memory.c 102 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826
  1. /*
  2. * linux/mm/memory.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. */
  6. /*
  7. * demand-loading started 01.12.91 - seems it is high on the list of
  8. * things wanted, and it should be easy to implement. - Linus
  9. */
  10. /*
  11. * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  12. * pages started 02.12.91, seems to work. - Linus.
  13. *
  14. * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  15. * would have taken more than the 6M I have free, but it worked well as
  16. * far as I could see.
  17. *
  18. * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  19. */
  20. /*
  21. * Real VM (paging to/from disk) started 18.12.91. Much more work and
  22. * thought has to go into this. Oh, well..
  23. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
  24. * Found it. Everything seems to work now.
  25. * 20.12.91 - Ok, making the swap-device changeable like the root.
  26. */
  27. /*
  28. * 05.04.94 - Multi-page memory management added for v1.1.
  29. * Idea by Alex Bligh (alex@cconcepts.co.uk)
  30. *
  31. * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
  32. * (Gerhard.Wichert@pdb.siemens.de)
  33. *
  34. * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  35. */
  36. #include <linux/kernel_stat.h>
  37. #include <linux/mm.h>
  38. #include <linux/hugetlb.h>
  39. #include <linux/mman.h>
  40. #include <linux/swap.h>
  41. #include <linux/highmem.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/ksm.h>
  44. #include <linux/rmap.h>
  45. #include <linux/export.h>
  46. #include <linux/delayacct.h>
  47. #include <linux/init.h>
  48. #include <linux/writeback.h>
  49. #include <linux/memcontrol.h>
  50. #include <linux/mmu_notifier.h>
  51. #include <linux/kallsyms.h>
  52. #include <linux/swapops.h>
  53. #include <linux/elf.h>
  54. #include <linux/gfp.h>
  55. #include <linux/migrate.h>
  56. #include <linux/string.h>
  57. #include <linux/dma-debug.h>
  58. #include <linux/debugfs.h>
  59. #include <asm/io.h>
  60. #include <asm/pgalloc.h>
  61. #include <asm/uaccess.h>
  62. #include <asm/tlb.h>
  63. #include <asm/tlbflush.h>
  64. #include <asm/pgtable.h>
  65. #include "internal.h"
  66. #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
  67. #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
  68. #endif
  69. #ifndef CONFIG_NEED_MULTIPLE_NODES
  70. /* use the per-pgdat data instead for discontigmem - mbligh */
  71. unsigned long max_mapnr;
  72. struct page *mem_map;
  73. EXPORT_SYMBOL(max_mapnr);
  74. EXPORT_SYMBOL(mem_map);
  75. #endif
  76. /*
  77. * A number of key systems in x86 including ioremap() rely on the assumption
  78. * that high_memory defines the upper bound on direct map memory, then end
  79. * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
  80. * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  81. * and ZONE_HIGHMEM.
  82. */
  83. void * high_memory;
  84. EXPORT_SYMBOL(high_memory);
  85. /*
  86. * Randomize the address space (stacks, mmaps, brk, etc.).
  87. *
  88. * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
  89. * as ancient (libc5 based) binaries can segfault. )
  90. */
  91. int randomize_va_space __read_mostly =
  92. #ifdef CONFIG_COMPAT_BRK
  93. 1;
  94. #else
  95. 2;
  96. #endif
  97. static int __init disable_randmaps(char *s)
  98. {
  99. randomize_va_space = 0;
  100. return 1;
  101. }
  102. __setup("norandmaps", disable_randmaps);
  103. unsigned long zero_pfn __read_mostly;
  104. unsigned long highest_memmap_pfn __read_mostly;
  105. EXPORT_SYMBOL(zero_pfn);
  106. /*
  107. * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
  108. */
  109. static int __init init_zero_pfn(void)
  110. {
  111. zero_pfn = page_to_pfn(ZERO_PAGE(0));
  112. return 0;
  113. }
  114. core_initcall(init_zero_pfn);
  115. #if defined(SPLIT_RSS_COUNTING)
  116. void sync_mm_rss(struct mm_struct *mm)
  117. {
  118. int i;
  119. for (i = 0; i < NR_MM_COUNTERS; i++) {
  120. if (current->rss_stat.count[i]) {
  121. add_mm_counter(mm, i, current->rss_stat.count[i]);
  122. current->rss_stat.count[i] = 0;
  123. }
  124. }
  125. current->rss_stat.events = 0;
  126. }
  127. static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
  128. {
  129. struct task_struct *task = current;
  130. if (likely(task->mm == mm))
  131. task->rss_stat.count[member] += val;
  132. else
  133. add_mm_counter(mm, member, val);
  134. }
  135. #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
  136. #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
  137. /* sync counter once per 64 page faults */
  138. #define TASK_RSS_EVENTS_THRESH (64)
  139. static void check_sync_rss_stat(struct task_struct *task)
  140. {
  141. if (unlikely(task != current))
  142. return;
  143. if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
  144. sync_mm_rss(task->mm);
  145. }
  146. #else /* SPLIT_RSS_COUNTING */
  147. #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
  148. #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
  149. static void check_sync_rss_stat(struct task_struct *task)
  150. {
  151. }
  152. #endif /* SPLIT_RSS_COUNTING */
  153. #ifdef HAVE_GENERIC_MMU_GATHER
  154. static int tlb_next_batch(struct mmu_gather *tlb)
  155. {
  156. struct mmu_gather_batch *batch;
  157. batch = tlb->active;
  158. if (batch->next) {
  159. tlb->active = batch->next;
  160. return 1;
  161. }
  162. if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
  163. return 0;
  164. batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
  165. if (!batch)
  166. return 0;
  167. tlb->batch_count++;
  168. batch->next = NULL;
  169. batch->nr = 0;
  170. batch->max = MAX_GATHER_BATCH;
  171. tlb->active->next = batch;
  172. tlb->active = batch;
  173. return 1;
  174. }
  175. /* tlb_gather_mmu
  176. * Called to initialize an (on-stack) mmu_gather structure for page-table
  177. * tear-down from @mm. The @fullmm argument is used when @mm is without
  178. * users and we're going to destroy the full address space (exit/execve).
