percpu.c 66 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297
  1. /*
  2. * mm/percpu.c - percpu memory allocator
  3. *
  4. * Copyright (C) 2009 SUSE Linux Products GmbH
  5. * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
  6. *
  7. * This file is released under the GPLv2.
  8. *
  9. * This is percpu allocator which can handle both static and dynamic
  10. * areas. Percpu areas are allocated in chunks. Each chunk is
  11. * consisted of boot-time determined number of units and the first
  12. * chunk is used for static percpu variables in the kernel image
  13. * (special boot time alloc/init handling necessary as these areas
  14. * need to be brought up before allocation services are running).
  15. * Unit grows as necessary and all units grow or shrink in unison.
  16. * When a chunk is filled up, another chunk is allocated.
  17. *
  18. * c0 c1 c2
  19. * ------------------- ------------------- ------------
  20. * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
  21. * ------------------- ...... ------------------- .... ------------
  22. *
  23. * Allocation is done in offset-size areas of single unit space. Ie,
  24. * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
  25. * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to
  26. * cpus. On NUMA, the mapping can be non-linear and even sparse.
  27. * Percpu access can be done by configuring percpu base registers
  28. * according to cpu to unit mapping and pcpu_unit_size.
  29. *
  30. * There are usually many small percpu allocations many of them being
  31. * as small as 4 bytes. The allocator organizes chunks into lists
  32. * according to free size and tries to allocate from the fullest one.
  33. * Each chunk keeps the maximum contiguous area size hint which is
  34. * guaranteed to be equal to or larger than the maximum contiguous
  35. * area in the chunk. This helps the allocator not to iterate the
  36. * chunk maps unnecessarily.
  37. *
  38. * Allocation state in each chunk is kept using an array of integers
  39. * on chunk->map. A positive value in the map represents a free
  40. * region and negative allocated. Allocation inside a chunk is done
  41. * by scanning this map sequentially and serving the first matching
  42. * entry. This is mostly copied from the percpu_modalloc() allocator.
  43. * Chunks can be determined from the address using the index field
  44. * in the page struct. The index field contains a pointer to the chunk.
  45. *
  46. * To use this allocator, arch code should do the followings.
  47. *
  48. * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
  49. * regular address to percpu pointer and back if they need to be
  50. * different from the default
  51. *
  52. * - use pcpu_setup_first_chunk() during percpu area initialization to
  53. * setup the first chunk containing the kernel static percpu area
  54. */
  55. #include <linux/bitmap.h>
  56. #include <linux/bootmem.h>
  57. #include <linux/err.h>
  58. #include <linux/list.h>
  59. #include <linux/log2.h>
  60. #include <linux/mm.h>
  61. #include <linux/module.h>
  62. #include <linux/mutex.h>
  63. #include <linux/percpu.h>
  64. #include <linux/pfn.h>
  65. #include <linux/slab.h>
  66. #include <linux/spinlock.h>
  67. #include <linux/vmalloc.h>
  68. #include <linux/workqueue.h>
  69. #include <linux/kmemleak.h>
  70. #include <asm/cacheflush.h>
  71. #include <asm/sections.h>
  72. #include <asm/tlbflush.h>
  73. #include <asm/io.h>
  74. #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
  75. #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
  76. #define PCPU_ATOMIC_MAP_MARGIN_LOW 32
  77. #define PCPU_ATOMIC_MAP_MARGIN_HIGH 64
  78. #define PCPU_EMPTY_POP_PAGES_LOW 2
  79. #define PCPU_EMPTY_POP_PAGES_HIGH 4
  80. #ifdef CONFIG_SMP
  81. /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
  82. #ifndef __addr_to_pcpu_ptr
  83. #define __addr_to_pcpu_ptr(addr) \
  84. (void __percpu *)((unsigned long)(addr) - \
  85. (unsigned long)pcpu_base_addr + \
  86. (unsigned long)__per_cpu_start)
  87. #endif
  88. #ifndef __pcpu_ptr_to_addr
  89. #define __pcpu_ptr_to_addr(ptr) \
  90. (void __force *)((unsigned long)(ptr) + \
  91. (unsigned long)pcpu_base_addr - \
  92. (unsigned long)__per_cpu_start)
  93. #endif
  94. #else /* CONFIG_SMP */
  95. /* on UP, it's always identity mapped */
  96. #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
  97. #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
  98. #endif /* CONFIG_SMP */
  99. struct pcpu_chunk {
  100. struct list_head list; /* linked to pcpu_slot lists */
  101. int free_size; /* free bytes in the chunk */
  102. int contig_hint; /* max contiguous size hint */
  103. void *base_addr; /* base address of this chunk */
  104. int map_used; /* # of map entries used before the sentry */
  105. int map_alloc; /* # of map entries allocated */
  106. int *map; /* allocation map */
  107. struct work_struct map_extend_work;/* async ->map[] extension */
  108. void *data; /* chunk data */
  109. int first_free; /* no free below this */
  110. bool immutable; /* no [de]population allowed */
  111. int nr_populated; /* # of populated pages */
  112. unsigned long populated[]; /* populated bitmap */
  113. };
  114. static int pcpu_unit_pages __read_mostly;
  115. static int pcpu_unit_size __read_mostly;
  116. static int pcpu_nr_units __read_mostly;
  117. static int pcpu_atom_size __read_mostly;
  118. static int pcpu_nr_slots __read_mostly;
  119. static size_t pcpu_chunk_struct_size __read_mostly;
  120. /* cpus with the lowest and highest unit addresses */
  121. static unsigned int pcpu_low_unit_cpu __read_mostly;
  122. static unsigned int pcpu_high_unit_cpu __read_mostly;
  123. /* the address of the first chunk which starts with the kernel static area */
  124. void *pcpu_base_addr __read_mostly;
  125. EXPORT_SYMBOL_GPL(pcpu_base_addr);
  126. static const int *pcpu_unit_map __read_mostly; /* cpu -> unit */
  127. const unsigned long *pcpu_unit_offsets __read_mostly; /* cpu -> unit offset */
  128. /* group information, used for vm allocation */
  129. static int pcpu_nr_groups __read_mostly;
  130. static const unsigned long *pcpu_group_offsets __read_mostly;
  131. static const size_t *pcpu_group_sizes __read_mostly;
  132. /*
  133. * The first chunk which always exists. Note that unlike other
  134. * chunks, this one can be allocated and mapped in several different
  135. * ways and thus often doesn't live in the vmalloc area.
  136. */
  137. static struct pcpu_chunk *pcpu_first_chunk;
  138. /*
  139. * Optional reserved chunk. This chunk reserves part of the first
  140. * chunk and serves it for reserved allocations. The amount of
  141. * reserved offset is in pcpu_reserved_chunk_limit. When reserved
  142. * area doesn't exist, the following variables contain NULL and 0
  143. * respectively.
  144. */
  145. static struct pcpu_chunk *pcpu_reserved_chunk;
  146. static int pcpu_reserved_chunk_limit;
  147. static DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */
  148. static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop */
  149. static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
  150. /*
  151. * The number of empty populated pages, protected by pcpu_lock. The
  152. * reserved chunk doesn't contribute to the count.
  153. */
  154. static int pcpu_nr_empty_pop_pages;
  155. /*
  156. * Balance work is used to populate or destroy chunks asynchronously. We
  157. * try to keep the number of populated free pages between
  158. * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
  159. * empty chunk.
  160. */
  161. static void pcpu_balance_workfn(struct work_struct *work);
  162. static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
  163. static bool pcpu_async_enabled __read_mostly;
  164. static bool pcpu_atomic_alloc_failed;
  165. static void pcpu_schedule_balance_work(void)
  166. {
  167. if (pcpu_async_enabled)
  168. schedule_work(&pcpu_balance_work);
  169. }
  170. static bool pcpu_addr_in_first_chunk(void *addr)
  171. {
  172. void *first_start = pcpu_first_chunk->base_addr;
  173. return addr >= first_start && addr < first_start + pcpu_unit_size;
  174. }
  175. static bool pcpu_addr_in_reserved_chunk(void *addr)
  176. {
  177. void *first_start = pcpu_first_chunk->base_addr;
  178. return addr >= first_start &&
  179. addr < first_start + pcpu_reserved_chunk_limit;
  180. }
  181. static int __pcpu_size_to_slot(int size)
  182. {
  183. int highbit = fls(size); /* size is in bytes */
  184. return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
  185. }
  186. static int pcpu_size_to_slot(int size)
  187. {
  188. if (size == pcpu_unit_size)
  189. return pcpu_nr_slots - 1;
  190. return __pcpu_size_to_slot(size);
  191. }
  192. static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
  193. {
  194. if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
  195. return 0;
  196. return pcpu_size_to_slot(chunk->free_size);
  197. }
  198. /* set the pointer to a chunk in a page struct */
  199. static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
  200. {
  201. page->index = (unsigned long)pcpu;
  202. }
  203. /* obtain pointer to a chunk from a page struct */
  204. static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
  205. {
  206. return (struct pcpu_chunk *)page->index;
  207. }
  208. static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
  209. {
  210. return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
  211. }
  212. static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
  213. unsigned int cpu, int page_idx)
  214. {
  215. return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
  216. (page_idx << PAGE_SHIFT);
  217. }
  218. static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
  219. int *rs, int *re, int end)
  220. {
  221. *rs = find_next_zero_bit(chunk->populated, end, *rs);
  222. *re = find_next_bit(chunk->populated, end, *rs + 1);
  223. }
  224. static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
  225. int *rs, int *re, int end)
  226. {
  227. *rs = find_next_bit(chunk->populated, end, *rs);
  228. *re = find_next_zero_bit(chunk->populated, end, *rs + 1);
  229. }
  230. /*
  231. * (Un)populated page region iterators. Iterate over (un)populated
  232. * page regions between @start and @end in @chunk. @rs and @re should
  233. * be integer variables and will be set to start and end page index of
  234. * the current region.
  235. */
  236. #define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \
  237. for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
  238. (rs) < (re); \
  239. (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
  240. #define pcpu_for_each_pop_region(chunk, rs, re, start, end) \
  241. for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \
  242. (rs) < (re); \
  243. (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
  244. /**
  245. * pcpu_mem_zalloc - allocate memory
  246. * @size: bytes to allocate
  247. *
  248. * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
  249. * kzalloc() is used; otherwise, vzalloc() is used. The returned
  250. * memory is always zeroed.
