rmap.c 49 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774
  1. /*
  2. * mm/rmap.c - physical to virtual reverse mappings
  3. *
  4. * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
  5. * Released under the General Public License (GPL).
  6. *
  7. * Simple, low overhead reverse mapping scheme.
  8. * Please try to keep this thing as modular as possible.
  9. *
  10. * Provides methods for unmapping each kind of mapped page:
  11. * the anon methods track anonymous pages, and
  12. * the file methods track pages belonging to an inode.
  13. *
  14. * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15. * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16. * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17. * Contributions by Hugh Dickins 2003, 2004
  18. */
  19. /*
  20. * Lock ordering in mm:
  21. *
  22. * inode->i_mutex (while writing or truncating, not reading or faulting)
  23. * mm->mmap_sem
  24. * page->flags PG_locked (lock_page)
  25. * mapping->i_mmap_mutex
  26. * anon_vma->rwsem
  27. * mm->page_table_lock or pte_lock
  28. * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
  29. * swap_lock (in swap_duplicate, swap_info_get)
  30. * mmlist_lock (in mmput, drain_mmlist and others)
  31. * mapping->private_lock (in __set_page_dirty_buffers)
  32. * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
  33. * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
  34. * sb_lock (within inode_lock in fs/fs-writeback.c)
  35. * mapping->tree_lock (widely used, in set_page_dirty,
  36. * in arch-dependent flush_dcache_mmap_lock,
  37. * within bdi.wb->list_lock in __sync_single_inode)
  38. *
  39. * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
  40. * ->tasklist_lock
  41. * pte map lock
  42. */
  43. #include <linux/mm.h>
  44. #include <linux/pagemap.h>
  45. #include <linux/swap.h>
  46. #include <linux/swapops.h>
  47. #include <linux/slab.h>
  48. #include <linux/init.h>
  49. #include <linux/ksm.h>
  50. #include <linux/rmap.h>
  51. #include <linux/rcupdate.h>
  52. #include <linux/export.h>
  53. #include <linux/memcontrol.h>
  54. #include <linux/mmu_notifier.h>
  55. #include <linux/migrate.h>
  56. #include <linux/hugetlb.h>
  57. #include <linux/backing-dev.h>
  58. #include <asm/tlbflush.h>
  59. #include "internal.h"
  60. static struct kmem_cache *anon_vma_cachep;
  61. static struct kmem_cache *anon_vma_chain_cachep;
  62. static inline struct anon_vma *anon_vma_alloc(void)
  63. {
  64. struct anon_vma *anon_vma;
  65. anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
  66. if (anon_vma) {
  67. atomic_set(&anon_vma->refcount, 1);
  68. /*
  69. * Initialise the anon_vma root to point to itself. If called
  70. * from fork, the root will be reset to the parents anon_vma.
  71. */
  72. anon_vma->root = anon_vma;
  73. }
  74. return anon_vma;
  75. }
  76. static inline void anon_vma_free(struct anon_vma *anon_vma)
  77. {
  78. VM_BUG_ON(atomic_read(&anon_vma->refcount));
  79. /*
  80. * Synchronize against page_lock_anon_vma_read() such that
  81. * we can safely hold the lock without the anon_vma getting
  82. * freed.
  83. *
  84. * Relies on the full mb implied by the atomic_dec_and_test() from
  85. * put_anon_vma() against the acquire barrier implied by
  86. * down_read_trylock() from page_lock_anon_vma_read(). This orders:
  87. *
  88. * page_lock_anon_vma_read() VS put_anon_vma()
  89. * down_read_trylock() atomic_dec_and_test()
  90. * LOCK MB
  91. * atomic_read() rwsem_is_locked()
  92. *
  93. * LOCK should suffice since the actual taking of the lock must
  94. * happen _before_ what follows.
  95. */
  96. might_sleep();
  97. if (rwsem_is_locked(&anon_vma->root->rwsem)) {
  98. anon_vma_lock_write(anon_vma);
  99. anon_vma_unlock_write(anon_vma);
  100. }
  101. kmem_cache_free(anon_vma_cachep, anon_vma);
  102. }
  103. static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
  104. {
  105. return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
  106. }
  107. static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
  108. {
  109. kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
  110. }
  111. static void anon_vma_chain_link(struct vm_area_struct *vma,
  112. struct anon_vma_chain *avc,
  113. struct anon_vma *anon_vma)
  114. {
  115. avc->vma = vma;
  116. avc->anon_vma = anon_vma;
  117. list_add(&avc->same_vma, &vma->anon_vma_chain);
  118. anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
  119. }
  120. /**
  121. * anon_vma_prepare - attach an anon_vma to a memory region
  122. * @vma: the memory region in question
  123. *
  124. * This makes sure the memory mapping described by 'vma' has
  125. * an 'anon_vma' attached to it, so that we can associate the
  126. * anonymous pages mapped into it with that anon_vma.
  127. *
  128. * The common case will be that we already have one, but if
  129. * not we either need to find an adjacent mapping that we
  130. * can re-use the anon_vma from (very common when the only
  131. * reason for splitting a vma has been mprotect()), or we
  132. * allocate a new one.
  133. *
  134. * Anon-vma allocations are very subtle, because we may have
  135. * optimistically looked up an anon_vma in page_lock_anon_vma_read()
  136. * and that may actually touch the spinlock even in the newly
  137. * allocated vma (it depends on RCU to make sure that the
  138. * anon_vma isn't actually destroyed).
  139. *
  140. * As a result, we need to do proper anon_vma locking even
  141. * for the new allocation. At the same time, we do not want
  142. * to do any locking for the common case of already having
  143. * an anon_vma.
  144. *
  145. * This must be called with the mmap_sem held for reading.
  146. */
  147. int anon_vma_prepare(struct vm_area_struct *vma)
  148. {
  149. struct anon_vma *anon_vma = vma->anon_vma;
  150. struct anon_vma_chain *avc;
  151. might_sleep();
  152. if (unlikely(!anon_vma)) {
  153. struct mm_struct *mm = vma->vm_mm;
  154. struct anon_vma *allocated;
  155. avc = anon_vma_chain_alloc(GFP_KERNEL);
  156. if (!avc)
  157. goto out_enomem;
  158. anon_vma = find_mergeable_anon_vma(vma);
  159. allocated = NULL;
  160. if (!anon_vma) {
  161. anon_vma = anon_vma_alloc();
  162. if (unlikely(!anon_vma))
  163. goto out_enomem_free_avc;
  164. allocated = anon_vma;
  165. }
  166. anon_vma_lock_write(anon_vma);
  167. /* page_table_lock to protect against threads */
  168. spin_lock(&mm->page_table_lock);
  169. if (likely(!vma->anon_vma)) {
  170. vma->anon_vma = anon_vma;
  171. anon_vma_chain_link(vma, avc, anon_vma);
  172. allocated = NULL;
  173. avc = NULL;
  174. }
  175. spin_unlock(&mm->page_table_lock);
  176. anon_vma_unlock_write(anon_vma);
  177. if (unlikely(allocated))
  178. put_anon_vma(allocated);
  179. if (unlikely(avc))
  180. anon_vma_chain_free(avc);
  181. }
  182. return 0;
  183. out_enomem_free_avc:
  184. anon_vma_chain_free(avc);
  185. out_enomem:
  186. return -ENOMEM;
  187. }
  188. /*
  189. * This is a useful helper function for locking the anon_vma root as
  190. * we traverse the vma->anon_vma_chain, looping over anon_vma's that
  191. * have the same vma.