  179. */
  180. void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
  181. {
  182. tlb->mm = mm;
  183. /* Is it from 0 to ~0? */
  184. tlb->fullmm = !(start | (end+1));
  185. tlb->need_flush_all = 0;
  186. tlb->start = start;
  187. tlb->end = end;
  188. tlb->need_flush = 0;
  189. tlb->local.next = NULL;
  190. tlb->local.nr = 0;
  191. tlb->local.max = ARRAY_SIZE(tlb->__pages);
  192. tlb->active = &tlb->local;
  193. tlb->batch_count = 0;
  194. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  195. tlb->batch = NULL;
  196. #endif
  197. }
  198. static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
  199. {
  200. tlb->need_flush = 0;
  201. tlb_flush(tlb);
  202. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  203. tlb_table_flush(tlb);
  204. #endif
  205. }
  206. static void tlb_flush_mmu_free(struct mmu_gather *tlb)
  207. {
  208. struct mmu_gather_batch *batch;
  209. for (batch = &tlb->local; batch; batch = batch->next) {
  210. free_pages_and_swap_cache(batch->pages, batch->nr);
  211. batch->nr = 0;
  212. }
  213. tlb->active = &tlb->local;
  214. }
  215. void tlb_flush_mmu(struct mmu_gather *tlb)
  216. {
  217. if (!tlb->need_flush)
  218. return;
  219. tlb_flush_mmu_tlbonly(tlb);
  220. tlb_flush_mmu_free(tlb);
  221. }
  222. /* tlb_finish_mmu
  223. * Called at the end of the shootdown operation to free up any resources
  224. * that were required.
  225. */
  226. void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
  227. {
  228. struct mmu_gather_batch *batch, *next;
  229. tlb_flush_mmu(tlb);
  230. /* keep the page table cache within bounds */
  231. check_pgt_cache();
  232. for (batch = tlb->local.next; batch; batch = next) {
  233. next = batch->next;
  234. free_pages((unsigned long)batch, 0);
  235. }
  236. tlb->local.next = NULL;
  237. }
  238. /* __tlb_remove_page
  239. * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
  240. * handling the additional races in SMP caused by other CPUs caching valid
  241. * mappings in their TLBs. Returns the number of free page slots left.
  242. * When out of page slots we must call tlb_flush_mmu().
  243. */
  244. int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
  245. {
  246. struct mmu_gather_batch *batch;
  247. VM_BUG_ON(!tlb->need_flush);
  248. batch = tlb->active;
  249. batch->pages[batch->nr++] = page;
  250. if (batch->nr == batch->max) {
  251. if (!tlb_next_batch(tlb))
  252. return 0;
  253. batch = tlb->active;
  254. }
  255. VM_BUG_ON_PAGE(batch->nr > batch->max, page);
  256. return batch->max - batch->nr;
  257. }
  258. #endif /* HAVE_GENERIC_MMU_GATHER */
  259. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  260. /*
  261. * See the comment near struct mmu_table_batch.
  262. */
  263. static void tlb_remove_table_smp_sync(void *arg)
  264. {
  265. /* Simply deliver the interrupt */
  266. }
  267. static void tlb_remove_table_one(void *table)
  268. {
  269. /*
  270. * This isn't an RCU grace period and hence the page-tables cannot be
  271. * assumed to be actually RCU-freed.
  272. *
  273. * It is however sufficient for software page-table walkers that rely on
  274. * IRQ disabling. See the comment near struct mmu_table_batch.
  275. */
  276. smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
  277. __tlb_remove_table(table);
  278. }
  279. static void tlb_remove_table_rcu(struct rcu_head *head)
  280. {
  281. struct mmu_table_batch *batch;
  282. int i;
  283. batch = container_of(head, struct mmu_table_batch, rcu);
  284. for (i = 0; i < batch->nr; i++)
  285. __tlb_remove_table(batch->tables[i]);
  286. free_page((unsigned long)batch);
  287. }
  288. void tlb_table_flush(struct mmu_gather *tlb)
  289. {
  290. struct mmu_table_batch **batch = &tlb->batch;
  291. if (*batch) {
  292. call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
  293. *batch = NULL;
  294. }
  295. }
  296. void tlb_remove_table(struct mmu_gather *tlb, void *table)
  297. {
  298. struct mmu_table_batch **batch = &tlb->batch;
  299. tlb->need_flush = 1;
  300. /*
  301. * When there's less then two users of this mm there cannot be a
  302. * concurrent page-table walk.
  303. */
  304. if (atomic_read(&tlb->mm->mm_users) < 2) {
  305. __tlb_remove_table(table);
  306. return;
  307. }
  308. if (*batch == NULL) {
  309. *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
  310. if (*batch == NULL) {
  311. tlb_remove_table_one(table);
  312. return;
  313. }
  314. (*batch)->nr = 0;
  315. }
  316. (*batch)->tables[(*batch)->nr++] = table;
  317. if ((*batch)->nr == MAX_TABLE_BATCH)
  318. tlb_table_flush(tlb);
  319. }
  320. #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
  321. /*
  322. * Note: this doesn't free the actual pages themselves. That
  323. * has been handled earlier when unmapping all the memory regions.
