sdma_v3_0.c 48 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. * Authors: Alex Deucher
  23. */
  24. #include <linux/firmware.h>
  25. #include <drm/drmP.h>
  26. #include "amdgpu.h"
  27. #include "amdgpu_ucode.h"
  28. #include "amdgpu_trace.h"
  29. #include "vi.h"
  30. #include "vid.h"
  31. #include "oss/oss_3_0_d.h"
  32. #include "oss/oss_3_0_sh_mask.h"
  33. #include "gmc/gmc_8_1_d.h"
  34. #include "gmc/gmc_8_1_sh_mask.h"
  35. #include "gca/gfx_8_0_d.h"
  36. #include "gca/gfx_8_0_enum.h"
  37. #include "gca/gfx_8_0_sh_mask.h"
  38. #include "bif/bif_5_0_d.h"
  39. #include "bif/bif_5_0_sh_mask.h"
  40. #include "tonga_sdma_pkt_open.h"
  41. static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev);
  42. static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev);
  43. static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev);
  44. static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev);
  45. MODULE_FIRMWARE("amdgpu/tonga_sdma.bin");
  46. MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin");
  47. MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin");
  48. MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin");
  49. MODULE_FIRMWARE("amdgpu/fiji_sdma.bin");
  50. MODULE_FIRMWARE("amdgpu/fiji_sdma1.bin");
  51. MODULE_FIRMWARE("amdgpu/stoney_sdma.bin");
  52. MODULE_FIRMWARE("amdgpu/polaris10_sdma.bin");
  53. MODULE_FIRMWARE("amdgpu/polaris10_sdma1.bin");
  54. MODULE_FIRMWARE("amdgpu/polaris11_sdma.bin");
  55. MODULE_FIRMWARE("amdgpu/polaris11_sdma1.bin");
  56. static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
  57. {
  58. SDMA0_REGISTER_OFFSET,
  59. SDMA1_REGISTER_OFFSET
  60. };
  61. static const u32 golden_settings_tonga_a11[] =
  62. {
  63. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  64. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  65. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  66. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  67. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  68. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  69. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  70. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  71. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  72. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  73. };
  74. static const u32 tonga_mgcg_cgcg_init[] =
  75. {
  76. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  77. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  78. };
  79. static const u32 golden_settings_fiji_a10[] =
  80. {
  81. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  82. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  83. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  84. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  85. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  86. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  87. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  88. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  89. };
  90. static const u32 fiji_mgcg_cgcg_init[] =
  91. {
  92. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  93. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  94. };
  95. static const u32 golden_settings_polaris11_a11[] =
  96. {
  97. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  98. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  99. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  100. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  101. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  102. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  103. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  104. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  105. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  106. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  107. };
  108. static const u32 golden_settings_polaris10_a11[] =
  109. {
  110. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  111. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  112. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  113. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  114. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  115. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  116. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  117. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  118. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  119. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  120. };
  121. static const u32 cz_golden_settings_a11[] =
  122. {
  123. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  124. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  125. mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
  126. mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
  127. mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  128. mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  129. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  130. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  131. mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100,
  132. mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800,
  133. mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  134. mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  135. };
  136. static const u32 cz_mgcg_cgcg_init[] =
  137. {
  138. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  139. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  140. };
  141. static const u32 stoney_golden_settings_a11[] =
  142. {
  143. mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
  144. mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
  145. mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  146. mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  147. };
  148. static const u32 stoney_mgcg_cgcg_init[] =
  149. {
  150. mmSDMA0_CLK_CTRL, 0xffffffff, 0x00000100,
  151. };
  152. /*
  153. * sDMA - System DMA
  154. * Starting with CIK, the GPU has new asynchronous
  155. * DMA engines. These engines are used for compute
  156. * and gfx. There are two DMA engines (SDMA0, SDMA1)
  157. * and each one supports 1 ring buffer used for gfx
  158. * and 2 queues used for compute.
  159. *
  160. * The programming model is very similar to the CP
  161. * (ring buffer, IBs, etc.), but sDMA has it's own
  162. * packet format that is different from the PM4 format
  163. * used by the CP. sDMA supports copying data, writing
  164. * embedded data, solid fills, and a number of other
  165. * things. It also has support for tiling/detiling of
  166. * buffers.
  167. */
  168. static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev)
  169. {
  170. switch (adev->asic_type) {
  171. case CHIP_FIJI:
  172. amdgpu_program_register_sequence(adev,
  173. fiji_mgcg_cgcg_init,
  174. (const u32)ARRAY_SIZE(fiji_mgcg_cgcg_init));
  175. amdgpu_program_register_sequence(adev,
  176. golden_settings_fiji_a10,
  177. (const u32)ARRAY_SIZE(golden_settings_fiji_a10));
  178. break;
  179. case CHIP_TONGA:
  180. amdgpu_program_register_sequence(adev,
  181. tonga_mgcg_cgcg_init,
  182. (const u32)ARRAY_SIZE(tonga_mgcg_cgcg_init));
  183. amdgpu_program_register_sequence(adev,
  184. golden_settings_tonga_a11,
  185. (const u32)ARRAY_SIZE(golden_settings_tonga_a11));
  186. break;
  187. case CHIP_POLARIS11:
  188. amdgpu_program_register_sequence(adev,
  189. golden_settings_polaris11_a11,
  190. (const u32)ARRAY_SIZE(golden_settings_polaris11_a11));
  191. break;
  192. case CHIP_POLARIS10:
  193. amdgpu_program_register_sequence(adev,
  194. golden_settings_polaris10_a11,
  195. (const u32)ARRAY_SIZE(golden_settings_polaris10_a11));
  196. break;
  197. case CHIP_CARRIZO:
  198. amdgpu_program_register_sequence(adev,
  199. cz_mgcg_cgcg_init,
  200. (const u32)ARRAY_SIZE(cz_mgcg_cgcg_init));
  201. amdgpu_program_register_sequence(adev,
  202. cz_golden_settings_a11,
  203. (const u32)ARRAY_SIZE(cz_golden_settings_a11));
  204. break;
  205. case CHIP_STONEY:
  206. amdgpu_program_register_sequence(adev,
  207. stoney_mgcg_cgcg_init,
  208. (const u32)ARRAY_SIZE(stoney_mgcg_cgcg_init));
  209. amdgpu_program_register_sequence(adev,
  210. stoney_golden_settings_a11,
  211. (const u32)ARRAY_SIZE(stoney_golden_settings_a11));
  212. break;
  213. default:
  214. break;
  215. }
  216. }
  217. static void sdma_v3_0_free_microcode(struct amdgpu_device *adev)
  218. {
  219. int i;
  220. for (i = 0; i < adev->sdma.num_instances; i++) {
  221. release_firmware(adev->sdma.instance[i].fw);
  222. adev->sdma.instance[i].fw = NULL;
  223. }
  224. }
  225. /**
  226. * sdma_v3_0_init_microcode - load ucode images from disk
  227. *
  228. * @adev: amdgpu_device pointer
  229. *
  230. * Use the firmware interface to load the ucode images into
  231. * the driver (not loaded into hw).