  192. *
  193. * Such anon_vma's should have the same root, so you'd expect to see
  194. * just a single mutex_lock for the whole traversal.
  195. */
  196. static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
  197. {
  198. struct anon_vma *new_root = anon_vma->root;
  199. if (new_root != root) {
  200. if (WARN_ON_ONCE(root))
  201. up_write(&root->rwsem);
  202. root = new_root;
  203. down_write(&root->rwsem);
  204. }
  205. return root;
  206. }
  207. static inline void unlock_anon_vma_root(struct anon_vma *root)
  208. {
  209. if (root)
  210. up_write(&root->rwsem);
  211. }
  212. /*
  213. * Attach the anon_vmas from src to dst.
  214. * Returns 0 on success, -ENOMEM on failure.
  215. */
  216. int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
  217. {
  218. struct anon_vma_chain *avc, *pavc;
  219. struct anon_vma *root = NULL;
  220. list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
  221. struct anon_vma *anon_vma;
  222. avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
  223. if (unlikely(!avc)) {
  224. unlock_anon_vma_root(root);
  225. root = NULL;
  226. avc = anon_vma_chain_alloc(GFP_KERNEL);
  227. if (!avc)
  228. goto enomem_failure;
  229. }
  230. anon_vma = pavc->anon_vma;
  231. root = lock_anon_vma_root(root, anon_vma);
  232. anon_vma_chain_link(dst, avc, anon_vma);
  233. }
  234. unlock_anon_vma_root(root);
  235. return 0;
  236. enomem_failure:
  237. unlink_anon_vmas(dst);
  238. return -ENOMEM;
  239. }
  240. /*
  241. * Attach vma to its own anon_vma, as well as to the anon_vmas that
  242. * the corresponding VMA in the parent process is attached to.
  243. * Returns 0 on success, non-zero on failure.
  244. */
  245. int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
  246. {
  247. struct anon_vma_chain *avc;
  248. struct anon_vma *anon_vma;
  249. int error;
  250. /* Don't bother if the parent process has no anon_vma here. */
  251. if (!pvma->anon_vma)
  252. return 0;
  253. /*
  254. * First, attach the new VMA to the parent VMA's anon_vmas,
  255. * so rmap can find non-COWed pages in child processes.
  256. */
  257. error = anon_vma_clone(vma, pvma);
  258. if (error)
  259. return error;
  260. /* Then add our own anon_vma. */
  261. anon_vma = anon_vma_alloc();
  262. if (!anon_vma)
  263. goto out_error;
  264. avc = anon_vma_chain_alloc(GFP_KERNEL);
  265. if (!avc)
  266. goto out_error_free_anon_vma;
  267. /*
  268. * The root anon_vma's spinlock is the lock actually used when we
  269. * lock any of the anon_vmas in this anon_vma tree.
  270. */
  271. anon_vma->root = pvma->anon_vma->root;
  272. /*
  273. * With refcounts, an anon_vma can stay around longer than the
  274. * process it belongs to. The root anon_vma needs to be pinned until
  275. * this anon_vma is freed, because the lock lives in the root.
  276. */
  277. get_anon_vma(anon_vma->root);
  278. /* Mark this anon_vma as the one where our new (COWed) pages go. */
  279. vma->anon_vma = anon_vma;
  280. anon_vma_lock_write(anon_vma);
  281. anon_vma_chain_link(vma, avc, anon_vma);
  282. anon_vma_unlock_write(anon_vma);
  283. return 0;
  284. out_error_free_anon_vma:
  285. put_anon_vma(anon_vma);
  286. out_error:
  287. unlink_anon_vmas(vma);
  288. return -ENOMEM;
  289. }
  290. void unlink_anon_vmas(struct vm_area_struct *vma)
  291. {
  292. struct anon_vma_chain *avc, *next;
  293. struct anon_vma *root = NULL;
  294. /*
  295. * Unlink each anon_vma chained to the VMA. This list is ordered
  296. * from newest to oldest, ensuring the root anon_vma gets freed last.
  297. */
  298. list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
  299. struct anon_vma *anon_vma = avc->anon_vma;
  300. root = lock_anon_vma_root(root, anon_vma);
  301. anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
  302. /*
  303. * Leave empty anon_vmas on the list - we'll need
  304. * to free them outside the lock.
  305. */
  306. if (RB_EMPTY_ROOT(&anon_vma->rb_root))
  307. continue;
  308. list_del(&avc->same_vma);
  309. anon_vma_chain_free(avc);
  310. }
  311. unlock_anon_vma_root(root);
  312. /*
  313. * Iterate the list once more, it now only contains empty and unlinked
  314. * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
  315. * needing to write-acquire the anon_vma->root->rwsem.
  316. */
  317. list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
  318. struct anon_vma *anon_vma = avc->anon_vma;
  319. put_anon_vma(anon_vma);
  320. list_del(&avc->same_vma);
  321. anon_vma_chain_free(avc);
  322. }
  323. }
  324. static void anon_vma_ctor(void *data)
  325. {
  326. struct anon_vma *anon_vma = data;
  327. init_rwsem(&anon_vma->rwsem);
  328. atomic_set(&anon_vma->refcount, 0);
  329. anon_vma->rb_root = RB_ROOT;
  330. }
  331. void __init anon_vma_init(void)
  332. {
  333. anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
  334. 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
  335. anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
  336. }
  337. /*
  338. * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
  339. *
  340. * Since there is no serialization what so ever against page_remove_rmap()
  341. * the best this function can do is return a locked anon_vma that might
  342. * have been relevant to this page.
  343. *
  344. * The page might have been remapped to a different anon_vma or the anon_vma
  345. * returned may already be freed (and even reused).
  346. *
  347. * In case it was remapped to a different anon_vma, the new anon_vma will be a
  348. * child of the old anon_vma, and the anon_vma lifetime rules will therefore
  349. * ensure that any anon_vma obtained from the page will still be valid for as
  350. * long as we observe page_mapped() [ hence all those page_mapped() tests ].
  351. *
  352. * All users of this function must be very careful when walking the anon_vma
  353. * chain and verify that the page in question is indeed mapped in it
  354. * [ something equivalent to page_mapped_in_vma() ].
  355. *
  356. * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
  357. * that the anon_vma pointer from page->mapping is valid if there is a
  358. * mapcount, we can dereference the anon_vma after observing those.
  359. */
  360. struct anon_vma *page_get_anon_vma(struct page *page)
  361. {
  362. struct anon_vma *anon_vma = NULL;
  363. unsigned long anon_mapping;
  364. rcu_read_lock();
  365. anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
  366. if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
  367. goto out;
  368. if (!page_mapped(page))
  369. goto out;
  370. anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
  371. if (!atomic_inc_not_zero(&anon_vma->refcount)) {
  372. anon_vma = NULL;
  373. goto out;
  374. }
  375. /*
  376. * If this page is still mapped, then its anon_vma cannot have been
  377. * freed. But if it has been unmapped, we have no security against the
  378. * anon_vma structure being freed and reused (for another anon_vma:
  379. * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
  380. * above cannot corrupt).
  381. */
  382. if (!page_mapped(page)) {
  383. rcu_read_unlock();
  384. put_anon_vma(anon_vma);
  385. return NULL;
  386. }
  387. out:
  388. rcu_read_unlock();
  389. return anon_vma;
  390. }
  391. /*
  392. * Similar to page_get_anon_vma() except it locks the anon_vma.
  393. *
  394. * Its a little more complex as it tries to keep the fast path to a single
  395. * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
  396. * reference like with page_get_anon_vma() and then block on the mutex.