  324. */
  325. static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
  326. unsigned long addr)
  327. {
  328. pgtable_t token = pmd_pgtable(*pmd);
  329. pmd_clear(pmd);
  330. pte_free_tlb(tlb, token, addr);
  331. atomic_long_dec(&tlb->mm->nr_ptes);
  332. }
  333. static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  334. unsigned long addr, unsigned long end,
  335. unsigned long floor, unsigned long ceiling)
  336. {
  337. pmd_t *pmd;
  338. unsigned long next;
  339. unsigned long start;
  340. start = addr;
  341. pmd = pmd_offset(pud, addr);
  342. do {
  343. next = pmd_addr_end(addr, end);
  344. if (pmd_none_or_clear_bad(pmd))
  345. continue;
  346. free_pte_range(tlb, pmd, addr);
  347. } while (pmd++, addr = next, addr != end);
  348. start &= PUD_MASK;
  349. if (start < floor)
  350. return;
  351. if (ceiling) {
  352. ceiling &= PUD_MASK;
  353. if (!ceiling)
  354. return;
  355. }
  356. if (end - 1 > ceiling - 1)
  357. return;
  358. pmd = pmd_offset(pud, start);
  359. pud_clear(pud);
  360. pmd_free_tlb(tlb, pmd, start);
  361. }
  362. static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  363. unsigned long addr, unsigned long end,
  364. unsigned long floor, unsigned long ceiling)
  365. {
  366. pud_t *pud;
  367. unsigned long next;
  368. unsigned long start;
  369. start = addr;
  370. pud = pud_offset(pgd, addr);
  371. do {
  372. next = pud_addr_end(addr, end);
  373. if (pud_none_or_clear_bad(pud))
  374. continue;
  375. free_pmd_range(tlb, pud, addr, next, floor, ceiling);
  376. } while (pud++, addr = next, addr != end);
  377. start &= PGDIR_MASK;
  378. if (start < floor)
  379. return;
  380. if (ceiling) {
  381. ceiling &= PGDIR_MASK;
  382. if (!ceiling)
  383. return;
  384. }
  385. if (end - 1 > ceiling - 1)
  386. return;
  387. pud = pud_offset(pgd, start);
  388. pgd_clear(pgd);
  389. pud_free_tlb(tlb, pud, start);
  390. }
  391. /*
  392. * This function frees user-level page tables of a process.
  393. */
  394. void free_pgd_range(struct mmu_gather *tlb,
  395. unsigned long addr, unsigned long end,
  396. unsigned long floor, unsigned long ceiling)
  397. {
  398. pgd_t *pgd;
  399. unsigned long next;
  400. /*
  401. * The next few lines have given us lots of grief...
  402. *
  403. * Why are we testing PMD* at this top level? Because often
  404. * there will be no work to do at all, and we'd prefer not to
  405. * go all the way down to the bottom just to discover that.
  406. *
  407. * Why all these "- 1"s? Because 0 represents both the bottom
  408. * of the address space and the top of it (using -1 for the
  409. * top wouldn't help much: the masks would do the wrong thing).
  410. * The rule is that addr 0 and floor 0 refer to the bottom of
  411. * the address space, but end 0 and ceiling 0 refer to the top
  412. * Comparisons need to use "end - 1" and "ceiling - 1" (though
  413. * that end 0 case should be mythical).
  414. *
  415. * Wherever addr is brought up or ceiling brought down, we must
  416. * be careful to reject "the opposite 0" before it confuses the
  417. * subsequent tests. But what about where end is brought down
  418. * by PMD_SIZE below? no, end can't go down to 0 there.
  419. *
  420. * Whereas we round start (addr) and ceiling down, by different
  421. * masks at different levels, in order to test whether a table
  422. * now has no other vmas using it, so can be freed, we don't
  423. * bother to round floor or end up - the tests don't need that.
  424. */
  425. addr &= PMD_MASK;
  426. if (addr < floor) {
  427. addr += PMD_SIZE;
  428. if (!addr)
  429. return;
  430. }
  431. if (ceiling) {
  432. ceiling &= PMD_MASK;
  433. if (!ceiling)
  434. return;
  435. }
  436. if (end - 1 > ceiling - 1)
  437. end -= PMD_SIZE;
  438. if (addr > end - 1)
  439. return;
  440. pgd = pgd_offset(tlb->mm, addr);
  441. do {
  442. next = pgd_addr_end(addr, end);
  443. if (pgd_none_or_clear_bad(pgd))
  444. continue;
  445. free_pud_range(tlb, pgd, addr, next, floor, ceiling);
  446. } while (pgd++, addr = next, addr != end);
  447. }
  448. void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
  449. unsigned long floor, unsigned long ceiling)
  450. {
  451. while (vma) {
  452. struct vm_area_struct *next = vma->vm_next;
  453. unsigned long addr = vma->vm_start;
  454. /*
  455. * Hide vma from rmap and truncate_pagecache before freeing
  456. * pgtables
  457. */
  458. unlink_anon_vmas(vma);
  459. unlink_file_vma(vma);
  460. if (is_vm_hugetlb_page(vma)) {
  461. hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
  462. floor, next? next->vm_start: ceiling);
  463. } else {
  464. /*
  465. * Optimization: gather nearby vmas into one call down
  466. */
  467. while (next && next->vm_start <= vma->vm_end + PMD_SIZE
  468. && !is_vm_hugetlb_page(next)) {
  469. vma = next;
  470. next = vma->vm_next;
  471. unlink_anon_vmas(vma);
  472. unlink_file_vma(vma);
  473. }
  474. free_pgd_range(tlb, addr, vma->vm_end,
  475. floor, next? next->vm_start: ceiling);
  476. }
  477. vma = next;
  478. }
  479. }
  480. int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
  481. pmd_t *pmd, unsigned long address)
  482. {
  483. spinlock_t *ptl;
  484. pgtable_t new = pte_alloc_one(mm, address);
  485. int wait_split_huge_page;
  486. if (!new)
  487. return -ENOMEM;
  488. /*
  489. * Ensure all pte setup (eg. pte page lock and page clearing) are
  490. * visible before the pte is made visible to other CPUs by being
  491. * put into page tables.