  232. * Returns 0 on success, error on failure.
  233. */
  234. static int sdma_v3_0_init_microcode(struct amdgpu_device *adev)
  235. {
  236. const char *chip_name;
  237. char fw_name[30];
  238. int err = 0, i;
  239. struct amdgpu_firmware_info *info = NULL;
  240. const struct common_firmware_header *header = NULL;
  241. const struct sdma_firmware_header_v1_0 *hdr;
  242. DRM_DEBUG("\n");
  243. switch (adev->asic_type) {
  244. case CHIP_TONGA:
  245. chip_name = "tonga";
  246. break;
  247. case CHIP_FIJI:
  248. chip_name = "fiji";
  249. break;
  250. case CHIP_POLARIS11:
  251. chip_name = "polaris11";
  252. break;
  253. case CHIP_POLARIS10:
  254. chip_name = "polaris10";
  255. break;
  256. case CHIP_CARRIZO:
  257. chip_name = "carrizo";
  258. break;
  259. case CHIP_STONEY:
  260. chip_name = "stoney";
  261. break;
  262. default: BUG();
  263. }
  264. for (i = 0; i < adev->sdma.num_instances; i++) {
  265. if (i == 0)
  266. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
  267. else
  268. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
  269. err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
  270. if (err)
  271. goto out;
  272. err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
  273. if (err)
  274. goto out;
  275. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  276. adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
  277. adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
  278. if (adev->sdma.instance[i].feature_version >= 20)
  279. adev->sdma.instance[i].burst_nop = true;
  280. if (adev->firmware.smu_load) {
  281. info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
  282. info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
  283. info->fw = adev->sdma.instance[i].fw;
  284. header = (const struct common_firmware_header *)info->fw->data;
  285. adev->firmware.fw_size +=
  286. ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
  287. }
  288. }
  289. out:
  290. if (err) {
  291. printk(KERN_ERR
  292. "sdma_v3_0: Failed to load firmware \"%s\"\n",
  293. fw_name);
  294. for (i = 0; i < adev->sdma.num_instances; i++) {
  295. release_firmware(adev->sdma.instance[i].fw);
  296. adev->sdma.instance[i].fw = NULL;
  297. }
  298. }
  299. return err;
  300. }
  301. /**
  302. * sdma_v3_0_ring_get_rptr - get the current read pointer
  303. *
  304. * @ring: amdgpu ring pointer
  305. *
  306. * Get the current rptr from the hardware (VI+).
  307. */
  308. static uint32_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring)
  309. {
  310. u32 rptr;
  311. /* XXX check if swapping is necessary on BE */
  312. rptr = ring->adev->wb.wb[ring->rptr_offs] >> 2;
  313. return rptr;
  314. }
  315. /**
  316. * sdma_v3_0_ring_get_wptr - get the current write pointer
  317. *
  318. * @ring: amdgpu ring pointer
  319. *
  320. * Get the current wptr from the hardware (VI+).
  321. */
  322. static uint32_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring)
  323. {
  324. struct amdgpu_device *adev = ring->adev;
  325. u32 wptr;
  326. if (ring->use_doorbell) {
  327. /* XXX check if swapping is necessary on BE */
  328. wptr = ring->adev->wb.wb[ring->wptr_offs] >> 2;
  329. } else {
  330. int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
  331. wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me]) >> 2;
  332. }
  333. return wptr;
  334. }
  335. /**
  336. * sdma_v3_0_ring_set_wptr - commit the write pointer
  337. *
  338. * @ring: amdgpu ring pointer
  339. *
  340. * Write the wptr back to the hardware (VI+).
  341. */
  342. static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring)
  343. {
  344. struct amdgpu_device *adev = ring->adev;
  345. if (ring->use_doorbell) {
  346. /* XXX check if swapping is necessary on BE */
  347. adev->wb.wb[ring->wptr_offs] = ring->wptr << 2;
  348. WDOORBELL32(ring->doorbell_index, ring->wptr << 2);
  349. } else {
  350. int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
  351. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me], ring->wptr << 2);
  352. }
  353. }
  354. static void sdma_v3_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
  355. {
  356. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  357. int i;
  358. for (i = 0; i < count; i++)
  359. if (sdma && sdma->burst_nop && (i == 0))
  360. amdgpu_ring_write(ring, ring->nop |
  361. SDMA_PKT_NOP_HEADER_COUNT(count - 1));
  362. else
  363. amdgpu_ring_write(ring, ring->nop);
  364. }
  365. /**
  366. * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine
  367. *
  368. * @ring: amdgpu ring pointer
  369. * @ib: IB object to schedule
  370. *
  371. * Schedule an IB in the DMA ring (VI).
  372. */
  373. static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring,
  374. struct amdgpu_ib *ib,
  375. unsigned vm_id, bool ctx_switch)
  376. {
  377. u32 vmid = vm_id & 0xf;
  378. u32 next_rptr = ring->wptr + 5;
  379. while ((next_rptr & 7) != 2)
  380. next_rptr++;
  381. next_rptr += 6;
  382. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  383. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
  384. amdgpu_ring_write(ring, lower_32_bits(ring->next_rptr_gpu_addr) & 0xfffffffc);
  385. amdgpu_ring_write(ring, upper_32_bits(ring->next_rptr_gpu_addr));
  386. amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
  387. amdgpu_ring_write(ring, next_rptr);
  388. /* IB packet must end on a 8 DW boundary */
  389. sdma_v3_0_ring_insert_nop(ring, (10 - (ring->wptr & 7)) % 8);
  390. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
  391. SDMA_PKT_INDIRECT_HEADER_VMID(vmid));
  392. /* base must be 32 byte aligned */
  393. amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
  394. amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
  395. amdgpu_ring_write(ring, ib->length_dw);
  396. amdgpu_ring_write(ring, 0);
  397. amdgpu_ring_write(ring, 0);
  398. }
  399. /**
  400. * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
  401. *
  402. * @ring: amdgpu ring pointer
  403. *
  404. * Emit an hdp flush packet on the requested DMA ring.