  397. */
  398. struct anon_vma *page_lock_anon_vma_read(struct page *page)
  399. {
  400. struct anon_vma *anon_vma = NULL;
  401. struct anon_vma *root_anon_vma;
  402. unsigned long anon_mapping;
  403. rcu_read_lock();
  404. anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
  405. if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
  406. goto out;
  407. if (!page_mapped(page))
  408. goto out;
  409. anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
  410. root_anon_vma = ACCESS_ONCE(anon_vma->root);
  411. if (down_read_trylock(&root_anon_vma->rwsem)) {
  412. /*
  413. * If the page is still mapped, then this anon_vma is still
  414. * its anon_vma, and holding the mutex ensures that it will
  415. * not go away, see anon_vma_free().
  416. */
  417. if (!page_mapped(page)) {
  418. up_read(&root_anon_vma->rwsem);
  419. anon_vma = NULL;
  420. }
  421. goto out;
  422. }
  423. /* trylock failed, we got to sleep */
  424. if (!atomic_inc_not_zero(&anon_vma->refcount)) {
  425. anon_vma = NULL;
  426. goto out;
  427. }
  428. if (!page_mapped(page)) {
  429. rcu_read_unlock();
  430. put_anon_vma(anon_vma);
  431. return NULL;
  432. }
  433. /* we pinned the anon_vma, its safe to sleep */
  434. rcu_read_unlock();
  435. anon_vma_lock_read(anon_vma);
  436. if (atomic_dec_and_test(&anon_vma->refcount)) {
  437. /*
  438. * Oops, we held the last refcount, release the lock
  439. * and bail -- can't simply use put_anon_vma() because
  440. * we'll deadlock on the anon_vma_lock_write() recursion.
  441. */
  442. anon_vma_unlock_read(anon_vma);
  443. __put_anon_vma(anon_vma);
  444. anon_vma = NULL;
  445. }
  446. return anon_vma;
  447. out:
  448. rcu_read_unlock();
  449. return anon_vma;
  450. }
  451. void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
  452. {
  453. anon_vma_unlock_read(anon_vma);
  454. }
  455. /*
  456. * At what user virtual address is page expected in @vma?
  457. */
  458. static inline unsigned long
  459. __vma_address(struct page *page, struct vm_area_struct *vma)
  460. {
  461. pgoff_t pgoff = page_to_pgoff(page);
  462. return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
  463. }
  464. inline unsigned long
  465. vma_address(struct page *page, struct vm_area_struct *vma)
  466. {
  467. unsigned long address = __vma_address(page, vma);
  468. /* page should be within @vma mapping range */
  469. VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
  470. return address;
  471. }
  472. /*
  473. * At what user virtual address is page expected in vma?
  474. * Caller should check the page is actually part of the vma.
  475. */
  476. unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
  477. {
  478. unsigned long address;
  479. if (PageAnon(page)) {
  480. struct anon_vma *page__anon_vma = page_anon_vma(page);
  481. /*
  482. * Note: swapoff's unuse_vma() is more efficient with this
  483. * check, and needs it to match anon_vma when KSM is active.
  484. */
  485. if (!vma->anon_vma || !page__anon_vma ||
  486. vma->anon_vma->root != page__anon_vma->root)
  487. return -EFAULT;
  488. } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
  489. if (!vma->vm_file ||
  490. vma->vm_file->f_mapping != page->mapping)
  491. return -EFAULT;
  492. } else
  493. return -EFAULT;
  494. address = __vma_address(page, vma);
  495. if (unlikely(address < vma->vm_start || address >= vma->vm_end))
  496. return -EFAULT;
  497. return address;
  498. }
  499. pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
  500. {
  501. pgd_t *pgd;
  502. pud_t *pud;
  503. pmd_t *pmd = NULL;
  504. pmd_t pmde;
  505. pgd = pgd_offset(mm, address);
  506. if (!pgd_present(*pgd))
  507. goto out;
  508. pud = pud_offset(pgd, address);
  509. if (!pud_present(*pud))
  510. goto out;
  511. pmd = pmd_offset(pud, address);
  512. /*
  513. * Some THP functions use the sequence pmdp_clear_flush(), set_pmd_at()
  514. * without holding anon_vma lock for write. So when looking for a
  515. * genuine pmde (in which to find pte), test present and !THP together.
  516. */
  517. pmde = ACCESS_ONCE(*pmd);
  518. if (!pmd_present(pmde) || pmd_trans_huge(pmde))
  519. pmd = NULL;
  520. out:
  521. return pmd;
  522. }
  523. /*
  524. * Check that @page is mapped at @address into @mm.
  525. *
  526. * If @sync is false, page_check_address may perform a racy check to avoid
  527. * the page table lock when the pte is not present (helpful when reclaiming
  528. * highly shared pages).
  529. *
  530. * On success returns with pte mapped and locked.
  531. */
  532. pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
  533. unsigned long address, spinlock_t **ptlp, int sync)
  534. {
  535. pmd_t *pmd;
  536. pte_t *pte;
  537. spinlock_t *ptl;
  538. if (unlikely(PageHuge(page))) {
  539. /* when pud is not present, pte will be NULL */
  540. pte = huge_pte_offset(mm, address);
  541. if (!pte)
  542. return NULL;
  543. ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
  544. goto check;
  545. }
  546. pmd = mm_find_pmd(mm, address);
  547. if (!pmd)
  548. return NULL;
  549. pte = pte_offset_map(pmd, address);
  550. /* Make a quick check before getting the lock */
  551. if (!sync && !pte_present(*pte)) {
  552. pte_unmap(pte);
  553. return NULL;
  554. }
  555. ptl = pte_lockptr(mm, pmd);
  556. check:
  557. spin_lock(ptl);
  558. if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
  559. *ptlp = ptl;
  560. return pte;
  561. }
  562. pte_unmap_unlock(pte, ptl);
  563. return NULL;
  564. }
  565. /**
  566. * page_mapped_in_vma - check whether a page is really mapped in a VMA
  567. * @page: the page to test
  568. * @vma: the VMA to test
  569. *
  570. * Returns 1 if the page is mapped into the page tables of the VMA, 0
  571. * if the page is not mapped into the page tables of this VMA. Only
  572. * valid for normal file or anonymous VMAs.
  573. */
  574. int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
  575. {
  576. unsigned long address;
  577. pte_t *pte;
  578. spinlock_t *ptl;
  579. address = __vma_address(page, vma);
  580. if (unlikely(address < vma->vm_start || address >= vma->vm_end))
  581. return 0;
  582. pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
  583. if (!pte) /* the page is not in this mm */
  584. return 0;
  585. pte_unmap_unlock(pte, ptl);
  586. return 1;
  587. }
  588. struct page_referenced_arg {
  589. int mapcount;
  590. int referenced;
  591. unsigned long vm_flags;
  592. struct mem_cgroup *memcg;
  593. };
  594. /*
  595. * arg: page_referenced_arg will be passed
  596. */
  597. static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
  598. unsigned long address, void *arg)
  599. {
  600. struct mm_struct *mm = vma->vm_mm;
  601. spinlock_t *ptl;
  602. int referenced = 0;
  603. struct page_referenced_arg *pra = arg;
  604. if (unlikely(PageTransHuge(page))) {
  605. pmd_t *pmd;
  606. /*
  607. * rmap might return false positives; we must filter
  608. * these out using page_check_address_pmd().
