITMAP_BITS,
  311. (index + 1) * IDA_BITMAP_BITS - 1);
  312. for (i = 0; i < IDA_BITMAP_LONGS; i++)
  313. pr_cont(" %lx", bitmap->bitmap[i]);
  314. pr_cont("\n");
  315. }
  316. }
  317. static void ida_dump(struct ida *ida)
  318. {
  319. struct radix_tree_root *root = &ida->ida_rt;
  320. pr_debug("ida: %p node %p free %d\n", ida, root->rnode,
  321. root->gfp_mask >> ROOT_TAG_SHIFT);
  322. dump_ida_node(root->rnode, 0);
  323. }
  324. #endif
  325. /*
  326. * This assumes that the caller has performed appropriate preallocation, and
  327. * that the caller has pinned this thread of control to the current CPU.
  328. */
  329. static struct radix_tree_node *
  330. radix_tree_node_alloc(gfp_t gfp_mask, struct radix_tree_node *parent,
  331. struct radix_tree_root *root,
  332. unsigned int shift, unsigned int offset,
  333. unsigned int count, unsigned int exceptional)
  334. {
  335. struct radix_tree_node *ret = NULL;
  336. /*
  337. * Preload code isn't irq safe and it doesn't make sense to use
  338. * preloading during an interrupt anyway as all the allocations have
  339. * to be atomic. So just do normal allocation when in interrupt.
  340. */
  341. if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
  342. struct radix_tree_preload *rtp;
  343. /*
  344. * Even if the caller has preloaded, try to allocate from the
  345. * cache first for the new node to get accounted to the memory
  346. * cgroup.
  347. */
  348. ret = kmem_cache_alloc(radix_tree_node_cachep,
  349. gfp_mask | __GFP_NOWARN);
  350. if (ret)
  351. goto out;
  352. /*
  353. * Provided the caller has preloaded here, we will always
  354. * succeed in getting a node here (and never reach
  355. * kmem_cache_alloc)
  356. */
  357. rtp = this_cpu_ptr(&radix_tree_preloads);
  358. if (rtp->nr) {
  359. ret = rtp->nodes;
  360. rtp->nodes = ret->parent;
  361. rtp->nr--;
  362. }
  363. /*
  364. * Update the allocation stack trace as this is more useful
  365. * for debugging.
  366. */
  367. kmemleak_update_trace(ret);
  368. goto out;
  369. }
  370. ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
  371. out:
  372. BUG_ON(radix_tree_is_internal_node(ret));
  373. if (ret) {
  374. ret->shift = shift;
  375. ret->offset = offset;
  376. ret->count = count;
  377. ret->exceptional = exceptional;
  378. ret->parent = parent;
  379. ret->root = root;
  380. }
  381. return ret;
  382. }
  383. static void radix_tree_node_rcu_free(struct rcu_head *head)
  384. {
  385. struct radix_tree_node *node =
  386. container_of(head, struct radix_tree_node, rcu_head);
  387. /*
  388. * Must only free zeroed nodes into the slab. We can be left with
  389. * non-NULL entries by radix_tree_free_nodes, so clear the entries
  390. * and tags here.
  391. */
  392. memset(node->slots, 0, sizeof(node->slots));
  393. memset(node->tags, 0, sizeof(node->tags));
  394. INIT_LIST_HEAD(&node->private_list);
  395. kmem_cache_free(radix_tree_node_cachep, node);
  396. }
  397. static inline void
  398. radix_tree_node_free(struct radix_tree_node *node)
  399. {
  400. call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
  401. }
  402. /*
  403. * Load up this CPU's radix_tree_node buffer with sufficient objects to
  404. * ensure that the addition of a single element in the tree cannot fail. On
  405. * success, return zero, with preemption disabled. On error, return -ENOMEM
  406. * with preemption not disabled.
  407. *
  408. * To make use of this facility, the radix tree must be initialised without
  409. * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
  410. */
  411. static __must_check int __radix_tree_preload(gfp_t gfp_mask, unsigned nr)
  412. {
  413. struct radix_tree_preload *rtp;
  414. struct radix_tree_node *node;
  415. int ret = -ENOMEM;
  416. /*
  417. * Nodes preloaded by one cgroup can be be used by another cgroup, so
  418. * they should never be accounted to any particular memory cgroup.
  419. */
  420. gfp_mask &= ~__GFP_ACCOUNT;
  421. preempt_disable();
  422. rtp = this_cpu_ptr(&radix_tree_preloads);
  423. while (rtp->nr < nr) {
  424. preempt_enable();
  425. node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
  426. if (node == NULL)
  427. goto out;
  428. preempt_disable();
  429. rtp = this_cpu_ptr(&radix_tree_preloads);
  430. if (rtp->nr < nr) {
  431. node->parent = rtp->nodes;
  432. rtp->nodes = node;
  433. rtp->nr++;
  434. } else {
  435. kmem_cache_free(radix_tree_node_cachep, node);
  436. }
  437. }
  438. ret = 0;
  439. out:
  440. return ret;
  441. }
  442. /*
  443. * Load up this CPU's radix_tree_node buffer with sufficient objects to
  444. * ensure that the addition of a single element in the tree cannot fail. On
  445. * success, return zero, with preemption disabled. On error, return -ENOMEM
  446. * with preemption not disabled.
  447. *
  448. * To make use of this facility, the radix tree must be initialised without
  449. * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
  450. */
  451. int radix_tree_preload(gfp_t gfp_mask)
  452. {
  453. /* Warn on non-sensical use... */
  454. WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
  455. return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
  456. }
  457. EXPORT_SYMBOL(radix_tree_preload);
  458. /*
  459. * The same as above function, except we don't guarantee preloading happens.
  460. * We do it, if we decide it helps. On success, return zero with preemption
  461. * disabled. On error, return -ENOMEM with preemption not disabled.
  462. */
  463. int radix_tree_maybe_preload(gfp_t gfp_mask)
  464. {
  465. if (gfpflags_allow_blocking(gfp_mask))
  466. return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
  467. /* Preloading doesn't help anything with this gfp mask, skip it */
  468. preempt_disable();
  469. return 0;
  470. }
  471. EXPORT_SYMBOL(radix_tree_maybe_preload);
  472. #ifdef CONFIG_RADIX_TREE_MULTIORDER
  473. /*
  474. * Preload with enough objects to ensure that we can split a single entry
  475. * of order @old_order into many entries of size @new_order
  476. */
  477. int radix_tree_split_preload(unsigned int old_order, unsigned int new_order,
  478. gfp_t gfp_mask)
  479. {
  480. unsigned top = 1 << (old_order % RADIX_TREE_MAP_SHIFT);
  481. unsigned layers = (old_order / RADIX_TREE_MAP_SHIFT) -
  482. (new_order / RADIX_TREE_MAP_SHIFT);
  483. unsigned nr = 0;
  484. WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
  485. BUG_ON(new_order >= old_order);
  486. while (layers--)
  487. nr = nr * RADIX_TREE_MAP_SIZE + 1;
  488. return __radix_tree_preload(gfp_mask, top * nr);
  489. }
  490. #endif
  491. /*
  492. * The same as function above, but preload number of nodes required to insert
  493. * (1 << order) continuous naturally-aligned elements.
  494. */
  495. int radix_tree_maybe_preload_order(gfp_t gfp_mask, int order)
  496. {
  497. unsigned long nr_subtrees;
  498. int nr_nodes, subtree_height;
  499. /* Preloading doesn't help anything with this gfp mask, skip it */
  500. if (!gfpflags_allow_blocking(gfp_mask)) {
  501. preempt_disable();
  502. return 0;
  503. }
  504. /*
  505. * Calculate number and height of fully populated subtrees it takes to
  506. * store (1 << order) elements.
  507. */
  508. nr_subtrees = 1 << order;
  509. for (subtree_height = 0; nr_subtrees > RADIX_TREE_MAP_SIZE;
  510. subtree_height++)
  511. nr_subtrees >>= RADIX_TREE_MAP_SHIFT;
  512. /*
  513. * The worst case is zero height tree with a single item at index 0 and
  514. * then inserting items starting at ULONG_MAX - (1 << order).
  515. *
  516. * This requires RADIX_TREE_MAX_PATH nodes to build branch from root to
  517. * 0-index item.