  251. *
  252. * CONTEXT:
  253. * Does GFP_KERNEL allocation.
  254. *
  255. * RETURNS:
  256. * Pointer to the allocated area on success, NULL on failure.
  257. */
  258. static void *pcpu_mem_zalloc(size_t size)
  259. {
  260. if (WARN_ON_ONCE(!slab_is_available()))
  261. return NULL;
  262. if (size <= PAGE_SIZE)
  263. return kzalloc(size, GFP_KERNEL);
  264. else
  265. return vzalloc(size);
  266. }
  267. /**
  268. * pcpu_mem_free - free memory
  269. * @ptr: memory to free
  270. * @size: size of the area
  271. *
  272. * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
  273. */
  274. static void pcpu_mem_free(void *ptr, size_t size)
  275. {
  276. if (size <= PAGE_SIZE)
  277. kfree(ptr);
  278. else
  279. vfree(ptr);
  280. }
  281. /**
  282. * pcpu_count_occupied_pages - count the number of pages an area occupies
  283. * @chunk: chunk of interest
  284. * @i: index of the area in question
  285. *
  286. * Count the number of pages chunk's @i'th area occupies. When the area's
  287. * start and/or end address isn't aligned to page boundary, the straddled
  288. * page is included in the count iff the rest of the page is free.
  289. */
  290. static int pcpu_count_occupied_pages(struct pcpu_chunk *chunk, int i)
  291. {
  292. int off = chunk->map[i] & ~1;
  293. int end = chunk->map[i + 1] & ~1;
  294. if (!PAGE_ALIGNED(off) && i > 0) {
  295. int prev = chunk->map[i - 1];
  296. if (!(prev & 1) && prev <= round_down(off, PAGE_SIZE))
  297. off = round_down(off, PAGE_SIZE);
  298. }
  299. if (!PAGE_ALIGNED(end) && i + 1 < chunk->map_used) {
  300. int next = chunk->map[i + 1];
  301. int nend = chunk->map[i + 2] & ~1;
  302. if (!(next & 1) && nend >= round_up(end, PAGE_SIZE))
  303. end = round_up(end, PAGE_SIZE);
  304. }
  305. return max_t(int, PFN_DOWN(end) - PFN_UP(off), 0);
  306. }
  307. /**
  308. * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
  309. * @chunk: chunk of interest
  310. * @oslot: the previous slot it was on
  311. *
  312. * This function is called after an allocation or free changed @chunk.
  313. * New slot according to the changed state is determined and @chunk is
  314. * moved to the slot. Note that the reserved chunk is never put on
  315. * chunk slots.
  316. *
  317. * CONTEXT:
  318. * pcpu_lock.
  319. */
  320. static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
  321. {
  322. int nslot = pcpu_chunk_slot(chunk);
  323. if (chunk != pcpu_reserved_chunk && oslot != nslot) {
  324. if (oslot < nslot)
  325. list_move(&chunk->list, &pcpu_slot[nslot]);
  326. else
  327. list_move_tail(&chunk->list, &pcpu_slot[nslot]);
  328. }
  329. }
  330. /**
  331. * pcpu_need_to_extend - determine whether chunk area map needs to be extended
  332. * @chunk: chunk of interest
  333. * @is_atomic: the allocation context
  334. *
  335. * Determine whether area map of @chunk needs to be extended. If
  336. * @is_atomic, only the amount necessary for a new allocation is
  337. * considered; however, async extension is scheduled if the left amount is
  338. * low. If !@is_atomic, it aims for more empty space. Combined, this
  339. * ensures that the map is likely to have enough available space to
  340. * accomodate atomic allocations which can't extend maps directly.
  341. *
  342. * CONTEXT:
  343. * pcpu_lock.
  344. *
  345. * RETURNS:
  346. * New target map allocation length if extension is necessary, 0
  347. * otherwise.
  348. */
  349. static int pcpu_need_to_extend(struct pcpu_chunk *chunk, bool is_atomic)
  350. {
  351. int margin, new_alloc;
  352. if (is_atomic) {
  353. margin = 3;
  354. if (chunk->map_alloc <
  355. chunk->map_used + PCPU_ATOMIC_MAP_MARGIN_LOW &&
  356. pcpu_async_enabled)
  357. schedule_work(&chunk->map_extend_work);
  358. } else {
  359. margin = PCPU_ATOMIC_MAP_MARGIN_HIGH;
  360. }
  361. if (chunk->map_alloc >= chunk->map_used + margin)
  362. return 0;
  363. new_alloc = PCPU_DFL_MAP_ALLOC;
  364. while (new_alloc < chunk->map_used + margin)
  365. new_alloc *= 2;
  366. return new_alloc;
  367. }
  368. /**
  369. * pcpu_extend_area_map - extend area map of a chunk
  370. * @chunk: chunk of interest
  371. * @new_alloc: new target allocation length of the area map
  372. *
  373. * Extend area map of @chunk to have @new_alloc entries.
  374. *
  375. * CONTEXT:
  376. * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock.
  377. *
  378. * RETURNS:
  379. * 0 on success, -errno on failure.
  380. */
  381. static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
  382. {
  383. int *old = NULL, *new = NULL;
  384. size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
  385. unsigned long flags;
  386. new = pcpu_mem_zalloc(new_size);
  387. if (!new)
  388. return -ENOMEM;
  389. /* acquire pcpu_lock and switch to new area map */
  390. spin_lock_irqsave(&pcpu_lock, flags);
  391. if (new_alloc <= chunk->map_alloc)
  392. goto out_unlock;
  393. old_size = chunk->map_alloc * sizeof(chunk->map[0]);
  394. old = chunk->map;
  395. memcpy(new, old, old_size);
  396. chunk->map_alloc = new_alloc;
  397. chunk->map = new;
  398. new = NULL;
  399. out_unlock:
  400. spin_unlock_irqrestore(&pcpu_lock, flags);
  401. /*
  402. * pcpu_mem_free() might end up calling vfree() which uses
  403. * IRQ-unsafe lock and thus can't be called under pcpu_lock.
  404. */
  405. pcpu_mem_free(old, old_size);
  406. pcpu_mem_free(new, new_size);
  407. return 0;
  408. }
  409. static void pcpu_map_extend_workfn(struct work_struct *work)
  410. {
  411. struct pcpu_chunk *chunk = container_of(work, struct pcpu_chunk,
  412. map_extend_work);
  413. int new_alloc;
  414. spin_lock_irq(&pcpu_lock);
  415. new_alloc = pcpu_need_to_extend(chunk, false);
  416. spin_unlock_irq(&pcpu_lock);
  417. if (new_alloc)
  418. pcpu_extend_area_map(chunk, new_alloc);
  419. }
  420. /**
  421. * pcpu_fit_in_area - try to fit the requested allocation in a candidate area
  422. * @chunk: chunk the candidate area belongs to
  423. * @off: the offset to the start of the candidate area
  424. * @this_size: the size of the candidate area
  425. * @size: the size of the target allocation
  426. * @align: the alignment of the target allocation
  427. * @pop_only: only allocate from already populated region
  428. *
  429. * We're trying to allocate @size bytes aligned at @align. @chunk's area
  430. * at @off sized @this_size is a candidate. This function determines
  431. * whether the target allocation fits in the candidate area and returns the
  432. * number of bytes to pad after @off. If the target area doesn't fit, -1
  433. * is returned.
  434. *
  435. * If @pop_only is %true, this function only considers the already
  436. * populated part of the candidate area.
  437. */
  438. static int pcpu_fit_in_area(struct pcpu_chunk *chunk, int off, int this_size,
  439. int size, int align, bool pop_only)
  440. {
  441. int cand_off = off;
  442. while (true) {
  443. int head = ALIGN(cand_off, align) - off;
  444. int page_start, page_end, rs, re;
  445. if (this_size < head + size)
  446. return -1;
  447. if (!pop_only)
  448. return head;
  449. /*
  450. * If the first unpopulated page is beyond the end of the
  451. * allocation, the whole allocation is populated;
  452. * otherwise, retry from the end of the unpopulated area.
  453. */
  454. page_start = PFN_DOWN(head + off);
  455. page_end = PFN_UP(head + off + size);
  456. rs = page_start;
  457. pcpu_next_unpop(chunk, &rs, &re, PFN_UP(off + this_size));
  458. if (rs >= page_end)
  459. return head;
  460. cand_off = re * PAGE_SIZE;
  461. }
  462. }
  463. /**
  464. * pcpu_alloc_area - allocate area from a pcpu_chunk
  465. * @chunk: chunk of interest
  466. * @size: wanted size in bytes
  467. * @align: wanted align
  468. * @pop_only: allocate only from the populated area
  469. * @occ_pages_p: out param for the number of pages the area occupies
  470. *
  471. * Try to allocate @size bytes area aligned at @align from @chunk.
  472. * Note that this function only allocates the offset. It doesn't
  473. * populate or map the area.
  474. *
  475. * @chunk->map must have at least two free slots.
  476. *
  477. * CONTEXT:
  478. * pcpu_lock.
  479. *
  480. * RETURNS:
  481. * Allocated offset in @chunk on success, -1 if no matching area is
  482. * found.
  483. */
  484. static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align,
  485. bool pop_only, int *occ_pages_p)
  486. {
  487. int oslot = pcpu_chunk_slot(chunk);
  488. int max_contig = 0;
  489. int i, off;
  490. bool seen_free = false;
  491. int *p;
  492. for (i = chunk->first_free, p = chunk->map + i; i < chunk->map_used; i++, p++) {
  493. int head, tail;
  494. int this_size;
  495. off = *p;
  496. if (off & 1)
  497. continue;
  498. this_size = (p[1] & ~1) - off;
  499. head = pcpu_fit_in_area(chunk, off, this_size, size, align,
  500. pop_only);
  501. if (head < 0) {
  502. if (!seen_free) {
  503. chunk->first_free = i;
  504. seen_free = true;
  505. }
  506. max_contig = max(this_size, max_contig);
  507. continue;
  508. }
  509. /*
  510. * If head is small or the previous block is free,
  511. * merge'em. Note that 'small' is defined as smaller
  512. * than sizeof(int), which is very small but isn't too
  513. * uncommon for percpu allocations.