  609. */
  610. pmd = page_check_address_pmd(page, mm, address,
  611. PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl);
  612. if (!pmd)
  613. return SWAP_AGAIN;
  614. if (vma->vm_flags & VM_LOCKED) {
  615. spin_unlock(ptl);
  616. pra->vm_flags |= VM_LOCKED;
  617. return SWAP_FAIL; /* To break the loop */
  618. }
  619. /* go ahead even if the pmd is pmd_trans_splitting() */
  620. if (pmdp_clear_flush_young_notify(vma, address, pmd))
  621. referenced++;
  622. spin_unlock(ptl);
  623. } else {
  624. pte_t *pte;
  625. /*
  626. * rmap might return false positives; we must filter
  627. * these out using page_check_address().
  628. */
  629. pte = page_check_address(page, mm, address, &ptl, 0);
  630. if (!pte)
  631. return SWAP_AGAIN;
  632. if (vma->vm_flags & VM_LOCKED) {
  633. pte_unmap_unlock(pte, ptl);
  634. pra->vm_flags |= VM_LOCKED;
  635. return SWAP_FAIL; /* To break the loop */
  636. }
  637. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  638. /*
  639. * Don't treat a reference through a sequentially read
  640. * mapping as such. If the page has been used in
  641. * another mapping, we will catch it; if this other
  642. * mapping is already gone, the unmap path will have
  643. * set PG_referenced or activated the page.
  644. */
  645. if (likely(!(vma->vm_flags & VM_SEQ_READ)))
  646. referenced++;
  647. }
  648. pte_unmap_unlock(pte, ptl);
  649. }
  650. if (referenced) {
  651. pra->referenced++;
  652. pra->vm_flags |= vma->vm_flags;
  653. }
  654. pra->mapcount--;
  655. if (!pra->mapcount)
  656. return SWAP_SUCCESS; /* To break the loop */
  657. return SWAP_AGAIN;
  658. }
  659. static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
  660. {
  661. struct page_referenced_arg *pra = arg;
  662. struct mem_cgroup *memcg = pra->memcg;
  663. if (!mm_match_cgroup(vma->vm_mm, memcg))
  664. return true;
  665. return false;
  666. }
  667. /**
  668. * page_referenced - test if the page was referenced
  669. * @page: the page to test
  670. * @is_locked: caller holds lock on the page
  671. * @memcg: target memory cgroup
  672. * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  673. *
  674. * Quick test_and_clear_referenced for all mappings to a page,
  675. * returns the number of ptes which referenced the page.
  676. */
  677. int page_referenced(struct page *page,
  678. int is_locked,
  679. struct mem_cgroup *memcg,
  680. unsigned long *vm_flags)
  681. {
  682. int ret;
  683. int we_locked = 0;
  684. struct page_referenced_arg pra = {
  685. .mapcount = page_mapcount(page),
  686. .memcg = memcg,
  687. };
  688. struct rmap_walk_control rwc = {
  689. .rmap_one = page_referenced_one,
  690. .arg = (void *)&pra,
  691. .anon_lock = page_lock_anon_vma_read,
  692. };
  693. *vm_flags = 0;
  694. if (!page_mapped(page))
  695. return 0;
  696. if (!page_rmapping(page))
  697. return 0;
  698. if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
  699. we_locked = trylock_page(page);
  700. if (!we_locked)
  701. return 1;
  702. }
  703. /*
  704. * If we are reclaiming on behalf of a cgroup, skip
  705. * counting on behalf of references from different
  706. * cgroups
  707. */
  708. if (memcg) {
  709. rwc.invalid_vma = invalid_page_referenced_vma;
  710. }
  711. ret = rmap_walk(page, &rwc);
  712. *vm_flags = pra.vm_flags;
  713. if (we_locked)
  714. unlock_page(page);
  715. return pra.referenced;
  716. }
  717. static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
  718. unsigned long address, void *arg)
  719. {
  720. struct mm_struct *mm = vma->vm_mm;
  721. pte_t *pte;
  722. spinlock_t *ptl;
  723. int ret = 0;
  724. int *cleaned = arg;
  725. pte = page_check_address(page, mm, address, &ptl, 1);
  726. if (!pte)
  727. goto out;
  728. if (pte_dirty(*pte) || pte_write(*pte)) {
  729. pte_t entry;
  730. flush_cache_page(vma, address, pte_pfn(*pte));
  731. entry = ptep_clear_flush(vma, address, pte);
  732. entry = pte_wrprotect(entry);
  733. entry = pte_mkclean(entry);
  734. set_pte_at(mm, address, pte, entry);
  735. ret = 1;
  736. }
  737. pte_unmap_unlock(pte, ptl);
  738. if (ret) {
  739. mmu_notifier_invalidate_page(mm, address);
  740. (*cleaned)++;
  741. }
  742. out:
  743. return SWAP_AGAIN;
  744. }
  745. static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
  746. {
  747. if (vma->vm_flags & VM_SHARED)
  748. return false;
  749. return true;
  750. }
  751. int page_mkclean(struct page *page)
  752. {
  753. int cleaned = 0;
  754. struct address_space *mapping;
  755. struct rmap_walk_control rwc = {
  756. .arg = (void *)&cleaned,
  757. .rmap_one = page_mkclean_one,
  758. .invalid_vma = invalid_mkclean_vma,
  759. };
  760. BUG_ON(!PageLocked(page));
  761. if (!page_mapped(page))
  762. return 0;
  763. mapping = page_mapping(page);
  764. if (!mapping)
  765. return 0;
  766. rmap_walk(page, &rwc);
  767. return cleaned;
  768. }
  769. EXPORT_SYMBOL_GPL(page_mkclean);
  770. /**
  771. * page_move_anon_rmap - move a page to our anon_vma
  772. * @page: the page to move to our anon_vma
  773. * @vma: the vma the page belongs to
  774. * @address: the user virtual address mapped
  775. *
  776. * When a page belongs exclusively to one process after a COW event,
  777. * that page can be moved into the anon_vma that belongs to just that
  778. * process, so the rmap code will not search the parent or sibling
  779. * processes.
  780. */
  781. void page_move_anon_rmap(struct page *page,
  782. struct vm_area_struct *vma, unsigned long address)
  783. {
  784. struct anon_vma *anon_vma = vma->anon_vma;
  785. VM_BUG_ON_PAGE(!PageLocked(page), page);
  786. VM_BUG_ON_VMA(!anon_vma, vma);
  787. VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page);
  788. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  789. page->mapping = (struct address_space *) anon_vma;
  790. }
  791. /**
  792. * __page_set_anon_rmap - set up new anonymous rmap
  793. * @page: Page to add to rmap
  794. * @vma: VM area to add page to.
  795. * @address: User virtual address of the mapping
  796. * @exclusive: the page is exclusively owned by the current process
  797. */
  798. static void __page_set_anon_rmap(struct page *page,
  799. struct vm_area_struct *vma, unsigned long address, int exclusive)
  800. {
  801. struct anon_vma *anon_vma = vma->anon_vma;
  802. BUG_ON(!anon_vma);
  803. if (PageAnon(page))
  804. return;
  805. /*
  806. * If the page isn't exclusively mapped into this vma,
  807. * we must use the _oldest_ possible anon_vma for the
  808. * page mapping!
  809. */
  810. if (!exclusive)
  811. anon_vma = anon_vma->root;
  812. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  813. page->mapping = (struct address_space *) anon_vma;
  814. page->index = linear_page_index(vma, address);
  815. }
  816. /**
  817. * __page_check_anon_rmap - sanity check anonymous rmap addition
  818. * @page: the page to add the mapping to
  819. * @vma: the vm area in which the mapping is added
  820. * @address: the user virtual address mapped
  821. */
  822. static void __page_check_anon_rmap(struct page *page,
  823. struct vm_area_struct *vma, unsigned long address)
  824. {
  825. #ifdef CONFIG_DEBUG_VM
  826. /*
  827. * The page's anon-rmap details (mapping and index) are guaranteed to
  828. * be set up correctly at this point.