  405. */
  406. static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
  407. {
  408. u32 ref_and_mask = 0;
  409. if (ring == &ring->adev->sdma.instance[0].ring)
  410. ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
  411. else
  412. ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
  413. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  414. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
  415. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
  416. amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
  417. amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
  418. amdgpu_ring_write(ring, ref_and_mask); /* reference */
  419. amdgpu_ring_write(ring, ref_and_mask); /* mask */
  420. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  421. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  422. }
  423. static void sdma_v3_0_ring_emit_hdp_invalidate(struct amdgpu_ring *ring)
  424. {
  425. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  426. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  427. amdgpu_ring_write(ring, mmHDP_DEBUG0);
  428. amdgpu_ring_write(ring, 1);
  429. }
  430. /**
  431. * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring
  432. *
  433. * @ring: amdgpu ring pointer
  434. * @fence: amdgpu fence object
  435. *
  436. * Add a DMA fence packet to the ring to write
  437. * the fence seq number and DMA trap packet to generate
  438. * an interrupt if needed (VI).
  439. */
  440. static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
  441. unsigned flags)
  442. {
  443. bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
  444. /* write the fence */
  445. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  446. amdgpu_ring_write(ring, lower_32_bits(addr));
  447. amdgpu_ring_write(ring, upper_32_bits(addr));
  448. amdgpu_ring_write(ring, lower_32_bits(seq));
  449. /* optionally write high bits as well */
  450. if (write64bit) {
  451. addr += 4;
  452. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  453. amdgpu_ring_write(ring, lower_32_bits(addr));
  454. amdgpu_ring_write(ring, upper_32_bits(addr));
  455. amdgpu_ring_write(ring, upper_32_bits(seq));
  456. }
  457. /* generate an interrupt */
  458. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
  459. amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
  460. }
  461. unsigned init_cond_exec(struct amdgpu_ring *ring)
  462. {
  463. unsigned ret;
  464. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_COND_EXE));
  465. amdgpu_ring_write(ring, lower_32_bits(ring->cond_exe_gpu_addr));
  466. amdgpu_ring_write(ring, upper_32_bits(ring->cond_exe_gpu_addr));
  467. amdgpu_ring_write(ring, 1);
  468. ret = ring->wptr;/* this is the offset we need patch later */
  469. amdgpu_ring_write(ring, 0x55aa55aa);/* insert dummy here and patch it later */
  470. return ret;
  471. }
  472. void patch_cond_exec(struct amdgpu_ring *ring, unsigned offset)
  473. {
  474. unsigned cur;
  475. BUG_ON(ring->ring[offset] != 0x55aa55aa);
  476. cur = ring->wptr - 1;
  477. if (likely(cur > offset))
  478. ring->ring[offset] = cur - offset;
  479. else
  480. ring->ring[offset] = (ring->ring_size>>2) - offset + cur;
  481. }
  482. /**
  483. * sdma_v3_0_gfx_stop - stop the gfx async dma engines
  484. *
  485. * @adev: amdgpu_device pointer
  486. *
  487. * Stop the gfx async dma ring buffers (VI).
  488. */
  489. static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev)
  490. {
  491. struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
  492. struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
  493. u32 rb_cntl, ib_cntl;
  494. int i;
  495. if ((adev->mman.buffer_funcs_ring == sdma0) ||
  496. (adev->mman.buffer_funcs_ring == sdma1))
  497. amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
  498. for (i = 0; i < adev->sdma.num_instances; i++) {
  499. rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
  500. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
  501. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  502. ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
  503. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
  504. WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
  505. }
  506. sdma0->ready = false;
  507. sdma1->ready = false;
  508. }
  509. /**
  510. * sdma_v3_0_rlc_stop - stop the compute async dma engines
  511. *
  512. * @adev: amdgpu_device pointer
  513. *
  514. * Stop the compute async dma queues (VI).
  515. */
  516. static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev)
  517. {
  518. /* XXX todo */
  519. }
  520. /**
  521. * sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch
  522. *
  523. * @adev: amdgpu_device pointer
  524. * @enable: enable/disable the DMA MEs context switch.
  525. *
  526. * Halt or unhalt the async dma engines context switch (VI).
  527. */
  528. static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
  529. {
  530. u32 f32_cntl;
  531. int i;
  532. for (i = 0; i < adev->sdma.num_instances; i++) {
  533. f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]);
  534. if (enable)
  535. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  536. AUTO_CTXSW_ENABLE, 1);
  537. else
  538. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  539. AUTO_CTXSW_ENABLE, 0);
  540. WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl);
  541. }
  542. }
  543. /**
  544. * sdma_v3_0_enable - stop the async dma engines
  545. *
  546. * @adev: amdgpu_device pointer
  547. * @enable: enable/disable the DMA MEs.
  548. *
  549. * Halt or unhalt the async dma engines (VI).
  550. */
  551. static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable)
  552. {
  553. u32 f32_cntl;
  554. int i;
  555. if (enable == false) {
  556. sdma_v3_0_gfx_stop(adev);
  557. sdma_v3_0_rlc_stop(adev);
  558. }
  559. for (i = 0; i < adev->sdma.num_instances; i++) {
  560. f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
  561. if (enable)
  562. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
  563. else
  564. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
  565. WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
  566. }
  567. }
  568. /**
  569. * sdma_v3_0_gfx_resume - setup and start the async dma engines
  570. *
  571. * @adev: amdgpu_device pointer
  572. *
  573. * Set up the gfx DMA ring buffers and enable them (VI).
  574. * Returns 0 for success, error for failure.
