tmio_nand.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513
  1. /*
  2. * Toshiba TMIO NAND flash controller driver
  3. *
  4. * Slightly murky pre-git history of the driver:
  5. *
  6. * Copyright (c) Ian Molton 2004, 2005, 2008
  7. * Original work, independent of sharps code. Included hardware ECC support.
  8. * Hard ECC did not work for writes in the early revisions.
  9. * Copyright (c) Dirk Opfer 2005.
  10. * Modifications developed from sharps code but
  11. * NOT containing any, ported onto Ians base.
  12. * Copyright (c) Chris Humbert 2005
  13. * Copyright (c) Dmitry Baryshkov 2008
  14. * Minor fixes
  15. *
  16. * Parts copyright Sebastian Carlier
  17. *
  18. * This file is licensed under
  19. * the terms of the GNU General Public License version 2. This program
  20. * is licensed "as is" without any warranty of any kind, whether express
  21. * or implied.
  22. *
  23. */
  24. #include <linux/kernel.h>
  25. #include <linux/module.h>
  26. #include <linux/platform_device.h>
  27. #include <linux/mfd/core.h>
  28. #include <linux/mfd/tmio.h>
  29. #include <linux/delay.h>
  30. #include <linux/io.h>
  31. #include <linux/irq.h>
  32. #include <linux/interrupt.h>
  33. #include <linux/ioport.h>
  34. #include <linux/mtd/mtd.h>
  35. #include <linux/mtd/rawnand.h>
  36. #include <linux/mtd/nand_ecc.h>
  37. #include <linux/mtd/partitions.h>
  38. #include <linux/slab.h>
  39. /*--------------------------------------------------------------------------*/
  40. /*
  41. * NAND Flash Host Controller Configuration Register
  42. */
  43. #define CCR_COMMAND 0x04 /* w Command */
  44. #define CCR_BASE 0x10 /* l NAND Flash Control Reg Base Addr */
  45. #define CCR_INTP 0x3d /* b Interrupt Pin */
  46. #define CCR_INTE 0x48 /* b Interrupt Enable */
  47. #define CCR_EC 0x4a /* b Event Control */
  48. #define CCR_ICC 0x4c /* b Internal Clock Control */
  49. #define CCR_ECCC 0x5b /* b ECC Control */
  50. #define CCR_NFTC 0x60 /* b NAND Flash Transaction Control */
  51. #define CCR_NFM 0x61 /* b NAND Flash Monitor */
  52. #define CCR_NFPSC 0x62 /* b NAND Flash Power Supply Control */
  53. #define CCR_NFDC 0x63 /* b NAND Flash Detect Control */
  54. /*
  55. * NAND Flash Control Register
  56. */
  57. #define FCR_DATA 0x00 /* bwl Data Register */
  58. #define FCR_MODE 0x04 /* b Mode Register */
  59. #define FCR_STATUS 0x05 /* b Status Register */
  60. #define FCR_ISR 0x06 /* b Interrupt Status Register */
  61. #define FCR_IMR 0x07 /* b Interrupt Mask Register */
  62. /* FCR_MODE Register Command List */
  63. #define FCR_MODE_DATA 0x94 /* Data Data_Mode */
  64. #define FCR_MODE_COMMAND 0x95 /* Data Command_Mode */
  65. #define FCR_MODE_ADDRESS 0x96 /* Data Address_Mode */
  66. #define FCR_MODE_HWECC_CALC 0xB4 /* HW-ECC Data */
  67. #define FCR_MODE_HWECC_RESULT 0xD4 /* HW-ECC Calc result Read_Mode */
  68. #define FCR_MODE_HWECC_RESET 0xF4 /* HW-ECC Reset */
  69. #define FCR_MODE_POWER_ON 0x0C /* Power Supply ON to SSFDC card */
  70. #define FCR_MODE_POWER_OFF 0x08 /* Power Supply OFF to SSFDC card */