  518. */
  519. nr_nodes = RADIX_TREE_MAX_PATH;
  520. /* Plus branch to fully populated subtrees. */
  521. nr_nodes += RADIX_TREE_MAX_PATH - subtree_height;
  522. /* Root node is shared. */
  523. nr_nodes--;
  524. /* Plus nodes required to build subtrees. */
  525. nr_nodes += nr_subtrees * height_to_maxnodes[subtree_height];
  526. return __radix_tree_preload(gfp_mask, nr_nodes);
  527. }
  528. static unsigned radix_tree_load_root(const struct radix_tree_root *root,
  529. struct radix_tree_node **nodep, unsigned long *maxindex)
  530. {
  531. struct radix_tree_node *node = rcu_dereference_raw(root->rnode);
  532. *nodep = node;
  533. if (likely(radix_tree_is_internal_node(node))) {
  534. node = entry_to_node(node);
  535. *maxindex = node_maxindex(node);
  536. return node->shift + RADIX_TREE_MAP_SHIFT;
  537. }
  538. *maxindex = 0;
  539. return 0;
  540. }
  541. /*
  542. * Extend a radix tree so it can store key @index.
  543. */
  544. static int radix_tree_extend(struct radix_tree_root *root, gfp_t gfp,
  545. unsigned long index, unsigned int shift)
  546. {
  547. void *entry;
  548. unsigned int maxshift;
  549. int tag;
  550. /* Figure out what the shift should be. */
  551. maxshift = shift;
  552. while (index > shift_maxindex(maxshift))
  553. maxshift += RADIX_TREE_MAP_SHIFT;
  554. entry = rcu_dereference_raw(root->rnode);
  555. if (!entry && (!is_idr(root) || root_tag_get(root, IDR_FREE)))
  556. goto out;
  557. do {
  558. struct radix_tree_node *node = radix_tree_node_alloc(gfp, NULL,
  559. root, shift, 0, 1, 0);
  560. if (!node)
  561. return -ENOMEM;
  562. if (is_idr(root)) {
  563. all_tag_set(node, IDR_FREE);
  564. if (!root_tag_get(root, IDR_FREE)) {
  565. tag_clear(node, IDR_FREE, 0);
  566. root_tag_set(root, IDR_FREE);
  567. }
  568. } else {
  569. /* Propagate the aggregated tag info to the new child */
  570. for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
  571. if (root_tag_get(root, tag))
  572. tag_set(node, tag, 0);
  573. }
  574. }
  575. BUG_ON(shift > BITS_PER_LONG);
  576. if (radix_tree_is_internal_node(entry)) {
  577. entry_to_node(entry)->parent = node;
  578. } else if (xa_is_value(entry)) {
  579. /* Moving an exceptional root->rnode to a node */
  580. node->exceptional = 1;
  581. }
  582. /*
  583. * entry was already in the radix tree, so we do not need
  584. * rcu_assign_pointer here
  585. */
  586. node->slots[0] = (void __rcu *)entry;
  587. entry = node_to_entry(node);
  588. rcu_assign_pointer(root->rnode, entry);
  589. shift += RADIX_TREE_MAP_SHIFT;
  590. } while (shift <= maxshift);
  591. out:
  592. return maxshift + RADIX_TREE_MAP_SHIFT;
  593. }
  594. /**
  595. * radix_tree_shrink - shrink radix tree to minimum height
  596. * @root radix tree root
  597. */
  598. static inline bool radix_tree_shrink(struct radix_tree_root *root,
  599. radix_tree_update_node_t update_node)
  600. {
  601. bool shrunk = false;
  602. for (;;) {
  603. struct radix_tree_node *node = rcu_dereference_raw(root->rnode);
  604. struct radix_tree_node *child;
  605. if (!radix_tree_is_internal_node(node))
  606. break;
  607. node = entry_to_node(node);
  608. /*
  609. * The candidate node has more than one child, or its child
  610. * is not at the leftmost slot, or the child is a multiorder
  611. * entry, we cannot shrink.
  612. */
  613. if (node->count != 1)
  614. break;
  615. child = rcu_dereference_raw(node->slots[0]);
  616. if (!child)
  617. break;
  618. if (!radix_tree_is_internal_node(child) && node->shift)
  619. break;
  620. /*
  621. * For an IDR, we must not shrink entry 0 into the root in
  622. * case somebody calls idr_replace() with a pointer that
  623. * appears to be an internal entry
  624. */
  625. if (!node->shift && is_idr(root))
  626. break;
  627. if (radix_tree_is_internal_node(child))
  628. entry_to_node(child)->parent = NULL;
  629. /*
  630. * We don't need rcu_assign_pointer(), since we are simply
  631. * moving the node from one part of the tree to another: if it
  632. * was safe to dereference the old pointer to it
  633. * (node->slots[0]), it will be safe to dereference the new
  634. * one (root->rnode) as far as dependent read barriers go.
  635. */
  636. root->rnode = (void __rcu *)child;
  637. if (is_idr(root) && !tag_get(node, IDR_FREE, 0))
  638. root_tag_clear(root, IDR_FREE);
  639. /*
  640. * We have a dilemma here. The node's slot[0] must not be
  641. * NULLed in case there are concurrent lookups expecting to
  642. * find the item. However if this was a bottom-level node,
  643. * then it may be subject to the slot pointer being visible
  644. * to callers dereferencing it. If item corresponding to
  645. * slot[0] is subsequently deleted, these callers would expect
  646. * their slot to become empty sooner or later.
  647. *
  648. * For example, lockless pagecache will look up a slot, deref
  649. * the page pointer, and if the page has 0 refcount it means it
  650. * was concurrently deleted from pagecache so try the deref
  651. * again. Fortunately there is already a requirement for logic
  652. * to retry the entire slot lookup -- the indirect pointer
  653. * problem (replacing direct root node with an indirect pointer
  654. * also results in a stale slot). So tag the slot as indirect
  655. * to force callers to retry.
  656. */
  657. node->count = 0;
  658. if (!radix_tree_is_internal_node(child)) {
  659. node->slots[0] = (void __rcu *)RADIX_TREE_RETRY;
  660. if (update_node)
  661. update_node(node);
  662. }
  663. WARN_ON_ONCE(!list_empty(&node->private_list));
  664. radix_tree_node_free(node);
  665. shrunk = true;
  666. }
  667. return shrunk;
  668. }
  669. static bool delete_node(struct radix_tree_root *root,
  670. struct radix_tree_node *node,
  671. radix_tree_update_node_t update_node)
  672. {
  673. bool deleted = false;
  674. do {
  675. struct radix_tree_node *parent;
  676. if (node->count) {
  677. if (node_to_entry(node) ==
  678. rcu_dereference_raw(root->rnode))
  679. deleted |= radix_tree_shrink(root,
  680. update_node);
  681. return deleted;
  682. }
  683. parent = node->parent;
  684. if (parent) {
  685. parent->slots[node->offset] = NULL;
  686. parent->count--;
  687. } else {
  688. /*
  689. * Shouldn't the tags already have all been cleared
  690. * by the caller?
  691. */
  692. if (!is_idr(root))
  693. root_tag_clear_all(root);
  694. root->rnode = NULL;
  695. }
  696. WARN_ON_ONCE(!list_empty(&node->private_list));
  697. radix_tree_node_free(node);
  698. deleted = true;
  699. node = parent;
  700. } while (node);
  701. return deleted;
  702. }
  703. /**
  704. * __radix_tree_create - create a slot in a radix tree
  705. * @root: radix tree root
  706. * @index: index key
  707. * @order: index occupies 2^order aligned slots
  708. * @nodep: returns node
  709. * @slotp: returns slot
  710. *
  711. * Create, if necessary, and return the node and slot for an item
  712. * at position @index in the radix tree @root.
  713. *
  714. * Until there is more than one item in the tree, no nodes are
  715. * allocated and @root->rnode is used as a direct slot instead of
  716. * pointing to a node, in which case *@nodep will be NULL.
  717. *
  718. * Returns -ENOMEM, or 0 for success.
  719. */
  720. int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
  721. unsigned order, struct radix_tree_node **nodep,
  722. void __rcu ***slotp)
  723. {
  724. struct radix_tree_node *node = NULL, *child;
  725. void __rcu **slot = (void __rcu **)&root->rnode;
  726. unsigned long maxindex;
  727. unsigned int shift, offset = 0;
  728. unsigned long max = index | ((1UL << order) - 1);
  729. gfp_t gfp = root_gfp_mask(root);
  730. shift = radix_tree_load_root(root, &child, &maxindex);
  731. /* Make sure the tree is high enough. */
  732. if (order > 0 && max == ((1UL << order) - 1))
  733. max++;
  734. if (max > maxindex) {
  735. int error = radix_tree_extend(root, gfp, max, shift);
  736. if (error < 0)
  737. return error;
  738. shift = error;
  739. child = rcu_dereference_raw(root->rnode);
  740. }
  741. while (shift > order) {
  742. shift -= RADIX_TREE_MAP_SHIFT;
  743. if (child == NULL) {
  744. /* Have to add a child node. */
  745. child = radix_tree_node_alloc(gfp, node, root, shift,
  746. offset, 0, 0);
  747. if (!child)
  748. return -ENOMEM;
  749. rcu_assign_pointer(*slot, node_to_entry(child));
  750. if (node)
  751. node->count++;
  752. } else if (!radix_tree_is_internal_node(child))
  753. break;
  754. /* Go a level down */
  755. node = entry_to_node(child);
  756. offset = radix_tree_descend(node, &child, index);
  757. slot = &node->slots[offset];
  758. }
  759. if (nodep)
  760. *nodep = node;
  761. if (slotp)
  762. *slotp = slot;
  763. return 0;
  764. }
  765. /*
  766. * Free any nodes below this node. The tree is presumed to not need
  767. * shrinking, and any user data in the tree is presumed to not need a
  768. * destructor called on it. If we need to add a destructor, we can
  769. * add that functionality later. Note that we may not clear tags or
  770. * slots from the tree as an RCU walker may still have a pointer into
  771. * this subtree. We could replace the entries with RADIX_TREE_RETRY,
  772. * but we'll still have to clear those in rcu_free.