  575. */
  576. static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev)
  577. {
  578. struct amdgpu_ring *ring;
  579. u32 rb_cntl, ib_cntl;
  580. u32 rb_bufsz;
  581. u32 wb_offset;
  582. u32 doorbell;
  583. int i, j, r;
  584. for (i = 0; i < adev->sdma.num_instances; i++) {
  585. ring = &adev->sdma.instance[i].ring;
  586. wb_offset = (ring->rptr_offs * 4);
  587. mutex_lock(&adev->srbm_mutex);
  588. for (j = 0; j < 16; j++) {
  589. vi_srbm_select(adev, 0, 0, 0, j);
  590. /* SDMA GFX */
  591. WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
  592. WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
  593. }
  594. vi_srbm_select(adev, 0, 0, 0, 0);
  595. mutex_unlock(&adev->srbm_mutex);
  596. WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i],
  597. adev->gfx.config.gb_addr_config & 0x70);
  598. WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
  599. /* Set ring buffer size in dwords */
  600. rb_bufsz = order_base_2(ring->ring_size / 4);
  601. rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
  602. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
  603. #ifdef __BIG_ENDIAN
  604. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
  605. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
  606. RPTR_WRITEBACK_SWAP_ENABLE, 1);
  607. #endif
  608. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  609. /* Initialize the ring buffer's read and write pointers */
  610. WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
  611. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
  612. WREG32(mmSDMA0_GFX_IB_RPTR + sdma_offsets[i], 0);
  613. WREG32(mmSDMA0_GFX_IB_OFFSET + sdma_offsets[i], 0);
  614. /* set the wb address whether it's enabled or not */
  615. WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
  616. upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
  617. WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
  618. lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
  619. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
  620. WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
  621. WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
  622. ring->wptr = 0;
  623. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], ring->wptr << 2);
  624. doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]);
  625. if (ring->use_doorbell) {
  626. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL,
  627. OFFSET, ring->doorbell_index);
  628. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
  629. } else {
  630. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
  631. }
  632. WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell);
  633. /* enable DMA RB */
  634. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
  635. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  636. ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
  637. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
  638. #ifdef __BIG_ENDIAN
  639. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
  640. #endif
  641. /* enable DMA IBs */
  642. WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
  643. ring->ready = true;
  644. }
  645. /* unhalt the MEs */
  646. sdma_v3_0_enable(adev, true);
  647. /* enable sdma ring preemption */
  648. sdma_v3_0_ctx_switch_enable(adev, true);
  649. for (i = 0; i < adev->sdma.num_instances; i++) {
  650. ring = &adev->sdma.instance[i].ring;
  651. r = amdgpu_ring_test_ring(ring);
  652. if (r) {
  653. ring->ready = false;
  654. return r;
  655. }
  656. if (adev->mman.buffer_funcs_ring == ring)
  657. amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
  658. }
  659. return 0;
  660. }
  661. /**
  662. * sdma_v3_0_rlc_resume - setup and start the async dma engines
  663. *
  664. * @adev: amdgpu_device pointer
  665. *
  666. * Set up the compute DMA queues and enable them (VI).
  667. * Returns 0 for success, error for failure.
  668. */
  669. static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev)
  670. {
  671. /* XXX todo */
  672. return 0;
  673. }
  674. /**
  675. * sdma_v3_0_load_microcode - load the sDMA ME ucode
  676. *
  677. * @adev: amdgpu_device pointer
  678. *
  679. * Loads the sDMA0/1 ucode.
  680. * Returns 0 for success, -EINVAL if the ucode is not available.
  681. */
  682. static int sdma_v3_0_load_microcode(struct amdgpu_device *adev)
  683. {
  684. const struct sdma_firmware_header_v1_0 *hdr;
  685. const __le32 *fw_data;
  686. u32 fw_size;
  687. int i, j;
  688. /* halt the MEs */
  689. sdma_v3_0_enable(adev, false);
  690. for (i = 0; i < adev->sdma.num_instances; i++) {
  691. if (!adev->sdma.instance[i].fw)
  692. return -EINVAL;
  693. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  694. amdgpu_ucode_print_sdma_hdr(&hdr->header);
  695. fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
  696. fw_data = (const __le32 *)
  697. (adev->sdma.instance[i].fw->data +
  698. le32_to_cpu(hdr->header.ucode_array_offset_bytes));
  699. WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0);
  700. for (j = 0; j < fw_size; j++)
  701. WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++));
  702. WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma.instance[i].fw_version);
  703. }
  704. return 0;
  705. }
  706. /**
  707. * sdma_v3_0_start - setup and start the async dma engines
  708. *
  709. * @adev: amdgpu_device pointer
  710. *
  711. * Set up the DMA engines and enable them (VI).
  712. * Returns 0 for success, error for failure.
  713. */
  714. static int sdma_v3_0_start(struct amdgpu_device *adev)
  715. {
  716. int r, i;
  717. if (!adev->pp_enabled) {
  718. if (!adev->firmware.smu_load) {
  719. r = sdma_v3_0_load_microcode(adev);
  720. if (r)
  721. return r;
  722. } else {
  723. for (i = 0; i < adev->sdma.num_instances; i++) {
  724. r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
  725. (i == 0) ?
  726. AMDGPU_UCODE_ID_SDMA0 :
  727. AMDGPU_UCODE_ID_SDMA1);
  728. if (r)
  729. return -EINVAL;
  730. }
  731. }
  732. }
  733. /* disble sdma engine before programing it */
  734. sdma_v3_0_ctx_switch_enable(adev, false);
  735. sdma_v3_0_enable(adev, false);
  736. /* start the gfx rings and rlc compute queues */
  737. r = sdma_v3_0_gfx_resume(adev);
  738. if (r)
  739. return r;
  740. r = sdma_v3_0_rlc_resume(adev);
  741. if (r)
  742. return r;
  743. return 0;
  744. }
  745. /**
  746. * sdma_v3_0_ring_test_ring - simple async dma engine test
  747. *
  748. * @ring: amdgpu_ring structure holding ring information
  749. *
  750. * Test the DMA engine by writing using it to write an
  751. * value to memory. (VI).
  752. * Returns 0 for success, error for failure.
  753. */
  754. static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring)
  755. {
  756. struct amdgpu_device *adev = ring->adev;
  757. unsigned i;
  758. unsigned index;
  759. int r;
  760. u32 tmp;
  761. u64 gpu_addr;
  762. r = amdgpu_wb_get(adev, &index);
  763. if (r) {
  764. dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
  765. return r;
  766. }
  767. gpu_addr = adev->wb.gpu_addr + (index * 4);
  768. tmp = 0xCAFEDEAD;
  769. adev->wb.wb[index] = cpu_to_le32(tmp);
  770. r = amdgpu_ring_alloc(ring, 5);
  771. if (r) {
  772. DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
  773. amdgpu_wb_free(adev, index);
  774. return r;
  775. }
  776. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  777. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
  778. amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
  779. amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
  780. amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
  781. amdgpu_ring_write(ring, 0xDEADBEEF);
  782. amdgpu_ring_commit(ring);
  783. for (i = 0; i < adev->usec_timeout; i++) {
  784. tmp = le32_to_cpu(adev->wb.wb[index]);
  785. if (tmp == 0xDEADBEEF)
  786. break;
  787. DRM_UDELAY(1);
  788. }
  789. if (i < adev->usec_timeout) {
  790. DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
  791. } else {
  792. DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
  793. ring->idx, tmp);
  794. r = -EINVAL;
  795. }
  796. amdgpu_wb_free(adev, index);
  797. return r;
  798. }
  799. /**
  800. * sdma_v3_0_ring_test_ib - test an IB on the DMA engine
  801. *
  802. * @ring: amdgpu_ring structure holding ring information
  803. *
  804. * Test a simple IB in the DMA ring (VI).