  514. */
  515. if (head && (head < sizeof(int) || !(p[-1] & 1))) {
  516. *p = off += head;
  517. if (p[-1] & 1)
  518. chunk->free_size -= head;
  519. else
  520. max_contig = max(*p - p[-1], max_contig);
  521. this_size -= head;
  522. head = 0;
  523. }
  524. /* if tail is small, just keep it around */
  525. tail = this_size - head - size;
  526. if (tail < sizeof(int)) {
  527. tail = 0;
  528. size = this_size - head;
  529. }
  530. /* split if warranted */
  531. if (head || tail) {
  532. int nr_extra = !!head + !!tail;
  533. /* insert new subblocks */
  534. memmove(p + nr_extra + 1, p + 1,
  535. sizeof(chunk->map[0]) * (chunk->map_used - i));
  536. chunk->map_used += nr_extra;
  537. if (head) {
  538. if (!seen_free) {
  539. chunk->first_free = i;
  540. seen_free = true;
  541. }
  542. *++p = off += head;
  543. ++i;
  544. max_contig = max(head, max_contig);
  545. }
  546. if (tail) {
  547. p[1] = off + size;
  548. max_contig = max(tail, max_contig);
  549. }
  550. }
  551. if (!seen_free)
  552. chunk->first_free = i + 1;
  553. /* update hint and mark allocated */
  554. if (i + 1 == chunk->map_used)
  555. chunk->contig_hint = max_contig; /* fully scanned */
  556. else
  557. chunk->contig_hint = max(chunk->contig_hint,
  558. max_contig);
  559. chunk->free_size -= size;
  560. *p |= 1;
  561. *occ_pages_p = pcpu_count_occupied_pages(chunk, i);
  562. pcpu_chunk_relocate(chunk, oslot);
  563. return off;
  564. }
  565. chunk->contig_hint = max_contig; /* fully scanned */
  566. pcpu_chunk_relocate(chunk, oslot);
  567. /* tell the upper layer that this chunk has no matching area */
  568. return -1;
  569. }
  570. /**
  571. * pcpu_free_area - free area to a pcpu_chunk
  572. * @chunk: chunk of interest
  573. * @freeme: offset of area to free
  574. * @occ_pages_p: out param for the number of pages the area occupies
  575. *
  576. * Free area starting from @freeme to @chunk. Note that this function
  577. * only modifies the allocation map. It doesn't depopulate or unmap
  578. * the area.
  579. *
  580. * CONTEXT:
  581. * pcpu_lock.
  582. */
  583. static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme,
  584. int *occ_pages_p)
  585. {
  586. int oslot = pcpu_chunk_slot(chunk);
  587. int off = 0;
  588. unsigned i, j;
  589. int to_free = 0;
  590. int *p;
  591. freeme |= 1; /* we are searching for <given offset, in use> pair */
  592. i = 0;
  593. j = chunk->map_used;
  594. while (i != j) {
  595. unsigned k = (i + j) / 2;
  596. off = chunk->map[k];
  597. if (off < freeme)
  598. i = k + 1;
  599. else if (off > freeme)
  600. j = k;
  601. else
  602. i = j = k;
  603. }
  604. BUG_ON(off != freeme);
  605. if (i < chunk->first_free)
  606. chunk->first_free = i;
  607. p = chunk->map + i;
  608. *p = off &= ~1;
  609. chunk->free_size += (p[1] & ~1) - off;
  610. *occ_pages_p = pcpu_count_occupied_pages(chunk, i);
  611. /* merge with next? */
  612. if (!(p[1] & 1))
  613. to_free++;
  614. /* merge with previous? */
  615. if (i > 0 && !(p[-1] & 1)) {
  616. to_free++;
  617. i--;
  618. p--;
  619. }
  620. if (to_free) {
  621. chunk->map_used -= to_free;
  622. memmove(p + 1, p + 1 + to_free,
  623. (chunk->map_used - i) * sizeof(chunk->map[0]));
  624. }
  625. chunk->contig_hint = max(chunk->map[i + 1] - chunk->map[i] - 1, chunk->contig_hint);
  626. pcpu_chunk_relocate(chunk, oslot);
  627. }
  628. static struct pcpu_chunk *pcpu_alloc_chunk(void)
  629. {
  630. struct pcpu_chunk *chunk;
  631. chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
  632. if (!chunk)
  633. return NULL;
  634. chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC *
  635. sizeof(chunk->map[0]));
  636. if (!chunk->map) {
  637. pcpu_mem_free(chunk, pcpu_chunk_struct_size);
  638. return NULL;
  639. }
  640. chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
  641. chunk->map[0] = 0;
  642. chunk->map[1] = pcpu_unit_size | 1;
  643. chunk->map_used = 1;
  644. INIT_LIST_HEAD(&chunk->list);
  645. INIT_WORK(&chunk->map_extend_work, pcpu_map_extend_workfn);
  646. chunk->free_size = pcpu_unit_size;
  647. chunk->contig_hint = pcpu_unit_size;
  648. return chunk;
  649. }
  650. static void pcpu_free_chunk(struct pcpu_chunk *chunk)
  651. {
  652. if (!chunk)
  653. return;
  654. pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
  655. pcpu_mem_free(chunk, pcpu_chunk_struct_size);
  656. }
  657. /**
  658. * pcpu_chunk_populated - post-population bookkeeping
  659. * @chunk: pcpu_chunk which got populated
  660. * @page_start: the start page
  661. * @page_end: the end page
  662. *
  663. * Pages in [@page_start,@page_end) have been populated to @chunk. Update
  664. * the bookkeeping information accordingly. Must be called after each
  665. * successful population.
  666. */
  667. static void pcpu_chunk_populated(struct pcpu_chunk *chunk,
  668. int page_start, int page_end)
  669. {
  670. int nr = page_end - page_start;
  671. lockdep_assert_held(&pcpu_lock);
  672. bitmap_set(chunk->populated, page_start, nr);
  673. chunk->nr_populated += nr;
  674. pcpu_nr_empty_pop_pages += nr;
  675. }
  676. /**
  677. * pcpu_chunk_depopulated - post-depopulation bookkeeping
  678. * @chunk: pcpu_chunk which got depopulated
  679. * @page_start: the start page
  680. * @page_end: the end page
  681. *
  682. * Pages in [@page_start,@page_end) have been depopulated from @chunk.
  683. * Update the bookkeeping information accordingly. Must be called after
  684. * each successful depopulation.
  685. */
  686. static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
  687. int page_start, int page_end)
  688. {
  689. int nr = page_end - page_start;
  690. lockdep_assert_held(&pcpu_lock);
  691. bitmap_clear(chunk->populated, page_start, nr);
  692. chunk->nr_populated -= nr;
  693. pcpu_nr_empty_pop_pages -= nr;
  694. }
  695. /*
  696. * Chunk management implementation.
  697. *
  698. * To allow different implementations, chunk alloc/free and
  699. * [de]population are implemented in a separate file which is pulled
  700. * into this file and compiled together. The following functions
  701. * should be implemented.
  702. *
  703. * pcpu_populate_chunk - populate the specified range of a chunk
  704. * pcpu_depopulate_chunk - depopulate the specified range of a chunk
  705. * pcpu_create_chunk - create a new chunk
  706. * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
  707. * pcpu_addr_to_page - translate address to physical address
  708. * pcpu_verify_alloc_info - check alloc_info is acceptable during init
  709. */
  710. static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
  711. static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
  712. static struct pcpu_chunk *pcpu_create_chunk(void);
  713. static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
  714. static struct page *pcpu_addr_to_page(void *addr);
  715. static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
  716. #ifdef CONFIG_NEED_PER_CPU_KM
  717. #include "percpu-km.c"
  718. #else
  719. #include "percpu-vm.c"
  720. #endif
  721. /**
  722. * pcpu_chunk_addr_search - determine chunk containing specified address
  723. * @addr: address for which the chunk needs to be determined.
  724. *
  725. * RETURNS:
  726. * The address of the found chunk.
  727. */
  728. static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
  729. {
  730. /* is it in the first chunk? */
  731. if (pcpu_addr_in_first_chunk(addr)) {
  732. /* is it in the reserved area? */
  733. if (pcpu_addr_in_reserved_chunk(addr))
  734. return pcpu_reserved_chunk;
  735. return pcpu_first_chunk;
  736. }
  737. /*
  738. * The address is relative to unit0 which might be unused and
  739. * thus unmapped. Offset the address to the unit space of the
  740. * current processor before looking it up in the vmalloc
  741. * space. Note that any possible cpu id can be used here, so
  742. * there's no need to worry about preemption or cpu hotplug.
  743. */
  744. addr += pcpu_unit_offsets[raw_smp_processor_id()];
  745. return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
  746. }
  747. /**
  748. * pcpu_alloc - the percpu allocator
  749. * @size: size of area to allocate in bytes
  750. * @align: alignment of area (max PAGE_SIZE)
  751. * @reserved: allocate from the reserved chunk if available
  752. * @gfp: allocation flags
  753. *
  754. * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't
  755. * contain %GFP_KERNEL, the allocation is atomic.
  756. *
  757. * RETURNS:
  758. * Percpu pointer to the allocated area on success, NULL on failure.
  759. */
  760. static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
  761. gfp_t gfp)
  762. {
  763. static int warn_limit = 10;
  764. struct pcpu_chunk *chunk;
  765. const char *err;
  766. bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
  767. int occ_pages = 0;
  768. int slot, off, new_alloc, cpu, ret;
  769. unsigned long flags;
  770. void __percpu *ptr;
  771. /*
  772. * We want the lowest bit of offset available for in-use/free
  773. * indicator, so force >= 16bit alignment and make size even.