  773. */
  774. static void radix_tree_free_nodes(struct radix_tree_node *node)
  775. {
  776. unsigned offset = 0;
  777. struct radix_tree_node *child = entry_to_node(node);
  778. for (;;) {
  779. void *entry = rcu_dereference_raw(child->slots[offset]);
  780. if (radix_tree_is_internal_node(entry) && child->shift &&
  781. !is_sibling_entry(child, entry)) {
  782. child = entry_to_node(entry);
  783. offset = 0;
  784. continue;
  785. }
  786. offset++;
  787. while (offset == RADIX_TREE_MAP_SIZE) {
  788. struct radix_tree_node *old = child;
  789. offset = child->offset + 1;
  790. child = child->parent;
  791. WARN_ON_ONCE(!list_empty(&old->private_list));
  792. radix_tree_node_free(old);
  793. if (old == entry_to_node(node))
  794. return;
  795. }
  796. }
  797. }
  798. #ifdef CONFIG_RADIX_TREE_MULTIORDER
  799. static inline int insert_entries(struct radix_tree_node *node,
  800. void __rcu **slot, void *item, unsigned order, bool replace)
  801. {
  802. struct radix_tree_node *child;
  803. unsigned i, n, tag, offset, tags = 0;
  804. if (node) {
  805. if (order > node->shift)
  806. n = 1 << (order - node->shift);
  807. else
  808. n = 1;
  809. offset = get_slot_offset(node, slot);
  810. } else {
  811. n = 1;
  812. offset = 0;
  813. }
  814. if (n > 1) {
  815. offset = offset & ~(n - 1);
  816. slot = &node->slots[offset];
  817. }
  818. child = node_to_entry(slot);
  819. for (i = 0; i < n; i++) {
  820. if (slot[i]) {
  821. if (replace) {
  822. node->count--;
  823. for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
  824. if (tag_get(node, tag, offset + i))
  825. tags |= 1 << tag;
  826. } else
  827. return -EEXIST;
  828. }
  829. }
  830. for (i = 0; i < n; i++) {
  831. struct radix_tree_node *old = rcu_dereference_raw(slot[i]);
  832. if (i) {
  833. rcu_assign_pointer(slot[i], child);
  834. for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
  835. if (tags & (1 << tag))
  836. tag_clear(node, tag, offset + i);
  837. } else {
  838. rcu_assign_pointer(slot[i], item);
  839. for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
  840. if (tags & (1 << tag))
  841. tag_set(node, tag, offset);
  842. }
  843. if (radix_tree_is_internal_node(old) &&
  844. !is_sibling_entry(node, old) &&
  845. (old != RADIX_TREE_RETRY))
  846. radix_tree_free_nodes(old);
  847. if (xa_is_value(old))
  848. node->exceptional--;
  849. }
  850. if (node) {
  851. node->count += n;
  852. if (xa_is_value(item))
  853. node->exceptional += n;
  854. }
  855. return n;
  856. }
  857. #else
  858. static inline int insert_entries(struct radix_tree_node *node,
  859. void __rcu **slot, void *item, unsigned order, bool replace)
  860. {
  861. if (*slot)
  862. return -EEXIST;
  863. rcu_assign_pointer(*slot, item);
  864. if (node) {
  865. node->count++;
  866. if (xa_is_value(item))
  867. node->exceptional++;
  868. }
  869. return 1;
  870. }
  871. #endif
  872. /**
  873. * __radix_tree_insert - insert into a radix tree
  874. * @root: radix tree root
  875. * @index: index key
  876. * @order: key covers the 2^order indices around index
  877. * @item: item to insert
  878. *
  879. * Insert an item into the radix tree at position @index.
  880. */
  881. int __radix_tree_insert(struct radix_tree_root *root, unsigned long index,
  882. unsigned order, void *item)
  883. {
  884. struct radix_tree_node *node;
  885. void __rcu **slot;
  886. int error;
  887. BUG_ON(radix_tree_is_internal_node(item));
  888. error = __radix_tree_create(root, index, order, &node, &slot);
  889. if (error)
  890. return error;
  891. error = insert_entries(node, slot, item, order, false);
  892. if (error < 0)
  893. return error;
  894. if (node) {
  895. unsigned offset = get_slot_offset(node, slot);
  896. BUG_ON(tag_get(node, 0, offset));
  897. BUG_ON(tag_get(node, 1, offset));
  898. BUG_ON(tag_get(node, 2, offset));
  899. } else {
  900. BUG_ON(root_tags_get(root));
  901. }
  902. return 0;
  903. }
  904. EXPORT_SYMBOL(__radix_tree_insert);
  905. /**
  906. * __radix_tree_lookup - lookup an item in a radix tree
  907. * @root: radix tree root
  908. * @index: index key
  909. * @nodep: returns node
  910. * @slotp: returns slot
  911. *
  912. * Lookup and return the item at position @index in the radix
  913. * tree @root.
  914. *
  915. * Until there is more than one item in the tree, no nodes are
  916. * allocated and @root->rnode is used as a direct slot instead of
  917. * pointing to a node, in which case *@nodep will be NULL.
  918. */
  919. void *__radix_tree_lookup(const struct radix_tree_root *root,
  920. unsigned long index, struct radix_tree_node **nodep,
  921. void __rcu ***slotp)
  922. {
  923. struct radix_tree_node *node, *parent;
  924. unsigned long maxindex;
  925. void __rcu **slot;
  926. restart:
  927. parent = NULL;
  928. slot = (void __rcu **)&root->rnode;
  929. radix_tree_load_root(root, &node, &maxindex);
  930. if (index > maxindex)
  931. return NULL;
  932. while (radix_tree_is_internal_node(node)) {
  933. unsigned offset;
  934. if (node == RADIX_TREE_RETRY)
  935. goto restart;
  936. parent = entry_to_node(node);
  937. offset = radix_tree_descend(parent, &node, index);
  938. slot = parent->slots + offset;
  939. if (parent->shift == 0)
  940. break;
  941. }
  942. if (nodep)
  943. *nodep = parent;
  944. if (slotp)
  945. *slotp = slot;
  946. return node;
  947. }
  948. /**
  949. * radix_tree_lookup_slot - lookup a slot in a radix tree
  950. * @root: radix tree root
  951. * @index: index key
  952. *
  953. * Returns: the slot corresponding to the position @index in the
  954. * radix tree @root. This is useful for update-if-exists operations.
  955. *
  956. * This function can be called under rcu_read_lock iff the slot is not
  957. * modified by radix_tree_replace_slot, otherwise it must be called
  958. * exclusive from other writers. Any dereference of the slot must be done
  959. * using radix_tree_deref_slot.
  960. */
  961. void __rcu **radix_tree_lookup_slot(const struct radix_tree_root *root,
  962. unsigned long index)
  963. {
  964. void __rcu **slot;
  965. if (!__radix_tree_lookup(root, index, NULL, &slot))
  966. return NULL;
  967. return slot;
  968. }
  969. EXPORT_SYMBOL(radix_tree_lookup_slot);
  970. /**
  971. * radix_tree_lookup - perform lookup operation on a radix tree
  972. * @root: radix tree root
  973. * @index: index key
  974. *
  975. * Lookup the item at the position @index in the radix tree @root.
  976. *
  977. * This function can be called under rcu_read_lock, however the caller
  978. * must manage lifetimes of leaf nodes (eg. RCU may also be used to free
  979. * them safely). No RCU barriers are required to access or modify the
  980. * returned item, however.