  805. * Returns 0 on success, error on failure.
  806. */
  807. static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring)
  808. {
  809. struct amdgpu_device *adev = ring->adev;
  810. struct amdgpu_ib ib;
  811. struct fence *f = NULL;
  812. unsigned i;
  813. unsigned index;
  814. int r;
  815. u32 tmp = 0;
  816. u64 gpu_addr;
  817. r = amdgpu_wb_get(adev, &index);
  818. if (r) {
  819. dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
  820. return r;
  821. }
  822. gpu_addr = adev->wb.gpu_addr + (index * 4);
  823. tmp = 0xCAFEDEAD;
  824. adev->wb.wb[index] = cpu_to_le32(tmp);
  825. memset(&ib, 0, sizeof(ib));
  826. r = amdgpu_ib_get(adev, NULL, 256, &ib);
  827. if (r) {
  828. DRM_ERROR("amdgpu: failed to get ib (%d).\n", r);
  829. goto err0;
  830. }
  831. ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  832. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
  833. ib.ptr[1] = lower_32_bits(gpu_addr);
  834. ib.ptr[2] = upper_32_bits(gpu_addr);
  835. ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
  836. ib.ptr[4] = 0xDEADBEEF;
  837. ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  838. ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  839. ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  840. ib.length_dw = 8;
  841. r = amdgpu_ib_schedule(ring, 1, &ib, NULL, NULL, &f);
  842. if (r)
  843. goto err1;
  844. r = fence_wait(f, false);
  845. if (r) {
  846. DRM_ERROR("amdgpu: fence wait failed (%d).\n", r);
  847. goto err1;
  848. }
  849. for (i = 0; i < adev->usec_timeout; i++) {
  850. tmp = le32_to_cpu(adev->wb.wb[index]);
  851. if (tmp == 0xDEADBEEF)
  852. break;
  853. DRM_UDELAY(1);
  854. }
  855. if (i < adev->usec_timeout) {
  856. DRM_INFO("ib test on ring %d succeeded in %u usecs\n",
  857. ring->idx, i);
  858. goto err1;
  859. } else {
  860. DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
  861. r = -EINVAL;
  862. }
  863. err1:
  864. fence_put(f);
  865. amdgpu_ib_free(adev, &ib, NULL);
  866. fence_put(f);
  867. err0:
  868. amdgpu_wb_free(adev, index);
  869. return r;
  870. }
  871. /**
  872. * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART
  873. *
  874. * @ib: indirect buffer to fill with commands
  875. * @pe: addr of the page entry
  876. * @src: src addr to copy from
  877. * @count: number of page entries to update
  878. *
  879. * Update PTEs by copying them from the GART using sDMA (CIK).
  880. */
  881. static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib,
  882. uint64_t pe, uint64_t src,
  883. unsigned count)
  884. {
  885. while (count) {
  886. unsigned bytes = count * 8;
  887. if (bytes > 0x1FFFF8)
  888. bytes = 0x1FFFF8;
  889. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  890. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  891. ib->ptr[ib->length_dw++] = bytes;
  892. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  893. ib->ptr[ib->length_dw++] = lower_32_bits(src);
  894. ib->ptr[ib->length_dw++] = upper_32_bits(src);
  895. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  896. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  897. pe += bytes;
  898. src += bytes;
  899. count -= bytes / 8;
  900. }
  901. }
  902. /**
  903. * sdma_v3_0_vm_write_pte - update PTEs by writing them manually
  904. *
  905. * @ib: indirect buffer to fill with commands
  906. * @pe: addr of the page entry
  907. * @addr: dst addr to write into pe
  908. * @count: number of page entries to update
  909. * @incr: increase next addr by incr bytes
  910. * @flags: access flags
  911. *
  912. * Update PTEs by writing them manually using sDMA (CIK).
  913. */
  914. static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib,
  915. const dma_addr_t *pages_addr, uint64_t pe,
  916. uint64_t addr, unsigned count,
  917. uint32_t incr, uint32_t flags)
  918. {
  919. uint64_t value;
  920. unsigned ndw;
  921. while (count) {
  922. ndw = count * 2;
  923. if (ndw > 0xFFFFE)
  924. ndw = 0xFFFFE;
  925. /* for non-physically contiguous pages (system) */
  926. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  927. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  928. ib->ptr[ib->length_dw++] = pe;
  929. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  930. ib->ptr[ib->length_dw++] = ndw;
  931. for (; ndw > 0; ndw -= 2, --count, pe += 8) {
  932. value = amdgpu_vm_map_gart(pages_addr, addr);
  933. addr += incr;
  934. value |= flags;
  935. ib->ptr[ib->length_dw++] = value;
  936. ib->ptr[ib->length_dw++] = upper_32_bits(value);
  937. }
  938. }
  939. }
  940. /**
  941. * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA
  942. *
  943. * @ib: indirect buffer to fill with commands
  944. * @pe: addr of the page entry
  945. * @addr: dst addr to write into pe
  946. * @count: number of page entries to update
  947. * @incr: increase next addr by incr bytes
  948. * @flags: access flags
  949. *
  950. * Update the page tables using sDMA (CIK).