  829. *
  830. * We have exclusion against page_add_anon_rmap because the caller
  831. * always holds the page locked, except if called from page_dup_rmap,
  832. * in which case the page is already known to be setup.
  833. *
  834. * We have exclusion against page_add_new_anon_rmap because those pages
  835. * are initially only visible via the pagetables, and the pte is locked
  836. * over the call to page_add_new_anon_rmap.
  837. */
  838. BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
  839. BUG_ON(page->index != linear_page_index(vma, address));
  840. #endif
  841. }
  842. /**
  843. * page_add_anon_rmap - add pte mapping to an anonymous page
  844. * @page: the page to add the mapping to
  845. * @vma: the vm area in which the mapping is added
  846. * @address: the user virtual address mapped
  847. *
  848. * The caller needs to hold the pte lock, and the page must be locked in
  849. * the anon_vma case: to serialize mapping,index checking after setting,
  850. * and to ensure that PageAnon is not being upgraded racily to PageKsm
  851. * (but PageKsm is never downgraded to PageAnon).
  852. */
  853. void page_add_anon_rmap(struct page *page,
  854. struct vm_area_struct *vma, unsigned long address)
  855. {
  856. do_page_add_anon_rmap(page, vma, address, 0);
  857. }
  858. /*
  859. * Special version of the above for do_swap_page, which often runs
  860. * into pages that are exclusively owned by the current process.
  861. * Everybody else should continue to use page_add_anon_rmap above.
  862. */
  863. void do_page_add_anon_rmap(struct page *page,
  864. struct vm_area_struct *vma, unsigned long address, int exclusive)
  865. {
  866. int first = atomic_inc_and_test(&page->_mapcount);
  867. if (first) {
  868. /*
  869. * We use the irq-unsafe __{inc|mod}_zone_page_stat because
  870. * these counters are not modified in interrupt context, and
  871. * pte lock(a spinlock) is held, which implies preemption
  872. * disabled.
  873. */
  874. if (PageTransHuge(page))
  875. __inc_zone_page_state(page,
  876. NR_ANON_TRANSPARENT_HUGEPAGES);
  877. __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
  878. hpage_nr_pages(page));
  879. }
  880. if (unlikely(PageKsm(page)))
  881. return;
  882. VM_BUG_ON_PAGE(!PageLocked(page), page);
  883. /* address might be in next vma when migration races vma_adjust */
  884. if (first)
  885. __page_set_anon_rmap(page, vma, address, exclusive);
  886. else
  887. __page_check_anon_rmap(page, vma, address);
  888. }
  889. /**
  890. * page_add_new_anon_rmap - add pte mapping to a new anonymous page
  891. * @page: the page to add the mapping to
  892. * @vma: the vm area in which the mapping is added
  893. * @address: the user virtual address mapped
  894. *
  895. * Same as page_add_anon_rmap but must only be called on *new* pages.
  896. * This means the inc-and-test can be bypassed.
  897. * Page does not have to be locked.
  898. */
  899. void page_add_new_anon_rmap(struct page *page,
  900. struct vm_area_struct *vma, unsigned long address)
  901. {
  902. VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
  903. SetPageSwapBacked(page);
  904. atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
  905. if (PageTransHuge(page))
  906. __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
  907. __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
  908. hpage_nr_pages(page));
  909. __page_set_anon_rmap(page, vma, address, 1);
  910. }
  911. /**
  912. * page_add_file_rmap - add pte mapping to a file page
  913. * @page: the page to add the mapping to
  914. *
  915. * The caller needs to hold the pte lock.
  916. */
  917. void page_add_file_rmap(struct page *page)
  918. {
  919. struct mem_cgroup *memcg;
  920. unsigned long flags;
  921. bool locked;
  922. memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
  923. if (atomic_inc_and_test(&page->_mapcount)) {
  924. __inc_zone_page_state(page, NR_FILE_MAPPED);
  925. mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
  926. }
  927. mem_cgroup_end_page_stat(memcg, locked, flags);
  928. }
  929. static void page_remove_file_rmap(struct page *page)
  930. {
  931. struct mem_cgroup *memcg;
  932. unsigned long flags;
  933. bool locked;
  934. memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
  935. /* page still mapped by someone else? */
  936. if (!atomic_add_negative(-1, &page->_mapcount))
  937. goto out;
  938. /* Hugepages are not counted in NR_FILE_MAPPED for now. */
  939. if (unlikely(PageHuge(page)))
  940. goto out;
  941. /*
  942. * We use the irq-unsafe __{inc|mod}_zone_page_stat because
  943. * these counters are not modified in interrupt context, and
  944. * pte lock(a spinlock) is held, which implies preemption disabled.
  945. */
  946. __dec_zone_page_state(page, NR_FILE_MAPPED);
  947. mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
  948. if (unlikely(PageMlocked(page)))
  949. clear_page_mlock(page);
  950. out:
  951. mem_cgroup_end_page_stat(memcg, locked, flags);
  952. }
  953. /**
  954. * page_remove_rmap - take down pte mapping from a page
  955. * @page: page to remove mapping from
  956. *
  957. * The caller needs to hold the pte lock.
  958. */
  959. void page_remove_rmap(struct page *page)
  960. {
  961. if (!PageAnon(page)) {
  962. page_remove_file_rmap(page);
  963. return;
  964. }
  965. /* page still mapped by someone else? */
  966. if (!atomic_add_negative(-1, &page->_mapcount))
  967. return;
  968. /* Hugepages are not counted in NR_ANON_PAGES for now. */
  969. if (unlikely(PageHuge(page)))
  970. return;
  971. /*
  972. * We use the irq-unsafe __{inc|mod}_zone_page_stat because
  973. * these counters are not modified in interrupt context, and
  974. * pte lock(a spinlock) is held, which implies preemption disabled.
  975. */
  976. if (PageTransHuge(page))
  977. __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
  978. __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
  979. -hpage_nr_pages(page));
  980. if (unlikely(PageMlocked(page)))
  981. clear_page_mlock(page);
  982. /*
  983. * It would be tidy to reset the PageAnon mapping here,
  984. * but that might overwrite a racing page_add_anon_rmap
  985. * which increments mapcount after us but sets mapping
  986. * before us: so leave the reset to free_hot_cold_page,
  987. * and remember that it's only reliable while mapped.
  988. * Leaving it set also helps swapoff to reinstate ptes
  989. * faster for those pages still in swapcache.
  990. */
  991. }
  992. /*
  993. * @arg: enum ttu_flags will be passed to this argument
  994. */
  995. static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
  996. unsigned long address, void *arg)
  997. {
  998. struct mm_struct *mm = vma->vm_mm;
  999. pte_t *pte;
  1000. pte_t pteval;
  1001. spinlock_t *ptl;
  1002. int ret = SWAP_AGAIN;
  1003. enum ttu_flags flags = (enum ttu_flags)arg;
  1004. pte = page_check_address(page, mm, address, &ptl, 0);
  1005. if (!pte)
  1006. goto out;
  1007. /*
  1008. * If the page is mlock()d, we cannot swap it out.
  1009. * If it's recently referenced (perhaps page_referenced
  1010. * skipped over this mm) then we should reactivate it.