  981. */
  982. void *radix_tree_lookup(const struct radix_tree_root *root, unsigned long index)
  983. {
  984. return __radix_tree_lookup(root, index, NULL, NULL);
  985. }
  986. EXPORT_SYMBOL(radix_tree_lookup);
  987. static inline void replace_sibling_entries(struct radix_tree_node *node,
  988. void __rcu **slot, int count, int exceptional)
  989. {
  990. #ifdef CONFIG_RADIX_TREE_MULTIORDER
  991. void *ptr = node_to_entry(slot);
  992. unsigned offset = get_slot_offset(node, slot) + 1;
  993. while (offset < RADIX_TREE_MAP_SIZE) {
  994. if (rcu_dereference_raw(node->slots[offset]) != ptr)
  995. break;
  996. if (count < 0) {
  997. node->slots[offset] = NULL;
  998. node->count--;
  999. }
  1000. node->exceptional += exceptional;
  1001. offset++;
  1002. }
  1003. #endif
  1004. }
  1005. static void replace_slot(void __rcu **slot, void *item,
  1006. struct radix_tree_node *node, int count, int exceptional)
  1007. {
  1008. if (node && (count || exceptional)) {
  1009. node->count += count;
  1010. node->exceptional += exceptional;
  1011. replace_sibling_entries(node, slot, count, exceptional);
  1012. }
  1013. rcu_assign_pointer(*slot, item);
  1014. }
  1015. static bool node_tag_get(const struct radix_tree_root *root,
  1016. const struct radix_tree_node *node,
  1017. unsigned int tag, unsigned int offset)
  1018. {
  1019. if (node)
  1020. return tag_get(node, tag, offset);
  1021. return root_tag_get(root, tag);
  1022. }
  1023. /*
  1024. * IDR users want to be able to store NULL in the tree, so if the slot isn't
  1025. * free, don't adjust the count, even if it's transitioning between NULL and
  1026. * non-NULL. For the IDA, we mark slots as being IDR_FREE while they still
  1027. * have empty bits, but it only stores NULL in slots when they're being
  1028. * deleted.
  1029. */
  1030. static int calculate_count(struct radix_tree_root *root,
  1031. struct radix_tree_node *node, void __rcu **slot,
  1032. void *item, void *old)
  1033. {
  1034. if (is_idr(root)) {
  1035. unsigned offset = get_slot_offset(node, slot);
  1036. bool free = node_tag_get(root, node, IDR_FREE, offset);
  1037. if (!free)
  1038. return 0;
  1039. if (!old)
  1040. return 1;
  1041. }
  1042. return !!item - !!old;
  1043. }
  1044. /**
  1045. * __radix_tree_replace - replace item in a slot
  1046. * @root: radix tree root
  1047. * @node: pointer to tree node
  1048. * @slot: pointer to slot in @node
  1049. * @item: new item to store in the slot.
  1050. * @update_node: callback for changing leaf nodes
  1051. *
  1052. * For use with __radix_tree_lookup(). Caller must hold tree write locked
  1053. * across slot lookup and replacement.
  1054. */
  1055. void __radix_tree_replace(struct radix_tree_root *root,
  1056. struct radix_tree_node *node,
  1057. void __rcu **slot, void *item,
  1058. radix_tree_update_node_t update_node)
  1059. {
  1060. void *old = rcu_dereference_raw(*slot);
  1061. int exceptional = !!xa_is_value(item) - !!xa_is_value(old);
  1062. int count = calculate_count(root, node, slot, item, old);
  1063. /*
  1064. * This function supports replacing exceptional entries and
  1065. * deleting entries, but that needs accounting against the
  1066. * node unless the slot is root->rnode.
  1067. */
  1068. WARN_ON_ONCE(!node && (slot != (void __rcu **)&root->rnode) &&
  1069. (count || exceptional));
  1070. replace_slot(slot, item, node, count, exceptional);
  1071. if (!node)
  1072. return;
  1073. if (update_node)
  1074. update_node(node);
  1075. delete_node(root, node, update_node);
  1076. }
  1077. /**
  1078. * radix_tree_replace_slot - replace item in a slot
  1079. * @root: radix tree root
  1080. * @slot: pointer to slot
  1081. * @item: new item to store in the slot.
  1082. *
  1083. * For use with radix_tree_lookup_slot(), radix_tree_gang_lookup_slot(),
  1084. * radix_tree_gang_lookup_tag_slot(). Caller must hold tree write locked
  1085. * across slot lookup and replacement.
  1086. *
  1087. * NOTE: This cannot be used to switch between non-entries (empty slots),
  1088. * regular entries, and exceptional entries, as that requires accounting
  1089. * inside the radix tree node. When switching from one type of entry or
  1090. * deleting, use __radix_tree_lookup() and __radix_tree_replace() or
  1091. * radix_tree_iter_replace().
  1092. */
  1093. void radix_tree_replace_slot(struct radix_tree_root *root,
  1094. void __rcu **slot, void *item)
  1095. {
  1096. __radix_tree_replace(root, NULL, slot, item, NULL);
  1097. }
  1098. EXPORT_SYMBOL(radix_tree_replace_slot);
  1099. /**
  1100. * radix_tree_iter_replace - replace item in a slot
  1101. * @root: radix tree root
  1102. * @slot: pointer to slot
  1103. * @item: new item to store in the slot.
  1104. *
  1105. * For use with radix_tree_split() and radix_tree_for_each_slot().
  1106. * Caller must hold tree write locked across split and replacement.
  1107. */
  1108. void radix_tree_iter_replace(struct radix_tree_root *root,
  1109. const struct radix_tree_iter *iter,
  1110. void __rcu **slot, void *item)
  1111. {
  1112. __radix_tree_replace(root, iter->node, slot, item, NULL);
  1113. }
  1114. #ifdef CONFIG_RADIX_TREE_MULTIORDER
  1115. /**
  1116. * radix_tree_join - replace multiple entries with one multiorder entry
  1117. * @root: radix tree root
  1118. * @index: an index inside the new entry
  1119. * @order: order of the new entry
  1120. * @item: new entry
  1121. *
  1122. * Call this function to replace several entries with one larger entry.
  1123. * The existing entries are presumed to not need freeing as a result of
  1124. * this call.
  1125. *
  1126. * The replacement entry will have all the tags set on it that were set
  1127. * on any of the entries it is replacing.
  1128. */
  1129. int radix_tree_join(struct radix_tree_root *root, unsigned long index,
  1130. unsigned order, void *item)
  1131. {
  1132. struct radix_tree_node *node;
  1133. void __rcu **slot;
  1134. int error;
  1135. BUG_ON(radix_tree_is_internal_node(item));
  1136. error = __radix_tree_create(root, index, order, &node, &slot);
  1137. if (!error)
  1138. error = insert_entries(node, slot, item, order, true);
  1139. if (error > 0)
  1140. error = 0;
  1141. return error;
  1142. }
  1143. /**
  1144. * radix_tree_split - Split an entry into smaller entries
  1145. * @root: radix tree root
  1146. * @index: An index within the large entry
  1147. * @order: Order of new entries
  1148. *
  1149. * Call this function as the first step in replacing a multiorder entry
  1150. * with several entries of lower order. After this function returns,
  1151. * loop over the relevant portion of the tree using radix_tree_for_each_slot()
  1152. * and call radix_tree_iter_replace() to set up each new entry.
  1153. *
  1154. * The tags from this entry are replicated to all the new entries.
  1155. *
  1156. * The radix tree should be locked against modification during the entire
  1157. * replacement operation. Lock-free lookups will see RADIX_TREE_RETRY which
  1158. * should prompt RCU walkers to restart the lookup from the root.