  71. #define FCR_MODE_LED_OFF 0x00 /* LED OFF */
  72. #define FCR_MODE_LED_ON 0x04 /* LED ON */
  73. #define FCR_MODE_EJECT_ON 0x68 /* Ejection events active */
  74. #define FCR_MODE_EJECT_OFF 0x08 /* Ejection events ignored */
  75. #define FCR_MODE_LOCK 0x6C /* Lock_Mode. Eject Switch Invalid */
  76. #define FCR_MODE_UNLOCK 0x0C /* UnLock_Mode. Eject Switch is valid */
  77. #define FCR_MODE_CONTROLLER_ID 0x40 /* Controller ID Read */
  78. #define FCR_MODE_STANDBY 0x00 /* SSFDC card Changes Standby State */
  79. #define FCR_MODE_WE 0x80
  80. #define FCR_MODE_ECC1 0x40
  81. #define FCR_MODE_ECC0 0x20
  82. #define FCR_MODE_CE 0x10
  83. #define FCR_MODE_PCNT1 0x08
  84. #define FCR_MODE_PCNT0 0x04
  85. #define FCR_MODE_ALE 0x02
  86. #define FCR_MODE_CLE 0x01
  87. #define FCR_STATUS_BUSY 0x80
  88. /*--------------------------------------------------------------------------*/
  89. struct tmio_nand {
  90. struct nand_chip chip;
  91. struct platform_device *dev;
  92. void __iomem *ccr;
  93. void __iomem *fcr;
  94. unsigned long fcr_base;
  95. unsigned int irq;
  96. /* for tmio_nand_read_byte */
  97. u8 read;
  98. unsigned read_good:1;
  99. };
  100. static inline struct tmio_nand *mtd_to_tmio(struct mtd_info *mtd)
  101. {
  102. return container_of(mtd_to_nand(mtd), struct tmio_nand, chip);
  103. }
  104. /*--------------------------------------------------------------------------*/
  105. static void tmio_nand_hwcontrol(struct nand_chip *chip, int cmd,
  106. unsigned int ctrl)
  107. {
  108. struct tmio_nand *tmio = mtd_to_tmio(nand_to_mtd(chip));
  109. if (ctrl & NAND_CTRL_CHANGE) {
  110. u8 mode;
  111. if (ctrl & NAND_NCE) {
  112. mode = FCR_MODE_DATA;
  113. if (ctrl & NAND_CLE)
  114. mode |= FCR_MODE_CLE;
  115. else
  116. mode &= ~FCR_MODE_CLE;
  117. if (ctrl & NAND_ALE)
  118. mode |= FCR_MODE_ALE;
  119. else
  120. mode &= ~FCR_MODE_ALE;
  121. } else {
  122. mode = FCR_MODE_STANDBY;
  123. }
  124. tmio_iowrite8(mode, tmio->fcr + FCR_MODE);
  125. tmio->read_good = 0;
  126. }
  127. if (cmd != NAND_CMD_NONE)
  128. tmio_iowrite8(cmd, chip->legacy.IO_ADDR_W);
  129. }
  130. static int tmio_nand_dev_ready(struct nand_chip *chip)
  131. {
  132. struct tmio_nand *tmio = mtd_to_tmio(nand_to_mtd(chip));
  133. return !(tmio_ioread8(tmio->fcr + FCR_STATUS) & FCR_STATUS_BUSY);
  134. }
  135. static irqreturn_t tmio_irq(int irq, void *__tmio)
  136. {
  137. struct tmio_nand *tmio = __tmio;
  138. struct nand_chip *nand_chip = &tmio->chip;
  139. /* disable RDYREQ interrupt */
  140. tmio_iowrite8(0x00, tmio->fcr + FCR_IMR);
  141. if (unlikely(!waitqueue_active(&nand_chip->controller->wq)))
  142. dev_warn(&tmio->dev->dev, "spurious interrupt\n");
  143. wake_up(&nand_chip->controller->wq);
  144. return IRQ_HANDLED;
  145. }
  146. /*
  147. *The TMIO core has a RDYREQ interrupt on the posedge of #SMRB.
  148. *This interrupt is normally disabled, but for long operations like
  149. *erase and write, we enable it to wake us up. The irq handler
  150. *disables the interrupt.