  492. *
  493. * The other side of the story is the pointer chasing in the page
  494. * table walking code (when walking the page table without locking;
  495. * ie. most of the time). Fortunately, these data accesses consist
  496. * of a chain of data-dependent loads, meaning most CPUs (alpha
  497. * being the notable exception) will already guarantee loads are
  498. * seen in-order. See the alpha page table accessors for the
  499. * smp_read_barrier_depends() barriers in page table walking code.
  500. */
  501. smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
  502. ptl = pmd_lock(mm, pmd);
  503. wait_split_huge_page = 0;
  504. if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
  505. atomic_long_inc(&mm->nr_ptes);
  506. pmd_populate(mm, pmd, new);
  507. new = NULL;
  508. } else if (unlikely(pmd_trans_splitting(*pmd)))
  509. wait_split_huge_page = 1;
  510. spin_unlock(ptl);
  511. if (new)
  512. pte_free(mm, new);
  513. if (wait_split_huge_page)
  514. wait_split_huge_page(vma->anon_vma, pmd);
  515. return 0;
  516. }
  517. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
  518. {
  519. pte_t *new = pte_alloc_one_kernel(&init_mm, address);
  520. if (!new)
  521. return -ENOMEM;
  522. smp_wmb(); /* See comment in __pte_alloc */
  523. spin_lock(&init_mm.page_table_lock);
  524. if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
  525. pmd_populate_kernel(&init_mm, pmd, new);
  526. new = NULL;
  527. } else
  528. VM_BUG_ON(pmd_trans_splitting(*pmd));
  529. spin_unlock(&init_mm.page_table_lock);
  530. if (new)
  531. pte_free_kernel(&init_mm, new);
  532. return 0;
  533. }
  534. static inline void init_rss_vec(int *rss)
  535. {
  536. memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
  537. }
  538. static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
  539. {
  540. int i;
  541. if (current->mm == mm)
  542. sync_mm_rss(mm);
  543. for (i = 0; i < NR_MM_COUNTERS; i++)
  544. if (rss[i])
  545. add_mm_counter(mm, i, rss[i]);
  546. }
  547. /*
  548. * This function is called to print an error when a bad pte
  549. * is found. For example, we might have a PFN-mapped pte in
  550. * a region that doesn't allow it.
  551. *
  552. * The calling function must still handle the error.
  553. */
  554. static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
  555. pte_t pte, struct page *page)
  556. {
  557. pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
  558. pud_t *pud = pud_offset(pgd, addr);
  559. pmd_t *pmd = pmd_offset(pud, addr);
  560. struct address_space *mapping;
  561. pgoff_t index;
  562. static unsigned long resume;
  563. static unsigned long nr_shown;
  564. static unsigned long nr_unshown;
  565. /*
  566. * Allow a burst of 60 reports, then keep quiet for that minute;
  567. * or allow a steady drip of one report per second.
  568. */
  569. if (nr_shown == 60) {
  570. if (time_before(jiffies, resume)) {
  571. nr_unshown++;
  572. return;
  573. }
  574. if (nr_unshown) {
  575. printk(KERN_ALERT
  576. "BUG: Bad page map: %lu messages suppressed\n",
  577. nr_unshown);
  578. nr_unshown = 0;
  579. }
  580. nr_shown = 0;
  581. }
  582. if (nr_shown++ == 0)
  583. resume = jiffies + 60 * HZ;
  584. mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
  585. index = linear_page_index(vma, addr);
  586. printk(KERN_ALERT
  587. "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
  588. current->comm,
  589. (long long)pte_val(pte), (long long)pmd_val(*pmd));
  590. if (page)
  591. dump_page(page, "bad pte");
  592. printk(KERN_ALERT
  593. "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
  594. (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
  595. /*
  596. * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
  597. */
  598. if (vma->vm_ops)
  599. printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
  600. vma->vm_ops->fault);
  601. if (vma->vm_file)
  602. printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
  603. vma->vm_file->f_op->mmap);
  604. dump_stack();
  605. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  606. }
  607. /*
  608. * vm_normal_page -- This function gets the "struct page" associated with a pte.
  609. *
  610. * "Special" mappings do not wish to be associated with a "struct page" (either
  611. * it doesn't exist, or it exists but they don't want to touch it). In this
  612. * case, NULL is returned here. "Normal" mappings do have a struct page.
  613. *
  614. * There are 2 broad cases. Firstly, an architecture may define a pte_special()
  615. * pte bit, in which case this function is trivial. Secondly, an architecture
  616. * may not have a spare pte bit, which requires a more complicated scheme,
  617. * described below.
  618. *
  619. * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
  620. * special mapping (even if there are underlying and valid "struct pages").
  621. * COWed pages of a VM_PFNMAP are always normal.
  622. *
  623. * The way we recognize COWed pages within VM_PFNMAP mappings is through the
  624. * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
  625. * set, and the vm_pgoff will point to the first PFN mapped: thus every special
  626. * mapping will always honor the rule
  627. *
  628. * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
  629. *
  630. * And for normal mappings this is false.