  1011. */
  1012. if (!(flags & TTU_IGNORE_MLOCK)) {
  1013. if (vma->vm_flags & VM_LOCKED)
  1014. goto out_mlock;
  1015. if (flags & TTU_MUNLOCK)
  1016. goto out_unmap;
  1017. }
  1018. if (!(flags & TTU_IGNORE_ACCESS)) {
  1019. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  1020. ret = SWAP_FAIL;
  1021. goto out_unmap;
  1022. }
  1023. }
  1024. /* Nuke the page table entry. */
  1025. flush_cache_page(vma, address, page_to_pfn(page));
  1026. pteval = ptep_clear_flush(vma, address, pte);
  1027. /* Move the dirty bit to the physical page now the pte is gone. */
  1028. if (pte_dirty(pteval))
  1029. set_page_dirty(page);
  1030. /* Update high watermark before we lower rss */
  1031. update_hiwater_rss(mm);
  1032. if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
  1033. if (!PageHuge(page)) {
  1034. if (PageAnon(page))
  1035. dec_mm_counter(mm, MM_ANONPAGES);
  1036. else
  1037. dec_mm_counter(mm, MM_FILEPAGES);
  1038. }
  1039. set_pte_at(mm, address, pte,
  1040. swp_entry_to_pte(make_hwpoison_entry(page)));
  1041. } else if (pte_unused(pteval)) {
  1042. /*
  1043. * The guest indicated that the page content is of no
  1044. * interest anymore. Simply discard the pte, vmscan
  1045. * will take care of the rest.
  1046. */
  1047. if (PageAnon(page))
  1048. dec_mm_counter(mm, MM_ANONPAGES);
  1049. else
  1050. dec_mm_counter(mm, MM_FILEPAGES);
  1051. } else if (PageAnon(page)) {
  1052. swp_entry_t entry = { .val = page_private(page) };
  1053. pte_t swp_pte;
  1054. if (PageSwapCache(page)) {
  1055. /*
  1056. * Store the swap location in the pte.
  1057. * See handle_pte_fault() ...
  1058. */
  1059. if (swap_duplicate(entry) < 0) {
  1060. set_pte_at(mm, address, pte, pteval);
  1061. ret = SWAP_FAIL;
  1062. goto out_unmap;
  1063. }
  1064. if (list_empty(&mm->mmlist)) {
  1065. spin_lock(&mmlist_lock);
  1066. if (list_empty(&mm->mmlist))
  1067. list_add(&mm->mmlist, &init_mm.mmlist);
  1068. spin_unlock(&mmlist_lock);
  1069. }
  1070. dec_mm_counter(mm, MM_ANONPAGES);
  1071. inc_mm_counter(mm, MM_SWAPENTS);
  1072. } else if (IS_ENABLED(CONFIG_MIGRATION)) {
  1073. /*
  1074. * Store the pfn of the page in a special migration
  1075. * pte. do_swap_page() will wait until the migration
  1076. * pte is removed and then restart fault handling.
  1077. */
  1078. BUG_ON(!(flags & TTU_MIGRATION));
  1079. entry = make_migration_entry(page, pte_write(pteval));
  1080. }
  1081. swp_pte = swp_entry_to_pte(entry);
  1082. if (pte_soft_dirty(pteval))
  1083. swp_pte = pte_swp_mksoft_dirty(swp_pte);
  1084. set_pte_at(mm, address, pte, swp_pte);
  1085. BUG_ON(pte_file(*pte));
  1086. } else if (IS_ENABLED(CONFIG_MIGRATION) &&
  1087. (flags & TTU_MIGRATION)) {
  1088. /* Establish migration entry for a file page */
  1089. swp_entry_t entry;
  1090. entry = make_migration_entry(page, pte_write(pteval));
  1091. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  1092. } else
  1093. dec_mm_counter(mm, MM_FILEPAGES);
  1094. page_remove_rmap(page);
  1095. page_cache_release(page);
  1096. out_unmap:
  1097. pte_unmap_unlock(pte, ptl);
  1098. if (ret != SWAP_FAIL && !(flags & TTU_MUNLOCK))
  1099. mmu_notifier_invalidate_page(mm, address);
  1100. out:
  1101. return ret;
  1102. out_mlock:
  1103. pte_unmap_unlock(pte, ptl);
  1104. /*
  1105. * We need mmap_sem locking, Otherwise VM_LOCKED check makes
  1106. * unstable result and race. Plus, We can't wait here because
  1107. * we now hold anon_vma->rwsem or mapping->i_mmap_mutex.
  1108. * if trylock failed, the page remain in evictable lru and later
  1109. * vmscan could retry to move the page to unevictable lru if the
  1110. * page is actually mlocked.
  1111. */
  1112. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  1113. if (vma->vm_flags & VM_LOCKED) {
  1114. mlock_vma_page(page);
  1115. ret = SWAP_MLOCK;
  1116. }
  1117. up_read(&vma->vm_mm->mmap_sem);
  1118. }
  1119. return ret;
  1120. }
  1121. /*
  1122. * objrmap doesn't work for nonlinear VMAs because the assumption that
  1123. * offset-into-file correlates with offset-into-virtual-addresses does not hold.
  1124. * Consequently, given a particular page and its ->index, we cannot locate the
  1125. * ptes which are mapping that page without an exhaustive linear search.
  1126. *
  1127. * So what this code does is a mini "virtual scan" of each nonlinear VMA which
  1128. * maps the file to which the target page belongs. The ->vm_private_data field
  1129. * holds the current cursor into that scan. Successive searches will circulate
  1130. * around the vma's virtual address space.
  1131. *
  1132. * So as more replacement pressure is applied to the pages in a nonlinear VMA,
  1133. * more scanning pressure is placed against them as well. Eventually pages
  1134. * will become fully unmapped and are eligible for eviction.
  1135. *
  1136. * For very sparsely populated VMAs this is a little inefficient - chances are
  1137. * there there won't be many ptes located within the scan cluster. In this case
  1138. * maybe we could scan further - to the end of the pte page, perhaps.
  1139. *
  1140. * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
  1141. * acquire it without blocking. If vma locked, mlock the pages in the cluster,
  1142. * rather than unmapping them. If we encounter the "check_page" that vmscan is
  1143. * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
  1144. */
  1145. #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
  1146. #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
  1147. static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
  1148. struct vm_area_struct *vma, struct page *check_page)
  1149. {
  1150. struct mm_struct *mm = vma->vm_mm;
  1151. pmd_t *pmd;
  1152. pte_t *pte;
  1153. pte_t pteval;
  1154. spinlock_t *ptl;
  1155. struct page *page;
  1156. unsigned long address;
  1157. unsigned long mmun_start; /* For mmu_notifiers */
  1158. unsigned long mmun_end; /* For mmu_notifiers */
  1159. unsigned long end;
  1160. int ret = SWAP_AGAIN;
  1161. int locked_vma = 0;
  1162. address = (vma->vm_start + cursor) & CLUSTER_MASK;
  1163. end = address + CLUSTER_SIZE;
  1164. if (address < vma->vm_start)
  1165. address = vma->vm_start;
  1166. if (end > vma->vm_end)
  1167. end = vma->vm_end;
  1168. pmd = mm_find_pmd(mm, address);
  1169. if (!pmd)
  1170. return ret;
  1171. mmun_start = address;
  1172. mmun_end = end;
  1173. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1174. /*
  1175. * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
  1176. * keep the sem while scanning the cluster for mlocking pages.