  151. */
  152. static int tmio_nand_wait(struct nand_chip *nand_chip)
  153. {
  154. struct tmio_nand *tmio = mtd_to_tmio(nand_to_mtd(nand_chip));
  155. long timeout;
  156. u8 status;
  157. /* enable RDYREQ interrupt */
  158. tmio_iowrite8(0x0f, tmio->fcr + FCR_ISR);
  159. tmio_iowrite8(0x81, tmio->fcr + FCR_IMR);
  160. timeout = wait_event_timeout(nand_chip->controller->wq,
  161. tmio_nand_dev_ready(nand_chip),
  162. msecs_to_jiffies(nand_chip->state == FL_ERASING ? 400 : 20));
  163. if (unlikely(!tmio_nand_dev_ready(nand_chip))) {
  164. tmio_iowrite8(0x00, tmio->fcr + FCR_IMR);
  165. dev_warn(&tmio->dev->dev, "still busy with %s after %d ms\n",
  166. nand_chip->state == FL_ERASING ? "erase" : "program",
  167. nand_chip->state == FL_ERASING ? 400 : 20);
  168. } else if (unlikely(!timeout)) {
  169. tmio_iowrite8(0x00, tmio->fcr + FCR_IMR);
  170. dev_warn(&tmio->dev->dev, "timeout waiting for interrupt\n");
  171. }
  172. nand_status_op(nand_chip, &status);
  173. return status;
  174. }
  175. /*
  176. *The TMIO controller combines two 8-bit data bytes into one 16-bit
  177. *word. This function separates them so nand_base.c works as expected,
  178. *especially its NAND_CMD_READID routines.
  179. *
  180. *To prevent stale data from being read, tmio_nand_hwcontrol() clears
  181. *tmio->read_good.
  182. */
  183. static u_char tmio_nand_read_byte(struct nand_chip *chip)
  184. {
  185. struct tmio_nand *tmio = mtd_to_tmio(nand_to_mtd(chip));
  186. unsigned int data;
  187. if (tmio->read_good--)
  188. return tmio->read;
  189. data = tmio_ioread16(tmio->fcr + FCR_DATA);
  190. tmio->read = data >> 8;
  191. return data;
  192. }
  193. /*
  194. *The TMIO controller converts an 8-bit NAND interface to a 16-bit
  195. *bus interface, so all data reads and writes must be 16-bit wide.
  196. *Thus, we implement 16-bit versions of the read, write, and verify
  197. *buffer functions.
  198. */
  199. static void
  200. tmio_nand_write_buf(struct nand_chip *chip, const u_char *buf, int len)
  201. {
  202. struct tmio_nand *tmio = mtd_to_tmio(nand_to_mtd(chip));
  203. tmio_iowrite16_rep(tmio->fcr + FCR_DATA, buf, len >> 1);
  204. }
  205. static void tmio_nand_read_buf(struct nand_chip *chip, u_char *buf, int len)
  206. {
  207. struct tmio_nand *tmio = mtd_to_tmio(nand_to_mtd(chip));
  208. tmio_ioread16_rep(tmio->fcr + FCR_DATA, buf, len >> 1);
  209. }
  210. static void tmio_nand_enable_hwecc(struct nand_chip *chip, int mode)
  211. {
  212. struct tmio_nand *tmio = mtd_to_tmio(nand_to_mtd(chip));
  213. tmio_iowrite8(FCR_MODE_HWECC_RESET, tmio->fcr + FCR_MODE);
  214. tmio_ioread8(tmio->fcr + FCR_DATA); /* dummy read */
  215. tmio_iowrite8(FCR_MODE_HWECC_CALC, tmio->fcr + FCR_MODE);
  216. }
  217. static int tmio_nand_calculate_ecc(struct nand_chip *chip, const u_char *dat,
  218. u_char *ecc_code)
  219. {
  220. struct tmio_nand *tmio = mtd_to_tmio(nand_to_mtd(chip));
  221. unsigned int ecc;
  222. tmio_iowrite8(FCR_MODE_HWECC_RESULT, tmio->fcr + FCR_MODE);
  223. ecc = tmio_ioread16(tmio->fcr + FCR_DATA);
  224. ecc_code[1] = ecc; /* 000-255 LP7-0 */
  225. ecc_code[0] = ecc >> 8; /* 000-255 LP15-8 */
  226. ecc = tmio_ioread16(tmio->fcr + FCR_DATA);
  227. ecc_code[2] = ecc; /* 000-255 CP5-0,11b */
  228. ecc_code[4] = ecc >> 8; /* 256-511 LP7-0 */
  229. ecc = tmio_ioread16(tmio->fcr + FCR_DATA);