  774. */
  775. if (unlikely(align < 2))
  776. align = 2;
  777. size = ALIGN(size, 2);
  778. if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
  779. WARN(true, "illegal size (%zu) or align (%zu) for "
  780. "percpu allocation\n", size, align);
  781. return NULL;
  782. }
  783. spin_lock_irqsave(&pcpu_lock, flags);
  784. /* serve reserved allocations from the reserved chunk if available */
  785. if (reserved && pcpu_reserved_chunk) {
  786. chunk = pcpu_reserved_chunk;
  787. if (size > chunk->contig_hint) {
  788. err = "alloc from reserved chunk failed";
  789. goto fail_unlock;
  790. }
  791. while ((new_alloc = pcpu_need_to_extend(chunk, is_atomic))) {
  792. spin_unlock_irqrestore(&pcpu_lock, flags);
  793. if (is_atomic ||
  794. pcpu_extend_area_map(chunk, new_alloc) < 0) {
  795. err = "failed to extend area map of reserved chunk";
  796. goto fail;
  797. }
  798. spin_lock_irqsave(&pcpu_lock, flags);
  799. }
  800. off = pcpu_alloc_area(chunk, size, align, is_atomic,
  801. &occ_pages);
  802. if (off >= 0)
  803. goto area_found;
  804. err = "alloc from reserved chunk failed";
  805. goto fail_unlock;
  806. }
  807. restart:
  808. /* search through normal chunks */
  809. for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
  810. list_for_each_entry(chunk, &pcpu_slot[slot], list) {
  811. if (size > chunk->contig_hint)
  812. continue;
  813. new_alloc = pcpu_need_to_extend(chunk, is_atomic);
  814. if (new_alloc) {
  815. if (is_atomic)
  816. continue;
  817. spin_unlock_irqrestore(&pcpu_lock, flags);
  818. if (pcpu_extend_area_map(chunk,
  819. new_alloc) < 0) {
  820. err = "failed to extend area map";
  821. goto fail;
  822. }
  823. spin_lock_irqsave(&pcpu_lock, flags);
  824. /*
  825. * pcpu_lock has been dropped, need to
  826. * restart cpu_slot list walking.
  827. */
  828. goto restart;
  829. }
  830. off = pcpu_alloc_area(chunk, size, align, is_atomic,
  831. &occ_pages);
  832. if (off >= 0)
  833. goto area_found;
  834. }
  835. }
  836. spin_unlock_irqrestore(&pcpu_lock, flags);
  837. /*
  838. * No space left. Create a new chunk. We don't want multiple
  839. * tasks to create chunks simultaneously. Serialize and create iff
  840. * there's still no empty chunk after grabbing the mutex.
  841. */
  842. if (is_atomic)
  843. goto fail;
  844. mutex_lock(&pcpu_alloc_mutex);
  845. if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
  846. chunk = pcpu_create_chunk();
  847. if (!chunk) {
  848. mutex_unlock(&pcpu_alloc_mutex);
  849. err = "failed to allocate new chunk";
  850. goto fail;
  851. }
  852. spin_lock_irqsave(&pcpu_lock, flags);
  853. pcpu_chunk_relocate(chunk, -1);
  854. } else {
  855. spin_lock_irqsave(&pcpu_lock, flags);
  856. }
  857. mutex_unlock(&pcpu_alloc_mutex);
  858. goto restart;
  859. area_found:
  860. spin_unlock_irqrestore(&pcpu_lock, flags);
  861. /* populate if not all pages are already there */
  862. if (!is_atomic) {
  863. int page_start, page_end, rs, re;
  864. mutex_lock(&pcpu_alloc_mutex);
  865. page_start = PFN_DOWN(off);
  866. page_end = PFN_UP(off + size);
  867. pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
  868. WARN_ON(chunk->immutable);
  869. ret = pcpu_populate_chunk(chunk, rs, re);
  870. spin_lock_irqsave(&pcpu_lock, flags);
  871. if (ret) {
  872. mutex_unlock(&pcpu_alloc_mutex);
  873. pcpu_free_area(chunk, off, &occ_pages);
  874. err = "failed to populate";
  875. goto fail_unlock;
  876. }
  877. pcpu_chunk_populated(chunk, rs, re);
  878. spin_unlock_irqrestore(&pcpu_lock, flags);
  879. }
  880. mutex_unlock(&pcpu_alloc_mutex);
  881. }
  882. if (chunk != pcpu_reserved_chunk)
  883. pcpu_nr_empty_pop_pages -= occ_pages;
  884. if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
  885. pcpu_schedule_balance_work();
  886. /* clear the areas and return address relative to base address */
  887. for_each_possible_cpu(cpu)
  888. memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
  889. ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
  890. kmemleak_alloc_percpu(ptr, size);
  891. return ptr;
  892. fail_unlock:
  893. spin_unlock_irqrestore(&pcpu_lock, flags);
  894. fail:
  895. if (!is_atomic && warn_limit) {
  896. pr_warning("PERCPU: allocation failed, size=%zu align=%zu atomic=%d, %s\n",
  897. size, align, is_atomic, err);
  898. dump_stack();
  899. if (!--warn_limit)
  900. pr_info("PERCPU: limit reached, disable warning\n");
  901. }
  902. if (is_atomic) {
  903. /* see the flag handling in pcpu_blance_workfn() */
  904. pcpu_atomic_alloc_failed = true;
  905. pcpu_schedule_balance_work();
  906. }
  907. return NULL;
  908. }
  909. /**
  910. * __alloc_percpu_gfp - allocate dynamic percpu area
  911. * @size: size of area to allocate in bytes
  912. * @align: alignment of area (max PAGE_SIZE)
  913. * @gfp: allocation flags
  914. *
  915. * Allocate zero-filled percpu area of @size bytes aligned at @align. If
  916. * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
  917. * be called from any context but is a lot more likely to fail.
  918. *
  919. * RETURNS:
  920. * Percpu pointer to the allocated area on success, NULL on failure.
  921. */
  922. void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
  923. {
  924. return pcpu_alloc(size, align, false, gfp);
  925. }
  926. EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
  927. /**
  928. * __alloc_percpu - allocate dynamic percpu area
  929. * @size: size of area to allocate in bytes
  930. * @align: alignment of area (max PAGE_SIZE)
  931. *
  932. * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
  933. */
  934. void __percpu *__alloc_percpu(size_t size, size_t align)
  935. {
  936. return pcpu_alloc(size, align, false, GFP_KERNEL);
  937. }
  938. EXPORT_SYMBOL_GPL(__alloc_percpu);
  939. /**
  940. * __alloc_reserved_percpu - allocate reserved percpu area
  941. * @size: size of area to allocate in bytes
  942. * @align: alignment of area (max PAGE_SIZE)
  943. *
  944. * Allocate zero-filled percpu area of @size bytes aligned at @align
  945. * from reserved percpu area if arch has set it up; otherwise,
  946. * allocation is served from the same dynamic area. Might sleep.
  947. * Might trigger writeouts.
  948. *
  949. * CONTEXT:
  950. * Does GFP_KERNEL allocation.
  951. *
  952. * RETURNS:
  953. * Percpu pointer to the allocated area on success, NULL on failure.
  954. */
  955. void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
  956. {
  957. return pcpu_alloc(size, align, true, GFP_KERNEL);
  958. }
  959. /**
  960. * pcpu_balance_workfn - manage the amount of free chunks and populated pages
  961. * @work: unused
  962. *
  963. * Reclaim all fully free chunks except for the first one.
  964. */
  965. static void pcpu_balance_workfn(struct work_struct *work)
  966. {
  967. LIST_HEAD(to_free);
  968. struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
  969. struct pcpu_chunk *chunk, *next;
  970. int slot, nr_to_pop, ret;
  971. /*
  972. * There's no reason to keep around multiple unused chunks and VM
  973. * areas can be scarce. Destroy all free chunks except for one.
  974. */
  975. mutex_lock(&pcpu_alloc_mutex);
  976. spin_lock_irq(&pcpu_lock);
  977. list_for_each_entry_safe(chunk, next, free_head, list) {
  978. WARN_ON(chunk->immutable);
  979. /* spare the first one */
  980. if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
  981. continue;
  982. list_move(&chunk->list, &to_free);
  983. }
  984. spin_unlock_irq(&pcpu_lock);
  985. list_for_each_entry_safe(chunk, next, &to_free, list) {
  986. int rs, re;
  987. pcpu_for_each_pop_region(chunk, rs, re, 0, pcpu_unit_pages) {
  988. pcpu_depopulate_chunk(chunk, rs, re);
  989. spin_lock_irq(&pcpu_lock);
  990. pcpu_chunk_depopulated(chunk, rs, re);
  991. spin_unlock_irq(&pcpu_lock);
  992. }
  993. pcpu_destroy_chunk(chunk);
  994. }
  995. /*
  996. * Ensure there are certain number of free populated pages for
  997. * atomic allocs. Fill up from the most packed so that atomic
  998. * allocs don't increase fragmentation. If atomic allocation
  999. * failed previously, always populate the maximum amount. This
  1000. * should prevent atomic allocs larger than PAGE_SIZE from keeping
  1001. * failing indefinitely; however, large atomic allocs are not
  1002. * something we support properly and can be highly unreliable and
  1003. * inefficient.
  1004. */
  1005. retry_pop:
  1006. if (pcpu_atomic_alloc_failed) {
  1007. nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
  1008. /* best effort anyway, don't worry about synchronization */
  1009. pcpu_atomic_alloc_failed = false;
  1010. } else {
  1011. nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
  1012. pcpu_nr_empty_pop_pages,
  1013. 0, PCPU_EMPTY_POP_PAGES_HIGH);
  1014. }
  1015. for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
  1016. int nr_unpop = 0, rs, re;
  1017. if (!nr_to_pop)
  1018. break;
  1019. spin_lock_irq(&pcpu_lock);
  1020. list_for_each_entry(chunk, &pcpu_slot[slot], list) {
  1021. nr_unpop = pcpu_unit_pages - chunk->nr_populated;
  1022. if (nr_unpop)
  1023. break;
  1024. }
  1025. spin_unlock_irq(&pcpu_lock);
  1026. if (!nr_unpop)
  1027. continue;
  1028. /* @chunk can't go away while pcpu_alloc_mutex is held */
  1029. pcpu_for_each_unpop_region(chunk, rs, re, 0, pcpu_unit_pages) {
  1030. int nr = min(re - rs, nr_to_pop);
  1031. ret = pcpu_populate_chunk(chunk, rs, rs + nr);
  1032. if (!ret) {
  1033. nr_to_pop -= nr;
  1034. spin_lock_irq(&pcpu_lock);
  1035. pcpu_chunk_populated(chunk, rs, rs + nr);
  1036. spin_unlock_irq(&pcpu_lock);
  1037. } else {
  1038. nr_to_pop = 0;
  1039. }
  1040. if (!nr_to_pop)
  1041. break;
  1042. }
  1043. }
  1044. if (nr_to_pop) {
  1045. /* ran out of chunks to populate, create a new one and retry */
  1046. chunk = pcpu_create_chunk();
  1047. if (chunk) {
  1048. spin_lock_irq(&pcpu_lock);
  1049. pcpu_chunk_relocate(chunk, -1);
  1050. spin_unlock_irq(&pcpu_lock);
  1051. goto retry_pop;
  1052. }
  1053. }
  1054. mutex_unlock(&pcpu_alloc_mutex);
  1055. }
  1056. /**
  1057. * free_percpu - free percpu area
  1058. * @ptr: pointer to area to free
  1059. *
  1060. * Free percpu area @ptr.