  1177. */
  1178. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  1179. locked_vma = (vma->vm_flags & VM_LOCKED);
  1180. if (!locked_vma)
  1181. up_read(&vma->vm_mm->mmap_sem); /* don't need it */
  1182. }
  1183. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  1184. /* Update high watermark before we lower rss */
  1185. update_hiwater_rss(mm);
  1186. for (; address < end; pte++, address += PAGE_SIZE) {
  1187. if (!pte_present(*pte))
  1188. continue;
  1189. page = vm_normal_page(vma, address, *pte);
  1190. BUG_ON(!page || PageAnon(page));
  1191. if (locked_vma) {
  1192. if (page == check_page) {
  1193. /* we know we have check_page locked */
  1194. mlock_vma_page(page);
  1195. ret = SWAP_MLOCK;
  1196. } else if (trylock_page(page)) {
  1197. /*
  1198. * If we can lock the page, perform mlock.
  1199. * Otherwise leave the page alone, it will be
  1200. * eventually encountered again later.
  1201. */
  1202. mlock_vma_page(page);
  1203. unlock_page(page);
  1204. }
  1205. continue; /* don't unmap */
  1206. }
  1207. /*
  1208. * No need for _notify because we're within an
  1209. * mmu_notifier_invalidate_range_ {start|end} scope.
  1210. */
  1211. if (ptep_clear_flush_young(vma, address, pte))
  1212. continue;
  1213. /* Nuke the page table entry. */
  1214. flush_cache_page(vma, address, pte_pfn(*pte));
  1215. pteval = ptep_clear_flush(vma, address, pte);
  1216. /* If nonlinear, store the file page offset in the pte. */
  1217. if (page->index != linear_page_index(vma, address)) {
  1218. pte_t ptfile = pgoff_to_pte(page->index);
  1219. if (pte_soft_dirty(pteval))
  1220. ptfile = pte_file_mksoft_dirty(ptfile);
  1221. set_pte_at(mm, address, pte, ptfile);
  1222. }
  1223. /* Move the dirty bit to the physical page now the pte is gone. */
  1224. if (pte_dirty(pteval))
  1225. set_page_dirty(page);
  1226. page_remove_rmap(page);
  1227. page_cache_release(page);
  1228. dec_mm_counter(mm, MM_FILEPAGES);
  1229. (*mapcount)--;
  1230. }
  1231. pte_unmap_unlock(pte - 1, ptl);
  1232. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1233. if (locked_vma)
  1234. up_read(&vma->vm_mm->mmap_sem);
  1235. return ret;
  1236. }
  1237. static int try_to_unmap_nonlinear(struct page *page,
  1238. struct address_space *mapping, void *arg)
  1239. {
  1240. struct vm_area_struct *vma;
  1241. int ret = SWAP_AGAIN;
  1242. unsigned long cursor;
  1243. unsigned long max_nl_cursor = 0;
  1244. unsigned long max_nl_size = 0;
  1245. unsigned int mapcount;
  1246. list_for_each_entry(vma,
  1247. &mapping->i_mmap_nonlinear, shared.nonlinear) {
  1248. cursor = (unsigned long) vma->vm_private_data;
  1249. if (cursor > max_nl_cursor)
  1250. max_nl_cursor = cursor;
  1251. cursor = vma->vm_end - vma->vm_start;
  1252. if (cursor > max_nl_size)
  1253. max_nl_size = cursor;
  1254. }
  1255. if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
  1256. return SWAP_FAIL;
  1257. }
  1258. /*
  1259. * We don't try to search for this page in the nonlinear vmas,
  1260. * and page_referenced wouldn't have found it anyway. Instead
  1261. * just walk the nonlinear vmas trying to age and unmap some.
  1262. * The mapcount of the page we came in with is irrelevant,
  1263. * but even so use it as a guide to how hard we should try?
  1264. */
  1265. mapcount = page_mapcount(page);
  1266. if (!mapcount)
  1267. return ret;
  1268. cond_resched();
  1269. max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
  1270. if (max_nl_cursor == 0)
  1271. max_nl_cursor = CLUSTER_SIZE;
  1272. do {
  1273. list_for_each_entry(vma,
  1274. &mapping->i_mmap_nonlinear, shared.nonlinear) {
  1275. cursor = (unsigned long) vma->vm_private_data;
  1276. while (cursor < max_nl_cursor &&
  1277. cursor < vma->vm_end - vma->vm_start) {
  1278. if (try_to_unmap_cluster(cursor, &mapcount,
  1279. vma, page) == SWAP_MLOCK)
  1280. ret = SWAP_MLOCK;
  1281. cursor += CLUSTER_SIZE;
  1282. vma->vm_private_data = (void *) cursor;
  1283. if ((int)mapcount <= 0)
  1284. return ret;
  1285. }
  1286. vma->vm_private_data = (void *) max_nl_cursor;
  1287. }
  1288. cond_resched();
  1289. max_nl_cursor += CLUSTER_SIZE;
  1290. } while (max_nl_cursor <= max_nl_size);
  1291. /*
  1292. * Don't loop forever (perhaps all the remaining pages are
  1293. * in locked vmas). Reset cursor on all unreserved nonlinear
  1294. * vmas, now forgetting on which ones it had fallen behind.
  1295. */
  1296. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear)
  1297. vma->vm_private_data = NULL;
  1298. return ret;
  1299. }
  1300. bool is_vma_temporary_stack(struct vm_area_struct *vma)
  1301. {
  1302. int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
  1303. if (!maybe_stack)
  1304. return false;
  1305. if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
  1306. VM_STACK_INCOMPLETE_SETUP)
  1307. return true;
  1308. return false;
  1309. }
  1310. static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
  1311. {
  1312. return is_vma_temporary_stack(vma);
  1313. }
  1314. static int page_not_mapped(struct page *page)
  1315. {
  1316. return !page_mapped(page);
  1317. };
  1318. /**
  1319. * try_to_unmap - try to remove all page table mappings to a page
  1320. * @page: the page to get unmapped
  1321. * @flags: action and flags
  1322. *
  1323. * Tries to remove all the page table entries which are mapping this
  1324. * page, used in the pageout path. Caller must hold the page lock.
  1325. * Return values are:
  1326. *
  1327. * SWAP_SUCCESS - we succeeded in removing all mappings
  1328. * SWAP_AGAIN - we missed a mapping, try again later
  1329. * SWAP_FAIL - the page is unswappable
  1330. * SWAP_MLOCK - page is mlocked.
  1331. */
  1332. int try_to_unmap(struct page *page, enum ttu_flags flags)
  1333. {
  1334. int ret;
  1335. struct rmap_walk_control rwc = {
  1336. .rmap_one = try_to_unmap_one,
  1337. .arg = (void *)flags,
  1338. .done = page_not_mapped,
  1339. .file_nonlinear = try_to_unmap_nonlinear,
  1340. .anon_lock = page_lock_anon_vma_read,
  1341. };
  1342. VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page);
  1343. /*
  1344. * During exec, a temporary VMA is setup and later moved.
  1345. * The VMA is moved under the anon_vma lock but not the
  1346. * page tables leading to a race where migration cannot
  1347. * find the migration ptes. Rather than increasing the
  1348. * locking requirements of exec(), migration skips
  1349. * temporary VMAs until after exec() completes.
  1350. */
  1351. if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
  1352. rwc.invalid_vma = invalid_migration_vma;
  1353. ret = rmap_walk(page, &rwc);
  1354. if (ret != SWAP_MLOCK && !page_mapped(page))
  1355. ret = SWAP_SUCCESS;
  1356. return ret;
  1357. }
  1358. /**
  1359. * try_to_munlock - try to munlock a page
  1360. * @page: the page to be munlocked
  1361. *
  1362. * Called from munlock code. Checks all of the VMAs mapping the page
  1363. * to make sure nobody else has this page mlocked. The page will be
  1364. * returned with PG_mlocked cleared if no other vmas have it mlocked.