  230. ecc_code[3] = ecc; /* 256-511 LP15-8 */
  231. ecc_code[5] = ecc >> 8; /* 256-511 CP5-0,11b */
  232. tmio_iowrite8(FCR_MODE_DATA, tmio->fcr + FCR_MODE);
  233. return 0;
  234. }
  235. static int tmio_nand_correct_data(struct nand_chip *chip, unsigned char *buf,
  236. unsigned char *read_ecc,
  237. unsigned char *calc_ecc)
  238. {
  239. int r0, r1;
  240. /* assume ecc.size = 512 and ecc.bytes = 6 */
  241. r0 = __nand_correct_data(buf, read_ecc, calc_ecc, 256, false);
  242. if (r0 < 0)
  243. return r0;
  244. r1 = __nand_correct_data(buf + 256, read_ecc + 3, calc_ecc + 3, 256,
  245. false);
  246. if (r1 < 0)
  247. return r1;
  248. return r0 + r1;
  249. }
  250. static int tmio_hw_init(struct platform_device *dev, struct tmio_nand *tmio)
  251. {
  252. const struct mfd_cell *cell = mfd_get_cell(dev);
  253. int ret;
  254. if (cell->enable) {
  255. ret = cell->enable(dev);
  256. if (ret)
  257. return ret;
  258. }
  259. /* (4Ch) CLKRUN Enable 1st spcrunc */
  260. tmio_iowrite8(0x81, tmio->ccr + CCR_ICC);
  261. /* (10h)BaseAddress 0x1000 spba.spba2 */
  262. tmio_iowrite16(tmio->fcr_base, tmio->ccr + CCR_BASE);
  263. tmio_iowrite16(tmio->fcr_base >> 16, tmio->ccr + CCR_BASE + 2);
  264. /* (04h)Command Register I/O spcmd */
  265. tmio_iowrite8(0x02, tmio->ccr + CCR_COMMAND);
  266. /* (62h) Power Supply Control ssmpwc */
  267. /* HardPowerOFF - SuspendOFF - PowerSupplyWait_4MS */
  268. tmio_iowrite8(0x02, tmio->ccr + CCR_NFPSC);
  269. /* (63h) Detect Control ssmdtc */
  270. tmio_iowrite8(0x02, tmio->ccr + CCR_NFDC);
  271. /* Interrupt status register clear sintst */
  272. tmio_iowrite8(0x0f, tmio->fcr + FCR_ISR);
  273. /* After power supply, Media are reset smode */
  274. tmio_iowrite8(FCR_MODE_POWER_ON, tmio->fcr + FCR_MODE);
  275. tmio_iowrite8(FCR_MODE_COMMAND, tmio->fcr + FCR_MODE);
  276. tmio_iowrite8(NAND_CMD_RESET, tmio->fcr + FCR_DATA);
  277. /* Standby Mode smode */
  278. tmio_iowrite8(FCR_MODE_STANDBY, tmio->fcr + FCR_MODE);
  279. mdelay(5);
  280. return 0;
  281. }
  282. static void tmio_hw_stop(struct platform_device *dev, struct tmio_nand *tmio)
  283. {
  284. const struct mfd_cell *cell = mfd_get_cell(dev);
  285. tmio_iowrite8(FCR_MODE_POWER_OFF, tmio->fcr + FCR_MODE);
  286. if (cell->disable)
  287. cell->disable(dev);
  288. }
  289. static int tmio_probe(struct platform_device *dev)
  290. {
  291. struct tmio_nand_data *data = dev_get_platdata(&dev->dev);
  292. struct resource *fcr = platform_get_resource(dev,
  293. IORESOURCE_MEM, 0);
  294. struct resource *ccr = platform_get_resource(dev,
  295. IORESOURCE_MEM, 1);
  296. int irq = platform_get_irq(dev, 0);
  297. struct tmio_nand *tmio;
  298. struct mtd_info *mtd;
  299. struct nand_chip *nand_chip;
  300. int retval;
  301. if (data == NULL)
  302. dev_warn(&dev->dev, "NULL platform data!\n");
  303. tmio = devm_kzalloc(&dev->dev, sizeof(*tmio), GFP_KERNEL);
  304. if (!tmio)
  305. return -ENOMEM;
  306. tmio->dev = dev;
  307. platform_set_drvdata(dev, tmio);
  308. nand_chip = &tmio->chip;
  309. mtd = nand_to_mtd(nand_chip);
  310. mtd->name = "tmio-nand";
  311. mtd->dev.parent = &dev->dev;
  312. tmio->ccr = devm_ioremap(&dev->dev, ccr->start, resource_size(ccr));
  313. if (!tmio->ccr)
  314. return -EIO;
  315. tmio->fcr_base = fcr->start & 0xfffff;
  316. tmio->fcr = devm_ioremap(&dev->dev, fcr->start, resource_size(fcr));
  317. if (!tmio->fcr)