  951. */
  952. static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib,
  953. uint64_t pe,
  954. uint64_t addr, unsigned count,
  955. uint32_t incr, uint32_t flags)
  956. {
  957. uint64_t value;
  958. unsigned ndw;
  959. while (count) {
  960. ndw = count;
  961. if (ndw > 0x7FFFF)
  962. ndw = 0x7FFFF;
  963. if (flags & AMDGPU_PTE_VALID)
  964. value = addr;
  965. else
  966. value = 0;
  967. /* for physically contiguous pages (vram) */
  968. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
  969. ib->ptr[ib->length_dw++] = pe; /* dst addr */
  970. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  971. ib->ptr[ib->length_dw++] = flags; /* mask */
  972. ib->ptr[ib->length_dw++] = 0;
  973. ib->ptr[ib->length_dw++] = value; /* value */
  974. ib->ptr[ib->length_dw++] = upper_32_bits(value);
  975. ib->ptr[ib->length_dw++] = incr; /* increment size */
  976. ib->ptr[ib->length_dw++] = 0;
  977. ib->ptr[ib->length_dw++] = ndw; /* number of entries */
  978. pe += ndw * 8;
  979. addr += ndw * incr;
  980. count -= ndw;
  981. }
  982. }
  983. /**
  984. * sdma_v3_0_ring_pad_ib - pad the IB to the required number of dw
  985. *
  986. * @ib: indirect buffer to fill with padding
  987. *
  988. */
  989. static void sdma_v3_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
  990. {
  991. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  992. u32 pad_count;
  993. int i;
  994. pad_count = (8 - (ib->length_dw & 0x7)) % 8;
  995. for (i = 0; i < pad_count; i++)
  996. if (sdma && sdma->burst_nop && (i == 0))
  997. ib->ptr[ib->length_dw++] =
  998. SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
  999. SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
  1000. else
  1001. ib->ptr[ib->length_dw++] =
  1002. SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
  1003. }
  1004. /**
  1005. * sdma_v3_0_ring_emit_pipeline_sync - sync the pipeline
  1006. *
  1007. * @ring: amdgpu_ring pointer
  1008. *
  1009. * Make sure all previous operations are completed (CIK).
  1010. */
  1011. static void sdma_v3_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
  1012. {
  1013. uint32_t seq = ring->fence_drv.sync_seq;
  1014. uint64_t addr = ring->fence_drv.gpu_addr;
  1015. /* wait for idle */
  1016. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  1017. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  1018. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
  1019. SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
  1020. amdgpu_ring_write(ring, addr & 0xfffffffc);
  1021. amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
  1022. amdgpu_ring_write(ring, seq); /* reference */
  1023. amdgpu_ring_write(ring, 0xfffffff); /* mask */
  1024. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  1025. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
  1026. }
  1027. /**
  1028. * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA
  1029. *
  1030. * @ring: amdgpu_ring pointer
  1031. * @vm: amdgpu_vm pointer
  1032. *
  1033. * Update the page table base and flush the VM TLB
  1034. * using sDMA (VI).
  1035. */
  1036. static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
  1037. unsigned vm_id, uint64_t pd_addr)
  1038. {
  1039. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  1040. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  1041. if (vm_id < 8) {
  1042. amdgpu_ring_write(ring, (mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + vm_id));
  1043. } else {
  1044. amdgpu_ring_write(ring, (mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vm_id - 8));
  1045. }
  1046. amdgpu_ring_write(ring, pd_addr >> 12);
  1047. /* flush TLB */
  1048. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  1049. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  1050. amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST);
  1051. amdgpu_ring_write(ring, 1 << vm_id);
  1052. /* wait for flush */
  1053. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  1054. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  1055. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
  1056. amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
  1057. amdgpu_ring_write(ring, 0);
  1058. amdgpu_ring_write(ring, 0); /* reference */
  1059. amdgpu_ring_write(ring, 0); /* mask */
  1060. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  1061. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  1062. }
  1063. static int sdma_v3_0_early_init(void *handle)
  1064. {
  1065. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1066. switch (adev->asic_type) {
  1067. case CHIP_STONEY:
  1068. adev->sdma.num_instances = 1;
  1069. break;
  1070. default:
  1071. adev->sdma.num_instances = SDMA_MAX_INSTANCE;
  1072. break;
  1073. }
  1074. sdma_v3_0_set_ring_funcs(adev);
  1075. sdma_v3_0_set_buffer_funcs(adev);
  1076. sdma_v3_0_set_vm_pte_funcs(adev);
  1077. sdma_v3_0_set_irq_funcs(adev);
  1078. return 0;
  1079. }
  1080. static int sdma_v3_0_sw_init(void *handle)
  1081. {
  1082. struct amdgpu_ring *ring;
  1083. int r, i;
  1084. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1085. /* SDMA trap event */
  1086. r = amdgpu_irq_add_id(adev, 224, &adev->sdma.trap_irq);
  1087. if (r)
  1088. return r;
  1089. /* SDMA Privileged inst */
  1090. r = amdgpu_irq_add_id(adev, 241, &adev->sdma.illegal_inst_irq);
  1091. if (r)
  1092. return r;
  1093. /* SDMA Privileged inst */
  1094. r = amdgpu_irq_add_id(adev, 247, &adev->sdma.illegal_inst_irq);
  1095. if (r)
  1096. return r;
  1097. r = sdma_v3_0_init_microcode(adev);
  1098. if (r) {
  1099. DRM_ERROR("Failed to load sdma firmware!\n");
  1100. return r;
  1101. }
  1102. for (i = 0; i < adev->sdma.num_instances; i++) {
  1103. ring = &adev->sdma.instance[i].ring;
  1104. ring->ring_obj = NULL;
  1105. ring->use_doorbell = true;
  1106. ring->doorbell_index = (i == 0) ?
  1107. AMDGPU_DOORBELL_sDMA_ENGINE0 : AMDGPU_DOORBELL_sDMA_ENGINE1;
  1108. sprintf(ring->name, "sdma%d", i);
  1109. r = amdgpu_ring_init(adev, ring, 1024,
  1110. SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 0xf,
  1111. &adev->sdma.trap_irq,
  1112. (i == 0) ?