  1061. *
  1062. * CONTEXT:
  1063. * Can be called from atomic context.
  1064. */
  1065. void free_percpu(void __percpu *ptr)
  1066. {
  1067. void *addr;
  1068. struct pcpu_chunk *chunk;
  1069. unsigned long flags;
  1070. int off, occ_pages;
  1071. if (!ptr)
  1072. return;
  1073. kmemleak_free_percpu(ptr);
  1074. addr = __pcpu_ptr_to_addr(ptr);
  1075. spin_lock_irqsave(&pcpu_lock, flags);
  1076. chunk = pcpu_chunk_addr_search(addr);
  1077. off = addr - chunk->base_addr;
  1078. pcpu_free_area(chunk, off, &occ_pages);
  1079. if (chunk != pcpu_reserved_chunk)
  1080. pcpu_nr_empty_pop_pages += occ_pages;
  1081. /* if there are more than one fully free chunks, wake up grim reaper */
  1082. if (chunk->free_size == pcpu_unit_size) {
  1083. struct pcpu_chunk *pos;
  1084. list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
  1085. if (pos != chunk) {
  1086. pcpu_schedule_balance_work();
  1087. break;
  1088. }
  1089. }
  1090. spin_unlock_irqrestore(&pcpu_lock, flags);
  1091. }
  1092. EXPORT_SYMBOL_GPL(free_percpu);
  1093. /**
  1094. * is_kernel_percpu_address - test whether address is from static percpu area
  1095. * @addr: address to test
  1096. *
  1097. * Test whether @addr belongs to in-kernel static percpu area. Module
  1098. * static percpu areas are not considered. For those, use
  1099. * is_module_percpu_address().
  1100. *
  1101. * RETURNS:
  1102. * %true if @addr is from in-kernel static percpu area, %false otherwise.
  1103. */
  1104. bool is_kernel_percpu_address(unsigned long addr)
  1105. {
  1106. #ifdef CONFIG_SMP
  1107. const size_t static_size = __per_cpu_end - __per_cpu_start;
  1108. void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
  1109. unsigned int cpu;
  1110. for_each_possible_cpu(cpu) {
  1111. void *start = per_cpu_ptr(base, cpu);
  1112. if ((void *)addr >= start && (void *)addr < start + static_size)
  1113. return true;
  1114. }
  1115. #endif
  1116. /* on UP, can't distinguish from other static vars, always false */
  1117. return false;
  1118. }
  1119. /**
  1120. * per_cpu_ptr_to_phys - convert translated percpu address to physical address
  1121. * @addr: the address to be converted to physical address
  1122. *
  1123. * Given @addr which is dereferenceable address obtained via one of
  1124. * percpu access macros, this function translates it into its physical
  1125. * address. The caller is responsible for ensuring @addr stays valid
  1126. * until this function finishes.
  1127. *
  1128. * percpu allocator has special setup for the first chunk, which currently
  1129. * supports either embedding in linear address space or vmalloc mapping,
  1130. * and, from the second one, the backing allocator (currently either vm or
  1131. * km) provides translation.
  1132. *
  1133. * The addr can be tranlated simply without checking if it falls into the
  1134. * first chunk. But the current code reflects better how percpu allocator
  1135. * actually works, and the verification can discover both bugs in percpu
  1136. * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
  1137. * code.
  1138. *
  1139. * RETURNS:
  1140. * The physical address for @addr.
  1141. */
  1142. phys_addr_t per_cpu_ptr_to_phys(void *addr)
  1143. {
  1144. void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
  1145. bool in_first_chunk = false;
  1146. unsigned long first_low, first_high;
  1147. unsigned int cpu;
  1148. /*
  1149. * The following test on unit_low/high isn't strictly
  1150. * necessary but will speed up lookups of addresses which
  1151. * aren't in the first chunk.
  1152. */
  1153. first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0);
  1154. first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu,
  1155. pcpu_unit_pages);
  1156. if ((unsigned long)addr >= first_low &&
  1157. (unsigned long)addr < first_high) {
  1158. for_each_possible_cpu(cpu) {
  1159. void *start = per_cpu_ptr(base, cpu);
  1160. if (addr >= start && addr < start + pcpu_unit_size) {
  1161. in_first_chunk = true;
  1162. break;
  1163. }
  1164. }
  1165. }
  1166. if (in_first_chunk) {
  1167. if (!is_vmalloc_addr(addr))
  1168. return __pa(addr);
  1169. else
  1170. return page_to_phys(vmalloc_to_page(addr)) +
  1171. offset_in_page(addr);
  1172. } else
  1173. return page_to_phys(pcpu_addr_to_page(addr)) +
  1174. offset_in_page(addr);
  1175. }
  1176. /**
  1177. * pcpu_alloc_alloc_info - allocate percpu allocation info
  1178. * @nr_groups: the number of groups
  1179. * @nr_units: the number of units
  1180. *
  1181. * Allocate ai which is large enough for @nr_groups groups containing
  1182. * @nr_units units. The returned ai's groups[0].cpu_map points to the
  1183. * cpu_map array which is long enough for @nr_units and filled with
  1184. * NR_CPUS. It's the caller's responsibility to initialize cpu_map
  1185. * pointer of other groups.
  1186. *
  1187. * RETURNS:
  1188. * Pointer to the allocated pcpu_alloc_info on success, NULL on
  1189. * failure.
  1190. */
  1191. struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
  1192. int nr_units)
  1193. {
  1194. struct pcpu_alloc_info *ai;
  1195. size_t base_size, ai_size;
  1196. void *ptr;
  1197. int unit;
  1198. base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
  1199. __alignof__(ai->groups[0].cpu_map[0]));
  1200. ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
  1201. ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0);
  1202. if (!ptr)
  1203. return NULL;
  1204. ai = ptr;
  1205. ptr += base_size;
  1206. ai->groups[0].cpu_map = ptr;
  1207. for (unit = 0; unit < nr_units; unit++)
  1208. ai->groups[0].cpu_map[unit] = NR_CPUS;
  1209. ai->nr_groups = nr_groups;
  1210. ai->__ai_size = PFN_ALIGN(ai_size);
  1211. return ai;
  1212. }
  1213. /**
  1214. * pcpu_free_alloc_info - free percpu allocation info
  1215. * @ai: pcpu_alloc_info to free
  1216. *
  1217. * Free @ai which was allocated by pcpu_alloc_alloc_info().
  1218. */
  1219. void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
  1220. {
  1221. memblock_free_early(__pa(ai), ai->__ai_size);
  1222. }
  1223. /**
  1224. * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
  1225. * @lvl: loglevel
  1226. * @ai: allocation info to dump
  1227. *
  1228. * Print out information about @ai using loglevel @lvl.
  1229. */
  1230. static void pcpu_dump_alloc_info(const char *lvl,
  1231. const struct pcpu_alloc_info *ai)
  1232. {
  1233. int group_width = 1, cpu_width = 1, width;
  1234. char empty_str[] = "--------";
  1235. int alloc = 0, alloc_end = 0;
  1236. int group, v;
  1237. int upa, apl; /* units per alloc, allocs per line */
  1238. v = ai->nr_groups;
  1239. while (v /= 10)
  1240. group_width++;
  1241. v = num_possible_cpus();
  1242. while (v /= 10)
  1243. cpu_width++;
  1244. empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
  1245. upa = ai->alloc_size / ai->unit_size;
  1246. width = upa * (cpu_width + 1) + group_width + 3;
  1247. apl = rounddown_pow_of_two(max(60 / width, 1));
  1248. printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
  1249. lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
  1250. ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
  1251. for (group = 0; group < ai->nr_groups; group++) {
  1252. const struct pcpu_group_info *gi = &ai->groups[group];
  1253. int unit = 0, unit_end = 0;
  1254. BUG_ON(gi->nr_units % upa);
  1255. for (alloc_end += gi->nr_units / upa;
  1256. alloc < alloc_end; alloc++) {
  1257. if (!(alloc % apl)) {
  1258. printk(KERN_CONT "\n");
  1259. printk("%spcpu-alloc: ", lvl);
  1260. }
  1261. printk(KERN_CONT "[%0*d] ", group_width, group);
  1262. for (unit_end += upa; unit < unit_end; unit++)
  1263. if (gi->cpu_map[unit] != NR_CPUS)
  1264. printk(KERN_CONT "%0*d ", cpu_width,
  1265. gi->cpu_map[unit]);
  1266. else
  1267. printk(KERN_CONT "%s ", empty_str);
  1268. }
  1269. }
  1270. printk(KERN_CONT "\n");
  1271. }
  1272. /**
  1273. * pcpu_setup_first_chunk - initialize the first percpu chunk
  1274. * @ai: pcpu_alloc_info describing how to percpu area is shaped
  1275. * @base_addr: mapped address
  1276. *
  1277. * Initialize the first percpu chunk which contains the kernel static
  1278. * perpcu area. This function is to be called from arch percpu area
  1279. * setup path.
  1280. *
  1281. * @ai contains all information necessary to initialize the first
  1282. * chunk and prime the dynamic percpu allocator.