  631. *
  632. * This restricts such mappings to be a linear translation from virtual address
  633. * to pfn. To get around this restriction, we allow arbitrary mappings so long
  634. * as the vma is not a COW mapping; in that case, we know that all ptes are
  635. * special (because none can have been COWed).
  636. *
  637. *
  638. * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
  639. *
  640. * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
  641. * page" backing, however the difference is that _all_ pages with a struct
  642. * page (that is, those where pfn_valid is true) are refcounted and considered
  643. * normal pages by the VM. The disadvantage is that pages are refcounted
  644. * (which can be slower and simply not an option for some PFNMAP users). The
  645. * advantage is that we don't have to follow the strict linearity rule of
  646. * PFNMAP mappings in order to support COWable mappings.
  647. *
  648. */
  649. #ifdef __HAVE_ARCH_PTE_SPECIAL
  650. # define HAVE_PTE_SPECIAL 1
  651. #else
  652. # define HAVE_PTE_SPECIAL 0
  653. #endif
  654. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  655. pte_t pte)
  656. {
  657. unsigned long pfn = pte_pfn(pte);
  658. if (HAVE_PTE_SPECIAL) {
  659. if (likely(!pte_special(pte)))
  660. goto check_pfn;
  661. if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
  662. return NULL;
  663. if (!is_zero_pfn(pfn))
  664. print_bad_pte(vma, addr, pte, NULL);
  665. return NULL;
  666. }
  667. /* !HAVE_PTE_SPECIAL case follows: */
  668. if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
  669. if (vma->vm_flags & VM_MIXEDMAP) {
  670. if (!pfn_valid(pfn))
  671. return NULL;
  672. goto out;
  673. } else {
  674. unsigned long off;
  675. off = (addr - vma->vm_start) >> PAGE_SHIFT;
  676. if (pfn == vma->vm_pgoff + off)
  677. return NULL;
  678. if (!is_cow_mapping(vma->vm_flags))
  679. return NULL;
  680. }
  681. }
  682. if (is_zero_pfn(pfn))
  683. return NULL;
  684. check_pfn:
  685. if (unlikely(pfn > highest_memmap_pfn)) {
  686. print_bad_pte(vma, addr, pte, NULL);
  687. return NULL;
  688. }
  689. /*
  690. * NOTE! We still have PageReserved() pages in the page tables.
  691. * eg. VDSO mappings can cause them to exist.
  692. */
  693. out:
  694. return pfn_to_page(pfn);
  695. }
  696. /*
  697. * copy one vm_area from one task to the other. Assumes the page tables
  698. * already present in the new task to be cleared in the whole range
  699. * covered by this vma.
  700. */
  701. static inline unsigned long
  702. copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  703. pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
  704. unsigned long addr, int *rss)
  705. {
  706. unsigned long vm_flags = vma->vm_flags;
  707. pte_t pte = *src_pte;
  708. struct page *page;
  709. /* pte contains position in swap or file, so copy. */
  710. if (unlikely(!pte_present(pte))) {
  711. if (!pte_file(pte)) {
  712. swp_entry_t entry = pte_to_swp_entry(pte);
  713. if (likely(!non_swap_entry(entry))) {
  714. if (swap_duplicate(entry) < 0)
  715. return entry.val;
  716. /* make sure dst_mm is on swapoff's mmlist. */
  717. if (unlikely(list_empty(&dst_mm->mmlist))) {
  718. spin_lock(&mmlist_lock);
  719. if (list_empty(&dst_mm->mmlist))
  720. list_add(&dst_mm->mmlist,
  721. &src_mm->mmlist);
  722. spin_unlock(&mmlist_lock);
  723. }
  724. rss[MM_SWAPENTS]++;
  725. } else if (is_migration_entry(entry)) {
  726. page = migration_entry_to_page(entry);
  727. if (PageAnon(page))
  728. rss[MM_ANONPAGES]++;
  729. else
  730. rss[MM_FILEPAGES]++;
  731. if (is_write_migration_entry(entry) &&
  732. is_cow_mapping(vm_flags)) {
  733. /*
  734. * COW mappings require pages in both
  735. * parent and child to be set to read.
  736. */
  737. make_migration_entry_read(&entry);
  738. pte = swp_entry_to_pte(entry);
  739. if (pte_swp_soft_dirty(*src_pte))
  740. pte = pte_swp_mksoft_dirty(pte);
  741. set_pte_at(src_mm, addr, src_pte, pte);
  742. }
  743. }
  744. }
  745. goto out_set_pte;
  746. }
  747. /*
  748. * If it's a COW mapping, write protect it both
  749. * in the parent and the child
  750. */
  751. if (is_cow_mapping(vm_flags)) {
  752. ptep_set_wrprotect(src_mm, addr, src_pte);
  753. pte = pte_wrprotect(pte);
  754. }
  755. /*
  756. * If it's a shared mapping, mark it clean in
  757. * the child
  758. */
  759. if (vm_flags & VM_SHARED)
  760. pte = pte_mkclean(pte);
  761. pte = pte_mkold(pte);
  762. page = vm_normal_page(vma, addr, pte);
  763. if (page) {
  764. get_page(page);
  765. page_dup_rmap(page);
  766. if (PageAnon(page))
  767. rss[MM_ANONPAGES]++;
  768. else
  769. rss[MM_FILEPAGES]++;
  770. }
  771. out_set_pte:
  772. set_pte_at(dst_mm, addr, dst_pte, pte);
  773. return 0;
  774. }
  775. static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  776. pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
  777. unsigned long addr, unsigned long end)
  778. {
  779. pte_t *orig_src_pte, *orig_dst_pte;
  780. pte_t *src_pte, *dst_pte;
  781. spinlock_t *src_ptl, *dst_ptl;
  782. int progress = 0;
  783. int rss[NR_MM_COUNTERS];
  784. swp_entry_t entry = (swp_entry_t){0};
  785. again:
  786. init_rss_vec(rss);
  787. dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
  788. if (!dst_pte)
  789. return -ENOMEM;
  790. src_pte = pte_offset_map(src_pmd, addr);
  791. src_ptl = pte_lockptr(src_mm, src_pmd);
  792. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  793. orig_src_pte = src_pte;
  794. orig_dst_pte = dst_pte;
  795. arch_enter_lazy_mmu_mode();
  796. do {
  797. /*
  798. * We are holding two locks at this point - either of them
  799. * could generate latencies in another task on another CPU.