  1159. */
  1160. int radix_tree_split(struct radix_tree_root *root, unsigned long index,
  1161. unsigned order)
  1162. {
  1163. struct radix_tree_node *parent, *node, *child;
  1164. void __rcu **slot;
  1165. unsigned int offset, end;
  1166. unsigned n, tag, tags = 0;
  1167. gfp_t gfp = root_gfp_mask(root);
  1168. if (!__radix_tree_lookup(root, index, &parent, &slot))
  1169. return -ENOENT;
  1170. if (!parent)
  1171. return -ENOENT;
  1172. offset = get_slot_offset(parent, slot);
  1173. for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
  1174. if (tag_get(parent, tag, offset))
  1175. tags |= 1 << tag;
  1176. for (end = offset + 1; end < RADIX_TREE_MAP_SIZE; end++) {
  1177. if (!is_sibling_entry(parent,
  1178. rcu_dereference_raw(parent->slots[end])))
  1179. break;
  1180. for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
  1181. if (tags & (1 << tag))
  1182. tag_set(parent, tag, end);
  1183. /* rcu_assign_pointer ensures tags are set before RETRY */
  1184. rcu_assign_pointer(parent->slots[end], RADIX_TREE_RETRY);
  1185. }
  1186. rcu_assign_pointer(parent->slots[offset], RADIX_TREE_RETRY);
  1187. parent->exceptional -= (end - offset);
  1188. if (order == parent->shift)
  1189. return 0;
  1190. if (order > parent->shift) {
  1191. while (offset < end)
  1192. offset += insert_entries(parent, &parent->slots[offset],
  1193. RADIX_TREE_RETRY, order, true);
  1194. return 0;
  1195. }
  1196. node = parent;
  1197. for (;;) {
  1198. if (node->shift > order) {
  1199. child = radix_tree_node_alloc(gfp, node, root,
  1200. node->shift - RADIX_TREE_MAP_SHIFT,
  1201. offset, 0, 0);
  1202. if (!child)
  1203. goto nomem;
  1204. if (node != parent) {
  1205. node->count++;
  1206. rcu_assign_pointer(node->slots[offset],
  1207. node_to_entry(child));
  1208. for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
  1209. if (tags & (1 << tag))
  1210. tag_set(node, tag, offset);
  1211. }
  1212. node = child;
  1213. offset = 0;
  1214. continue;
  1215. }
  1216. n = insert_entries(node, &node->slots[offset],
  1217. RADIX_TREE_RETRY, order, false);
  1218. BUG_ON(n > RADIX_TREE_MAP_SIZE);
  1219. for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
  1220. if (tags & (1 << tag))
  1221. tag_set(node, tag, offset);
  1222. offset += n;
  1223. while (offset == RADIX_TREE_MAP_SIZE) {
  1224. if (node == parent)
  1225. break;
  1226. offset = node->offset;
  1227. child = node;
  1228. node = node->parent;
  1229. rcu_assign_pointer(node->slots[offset],
  1230. node_to_entry(child));
  1231. offset++;
  1232. }
  1233. if ((node == parent) && (offset == end))
  1234. return 0;
  1235. }
  1236. nomem:
  1237. /* Shouldn't happen; did user forget to preload? */
  1238. /* TODO: free all the allocated nodes */
  1239. WARN_ON(1);
  1240. return -ENOMEM;
  1241. }
  1242. #endif
  1243. static void node_tag_set(struct radix_tree_root *root,
  1244. struct radix_tree_node *node,
  1245. unsigned int tag, unsigned int offset)
  1246. {
  1247. while (node) {
  1248. if (tag_get(node, tag, offset))
  1249. return;
  1250. tag_set(node, tag, offset);
  1251. offset = node->offset;
  1252. node = node->parent;
  1253. }
  1254. if (!root_tag_get(root, tag))
  1255. root_tag_set(root, tag);
  1256. }
  1257. /**
  1258. * radix_tree_tag_set - set a tag on a radix tree node
  1259. * @root: radix tree root
  1260. * @index: index key
  1261. * @tag: tag index
  1262. *
  1263. * Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
  1264. * corresponding to @index in the radix tree. From
  1265. * the root all the way down to the leaf node.
  1266. *
  1267. * Returns the address of the tagged item. Setting a tag on a not-present
  1268. * item is a bug.
  1269. */
  1270. void *radix_tree_tag_set(struct radix_tree_root *root,
  1271. unsigned long index, unsigned int tag)
  1272. {
  1273. struct radix_tree_node *node, *parent;
  1274. unsigned long maxindex;
  1275. radix_tree_load_root(root, &node, &maxindex);
  1276. BUG_ON(index > maxindex);
  1277. while (radix_tree_is_internal_node(node)) {
  1278. unsigned offset;
  1279. parent = entry_to_node(node);
  1280. offset = radix_tree_descend(parent, &node, index);
  1281. BUG_ON(!node);
  1282. if (!tag_get(parent, tag, offset))
  1283. tag_set(parent, tag, offset);
  1284. }
  1285. /* set the root's tag bit */
  1286. if (!root_tag_get(root, tag))
  1287. root_tag_set(root, tag);
  1288. return node;
  1289. }
  1290. EXPORT_SYMBOL(radix_tree_tag_set);
  1291. /**
  1292. * radix_tree_iter_tag_set - set a tag on the current iterator entry
  1293. * @root: radix tree root
  1294. * @iter: iterator state
  1295. * @tag: tag to set
  1296. */
  1297. void radix_tree_iter_tag_set(struct radix_tree_root *root,
  1298. const struct radix_tree_iter *iter, unsigned int tag)
  1299. {
  1300. node_tag_set(root, iter->node, tag, iter_offset(iter));
  1301. }
  1302. static void node_tag_clear(struct radix_tree_root *root,
  1303. struct radix_tree_node *node,
  1304. unsigned int tag, unsigned int offset)
  1305. {
  1306. while (node) {
  1307. if (!tag_get(node, tag, offset))
  1308. return;
  1309. tag_clear(node, tag, offset);
  1310. if (any_tag_set(node, tag))
  1311. return;
  1312. offset = node->offset;
  1313. node = node->parent;
  1314. }
  1315. /* clear the root's tag bit */
  1316. if (root_tag_get(root, tag))
  1317. root_tag_clear(root, tag);
  1318. }
  1319. /**
  1320. * radix_tree_tag_clear - clear a tag on a radix tree node
  1321. * @root: radix tree root
  1322. * @index: index key
  1323. * @tag: tag index
  1324. *
  1325. * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
  1326. * corresponding to @index in the radix tree. If this causes
  1327. * the leaf node to have no tags set then clear the tag in the
  1328. * next-to-leaf node, etc.
  1329. *
  1330. * Returns the address of the tagged item on success, else NULL. ie:
  1331. * has the same return value and semantics as radix_tree_lookup().
  1332. */
  1333. void *radix_tree_tag_clear(struct radix_tree_root *root,
  1334. unsigned long index, unsigned int tag)
  1335. {
  1336. struct radix_tree_node *node, *parent;
  1337. unsigned long maxindex;
  1338. int uninitialized_var(offset);
  1339. radix_tree_load_root(root, &node, &maxindex);
  1340. if (index > maxindex)
  1341. return NULL;
  1342. parent = NULL;
  1343. while (radix_tree_is_internal_node(node)) {
  1344. parent = entry_to_node(node);
  1345. offset = radix_tree_descend(parent, &node, index);
  1346. }
  1347. if (node)
  1348. node_tag_clear(root, parent, tag, offset);
  1349. return node;
  1350. }
  1351. EXPORT_SYMBOL(radix_tree_tag_clear);
  1352. /**
  1353. * radix_tree_iter_tag_clear - clear a tag on the current iterator entry
  1354. * @root: radix tree root
  1355. * @iter: iterator state
  1356. * @tag: tag to clear
  1357. */
  1358. void radix_tree_iter_tag_clear(struct radix_tree_root *root,
  1359. const struct radix_tree_iter *iter, unsigned int tag)
  1360. {
  1361. node_tag_clear(root, iter->node, tag, iter_offset(iter));
  1362. }
  1363. /**
  1364. * radix_tree_tag_get - get a tag on a radix tree node
  1365. * @root: radix tree root
  1366. * @index: index key
  1367. * @tag: tag index (< RADIX_TREE_MAX_TAGS)
  1368. *
  1369. * Return values:
  1370. *
  1371. * 0: tag not present or not set
  1372. * 1: tag set
  1373. *
  1374. * Note that the return value of this function may not be relied on, even if
  1375. * the RCU lock is held, unless tag modification and node deletion are excluded
  1376. * from concurrency.