  1283. *
  1284. * @ai->static_size is the size of static percpu area.
  1285. *
  1286. * @ai->reserved_size, if non-zero, specifies the amount of bytes to
  1287. * reserve after the static area in the first chunk. This reserves
  1288. * the first chunk such that it's available only through reserved
  1289. * percpu allocation. This is primarily used to serve module percpu
  1290. * static areas on architectures where the addressing model has
  1291. * limited offset range for symbol relocations to guarantee module
  1292. * percpu symbols fall inside the relocatable range.
  1293. *
  1294. * @ai->dyn_size determines the number of bytes available for dynamic
  1295. * allocation in the first chunk. The area between @ai->static_size +
  1296. * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
  1297. *
  1298. * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
  1299. * and equal to or larger than @ai->static_size + @ai->reserved_size +
  1300. * @ai->dyn_size.
  1301. *
  1302. * @ai->atom_size is the allocation atom size and used as alignment
  1303. * for vm areas.
  1304. *
  1305. * @ai->alloc_size is the allocation size and always multiple of
  1306. * @ai->atom_size. This is larger than @ai->atom_size if
  1307. * @ai->unit_size is larger than @ai->atom_size.
  1308. *
  1309. * @ai->nr_groups and @ai->groups describe virtual memory layout of
  1310. * percpu areas. Units which should be colocated are put into the
  1311. * same group. Dynamic VM areas will be allocated according to these
  1312. * groupings. If @ai->nr_groups is zero, a single group containing
  1313. * all units is assumed.
  1314. *
  1315. * The caller should have mapped the first chunk at @base_addr and
  1316. * copied static data to each unit.
  1317. *
  1318. * If the first chunk ends up with both reserved and dynamic areas, it
  1319. * is served by two chunks - one to serve the core static and reserved
  1320. * areas and the other for the dynamic area. They share the same vm
  1321. * and page map but uses different area allocation map to stay away
  1322. * from each other. The latter chunk is circulated in the chunk slots
  1323. * and available for dynamic allocation like any other chunks.
  1324. *
  1325. * RETURNS:
  1326. * 0 on success, -errno on failure.
  1327. */
  1328. int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
  1329. void *base_addr)
  1330. {
  1331. static char cpus_buf[4096] __initdata;
  1332. static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
  1333. static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
  1334. size_t dyn_size = ai->dyn_size;
  1335. size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
  1336. struct pcpu_chunk *schunk, *dchunk = NULL;
  1337. unsigned long *group_offsets;
  1338. size_t *group_sizes;
  1339. unsigned long *unit_off;
  1340. unsigned int cpu;
  1341. int *unit_map;
  1342. int group, unit, i;
  1343. cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask);
  1344. #define PCPU_SETUP_BUG_ON(cond) do { \
  1345. if (unlikely(cond)) { \
  1346. pr_emerg("PERCPU: failed to initialize, %s", #cond); \
  1347. pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf); \
  1348. pcpu_dump_alloc_info(KERN_EMERG, ai); \
  1349. BUG(); \
  1350. } \
  1351. } while (0)
  1352. /* sanity checks */
  1353. PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
  1354. #ifdef CONFIG_SMP
  1355. PCPU_SETUP_BUG_ON(!ai->static_size);
  1356. PCPU_SETUP_BUG_ON((unsigned long)__per_cpu_start & ~PAGE_MASK);
  1357. #endif
  1358. PCPU_SETUP_BUG_ON(!base_addr);
  1359. PCPU_SETUP_BUG_ON((unsigned long)base_addr & ~PAGE_MASK);
  1360. PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
  1361. PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK);
  1362. PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
  1363. PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
  1364. PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
  1365. /* process group information and build config tables accordingly */
  1366. group_offsets = memblock_virt_alloc(ai->nr_groups *
  1367. sizeof(group_offsets[0]), 0);
  1368. group_sizes = memblock_virt_alloc(ai->nr_groups *
  1369. sizeof(group_sizes[0]), 0);
  1370. unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
  1371. unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
  1372. for (cpu = 0; cpu < nr_cpu_ids; cpu++)
  1373. unit_map[cpu] = UINT_MAX;
  1374. pcpu_low_unit_cpu = NR_CPUS;
  1375. pcpu_high_unit_cpu = NR_CPUS;
  1376. for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
  1377. const struct pcpu_group_info *gi = &ai->groups[group];
  1378. group_offsets[group] = gi->base_offset;
  1379. group_sizes[group] = gi->nr_units * ai->unit_size;
  1380. for (i = 0; i < gi->nr_units; i++) {
  1381. cpu = gi->cpu_map[i];
  1382. if (cpu == NR_CPUS)
  1383. continue;
  1384. PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids);
  1385. PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
  1386. PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
  1387. unit_map[cpu] = unit + i;
  1388. unit_off[cpu] = gi->base_offset + i * ai->unit_size;
  1389. /* determine low/high unit_cpu */
  1390. if (pcpu_low_unit_cpu == NR_CPUS ||
  1391. unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
  1392. pcpu_low_unit_cpu = cpu;
  1393. if (pcpu_high_unit_cpu == NR_CPUS ||
  1394. unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
  1395. pcpu_high_unit_cpu = cpu;
  1396. }
  1397. }
  1398. pcpu_nr_units = unit;
  1399. for_each_possible_cpu(cpu)
  1400. PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
  1401. /* we're done parsing the input, undefine BUG macro and dump config */
  1402. #undef PCPU_SETUP_BUG_ON
  1403. pcpu_dump_alloc_info(KERN_DEBUG, ai);
  1404. pcpu_nr_groups = ai->nr_groups;
  1405. pcpu_group_offsets = group_offsets;
  1406. pcpu_group_sizes = group_sizes;
  1407. pcpu_unit_map = unit_map;
  1408. pcpu_unit_offsets = unit_off;
  1409. /* determine basic parameters */
  1410. pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
  1411. pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
  1412. pcpu_atom_size = ai->atom_size;
  1413. pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
  1414. BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
  1415. /*
  1416. * Allocate chunk slots. The additional last slot is for
  1417. * empty chunks.
  1418. */
  1419. pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
  1420. pcpu_slot = memblock_virt_alloc(
  1421. pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
  1422. for (i = 0; i < pcpu_nr_slots; i++)
  1423. INIT_LIST_HEAD(&pcpu_slot[i]);
  1424. /*
  1425. * Initialize static chunk. If reserved_size is zero, the
  1426. * static chunk covers static area + dynamic allocation area
  1427. * in the first chunk. If reserved_size is not zero, it
  1428. * covers static area + reserved area (mostly used for module
  1429. * static percpu allocation).
  1430. */
  1431. schunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
  1432. INIT_LIST_HEAD(&schunk->list);
  1433. INIT_WORK(&schunk->map_extend_work, pcpu_map_extend_workfn);
  1434. schunk->base_addr = base_addr;
  1435. schunk->map = smap;
  1436. schunk->map_alloc = ARRAY_SIZE(smap);
  1437. schunk->immutable = true;
  1438. bitmap_fill(schunk->populated, pcpu_unit_pages);
  1439. schunk->nr_populated = pcpu_unit_pages;
  1440. if (ai->reserved_size) {
  1441. schunk->free_size = ai->reserved_size;
  1442. pcpu_reserved_chunk = schunk;
  1443. pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
  1444. } else {
  1445. schunk->free_size = dyn_size;
  1446. dyn_size = 0; /* dynamic area covered */
  1447. }
  1448. schunk->contig_hint = schunk->free_size;
  1449. schunk->map[0] = 1;
  1450. schunk->map[1] = ai->static_size;
  1451. schunk->map_used = 1;
  1452. if (schunk->free_size)
  1453. schunk->map[++schunk->map_used] = 1 | (ai->static_size + schunk->free_size);
  1454. else
  1455. schunk->map[1] |= 1;
  1456. /* init dynamic chunk if necessary */
  1457. if (dyn_size) {
  1458. dchunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
  1459. INIT_LIST_HEAD(&dchunk->list);
  1460. INIT_WORK(&dchunk->map_extend_work, pcpu_map_extend_workfn);
  1461. dchunk->base_addr = base_addr;
  1462. dchunk->map = dmap;
  1463. dchunk->map_alloc = ARRAY_SIZE(dmap);
  1464. dchunk->immutable = true;
  1465. bitmap_fill(dchunk->populated, pcpu_unit_pages);
  1466. dchunk->nr_populated = pcpu_unit_pages;
  1467. dchunk->contig_hint = dchunk->free_size = dyn_size;
  1468. dchunk->map[0] = 1;
  1469. dchunk->map[1] = pcpu_reserved_chunk_limit;
  1470. dchunk->map[2] = (pcpu_reserved_chunk_limit + dchunk->free_size) | 1;
  1471. dchunk->map_used = 2;
  1472. }
  1473. /* link the first chunk in */
  1474. pcpu_first_chunk = dchunk ?: schunk;
  1475. pcpu_nr_empty_pop_pages +=
  1476. pcpu_count_occupied_pages(pcpu_first_chunk, 1);
  1477. pcpu_chunk_relocate(pcpu_first_chunk, -1);
  1478. /* we're done */
  1479. pcpu_base_addr = base_addr;
  1480. return 0;
  1481. }
  1482. #ifdef CONFIG_SMP
  1483. const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
  1484. [PCPU_FC_AUTO] = "auto",
  1485. [PCPU_FC_EMBED] = "embed",
  1486. [PCPU_FC_PAGE] = "page",
  1487. };
  1488. enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
  1489. static int __init percpu_alloc_setup(char *str)
  1490. {
  1491. if (!str)
  1492. return -EINVAL;
  1493. if (0)
  1494. /* nada */;
  1495. #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
  1496. else if (!strcmp(str, "embed"))
  1497. pcpu_chosen_fc = PCPU_FC_EMBED;
  1498. #endif
  1499. #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
  1500. else if (!strcmp(str, "page"))
  1501. pcpu_chosen_fc = PCPU_FC_PAGE;
  1502. #endif
  1503. else
  1504. pr_warning("PERCPU: unknown allocator %s specified\n", str);
  1505. return 0;
  1506. }
  1507. early_param("percpu_alloc", percpu_alloc_setup);
  1508. /*
  1509. * pcpu_embed_first_chunk() is used by the generic percpu setup.