  800. */
  801. if (progress >= 32) {
  802. progress = 0;
  803. if (need_resched() ||
  804. spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
  805. break;
  806. }
  807. if (pte_none(*src_pte)) {
  808. progress++;
  809. continue;
  810. }
  811. entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
  812. vma, addr, rss);
  813. if (entry.val)
  814. break;
  815. progress += 8;
  816. } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
  817. arch_leave_lazy_mmu_mode();
  818. spin_unlock(src_ptl);
  819. pte_unmap(orig_src_pte);
  820. add_mm_rss_vec(dst_mm, rss);
  821. pte_unmap_unlock(orig_dst_pte, dst_ptl);
  822. cond_resched();
  823. if (entry.val) {
  824. if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
  825. return -ENOMEM;
  826. progress = 0;
  827. }
  828. if (addr != end)
  829. goto again;
  830. return 0;
  831. }
  832. static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  833. pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
  834. unsigned long addr, unsigned long end)
  835. {
  836. pmd_t *src_pmd, *dst_pmd;
  837. unsigned long next;
  838. dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
  839. if (!dst_pmd)
  840. return -ENOMEM;
  841. src_pmd = pmd_offset(src_pud, addr);
  842. do {
  843. next = pmd_addr_end(addr, end);
  844. if (pmd_trans_huge(*src_pmd)) {
  845. int err;
  846. VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
  847. err = copy_huge_pmd(dst_mm, src_mm,
  848. dst_pmd, src_pmd, addr, vma);
  849. if (err == -ENOMEM)
  850. return -ENOMEM;
  851. if (!err)
  852. continue;
  853. /* fall through */
  854. }
  855. if (pmd_none_or_clear_bad(src_pmd))
  856. continue;
  857. if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
  858. vma, addr, next))
  859. return -ENOMEM;
  860. } while (dst_pmd++, src_pmd++, addr = next, addr != end);
  861. return 0;
  862. }
  863. static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  864. pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
  865. unsigned long addr, unsigned long end)
  866. {
  867. pud_t *src_pud, *dst_pud;
  868. unsigned long next;
  869. dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
  870. if (!dst_pud)
  871. return -ENOMEM;
  872. src_pud = pud_offset(src_pgd, addr);
  873. do {
  874. next = pud_addr_end(addr, end);
  875. if (pud_none_or_clear_bad(src_pud))
  876. continue;
  877. if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
  878. vma, addr, next))
  879. return -ENOMEM;
  880. } while (dst_pud++, src_pud++, addr = next, addr != end);
  881. return 0;
  882. }
  883. int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  884. struct vm_area_struct *vma)
  885. {
  886. pgd_t *src_pgd, *dst_pgd;
  887. unsigned long next;
  888. unsigned long addr = vma->vm_start;
  889. unsigned long end = vma->vm_end;
  890. unsigned long mmun_start; /* For mmu_notifiers */
  891. unsigned long mmun_end; /* For mmu_notifiers */
  892. bool is_cow;
  893. int ret;
  894. /*
  895. * Don't copy ptes where a page fault will fill them correctly.
  896. * Fork becomes much lighter when there are big shared or private
  897. * readonly mappings. The tradeoff is that copy_page_range is more
  898. * efficient than faulting.
  899. */
  900. if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
  901. VM_PFNMAP | VM_MIXEDMAP))) {
  902. if (!vma->anon_vma)
  903. return 0;
  904. }
  905. if (is_vm_hugetlb_page(vma))
  906. return copy_hugetlb_page_range(dst_mm, src_mm, vma);
  907. if (unlikely(vma->vm_flags & VM_PFNMAP)) {
  908. /*
  909. * We do not free on error cases below as remove_vma
  910. * gets called on error from higher level routine
  911. */
  912. ret = track_pfn_copy(vma);
  913. if (ret)
  914. return ret;
  915. }
  916. /*
  917. * We need to invalidate the secondary MMU mappings only when
  918. * there could be a permission downgrade on the ptes of the
  919. * parent mm. And a permission downgrade will only happen if
  920. * is_cow_mapping() returns true.