  1377. */
  1378. int radix_tree_tag_get(const struct radix_tree_root *root,
  1379. unsigned long index, unsigned int tag)
  1380. {
  1381. struct radix_tree_node *node, *parent;
  1382. unsigned long maxindex;
  1383. if (!root_tag_get(root, tag))
  1384. return 0;
  1385. radix_tree_load_root(root, &node, &maxindex);
  1386. if (index > maxindex)
  1387. return 0;
  1388. while (radix_tree_is_internal_node(node)) {
  1389. unsigned offset;
  1390. parent = entry_to_node(node);
  1391. offset = radix_tree_descend(parent, &node, index);
  1392. if (!tag_get(parent, tag, offset))
  1393. return 0;
  1394. if (node == RADIX_TREE_RETRY)
  1395. break;
  1396. }
  1397. return 1;
  1398. }
  1399. EXPORT_SYMBOL(radix_tree_tag_get);
  1400. static inline void __set_iter_shift(struct radix_tree_iter *iter,
  1401. unsigned int shift)
  1402. {
  1403. #ifdef CONFIG_RADIX_TREE_MULTIORDER
  1404. iter->shift = shift;
  1405. #endif
  1406. }
  1407. /* Construct iter->tags bit-mask from node->tags[tag] array */
  1408. static void set_iter_tags(struct radix_tree_iter *iter,
  1409. struct radix_tree_node *node, unsigned offset,
  1410. unsigned tag)
  1411. {
  1412. unsigned tag_long = offset / BITS_PER_LONG;
  1413. unsigned tag_bit = offset % BITS_PER_LONG;
  1414. if (!node) {
  1415. iter->tags = 1;
  1416. return;
  1417. }
  1418. iter->tags = node->tags[tag][tag_long] >> tag_bit;
  1419. /* This never happens if RADIX_TREE_TAG_LONGS == 1 */
  1420. if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
  1421. /* Pick tags from next element */
  1422. if (tag_bit)
  1423. iter->tags |= node->tags[tag][tag_long + 1] <<
  1424. (BITS_PER_LONG - tag_bit);
  1425. /* Clip chunk size, here only BITS_PER_LONG tags */
  1426. iter->next_index = __radix_tree_iter_add(iter, BITS_PER_LONG);
  1427. }
  1428. }
  1429. #ifdef CONFIG_RADIX_TREE_MULTIORDER
  1430. static void __rcu **skip_siblings(struct radix_tree_node **nodep,
  1431. void __rcu **slot, struct radix_tree_iter *iter)
  1432. {
  1433. while (iter->index < iter->next_index) {
  1434. *nodep = rcu_dereference_raw(*slot);
  1435. if (*nodep && !is_sibling_entry(iter->node, *nodep))
  1436. return slot;
  1437. slot++;
  1438. iter->index = __radix_tree_iter_add(iter, 1);
  1439. iter->tags >>= 1;
  1440. }
  1441. *nodep = NULL;
  1442. return NULL;
  1443. }
  1444. void __rcu **__radix_tree_next_slot(void __rcu **slot,
  1445. struct radix_tree_iter *iter, unsigned flags)
  1446. {
  1447. unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
  1448. struct radix_tree_node *node;
  1449. slot = skip_siblings(&node, slot, iter);
  1450. while (radix_tree_is_internal_node(node)) {
  1451. unsigned offset;
  1452. unsigned long next_index;
  1453. if (node == RADIX_TREE_RETRY)
  1454. return slot;
  1455. node = entry_to_node(node);
  1456. iter->node = node;
  1457. iter->shift = node->shift;
  1458. if (flags & RADIX_TREE_ITER_TAGGED) {
  1459. offset = radix_tree_find_next_bit(node, tag, 0);
  1460. if (offset == RADIX_TREE_MAP_SIZE)
  1461. return NULL;
  1462. slot = &node->slots[offset];
  1463. iter->index = __radix_tree_iter_add(iter, offset);
  1464. set_iter_tags(iter, node, offset, tag);
  1465. node = rcu_dereference_raw(*slot);
  1466. } else {
  1467. offset = 0;
  1468. slot = &node->slots[0];
  1469. for (;;) {
  1470. node = rcu_dereference_raw(*slot);
  1471. if (node)
  1472. break;
  1473. slot++;
  1474. offset++;
  1475. if (offset == RADIX_TREE_MAP_SIZE)
  1476. return NULL;
  1477. }
  1478. iter->index = __radix_tree_iter_add(iter, offset);
  1479. }
  1480. if ((flags & RADIX_TREE_ITER_CONTIG) && (offset > 0))
  1481. goto none;
  1482. next_index = (iter->index | shift_maxindex(iter->shift)) + 1;
  1483. if (next_index < iter->next_index)
  1484. iter->next_index = next_index;
  1485. }
  1486. return slot;
  1487. none:
  1488. iter->next_index = 0;
  1489. return NULL;
  1490. }
  1491. EXPORT_SYMBOL(__radix_tree_next_slot);
  1492. #else
  1493. static void __rcu **skip_siblings(struct radix_tree_node **nodep,
  1494. void __rcu **slot, struct radix_tree_iter *iter)
  1495. {
  1496. return slot;
  1497. }
  1498. #endif
  1499. void __rcu **radix_tree_iter_resume(void __rcu **slot,
  1500. struct radix_tree_iter *iter)
  1501. {
  1502. struct radix_tree_node *node;
  1503. slot++;
  1504. iter->index = __radix_tree_iter_add(iter, 1);
  1505. skip_siblings(&node, slot, iter);
  1506. iter->next_index = iter->index;
  1507. iter->tags = 0;
  1508. return NULL;
  1509. }
  1510. EXPORT_SYMBOL(radix_tree_iter_resume);
  1511. /**
  1512. * radix_tree_next_chunk - find next chunk of slots for iteration
  1513. *
  1514. * @root: radix tree root
  1515. * @iter: iterator state
  1516. * @flags: RADIX_TREE_ITER_* flags and tag index
  1517. * Returns: pointer to chunk first slot, or NULL if iteration is over
  1518. */
  1519. void __rcu **radix_tree_next_chunk(const struct radix_tree_root *root,
  1520. struct radix_tree_iter *iter, unsigned flags)
  1521. {
  1522. unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
  1523. struct radix_tree_node *node, *child;
  1524. unsigned long index, offset, maxindex;
  1525. if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
  1526. return NULL;
  1527. /*
  1528. * Catch next_index overflow after ~0UL. iter->index never overflows
  1529. * during iterating; it can be zero only at the beginning.
  1530. * And we cannot overflow iter->next_index in a single step,
  1531. * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
  1532. *
  1533. * This condition also used by radix_tree_next_slot() to stop
  1534. * contiguous iterating, and forbid switching to the next chunk.
  1535. */
  1536. index = iter->next_index;
  1537. if (!index && iter->index)
  1538. return NULL;
  1539. restart:
  1540. radix_tree_load_root(root, &child, &maxindex);
  1541. if (index > maxindex)
  1542. return NULL;
  1543. if (!child)
  1544. return NULL;
  1545. if (!radix_tree_is_internal_node(child)) {
  1546. /* Single-slot tree */
  1547. iter->index = index;
  1548. iter->next_index = maxindex + 1;
  1549. iter->tags = 1;
  1550. iter->node = NULL;
  1551. __set_iter_shift(iter, 0);
  1552. return (void __rcu **)&root->rnode;
  1553. }
  1554. do {
  1555. node = entry_to_node(child);
  1556. offset = radix_tree_descend(node, &child, index);
  1557. if ((flags & RADIX_TREE_ITER_TAGGED) ?
  1558. !tag_get(node, tag, offset) : !child) {
  1559. /* Hole detected */
  1560. if (flags & RADIX_TREE_ITER_CONTIG)
  1561. return NULL;
  1562. if (flags & RADIX_TREE_ITER_TAGGED)
  1563. offset = radix_tree_find_next_bit(node, tag,
  1564. offset + 1);
  1565. else
  1566. while (++offset < RADIX_TREE_MAP_SIZE) {
  1567. void *slot = rcu_dereference_raw(
  1568. node->slots[offset]);
  1569. if (is_sibling_entry(node, slot))
  1570. continue;
  1571. if (slot)
  1572. break;
  1573. }
  1574. index &= ~node_maxindex(node);
  1575. index += offset << node->shift;
  1576. /* Overflow after ~0UL */
  1577. if (!index)
  1578. return NULL;
  1579. if (offset == RADIX_TREE_MAP_SIZE)
  1580. goto restart;
  1581. child = rcu_dereference_raw(node->slots[offset]);
  1582. }
  1583. if (!child)
  1584. goto restart;
  1585. if (child == RADIX_TREE_RETRY)
  1586. break;
  1587. } while (node->shift && radix_tree_is_internal_node(child));
  1588. /* Update the iterator state */
  1589. iter->index = (index &~ node_maxindex(node)) | (offset << node->shift);
  1590. iter->next_index = (index | node_maxindex(node)) + 1;
  1591. iter->node = node;
  1592. __set_iter_shift(iter, node->shift);
  1593. if (flags & RADIX_TREE_ITER_TAGGED)
  1594. set_iter_tags(iter, node, offset, tag);
  1595. return node->slots + offset;
  1596. }
  1597. EXPORT_SYMBOL(radix_tree_next_chunk);
  1598. /**
  1599. * radix_tree_gang_lookup - perform multiple lookup on a radix tree
  1600. * @root: radix tree root
  1601. * @results: where the results of the lookup are placed
  1602. * @first_index: start the lookup from this key
  1603. * @max_items: place up to this many items at *results
  1604. *
  1605. * Performs an index-ascending scan of the tree for present items. Places
  1606. * them at *@results and returns the number of items which were placed at
  1607. * *@results.
  1608. *
  1609. * The implementation is naive.
  1610. *
  1611. * Like radix_tree_lookup, radix_tree_gang_lookup may be called under
  1612. * rcu_read_lock. In this case, rather than the returned results being
  1613. * an atomic snapshot of the tree at a single point in time, the
  1614. * semantics of an RCU protected gang lookup are as though multiple
  1615. * radix_tree_lookups have been issued in individual locks, and results
  1616. * stored in 'results'.