  1510. * Build it if needed by the arch config or the generic setup is going
  1511. * to be used.
  1512. */
  1513. #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
  1514. !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
  1515. #define BUILD_EMBED_FIRST_CHUNK
  1516. #endif
  1517. /* build pcpu_page_first_chunk() iff needed by the arch config */
  1518. #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
  1519. #define BUILD_PAGE_FIRST_CHUNK
  1520. #endif
  1521. /* pcpu_build_alloc_info() is used by both embed and page first chunk */
  1522. #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
  1523. /**
  1524. * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
  1525. * @reserved_size: the size of reserved percpu area in bytes
  1526. * @dyn_size: minimum free size for dynamic allocation in bytes
  1527. * @atom_size: allocation atom size
  1528. * @cpu_distance_fn: callback to determine distance between cpus, optional
  1529. *
  1530. * This function determines grouping of units, their mappings to cpus
  1531. * and other parameters considering needed percpu size, allocation
  1532. * atom size and distances between CPUs.
  1533. *
  1534. * Groups are always mutliples of atom size and CPUs which are of
  1535. * LOCAL_DISTANCE both ways are grouped together and share space for
  1536. * units in the same group. The returned configuration is guaranteed
  1537. * to have CPUs on different nodes on different groups and >=75% usage
  1538. * of allocated virtual address space.
  1539. *
  1540. * RETURNS:
  1541. * On success, pointer to the new allocation_info is returned. On
  1542. * failure, ERR_PTR value is returned.
  1543. */
  1544. static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
  1545. size_t reserved_size, size_t dyn_size,
  1546. size_t atom_size,
  1547. pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
  1548. {
  1549. static int group_map[NR_CPUS] __initdata;
  1550. static int group_cnt[NR_CPUS] __initdata;
  1551. const size_t static_size = __per_cpu_end - __per_cpu_start;
  1552. int nr_groups = 1, nr_units = 0;
  1553. size_t size_sum, min_unit_size, alloc_size;
  1554. int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
  1555. int last_allocs, group, unit;
  1556. unsigned int cpu, tcpu;
  1557. struct pcpu_alloc_info *ai;
  1558. unsigned int *cpu_map;
  1559. /* this function may be called multiple times */
  1560. memset(group_map, 0, sizeof(group_map));
  1561. memset(group_cnt, 0, sizeof(group_cnt));
  1562. /* calculate size_sum and ensure dyn_size is enough for early alloc */
  1563. size_sum = PFN_ALIGN(static_size + reserved_size +
  1564. max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
  1565. dyn_size = size_sum - static_size - reserved_size;
  1566. /*
  1567. * Determine min_unit_size, alloc_size and max_upa such that
  1568. * alloc_size is multiple of atom_size and is the smallest
  1569. * which can accommodate 4k aligned segments which are equal to
  1570. * or larger than min_unit_size.
  1571. */
  1572. min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
  1573. alloc_size = roundup(min_unit_size, atom_size);
  1574. upa = alloc_size / min_unit_size;
  1575. while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
  1576. upa--;
  1577. max_upa = upa;
  1578. /* group cpus according to their proximity */
  1579. for_each_possible_cpu(cpu) {
  1580. group = 0;
  1581. next_group:
  1582. for_each_possible_cpu(tcpu) {
  1583. if (cpu == tcpu)
  1584. break;
  1585. if (group_map[tcpu] == group && cpu_distance_fn &&
  1586. (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
  1587. cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
  1588. group++;
  1589. nr_groups = max(nr_groups, group + 1);
  1590. goto next_group;
  1591. }
  1592. }
  1593. group_map[cpu] = group;
  1594. group_cnt[group]++;
  1595. }
  1596. /*
  1597. * Expand unit size until address space usage goes over 75%
  1598. * and then as much as possible without using more address
  1599. * space.
  1600. */
  1601. last_allocs = INT_MAX;
  1602. for (upa = max_upa; upa; upa--) {
  1603. int allocs = 0, wasted = 0;
  1604. if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
  1605. continue;
  1606. for (group = 0; group < nr_groups; group++) {
  1607. int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
  1608. allocs += this_allocs;
  1609. wasted += this_allocs * upa - group_cnt[group];
  1610. }
  1611. /*
  1612. * Don't accept if wastage is over 1/3. The
  1613. * greater-than comparison ensures upa==1 always
  1614. * passes the following check.
  1615. */
  1616. if (wasted > num_possible_cpus() / 3)
  1617. continue;
  1618. /* and then don't consume more memory */
  1619. if (allocs > last_allocs)
  1620. break;
  1621. last_allocs = allocs;
  1622. best_upa = upa;
  1623. }
  1624. upa = best_upa;
  1625. /* allocate and fill alloc_info */
  1626. for (group = 0; group < nr_groups; group++)
  1627. nr_units += roundup(group_cnt[group], upa);
  1628. ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
  1629. if (!ai)
  1630. return ERR_PTR(-ENOMEM);
  1631. cpu_map = ai->groups[0].cpu_map;
  1632. for (group = 0; group < nr_groups; group++) {
  1633. ai->groups[group].cpu_map = cpu_map;
  1634. cpu_map += roundup(group_cnt[group], upa);
  1635. }
  1636. ai->static_size = static_size;
  1637. ai->reserved_size = reserved_size;
  1638. ai->dyn_size = dyn_size;
  1639. ai->unit_size = alloc_size / upa;
  1640. ai->atom_size = atom_size;
  1641. ai->alloc_size = alloc_size;
  1642. for (group = 0, unit = 0; group_cnt[group]; group++) {
  1643. struct pcpu_group_info *gi = &ai->groups[group];
  1644. /*
  1645. * Initialize base_offset as if all groups are located
  1646. * back-to-back. The caller should update this to
  1647. * reflect actual allocation.
  1648. */
  1649. gi->base_offset = unit * ai->unit_size;
  1650. for_each_possible_cpu(cpu)
  1651. if (group_map[cpu] == group)
  1652. gi->cpu_map[gi->nr_units++] = cpu;
  1653. gi->nr_units = roundup(gi->nr_units, upa);
  1654. unit += gi->nr_units;
  1655. }
  1656. BUG_ON(unit != nr_units);
  1657. return ai;
  1658. }
  1659. #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
  1660. #if defined(BUILD_EMBED_FIRST_CHUNK)
  1661. /**
  1662. * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
  1663. * @reserved_size: the size of reserved percpu area in bytes
  1664. * @dyn_size: minimum free size for dynamic allocation in bytes
  1665. * @atom_size: allocation atom size
  1666. * @cpu_distance_fn: callback to determine distance between cpus, optional
  1667. * @alloc_fn: function to allocate percpu page
  1668. * @free_fn: function to free percpu page
  1669. *
  1670. * This is a helper to ease setting up embedded first percpu chunk and
  1671. * can be called where pcpu_setup_first_chunk() is expected.
  1672. *
  1673. * If this function is used to setup the first chunk, it is allocated
  1674. * by calling @alloc_fn and used as-is without being mapped into
  1675. * vmalloc area. Allocations are always whole multiples of @atom_size
  1676. * aligned to @atom_size.
  1677. *
  1678. * This enables the first chunk to piggy back on the linear physical
  1679. * mapping which often uses larger page size. Please note that this
  1680. * can result in very sparse cpu->unit mapping on NUMA machines thus
  1681. * requiring large vmalloc address space. Don't use this allocator if
  1682. * vmalloc space is not orders of magnitude larger than distances
  1683. * between node memory addresses (ie. 32bit NUMA machines).
  1684. *
  1685. * @dyn_size specifies the minimum dynamic area size.
  1686. *
  1687. * If the needed size is smaller than the minimum or specified unit
  1688. * size, the leftover is returned using @free_fn.
  1689. *
  1690. * RETURNS:
  1691. * 0 on success, -errno on failure.
  1692. */
  1693. int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
  1694. size_t atom_size,
  1695. pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
  1696. pcpu_fc_alloc_fn_t alloc_fn,
  1697. pcpu_fc_free_fn_t free_fn)
  1698. {
  1699. void *base = (void *)ULONG_MAX;
  1700. void **areas = NULL;
  1701. struct pcpu_alloc_info *ai;
  1702. size_t size_sum, areas_size, max_distance;
  1703. int group, i, rc;
  1704. ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
  1705. cpu_distance_fn);
  1706. if (IS_ERR(ai))
  1707. return PTR_ERR(ai);
  1708. size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
  1709. areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
  1710. areas = memblock_virt_alloc_nopanic(areas_size, 0);
  1711. if (!areas) {
  1712. rc = -ENOMEM;
  1713. goto out_free;
  1714. }
  1715. /* allocate, copy and determine base address */
  1716. for (group = 0; group < ai->nr_groups; group++) {
  1717. struct pcpu_group_info *gi = &ai->groups[group];
  1718. unsigned int cpu = NR_CPUS;
  1719. void *ptr;
  1720. for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
  1721. cpu = gi->cpu_map[i];
  1722. BUG_ON(cpu == NR_CPUS);
  1723. /* allocate space for the whole group */
  1724. ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
  1725. if (!ptr) {
  1726. rc = -ENOMEM;
  1727. goto out_free_areas;
  1728. }
  1729. /* kmemleak tracks the percpu allocations separately */
  1730. kmemleak_free(ptr);
  1731. areas[group] = ptr;
  1732. base = min(ptr, base);
  1733. }
  1734. /*
  1735. * Copy data and free unused parts. This should happen after all
  1736. * allocations are complete; otherwise, we may end up with
  1737. * overlapping groups.