  921. */
  922. is_cow = is_cow_mapping(vma->vm_flags);
  923. mmun_start = addr;
  924. mmun_end = end;
  925. if (is_cow)
  926. mmu_notifier_invalidate_range_start(src_mm, mmun_start,
  927. mmun_end);
  928. ret = 0;
  929. dst_pgd = pgd_offset(dst_mm, addr);
  930. src_pgd = pgd_offset(src_mm, addr);
  931. do {
  932. next = pgd_addr_end(addr, end);
  933. if (pgd_none_or_clear_bad(src_pgd))
  934. continue;
  935. if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
  936. vma, addr, next))) {
  937. ret = -ENOMEM;
  938. break;
  939. }
  940. } while (dst_pgd++, src_pgd++, addr = next, addr != end);
  941. if (is_cow)
  942. mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
  943. return ret;
  944. }
  945. static unsigned long zap_pte_range(struct mmu_gather *tlb,
  946. struct vm_area_struct *vma, pmd_t *pmd,
  947. unsigned long addr, unsigned long end,
  948. struct zap_details *details)
  949. {
  950. struct mm_struct *mm = tlb->mm;
  951. int force_flush = 0;
  952. int rss[NR_MM_COUNTERS];
  953. spinlock_t *ptl;
  954. pte_t *start_pte;
  955. pte_t *pte;
  956. again:
  957. init_rss_vec(rss);
  958. start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
  959. pte = start_pte;
  960. arch_enter_lazy_mmu_mode();
  961. do {
  962. pte_t ptent = *pte;
  963. if (pte_none(ptent)) {
  964. continue;
  965. }
  966. if (pte_present(ptent)) {
  967. struct page *page;
  968. page = vm_normal_page(vma, addr, ptent);
  969. if (unlikely(details) && page) {
  970. /*
  971. * unmap_shared_mapping_pages() wants to
  972. * invalidate cache without truncating:
  973. * unmap shared but keep private pages.
  974. */
  975. if (details->check_mapping &&
  976. details->check_mapping != page->mapping)
  977. continue;
  978. /*
  979. * Each page->index must be checked when
  980. * invalidating or truncating nonlinear.
  981. */
  982. if (details->nonlinear_vma &&
  983. (page->index < details->first_index ||
  984. page->index > details->last_index))
  985. continue;
  986. }
  987. ptent = ptep_get_and_clear_full(mm, addr, pte,
  988. tlb->fullmm);
  989. tlb_remove_tlb_entry(tlb, pte, addr);
  990. if (unlikely(!page))
  991. continue;
  992. if (unlikely(details) && details->nonlinear_vma
  993. && linear_page_index(details->nonlinear_vma,
  994. addr) != page->index) {
  995. pte_t ptfile = pgoff_to_pte(page->index);
  996. if (pte_soft_dirty(ptent))
  997. ptfile = pte_file_mksoft_dirty(ptfile);
  998. set_pte_at(mm, addr, pte, ptfile);
  999. }
  1000. if (PageAnon(page))
  1001. rss[MM_ANONPAGES]--;
  1002. else {
  1003. if (pte_dirty(ptent)) {
  1004. force_flush = 1;
  1005. set_page_dirty(page);
  1006. }
  1007. if (pte_young(ptent) &&
  1008. likely(!(vma->vm_flags & VM_SEQ_READ)))
  1009. mark_page_accessed(page);
  1010. rss[MM_FILEPAGES]--;
  1011. }
  1012. page_remove_rmap(page);
  1013. if (unlikely(page_mapcount(page) < 0))
  1014. print_bad_pte(vma, addr, ptent, page);
  1015. if (unlikely(!__tlb_remove_page(tlb, page))) {
  1016. force_flush = 1;
  1017. addr += PAGE_SIZE;
  1018. break;
  1019. }
  1020. continue;
  1021. }
  1022. /*
  1023. * If details->check_mapping, we leave swap entries;
  1024. * if details->nonlinear_vma, we leave file entries.
  1025. */
  1026. if (unlikely(details))
  1027. continue;
  1028. if (pte_file(ptent)) {
  1029. if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
  1030. print_bad_pte(vma, addr, ptent, NULL);
  1031. } else {
  1032. swp_entry_t entry = pte_to_swp_entry(ptent);
  1033. if (!non_swap_entry(entry))
  1034. rss[MM_SWAPENTS]--;
  1035. else if (is_migration_entry(entry)) {
  1036. struct page *page;
  1037. page = migration_entry_to_page(entry);
  1038. if (PageAnon(page))
  1039. rss[MM_ANONPAGES]--;
  1040. else
  1041. rss[MM_FILEPAGES]--;
  1042. }
  1043. if (unlikely(!free_swap_and_cache(entry)))
  1044. print_bad_pte(vma, addr, ptent, NULL);
  1045. }
  1046. pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
  1047. } while (pte++, addr += PAGE_SIZE, addr != end);
  1048. add_mm_rss_vec(mm, rss);
  1049. arch_leave_lazy_mmu_mode();
  1050. /* Do the actual TLB flush before dropping ptl */
  1051. if (force_flush) {
  1052. unsigned long old_end;
  1053. /*
  1054. * Flush the TLB just for the previous segment,
  1055. * then update the range to be the remaining
  1056. * TLB range.
  1057. */
  1058. old_end = tlb->end;
  1059. tlb->end = addr;
  1060. tlb_flush_mmu_tlbonly(tlb);
  1061. tlb->start = addr;
  1062. tlb->end = old_end;
  1063. }
  1064. pte_unmap_unlock(start_pte, ptl);
  1065. /*
  1066. * If we forced a TLB flush (either due to running out of
  1067. * batch buffers or because we needed to flush dirty TLB
  1068. * entries before releasing the ptl), free the batched
  1069. * memory too. Restart if we didn't do everything.