  1617. */
  1618. unsigned int
  1619. radix_tree_gang_lookup(const struct radix_tree_root *root, void **results,
  1620. unsigned long first_index, unsigned int max_items)
  1621. {
  1622. struct radix_tree_iter iter;
  1623. void __rcu **slot;
  1624. unsigned int ret = 0;
  1625. if (unlikely(!max_items))
  1626. return 0;
  1627. radix_tree_for_each_slot(slot, root, &iter, first_index) {
  1628. results[ret] = rcu_dereference_raw(*slot);
  1629. if (!results[ret])
  1630. continue;
  1631. if (radix_tree_is_internal_node(results[ret])) {
  1632. slot = radix_tree_iter_retry(&iter);
  1633. continue;
  1634. }
  1635. if (++ret == max_items)
  1636. break;
  1637. }
  1638. return ret;
  1639. }
  1640. EXPORT_SYMBOL(radix_tree_gang_lookup);
  1641. /**
  1642. * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
  1643. * @root: radix tree root
  1644. * @results: where the results of the lookup are placed
  1645. * @indices: where their indices should be placed (but usually NULL)
  1646. * @first_index: start the lookup from this key
  1647. * @max_items: place up to this many items at *results
  1648. *
  1649. * Performs an index-ascending scan of the tree for present items. Places
  1650. * their slots at *@results and returns the number of items which were
  1651. * placed at *@results.
  1652. *
  1653. * The implementation is naive.
  1654. *
  1655. * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
  1656. * be dereferenced with radix_tree_deref_slot, and if using only RCU
  1657. * protection, radix_tree_deref_slot may fail requiring a retry.
  1658. */
  1659. unsigned int
  1660. radix_tree_gang_lookup_slot(const struct radix_tree_root *root,
  1661. void __rcu ***results, unsigned long *indices,
  1662. unsigned long first_index, unsigned int max_items)
  1663. {
  1664. struct radix_tree_iter iter;
  1665. void __rcu **slot;
  1666. unsigned int ret = 0;
  1667. if (unlikely(!max_items))
  1668. return 0;
  1669. radix_tree_for_each_slot(slot, root, &iter, first_index) {
  1670. results[ret] = slot;
  1671. if (indices)
  1672. indices[ret] = iter.index;
  1673. if (++ret == max_items)
  1674. break;
  1675. }
  1676. return ret;
  1677. }
  1678. EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
  1679. /**
  1680. * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
  1681. * based on a tag
  1682. * @root: radix tree root
  1683. * @results: where the results of the lookup are placed
  1684. * @first_index: start the lookup from this key
  1685. * @max_items: place up to this many items at *results
  1686. * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
  1687. *
  1688. * Performs an index-ascending scan of the tree for present items which
  1689. * have the tag indexed by @tag set. Places the items at *@results and
  1690. * returns the number of items which were placed at *@results.
  1691. */
  1692. unsigned int
  1693. radix_tree_gang_lookup_tag(const struct radix_tree_root *root, void **results,
  1694. unsigned long first_index, unsigned int max_items,
  1695. unsigned int tag)
  1696. {
  1697. struct radix_tree_iter iter;
  1698. void __rcu **slot;
  1699. unsigned int ret = 0;
  1700. if (unlikely(!max_items))
  1701. return 0;
  1702. radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
  1703. results[ret] = rcu_dereference_raw(*slot);
  1704. if (!results[ret])
  1705. continue;
  1706. if (radix_tree_is_internal_node(results[ret])) {
  1707. slot = radix_tree_iter_retry(&iter);
  1708. continue;
  1709. }
  1710. if (++ret == max_items)
  1711. break;
  1712. }
  1713. return ret;
  1714. }
  1715. EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
  1716. /**
  1717. * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
  1718. * radix tree based on a tag
  1719. * @root: radix tree root
  1720. * @results: where the results of the lookup are placed
  1721. * @first_index: start the lookup from this key
  1722. * @max_items: place up to this many items at *results
  1723. * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
  1724. *
  1725. * Performs an index-ascending scan of the tree for present items which
  1726. * have the tag indexed by @tag set. Places the slots at *@results and
  1727. * returns the number of slots which were placed at *@results.
  1728. */
  1729. unsigned int
  1730. radix_tree_gang_lookup_tag_slot(const struct radix_tree_root *root,
  1731. void __rcu ***results, unsigned long first_index,
  1732. unsigned int max_items, unsigned int tag)
  1733. {
  1734. struct radix_tree_iter iter;
  1735. void __rcu **slot;
  1736. unsigned int ret = 0;
  1737. if (unlikely(!max_items))
  1738. return 0;
  1739. radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
  1740. results[ret] = slot;
  1741. if (++ret == max_items)
  1742. break;
  1743. }
  1744. return ret;
  1745. }
  1746. EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
  1747. /**
  1748. * __radix_tree_delete_node - try to free node after clearing a slot
  1749. * @root: radix tree root
  1750. * @node: node containing @index
  1751. * @update_node: callback for changing leaf nodes
  1752. *
  1753. * After clearing the slot at @index in @node from radix tree
  1754. * rooted at @root, call this function to attempt freeing the
  1755. * node and shrinking the tree.
  1756. */
  1757. void __radix_tree_delete_node(struct radix_tree_root *root,
  1758. struct radix_tree_node *node,
  1759. radix_tree_update_node_t update_node)
  1760. {
  1761. delete_node(root, node, update_node);
  1762. }
  1763. static bool __radix_tree_delete(struct radix_tree_root *root,
  1764. struct radix_tree_node *node, void __rcu **slot)
  1765. {
  1766. void *old = rcu_dereference_raw(*slot);
  1767. int exceptional = xa_is_value(old) ? -1 : 0;
  1768. unsigned offset = get_slot_offset(node, slot);
  1769. int tag;
  1770. if (is_idr(root))
  1771. node_tag_set(root, node, IDR_FREE, offset);
  1772. else
  1773. for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
  1774. node_tag_clear(root, node, tag, offset);
  1775. replace_slot(slot, NULL, node, -1, exceptional);
  1776. return node && delete_node(root, node, NULL);
  1777. }
  1778. /**
  1779. * radix_tree_iter_delete - delete the entry at this iterator position
  1780. * @root: radix tree root
  1781. * @iter: iterator state
  1782. * @slot: pointer to slot
  1783. *
  1784. * Delete the entry at the position currently pointed to by the iterator.
  1785. * This may result in the current node being freed; if it is, the iterator
  1786. * is advanced so that it will not reference the freed memory. This
  1787. * function may be called without any locking if there are no other threads
  1788. * which can access this tree.
  1789. */
  1790. void radix_tree_iter_delete(struct radix_tree_root *root,
  1791. struct radix_tree_iter *iter, void __rcu **slot)
  1792. {
  1793. if (__radix_tree_delete(root, iter->node, slot))
  1794. iter->index = iter->next_index;
  1795. }
  1796. EXPORT_SYMBOL(radix_tree_iter_delete);
  1797. /**
  1798. * radix_tree_delete_item - delete an item from a radix tree
  1799. * @root: radix tree root
  1800. * @index: index key
  1801. * @item: expected item
  1802. *
  1803. * Remove @item at @index from the radix tree rooted at @root.
  1804. *
  1805. * Return: the deleted entry, or %NULL if it was not present
  1806. * or the entry at the given @index was not @item.
  1807. */
  1808. void *radix_tree_delete_item(struct radix_tree_root *root,
  1809. unsigned long index, void *item)
  1810. {
  1811. struct radix_tree_node *node = NULL;
  1812. void __rcu **slot = NULL;
  1813. void *entry;
  1814. entry = __radix_tree_lookup(root, index, &node, &slot);
  1815. if (!slot)
  1816. return NULL;
  1817. if (!entry && (!is_idr(root) || node_tag_get(root, node, IDR_FREE,
  1818. get_slot_offset(node, slot))))
  1819. return NULL;
  1820. if (item && entry != item)
  1821. return NULL;
  1822. __radix_tree_delete(root, node, slot);
  1823. return entry;
  1824. }
  1825. EXPORT_SYMBOL(radix_tree_delete_item);
  1826. /**
  1827. * radix_tree_delete - delete an entry from a radix tree
  1828. * @root: radix tree root
  1829. * @index: index key
  1830. *
  1831. * Remove the entry at @index from the radix tree rooted at @root.
  1832. *
  1833. * Return: The deleted entry, or %NULL if it was not present.