  1738. */
  1739. for (group = 0; group < ai->nr_groups; group++) {
  1740. struct pcpu_group_info *gi = &ai->groups[group];
  1741. void *ptr = areas[group];
  1742. for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
  1743. if (gi->cpu_map[i] == NR_CPUS) {
  1744. /* unused unit, free whole */
  1745. free_fn(ptr, ai->unit_size);
  1746. continue;
  1747. }
  1748. /* copy and return the unused part */
  1749. memcpy(ptr, __per_cpu_load, ai->static_size);
  1750. free_fn(ptr + size_sum, ai->unit_size - size_sum);
  1751. }
  1752. }
  1753. /* base address is now known, determine group base offsets */
  1754. max_distance = 0;
  1755. for (group = 0; group < ai->nr_groups; group++) {
  1756. ai->groups[group].base_offset = areas[group] - base;
  1757. max_distance = max_t(size_t, max_distance,
  1758. ai->groups[group].base_offset);
  1759. }
  1760. max_distance += ai->unit_size;
  1761. /* warn if maximum distance is further than 75% of vmalloc space */
  1762. if (max_distance > VMALLOC_TOTAL * 3 / 4) {
  1763. pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc "
  1764. "space 0x%lx\n", max_distance,
  1765. VMALLOC_TOTAL);
  1766. #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
  1767. /* and fail if we have fallback */
  1768. rc = -EINVAL;
  1769. goto out_free;
  1770. #endif
  1771. }
  1772. pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
  1773. PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
  1774. ai->dyn_size, ai->unit_size);
  1775. rc = pcpu_setup_first_chunk(ai, base);
  1776. goto out_free;
  1777. out_free_areas:
  1778. for (group = 0; group < ai->nr_groups; group++)
  1779. if (areas[group])
  1780. free_fn(areas[group],
  1781. ai->groups[group].nr_units * ai->unit_size);
  1782. out_free:
  1783. pcpu_free_alloc_info(ai);
  1784. if (areas)
  1785. memblock_free_early(__pa(areas), areas_size);
  1786. return rc;
  1787. }
  1788. #endif /* BUILD_EMBED_FIRST_CHUNK */
  1789. #ifdef BUILD_PAGE_FIRST_CHUNK
  1790. /**
  1791. * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
  1792. * @reserved_size: the size of reserved percpu area in bytes
  1793. * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
  1794. * @free_fn: function to free percpu page, always called with PAGE_SIZE
  1795. * @populate_pte_fn: function to populate pte
  1796. *
  1797. * This is a helper to ease setting up page-remapped first percpu
  1798. * chunk and can be called where pcpu_setup_first_chunk() is expected.
  1799. *
  1800. * This is the basic allocator. Static percpu area is allocated
  1801. * page-by-page into vmalloc area.
  1802. *
  1803. * RETURNS:
  1804. * 0 on success, -errno on failure.
  1805. */
  1806. int __init pcpu_page_first_chunk(size_t reserved_size,
  1807. pcpu_fc_alloc_fn_t alloc_fn,
  1808. pcpu_fc_free_fn_t free_fn,
  1809. pcpu_fc_populate_pte_fn_t populate_pte_fn)
  1810. {
  1811. static struct vm_struct vm;
  1812. struct pcpu_alloc_info *ai;
  1813. char psize_str[16];
  1814. int unit_pages;
  1815. size_t pages_size;
  1816. struct page **pages;
  1817. int unit, i, j, rc;
  1818. snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
  1819. ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
  1820. if (IS_ERR(ai))
  1821. return PTR_ERR(ai);
  1822. BUG_ON(ai->nr_groups != 1);
  1823. BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
  1824. unit_pages = ai->unit_size >> PAGE_SHIFT;
  1825. /* unaligned allocations can't be freed, round up to page size */
  1826. pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
  1827. sizeof(pages[0]));
  1828. pages = memblock_virt_alloc(pages_size, 0);
  1829. /* allocate pages */
  1830. j = 0;
  1831. for (unit = 0; unit < num_possible_cpus(); unit++)
  1832. for (i = 0; i < unit_pages; i++) {
  1833. unsigned int cpu = ai->groups[0].cpu_map[unit];
  1834. void *ptr;
  1835. ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
  1836. if (!ptr) {
  1837. pr_warning("PERCPU: failed to allocate %s page "
  1838. "for cpu%u\n", psize_str, cpu);
  1839. goto enomem;
  1840. }
  1841. /* kmemleak tracks the percpu allocations separately */
  1842. kmemleak_free(ptr);
  1843. pages[j++] = virt_to_page(ptr);
  1844. }
  1845. /* allocate vm area, map the pages and copy static data */
  1846. vm.flags = VM_ALLOC;
  1847. vm.size = num_possible_cpus() * ai->unit_size;
  1848. vm_area_register_early(&vm, PAGE_SIZE);
  1849. for (unit = 0; unit < num_possible_cpus(); unit++) {
  1850. unsigned long unit_addr =
  1851. (unsigned long)vm.addr + unit * ai->unit_size;
  1852. for (i = 0; i < unit_pages; i++)
  1853. populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
  1854. /* pte already populated, the following shouldn't fail */
  1855. rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
  1856. unit_pages);
  1857. if (rc < 0)
  1858. panic("failed to map percpu area, err=%d\n", rc);
  1859. /*
  1860. * FIXME: Archs with virtual cache should flush local
  1861. * cache for the linear mapping here - something
  1862. * equivalent to flush_cache_vmap() on the local cpu.
  1863. * flush_cache_vmap() can't be used as most supporting
  1864. * data structures are not set up yet.
  1865. */
  1866. /* copy static data */
  1867. memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
  1868. }
  1869. /* we're ready, commit */
  1870. pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
  1871. unit_pages, psize_str, vm.addr, ai->static_size,
  1872. ai->reserved_size, ai->dyn_size);
  1873. rc = pcpu_setup_first_chunk(ai, vm.addr);
  1874. goto out_free_ar;
  1875. enomem:
  1876. while (--j >= 0)
  1877. free_fn(page_address(pages[j]), PAGE_SIZE);
  1878. rc = -ENOMEM;
  1879. out_free_ar:
  1880. memblock_free_early(__pa(pages), pages_size);
  1881. pcpu_free_alloc_info(ai);
  1882. return rc;
  1883. }
  1884. #endif /* BUILD_PAGE_FIRST_CHUNK */
  1885. #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
  1886. /*
  1887. * Generic SMP percpu area setup.
  1888. *
  1889. * The embedding helper is used because its behavior closely resembles
  1890. * the original non-dynamic generic percpu area setup. This is
  1891. * important because many archs have addressing restrictions and might
  1892. * fail if the percpu area is located far away from the previous
  1893. * location. As an added bonus, in non-NUMA cases, embedding is
  1894. * generally a good idea TLB-wise because percpu area can piggy back
  1895. * on the physical linear memory mapping which uses large page
  1896. * mappings on applicable archs.
  1897. */
  1898. unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
  1899. EXPORT_SYMBOL(__per_cpu_offset);
  1900. static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
  1901. size_t align)
  1902. {
  1903. return memblock_virt_alloc_from_nopanic(
  1904. size, align, __pa(MAX_DMA_ADDRESS));
  1905. }
  1906. static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
  1907. {
  1908. memblock_free_early(__pa(ptr), size);
  1909. }
  1910. void __init setup_per_cpu_areas(void)
  1911. {
  1912. unsigned long delta;
  1913. unsigned int cpu;
  1914. int rc;
  1915. /*
  1916. * Always reserve area for module percpu variables. That's
  1917. * what the legacy allocator did.
  1918. */
  1919. rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
  1920. PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
  1921. pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
  1922. if (rc < 0)
  1923. panic("Failed to initialize percpu areas.");
  1924. delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
  1925. for_each_possible_cpu(cpu)
  1926. __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
  1927. }
  1928. #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
  1929. #else /* CONFIG_SMP */
  1930. /*
  1931. * UP percpu area setup.
  1932. *
  1933. * UP always uses km-based percpu allocator with identity mapping.
  1934. * Static percpu variables are indistinguishable from the usual static
  1935. * variables and don't require any special preparation.
  1936. */
  1937. void __init setup_per_cpu_areas(void)
  1938. {
  1939. const size_t unit_size =
  1940. roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
  1941. PERCPU_DYNAMIC_RESERVE));
  1942. struct pcpu_alloc_info *ai;
  1943. void *fc;
  1944. ai = pcpu_alloc_alloc_info(1, 1);
  1945. fc = memblock_virt_alloc_from_nopanic(unit_size,
  1946. PAGE_SIZE,
  1947. __pa(MAX_DMA_ADDRESS));
  1948. if (!ai || !fc)
  1949. panic("Failed to allocate memory for percpu areas.");
  1950. /* kmemleak tracks the percpu allocations separately */
  1951. kmemleak_free(fc);
  1952. ai->dyn_size = unit_size;
  1953. ai->unit_size = unit_size;
  1954. ai->atom_size = unit_size;
  1955. ai->alloc_size = unit_size;
  1956. ai->groups[0].nr_units = 1;
  1957. ai->groups[0].cpu_map[0] = 0;
  1958. if (pcpu_setup_first_chunk(ai, fc) < 0)
  1959. panic("Failed to initialize percpu areas.");
  1960. }
  1961. #endif /* CONFIG_SMP */
  1962. /*
  1963. * First and reserved chunks are initialized with temporary allocation
  1964. * map in initdata so that they can be used before slab is online.
  1965. * This function is called after slab is brought up and replaces those
  1966. * with properly allocated maps.
  1967. */
  1968. void __init percpu_init_late(void)
  1969. {
  1970. struct pcpu_chunk *target_chunks[] =
  1971. { pcpu_first_chunk, pcpu_reserved_chunk, NULL };
  1972. struct pcpu_chunk *chunk;
  1973. unsigned long flags;
  1974. int i;
  1975. for (i = 0; (chunk = target_chunks[i]); i++) {
  1976. int *map;
  1977. const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);
  1978. BUILD_BUG_ON(size > PAGE_SIZE);
  1979. map = pcpu_mem_zalloc(size);
  1980. BUG_ON(!map);
  1981. spin_lock_irqsave(&pcpu_lock, flags);
  1982. memcpy(map, chunk->map, size);
  1983. chunk->map = map;
  1984. spin_unlock_irqrestore(&pcpu_lock, flags);
  1985. }
  1986. }
  1987. /*
  1988. * Percpu allocator is initialized early during boot when neither slab or
  1989. * workqueue is available. Plug async management until everything is up
  1990. * and running.
  1991. */
  1992. static int __init percpu_enable_async(void)
  1993. {
  1994. pcpu_async_enabled = true;
  1995. return 0;
  1996. }
  1997. subsys_initcall(percpu_enable_async);