  1365. *
  1366. * Return values are:
  1367. *
  1368. * SWAP_AGAIN - no vma is holding page mlocked, or,
  1369. * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
  1370. * SWAP_FAIL - page cannot be located at present
  1371. * SWAP_MLOCK - page is now mlocked.
  1372. */
  1373. int try_to_munlock(struct page *page)
  1374. {
  1375. int ret;
  1376. struct rmap_walk_control rwc = {
  1377. .rmap_one = try_to_unmap_one,
  1378. .arg = (void *)TTU_MUNLOCK,
  1379. .done = page_not_mapped,
  1380. /*
  1381. * We don't bother to try to find the munlocked page in
  1382. * nonlinears. It's costly. Instead, later, page reclaim logic
  1383. * may call try_to_unmap() and recover PG_mlocked lazily.
  1384. */
  1385. .file_nonlinear = NULL,
  1386. .anon_lock = page_lock_anon_vma_read,
  1387. };
  1388. VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
  1389. ret = rmap_walk(page, &rwc);
  1390. return ret;
  1391. }
  1392. void __put_anon_vma(struct anon_vma *anon_vma)
  1393. {
  1394. struct anon_vma *root = anon_vma->root;
  1395. anon_vma_free(anon_vma);
  1396. if (root != anon_vma && atomic_dec_and_test(&root->refcount))
  1397. anon_vma_free(root);
  1398. }
  1399. static struct anon_vma *rmap_walk_anon_lock(struct page *page,
  1400. struct rmap_walk_control *rwc)
  1401. {
  1402. struct anon_vma *anon_vma;
  1403. if (rwc->anon_lock)
  1404. return rwc->anon_lock(page);
  1405. /*
  1406. * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
  1407. * because that depends on page_mapped(); but not all its usages
  1408. * are holding mmap_sem. Users without mmap_sem are required to
  1409. * take a reference count to prevent the anon_vma disappearing
  1410. */
  1411. anon_vma = page_anon_vma(page);
  1412. if (!anon_vma)
  1413. return NULL;
  1414. anon_vma_lock_read(anon_vma);
  1415. return anon_vma;
  1416. }
  1417. /*
  1418. * rmap_walk_anon - do something to anonymous page using the object-based
  1419. * rmap method
  1420. * @page: the page to be handled
  1421. * @rwc: control variable according to each walk type
  1422. *
  1423. * Find all the mappings of a page using the mapping pointer and the vma chains
  1424. * contained in the anon_vma struct it points to.
  1425. *
  1426. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1427. * where the page was found will be held for write. So, we won't recheck
  1428. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1429. * LOCKED.
  1430. */
  1431. static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc)
  1432. {
  1433. struct anon_vma *anon_vma;
  1434. pgoff_t pgoff = page_to_pgoff(page);
  1435. struct anon_vma_chain *avc;
  1436. int ret = SWAP_AGAIN;
  1437. anon_vma = rmap_walk_anon_lock(page, rwc);
  1438. if (!anon_vma)
  1439. return ret;
  1440. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1441. struct vm_area_struct *vma = avc->vma;
  1442. unsigned long address = vma_address(page, vma);
  1443. if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
  1444. continue;
  1445. ret = rwc->rmap_one(page, vma, address, rwc->arg);
  1446. if (ret != SWAP_AGAIN)
  1447. break;
  1448. if (rwc->done && rwc->done(page))
  1449. break;
  1450. }
  1451. anon_vma_unlock_read(anon_vma);
  1452. return ret;
  1453. }
  1454. /*
  1455. * rmap_walk_file - do something to file page using the object-based rmap method
  1456. * @page: the page to be handled
  1457. * @rwc: control variable according to each walk type
  1458. *
  1459. * Find all the mappings of a page using the mapping pointer and the vma chains
  1460. * contained in the address_space struct it points to.
  1461. *
  1462. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1463. * where the page was found will be held for write. So, we won't recheck
  1464. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1465. * LOCKED.
  1466. */
  1467. static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc)
  1468. {
  1469. struct address_space *mapping = page->mapping;
  1470. pgoff_t pgoff = page_to_pgoff(page);
  1471. struct vm_area_struct *vma;
  1472. int ret = SWAP_AGAIN;
  1473. /*
  1474. * The page lock not only makes sure that page->mapping cannot
  1475. * suddenly be NULLified by truncation, it makes sure that the
  1476. * structure at mapping cannot be freed and reused yet,
  1477. * so we can safely take mapping->i_mmap_mutex.
  1478. */
  1479. VM_BUG_ON_PAGE(!PageLocked(page), page);
  1480. if (!mapping)
  1481. return ret;
  1482. mutex_lock(&mapping->i_mmap_mutex);
  1483. vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
  1484. unsigned long address = vma_address(page, vma);
  1485. if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
  1486. continue;
  1487. ret = rwc->rmap_one(page, vma, address, rwc->arg);
  1488. if (ret != SWAP_AGAIN)
  1489. goto done;
  1490. if (rwc->done && rwc->done(page))
  1491. goto done;
  1492. }
  1493. if (!rwc->file_nonlinear)
  1494. goto done;
  1495. if (list_empty(&mapping->i_mmap_nonlinear))
  1496. goto done;
  1497. ret = rwc->file_nonlinear(page, mapping, rwc->arg);
  1498. done:
  1499. mutex_unlock(&mapping->i_mmap_mutex);
  1500. return ret;
  1501. }
  1502. int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
  1503. {
  1504. if (unlikely(PageKsm(page)))
  1505. return rmap_walk_ksm(page, rwc);
  1506. else if (PageAnon(page))
  1507. return rmap_walk_anon(page, rwc);
  1508. else
  1509. return rmap_walk_file(page, rwc);
  1510. }
  1511. #ifdef CONFIG_HUGETLB_PAGE
  1512. /*
  1513. * The following three functions are for anonymous (private mapped) hugepages.
  1514. * Unlike common anonymous pages, anonymous hugepages have no accounting code
  1515. * and no lru code, because we handle hugepages differently from common pages.
  1516. */
  1517. static void __hugepage_set_anon_rmap(struct page *page,
  1518. struct vm_area_struct *vma, unsigned long address, int exclusive)
  1519. {
  1520. struct anon_vma *anon_vma = vma->anon_vma;
  1521. BUG_ON(!anon_vma);
  1522. if (PageAnon(page))
  1523. return;
  1524. if (!exclusive)
  1525. anon_vma = anon_vma->root;
  1526. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  1527. page->mapping = (struct address_space *) anon_vma;
  1528. page->index = linear_page_index(vma, address);
  1529. }
  1530. void hugepage_add_anon_rmap(struct page *page,
  1531. struct vm_area_struct *vma, unsigned long address)
  1532. {
  1533. struct anon_vma *anon_vma = vma->anon_vma;
  1534. int first;
  1535. BUG_ON(!PageLocked(page));
  1536. BUG_ON(!anon_vma);
  1537. /* address might be in next vma when migration races vma_adjust */
  1538. first = atomic_inc_and_test(&page->_mapcount);
  1539. if (first)
  1540. __hugepage_set_anon_rmap(page, vma, address, 0);
  1541. }
  1542. void hugepage_add_new_anon_rmap(struct page *page,
  1543. struct vm_area_struct *vma, unsigned long address)
  1544. {
  1545. BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  1546. atomic_set(&page->_mapcount, 0);
  1547. __hugepage_set_anon_rmap(page, vma, address, 1);
  1548. }
  1549. #endif /* CONFIG_HUGETLB_PAGE */