  1834. */
  1835. void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
  1836. {
  1837. return radix_tree_delete_item(root, index, NULL);
  1838. }
  1839. EXPORT_SYMBOL(radix_tree_delete);
  1840. void radix_tree_clear_tags(struct radix_tree_root *root,
  1841. struct radix_tree_node *node,
  1842. void __rcu **slot)
  1843. {
  1844. if (node) {
  1845. unsigned int tag, offset = get_slot_offset(node, slot);
  1846. for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
  1847. node_tag_clear(root, node, tag, offset);
  1848. } else {
  1849. root_tag_clear_all(root);
  1850. }
  1851. }
  1852. /**
  1853. * radix_tree_tagged - test whether any items in the tree are tagged
  1854. * @root: radix tree root
  1855. * @tag: tag to test
  1856. */
  1857. int radix_tree_tagged(const struct radix_tree_root *root, unsigned int tag)
  1858. {
  1859. return root_tag_get(root, tag);
  1860. }
  1861. EXPORT_SYMBOL(radix_tree_tagged);
  1862. /**
  1863. * idr_preload - preload for idr_alloc()
  1864. * @gfp_mask: allocation mask to use for preloading
  1865. *
  1866. * Preallocate memory to use for the next call to idr_alloc(). This function
  1867. * returns with preemption disabled. It will be enabled by idr_preload_end().
  1868. */
  1869. void idr_preload(gfp_t gfp_mask)
  1870. {
  1871. if (__radix_tree_preload(gfp_mask, IDR_PRELOAD_SIZE))
  1872. preempt_disable();
  1873. }
  1874. EXPORT_SYMBOL(idr_preload);
  1875. int ida_pre_get(struct ida *ida, gfp_t gfp)
  1876. {
  1877. /*
  1878. * The IDA API has no preload_end() equivalent. Instead,
  1879. * ida_get_new() can return -EAGAIN, prompting the caller
  1880. * to return to the ida_pre_get() step.
  1881. */
  1882. if (!__radix_tree_preload(gfp, IDA_PRELOAD_SIZE))
  1883. preempt_enable();
  1884. if (!this_cpu_read(ida_bitmap)) {
  1885. struct ida_bitmap *bitmap = kzalloc(sizeof(*bitmap), gfp);
  1886. if (!bitmap)
  1887. return 0;
  1888. if (this_cpu_cmpxchg(ida_bitmap, NULL, bitmap))
  1889. kfree(bitmap);
  1890. }
  1891. return 1;
  1892. }
  1893. void __rcu **idr_get_free(struct radix_tree_root *root,
  1894. struct radix_tree_iter *iter, gfp_t gfp,
  1895. unsigned long max)
  1896. {
  1897. struct radix_tree_node *node = NULL, *child;
  1898. void __rcu **slot = (void __rcu **)&root->rnode;
  1899. unsigned long maxindex, start = iter->next_index;
  1900. unsigned int shift, offset = 0;
  1901. grow:
  1902. shift = radix_tree_load_root(root, &child, &maxindex);
  1903. if (!radix_tree_tagged(root, IDR_FREE))
  1904. start = max(start, maxindex + 1);
  1905. if (start > max)
  1906. return ERR_PTR(-ENOSPC);
  1907. if (start > maxindex) {
  1908. int error = radix_tree_extend(root, gfp, start, shift);
  1909. if (error < 0)
  1910. return ERR_PTR(error);
  1911. shift = error;
  1912. child = rcu_dereference_raw(root->rnode);
  1913. }
  1914. if (start == 0 && shift == 0)
  1915. shift = RADIX_TREE_MAP_SHIFT;
  1916. while (shift) {
  1917. shift -= RADIX_TREE_MAP_SHIFT;
  1918. if (child == NULL) {
  1919. /* Have to add a child node. */
  1920. child = radix_tree_node_alloc(gfp, node, root, shift,
  1921. offset, 0, 0);
  1922. if (!child)
  1923. return ERR_PTR(-ENOMEM);
  1924. all_tag_set(child, IDR_FREE);
  1925. rcu_assign_pointer(*slot, node_to_entry(child));
  1926. if (node)
  1927. node->count++;
  1928. } else if (!radix_tree_is_internal_node(child))
  1929. break;
  1930. node = entry_to_node(child);
  1931. offset = radix_tree_descend(node, &child, start);
  1932. if (!tag_get(node, IDR_FREE, offset)) {
  1933. offset = radix_tree_find_next_bit(node, IDR_FREE,
  1934. offset + 1);
  1935. start = next_index(start, node, offset);
  1936. if (start > max)
  1937. return ERR_PTR(-ENOSPC);
  1938. while (offset == RADIX_TREE_MAP_SIZE) {
  1939. offset = node->offset + 1;
  1940. node = node->parent;
  1941. if (!node)
  1942. goto grow;
  1943. shift = node->shift;
  1944. }
  1945. child = rcu_dereference_raw(node->slots[offset]);
  1946. }
  1947. slot = &node->slots[offset];
  1948. }
  1949. iter->index = start;
  1950. if (node)
  1951. iter->next_index = 1 + min(max, (start | node_maxindex(node)));
  1952. else
  1953. iter->next_index = 1;
  1954. iter->node = node;
  1955. __set_iter_shift(iter, shift);
  1956. set_iter_tags(iter, node, offset, IDR_FREE);
  1957. return slot;
  1958. }
  1959. /**
  1960. * idr_destroy - release all internal memory from an IDR
  1961. * @idr: idr handle
  1962. *
  1963. * After this function is called, the IDR is empty, and may be reused or
  1964. * the data structure containing it may be freed.
  1965. *
  1966. * A typical clean-up sequence for objects stored in an idr tree will use
  1967. * idr_for_each() to free all objects, if necessary, then idr_destroy() to
  1968. * free the memory used to keep track of those objects.
  1969. */
  1970. void idr_destroy(struct idr *idr)
  1971. {
  1972. struct radix_tree_node *node = rcu_dereference_raw(idr->idr_rt.rnode);
  1973. if (radix_tree_is_internal_node(node))
  1974. radix_tree_free_nodes(node);
  1975. idr->idr_rt.rnode = NULL;
  1976. root_tag_set(&idr->idr_rt, IDR_FREE);
  1977. }
  1978. EXPORT_SYMBOL(idr_destroy);
  1979. static void
  1980. radix_tree_node_ctor(void *arg)
  1981. {
  1982. struct radix_tree_node *node = arg;
  1983. memset(node, 0, sizeof(*node));
  1984. INIT_LIST_HEAD(&node->private_list);
  1985. }
  1986. static __init unsigned long __maxindex(unsigned int height)
  1987. {
  1988. unsigned int width = height * RADIX_TREE_MAP_SHIFT;
  1989. int shift = RADIX_TREE_INDEX_BITS - width;
  1990. if (shift < 0)
  1991. return ~0UL;
  1992. if (shift >= BITS_PER_LONG)
  1993. return 0UL;
  1994. return ~0UL >> shift;
  1995. }
  1996. static __init void radix_tree_init_maxnodes(void)
  1997. {
  1998. unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1];
  1999. unsigned int i, j;
  2000. for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
  2001. height_to_maxindex[i] = __maxindex(i);
  2002. for (i = 0; i < ARRAY_SIZE(height_to_maxnodes); i++) {
  2003. for (j = i; j > 0; j--)
  2004. height_to_maxnodes[i] += height_to_maxindex[j - 1] + 1;
  2005. }
  2006. }
  2007. static int radix_tree_cpu_dead(unsigned int cpu)
  2008. {
  2009. struct radix_tree_preload *rtp;
  2010. struct radix_tree_node *node;
  2011. /* Free per-cpu pool of preloaded nodes */
  2012. rtp = &per_cpu(radix_tree_preloads, cpu);
  2013. while (rtp->nr) {
  2014. node = rtp->nodes;
  2015. rtp->nodes = node->parent;
  2016. kmem_cache_free(radix_tree_node_cachep, node);
  2017. rtp->nr--;
  2018. }
  2019. kfree(per_cpu(ida_bitmap, cpu));
  2020. per_cpu(ida_bitmap, cpu) = NULL;
  2021. return 0;
  2022. }
  2023. void __init radix_tree_init(void)
  2024. {
  2025. int ret;
  2026. BUILD_BUG_ON(RADIX_TREE_MAX_TAGS + __GFP_BITS_SHIFT > 32);
  2027. BUILD_BUG_ON(ROOT_IS_IDR & ~GFP_ZONEMASK);
  2028. radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
  2029. sizeof(struct radix_tree_node), 0,
  2030. SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
  2031. radix_tree_node_ctor);
  2032. radix_tree_init_maxnodes();
  2033. ret = cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD, "lib/radix:dead",
  2034. NULL, radix_tree_cpu_dead);
  2035. WARN_ON(ret < 0);
  2036. }