  1113. AMDGPU_SDMA_IRQ_TRAP0 : AMDGPU_SDMA_IRQ_TRAP1,
  1114. AMDGPU_RING_TYPE_SDMA);
  1115. if (r)
  1116. return r;
  1117. }
  1118. return r;
  1119. }
  1120. static int sdma_v3_0_sw_fini(void *handle)
  1121. {
  1122. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1123. int i;
  1124. for (i = 0; i < adev->sdma.num_instances; i++)
  1125. amdgpu_ring_fini(&adev->sdma.instance[i].ring);
  1126. sdma_v3_0_free_microcode(adev);
  1127. return 0;
  1128. }
  1129. static int sdma_v3_0_hw_init(void *handle)
  1130. {
  1131. int r;
  1132. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1133. sdma_v3_0_init_golden_registers(adev);
  1134. r = sdma_v3_0_start(adev);
  1135. if (r)
  1136. return r;
  1137. return r;
  1138. }
  1139. static int sdma_v3_0_hw_fini(void *handle)
  1140. {
  1141. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1142. sdma_v3_0_ctx_switch_enable(adev, false);
  1143. sdma_v3_0_enable(adev, false);
  1144. return 0;
  1145. }
  1146. static int sdma_v3_0_suspend(void *handle)
  1147. {
  1148. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1149. return sdma_v3_0_hw_fini(adev);
  1150. }
  1151. static int sdma_v3_0_resume(void *handle)
  1152. {
  1153. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1154. return sdma_v3_0_hw_init(adev);
  1155. }
  1156. static bool sdma_v3_0_is_idle(void *handle)
  1157. {
  1158. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1159. u32 tmp = RREG32(mmSRBM_STATUS2);
  1160. if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
  1161. SRBM_STATUS2__SDMA1_BUSY_MASK))
  1162. return false;
  1163. return true;
  1164. }
  1165. static int sdma_v3_0_wait_for_idle(void *handle)
  1166. {
  1167. unsigned i;
  1168. u32 tmp;
  1169. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1170. for (i = 0; i < adev->usec_timeout; i++) {
  1171. tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
  1172. SRBM_STATUS2__SDMA1_BUSY_MASK);
  1173. if (!tmp)
  1174. return 0;
  1175. udelay(1);
  1176. }
  1177. return -ETIMEDOUT;
  1178. }
  1179. static int sdma_v3_0_soft_reset(void *handle)
  1180. {
  1181. u32 srbm_soft_reset = 0;
  1182. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1183. u32 tmp = RREG32(mmSRBM_STATUS2);
  1184. if (tmp & SRBM_STATUS2__SDMA_BUSY_MASK) {
  1185. /* sdma0 */
  1186. tmp = RREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET);
  1187. tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
  1188. WREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET, tmp);
  1189. srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
  1190. }
  1191. if (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK) {
  1192. /* sdma1 */
  1193. tmp = RREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET);
  1194. tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
  1195. WREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET, tmp);
  1196. srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
  1197. }
  1198. if (srbm_soft_reset) {
  1199. tmp = RREG32(mmSRBM_SOFT_RESET);
  1200. tmp |= srbm_soft_reset;
  1201. dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
  1202. WREG32(mmSRBM_SOFT_RESET, tmp);
  1203. tmp = RREG32(mmSRBM_SOFT_RESET);
  1204. udelay(50);
  1205. tmp &= ~srbm_soft_reset;
  1206. WREG32(mmSRBM_SOFT_RESET, tmp);
  1207. tmp = RREG32(mmSRBM_SOFT_RESET);
  1208. /* Wait a little for things to settle down */
  1209. udelay(50);
  1210. }
  1211. return 0;
  1212. }
  1213. static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev,
  1214. struct amdgpu_irq_src *source,
  1215. unsigned type,
  1216. enum amdgpu_interrupt_state state)
  1217. {
  1218. u32 sdma_cntl;
  1219. switch (type) {
  1220. case AMDGPU_SDMA_IRQ_TRAP0:
  1221. switch (state) {
  1222. case AMDGPU_IRQ_STATE_DISABLE:
  1223. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
  1224. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
  1225. WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
  1226. break;
  1227. case AMDGPU_IRQ_STATE_ENABLE:
  1228. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
  1229. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
  1230. WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
  1231. break;
  1232. default:
  1233. break;
  1234. }
  1235. break;
  1236. case AMDGPU_SDMA_IRQ_TRAP1:
  1237. switch (state) {
  1238. case AMDGPU_IRQ_STATE_DISABLE:
  1239. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
  1240. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
  1241. WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
  1242. break;
  1243. case AMDGPU_IRQ_STATE_ENABLE:
  1244. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
  1245. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
  1246. WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
  1247. break;
  1248. default:
  1249. break;
  1250. }
  1251. break;
  1252. default:
  1253. break;
  1254. }
  1255. return 0;
  1256. }
  1257. static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev,
  1258. struct amdgpu_irq_src *source,
  1259. struct amdgpu_iv_entry *entry)
  1260. {
  1261. u8 instance_id, queue_id;
  1262. instance_id = (entry->ring_id & 0x3) >> 0;
  1263. queue_id = (entry->ring_id & 0xc) >> 2;
  1264. DRM_DEBUG("IH: SDMA trap\n");
  1265. switch (instance_id) {
  1266. case 0:
  1267. switch (queue_id) {
  1268. case 0:
  1269. amdgpu_fence_process(&adev->sdma.instance[0].ring);
  1270. break;
  1271. case 1:
  1272. /* XXX compute */
  1273. break;
  1274. case 2:
  1275. /* XXX compute */
  1276. break;
  1277. }
  1278. break;
  1279. case 1:
  1280. switch (queue_id) {
  1281. case 0:
  1282. amdgpu_fence_process(&adev->sdma.instance[1].ring);
  1283. break;
  1284. case 1:
  1285. /* XXX compute */
  1286. break;
  1287. case 2:
  1288. /* XXX compute */
  1289. break;
  1290. }
  1291. break;
  1292. }
  1293. return 0;
  1294. }
  1295. static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev,
  1296. struct amdgpu_irq_src *source,
  1297. struct amdgpu_iv_entry *entry)
  1298. {
  1299. DRM_ERROR("Illegal instruction in SDMA command stream\n");
  1300. schedule_work(&adev->reset_work);
  1301. return 0;
  1302. }
  1303. static void sdma_v3_0_update_sdma_medium_grain_clock_gating(
  1304. struct amdgpu_device *adev,
  1305. bool enable)
  1306. {
  1307. uint32_t temp, data;
  1308. int i;
  1309. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
  1310. for (i = 0; i < adev->sdma.num_instances; i++) {
  1311. temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
  1312. data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1313. SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1314. SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1315. SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1316. SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1317. SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1318. SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1319. SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1320. if (data != temp)
  1321. WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
  1322. }
  1323. } else {
  1324. for (i = 0; i < adev->sdma.num_instances; i++) {
  1325. temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