  318. return -EIO;
  319. retval = tmio_hw_init(dev, tmio);
  320. if (retval)
  321. return retval;
  322. /* Set address of NAND IO lines */
  323. nand_chip->legacy.IO_ADDR_R = tmio->fcr;
  324. nand_chip->legacy.IO_ADDR_W = tmio->fcr;
  325. /* Set address of hardware control function */
  326. nand_chip->legacy.cmd_ctrl = tmio_nand_hwcontrol;
  327. nand_chip->legacy.dev_ready = tmio_nand_dev_ready;
  328. nand_chip->legacy.read_byte = tmio_nand_read_byte;
  329. nand_chip->legacy.write_buf = tmio_nand_write_buf;
  330. nand_chip->legacy.read_buf = tmio_nand_read_buf;
  331. /* set eccmode using hardware ECC */
  332. nand_chip->ecc.mode = NAND_ECC_HW;
  333. nand_chip->ecc.size = 512;
  334. nand_chip->ecc.bytes = 6;
  335. nand_chip->ecc.strength = 2;
  336. nand_chip->ecc.hwctl = tmio_nand_enable_hwecc;
  337. nand_chip->ecc.calculate = tmio_nand_calculate_ecc;
  338. nand_chip->ecc.correct = tmio_nand_correct_data;
  339. if (data)
  340. nand_chip->badblock_pattern = data->badblock_pattern;
  341. /* 15 us command delay time */
  342. nand_chip->legacy.chip_delay = 15;
  343. retval = devm_request_irq(&dev->dev, irq, &tmio_irq, 0,
  344. dev_name(&dev->dev), tmio);
  345. if (retval) {
  346. dev_err(&dev->dev, "request_irq error %d\n", retval);
  347. goto err_irq;
  348. }
  349. tmio->irq = irq;
  350. nand_chip->legacy.waitfunc = tmio_nand_wait;
  351. /* Scan to find existence of the device */
  352. retval = nand_scan(nand_chip, 1);
  353. if (retval)
  354. goto err_irq;
  355. /* Register the partitions */
  356. retval = mtd_device_parse_register(mtd,
  357. data ? data->part_parsers : NULL,
  358. NULL,
  359. data ? data->partition : NULL,
  360. data ? data->num_partitions : 0);
  361. if (!retval)
  362. return retval;
  363. nand_release(nand_chip);
  364. err_irq:
  365. tmio_hw_stop(dev, tmio);
  366. return retval;
  367. }
  368. static int tmio_remove(struct platform_device *dev)
  369. {
  370. struct tmio_nand *tmio = platform_get_drvdata(dev);
  371. nand_release(&tmio->chip);
  372. tmio_hw_stop(dev, tmio);
  373. return 0;
  374. }
  375. #ifdef CONFIG_PM
  376. static int tmio_suspend(struct platform_device *dev, pm_message_t state)
  377. {
  378. const struct mfd_cell *cell = mfd_get_cell(dev);
  379. if (cell->suspend)
  380. cell->suspend(dev);
  381. tmio_hw_stop(dev, platform_get_drvdata(dev));
  382. return 0;
  383. }
  384. static int tmio_resume(struct platform_device *dev)
  385. {
  386. const struct mfd_cell *cell = mfd_get_cell(dev);
  387. /* FIXME - is this required or merely another attack of the broken
  388. * SHARP platform? Looks suspicious.
  389. */
  390. tmio_hw_init(dev, platform_get_drvdata(dev));
  391. if (cell->resume)
  392. cell->resume(dev);
  393. return 0;
  394. }
  395. #else
  396. #define tmio_suspend NULL
  397. #define tmio_resume NULL
  398. #endif
  399. static struct platform_driver tmio_driver = {
  400. .driver.name = "tmio-nand",
  401. .driver.owner = THIS_MODULE,
  402. .probe = tmio_probe,
  403. .remove = tmio_remove,
  404. .suspend = tmio_suspend,
  405. .resume = tmio_resume,
  406. };
  407. module_platform_driver(tmio_driver);
  408. MODULE_LICENSE("GPL v2");
  409. MODULE_AUTHOR("Ian Molton, Dirk Opfer, Chris Humbert, Dmitry Baryshkov");
  410. MODULE_DESCRIPTION("NAND flash driver on Toshiba Mobile IO controller");
  411. MODULE_ALIAS("platform:tmio-nand");