  1326. data |= SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1327. SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1328. SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1329. SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1330. SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1331. SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1332. SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1333. SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK;
  1334. if (data != temp)
  1335. WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
  1336. }
  1337. }
  1338. }
  1339. static void sdma_v3_0_update_sdma_medium_grain_light_sleep(
  1340. struct amdgpu_device *adev,
  1341. bool enable)
  1342. {
  1343. uint32_t temp, data;
  1344. int i;
  1345. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
  1346. for (i = 0; i < adev->sdma.num_instances; i++) {
  1347. temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
  1348. data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1349. if (temp != data)
  1350. WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
  1351. }
  1352. } else {
  1353. for (i = 0; i < adev->sdma.num_instances; i++) {
  1354. temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
  1355. data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1356. if (temp != data)
  1357. WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
  1358. }
  1359. }
  1360. }
  1361. static int sdma_v3_0_set_clockgating_state(void *handle,
  1362. enum amd_clockgating_state state)
  1363. {
  1364. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1365. switch (adev->asic_type) {
  1366. case CHIP_FIJI:
  1367. case CHIP_CARRIZO:
  1368. case CHIP_STONEY:
  1369. sdma_v3_0_update_sdma_medium_grain_clock_gating(adev,
  1370. state == AMD_CG_STATE_GATE ? true : false);
  1371. sdma_v3_0_update_sdma_medium_grain_light_sleep(adev,
  1372. state == AMD_CG_STATE_GATE ? true : false);
  1373. break;
  1374. default:
  1375. break;
  1376. }
  1377. return 0;
  1378. }
  1379. static int sdma_v3_0_set_powergating_state(void *handle,
  1380. enum amd_powergating_state state)
  1381. {
  1382. return 0;
  1383. }
  1384. const struct amd_ip_funcs sdma_v3_0_ip_funcs = {
  1385. .name = "sdma_v3_0",
  1386. .early_init = sdma_v3_0_early_init,
  1387. .late_init = NULL,
  1388. .sw_init = sdma_v3_0_sw_init,
  1389. .sw_fini = sdma_v3_0_sw_fini,
  1390. .hw_init = sdma_v3_0_hw_init,
  1391. .hw_fini = sdma_v3_0_hw_fini,
  1392. .suspend = sdma_v3_0_suspend,
  1393. .resume = sdma_v3_0_resume,
  1394. .is_idle = sdma_v3_0_is_idle,
  1395. .wait_for_idle = sdma_v3_0_wait_for_idle,
  1396. .soft_reset = sdma_v3_0_soft_reset,
  1397. .set_clockgating_state = sdma_v3_0_set_clockgating_state,
  1398. .set_powergating_state = sdma_v3_0_set_powergating_state,
  1399. };
  1400. static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = {
  1401. .get_rptr = sdma_v3_0_ring_get_rptr,
  1402. .get_wptr = sdma_v3_0_ring_get_wptr,
  1403. .set_wptr = sdma_v3_0_ring_set_wptr,
  1404. .parse_cs = NULL,
  1405. .emit_ib = sdma_v3_0_ring_emit_ib,
  1406. .emit_fence = sdma_v3_0_ring_emit_fence,
  1407. .emit_pipeline_sync = sdma_v3_0_ring_emit_pipeline_sync,
  1408. .emit_vm_flush = sdma_v3_0_ring_emit_vm_flush,
  1409. .emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush,
  1410. .emit_hdp_invalidate = sdma_v3_0_ring_emit_hdp_invalidate,
  1411. .test_ring = sdma_v3_0_ring_test_ring,
  1412. .test_ib = sdma_v3_0_ring_test_ib,
  1413. .insert_nop = sdma_v3_0_ring_insert_nop,
  1414. .pad_ib = sdma_v3_0_ring_pad_ib,
  1415. };
  1416. static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev)
  1417. {
  1418. int i;
  1419. for (i = 0; i < adev->sdma.num_instances; i++)
  1420. adev->sdma.instance[i].ring.funcs = &sdma_v3_0_ring_funcs;
  1421. }
  1422. static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = {
  1423. .set = sdma_v3_0_set_trap_irq_state,
  1424. .process = sdma_v3_0_process_trap_irq,
  1425. };
  1426. static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = {
  1427. .process = sdma_v3_0_process_illegal_inst_irq,
  1428. };
  1429. static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev)
  1430. {
  1431. adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
  1432. adev->sdma.trap_irq.funcs = &sdma_v3_0_trap_irq_funcs;
  1433. adev->sdma.illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs;
  1434. }
  1435. /**
  1436. * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine
  1437. *
  1438. * @ring: amdgpu_ring structure holding ring information
  1439. * @src_offset: src GPU address
  1440. * @dst_offset: dst GPU address
  1441. * @byte_count: number of bytes to xfer
  1442. *
  1443. * Copy GPU buffers using the DMA engine (VI).
  1444. * Used by the amdgpu ttm implementation to move pages if
  1445. * registered as the asic copy callback.
  1446. */
  1447. static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ib *ib,
  1448. uint64_t src_offset,
  1449. uint64_t dst_offset,
  1450. uint32_t byte_count)
  1451. {
  1452. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  1453. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  1454. ib->ptr[ib->length_dw++] = byte_count;
  1455. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  1456. ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
  1457. ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
  1458. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1459. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1460. }
  1461. /**
  1462. * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine
  1463. *
  1464. * @ring: amdgpu_ring structure holding ring information
  1465. * @src_data: value to write to buffer
  1466. * @dst_offset: dst GPU address
  1467. * @byte_count: number of bytes to xfer
  1468. *
  1469. * Fill GPU buffers using the DMA engine (VI).
  1470. */
  1471. static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ib *ib,
  1472. uint32_t src_data,
  1473. uint64_t dst_offset,
  1474. uint32_t byte_count)
  1475. {
  1476. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
  1477. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1478. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1479. ib->ptr[ib->length_dw++] = src_data;
  1480. ib->ptr[ib->length_dw++] = byte_count;
  1481. }
  1482. static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = {
  1483. .copy_max_bytes = 0x1fffff,
  1484. .copy_num_dw = 7,
  1485. .emit_copy_buffer = sdma_v3_0_emit_copy_buffer,
  1486. .fill_max_bytes = 0x1fffff,
  1487. .fill_num_dw = 5,
  1488. .emit_fill_buffer = sdma_v3_0_emit_fill_buffer,
  1489. };
  1490. static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev)
  1491. {
  1492. if (adev->mman.buffer_funcs == NULL) {
  1493. adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs;
  1494. adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
  1495. }
  1496. }
  1497. static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = {
  1498. .copy_pte = sdma_v3_0_vm_copy_pte,
  1499. .write_pte = sdma_v3_0_vm_write_pte,
  1500. .set_pte_pde = sdma_v3_0_vm_set_pte_pde,
  1501. };
  1502. static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev)
  1503. {
  1504. unsigned i;
  1505. if (adev->vm_manager.vm_pte_funcs == NULL) {
  1506. adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs;
  1507. for (i = 0; i < adev->sdma.num_instances; i++)
  1508. adev->vm_manager.vm_pte_rings[i] =
  1509. &adev->sdma.instance[i].ring;
  1510. adev->vm_manager.vm_pte_num_rings = adev->sdma.num_instances;
  1511. }
  1512. }