  1070. */
  1071. if (force_flush) {
  1072. force_flush = 0;
  1073. tlb_flush_mmu_free(tlb);
  1074. if (addr != end)
  1075. goto again;
  1076. }
  1077. return addr;
  1078. }
  1079. static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
  1080. struct vm_area_struct *vma, pud_t *pud,
  1081. unsigned long addr, unsigned long end,
  1082. struct zap_details *details)
  1083. {
  1084. pmd_t *pmd;
  1085. unsigned long next;
  1086. pmd = pmd_offset(pud, addr);
  1087. do {
  1088. next = pmd_addr_end(addr, end);
  1089. if (pmd_trans_huge(*pmd)) {
  1090. if (next - addr != HPAGE_PMD_SIZE) {
  1091. #ifdef CONFIG_DEBUG_VM
  1092. if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
  1093. pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
  1094. __func__, addr, end,
  1095. vma->vm_start,
  1096. vma->vm_end);
  1097. BUG();
  1098. }
  1099. #endif
  1100. split_huge_page_pmd(vma, addr, pmd);
  1101. } else if (zap_huge_pmd(tlb, vma, pmd, addr))
  1102. goto next;
  1103. /* fall through */
  1104. }
  1105. /*
  1106. * Here there can be other concurrent MADV_DONTNEED or
  1107. * trans huge page faults running, and if the pmd is
  1108. * none or trans huge it can change under us. This is
  1109. * because MADV_DONTNEED holds the mmap_sem in read
  1110. * mode.
  1111. */
  1112. if (pmd_none_or_trans_huge_or_clear_bad(pmd))
  1113. goto next;
  1114. next = zap_pte_range(tlb, vma, pmd, addr, next, details);
  1115. next:
  1116. cond_resched();
  1117. } while (pmd++, addr = next, addr != end);
  1118. return addr;
  1119. }
  1120. static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
  1121. struct vm_area_struct *vma, pgd_t *pgd,
  1122. unsigned long addr, unsigned long end,
  1123. struct zap_details *details)
  1124. {
  1125. pud_t *pud;
  1126. unsigned long next;
  1127. pud = pud_offset(pgd, addr);
  1128. do {
  1129. next = pud_addr_end(addr, end);
  1130. if (pud_none_or_clear_bad(pud))
  1131. continue;
  1132. next = zap_pmd_range(tlb, vma, pud, addr, next, details);
  1133. } while (pud++, addr = next, addr != end);
  1134. return addr;
  1135. }
  1136. static void unmap_page_range(struct mmu_gather *tlb,
  1137. struct vm_area_struct *vma,
  1138. unsigned long addr, unsigned long end,
  1139. struct zap_details *details)
  1140. {
  1141. pgd_t *pgd;
  1142. unsigned long next;
  1143. if (details && !details->check_mapping && !details->nonlinear_vma)
  1144. details = NULL;
  1145. BUG_ON(addr >= end);
  1146. tlb_start_vma(tlb, vma);
  1147. pgd = pgd_offset(vma->vm_mm, addr);
  1148. do {
  1149. next = pgd_addr_end(addr, end);
  1150. if (pgd_none_or_clear_bad(pgd))
  1151. continue;
  1152. next = zap_pud_range(tlb, vma, pgd, addr, next, details);
  1153. } while (pgd++, addr = next, addr != end);
  1154. tlb_end_vma(tlb, vma);
  1155. }
  1156. static void unmap_single_vma(struct mmu_gather *tlb,
  1157. struct vm_area_struct *vma, unsigned long start_addr,
  1158. unsigned long end_addr,
  1159. struct zap_details *details)
  1160. {
  1161. unsigned long start = max(vma->vm_start, start_addr);
  1162. unsigned long end;
  1163. if (start >= vma->vm_end)
  1164. return;
  1165. end = min(vma->vm_end, end_addr);
  1166. if (end <= vma->vm_start)
  1167. return;
  1168. if (vma->vm_file)
  1169. uprobe_munmap(vma, start, end);
  1170. if (unlikely(vma->vm_flags & VM_PFNMAP))
  1171. untrack_pfn(vma, 0, 0);
  1172. if (start != end) {
  1173. if (unlikely(is_vm_hugetlb_page(vma))) {
  1174. /*
  1175. * It is undesirable to test vma->vm_file as it
  1176. * should be non-null for valid hugetlb area.
  1177. * However, vm_file will be NULL in the error
  1178. * cleanup path of mmap_region. When
  1179. * hugetlbfs ->mmap method fails,
  1180. * mmap_region() nullifies vma->vm_file
  1181. * before calling this function to clean up.
  1182. * Since no pte has actually been setup, it is
  1183. * safe to do nothing in this case.
  1184. */
  1185. if (vma->vm_file) {
  1186. mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
  1187. __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
  1188. mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
  1189. }
  1190. } else
  1191. unmap_page_range(tlb, vma, start, end, details);
  1192. }
  1193. }
  1194. /**
  1195. * unmap_vmas - unmap a range of memory covered by a list of vma's
  1196. * @tlb: address of the caller's struct mmu_gather
  1197. * @vma: the starting vma
  1198. * @start_addr: virtual address at which to start unmapping
  1199. * @end_addr: virtual address at which to end unmapping
  1200. *
  1201. * Unmap all pages in the vma list.
  1202. *
  1203. * Only addresses between `start' and `end' will be unmapped.
  1204. *
  1205. * The VMA list must be sorted in ascending virtual address order.
  1206. *
  1207. * unmap_vmas() assumes that the caller will flush the whole unmapped address
  1208. * range after unmap_vmas() returns. So the only responsibility here is to
  1209. * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
  1210. * drops the lock and schedules.
  1211. */
  1212. void unmap_vmas(struct mmu_gather *tlb,
  1213. struct vm_area_struct *vma, unsigned long start_addr,
  1214. unsigned long end_addr)
  1215. {
  1216. struct mm_struct *mm = vma->vm_mm;
  1217. mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
  1218. for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
  1219. unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
  1220. mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
  1221. }
  1222. /**
  1223. * zap_page_range - remove user pages in a given range
  1224. * @vma: vm_area_struct holding the applicable pages
  1225. * @start: starting address of pages to zap
  1226. * @size: number of bytes to zap
  1227. * @details: details of nonlinear truncation or shared cache invalidation
  1228. *
  1229. * Caller must protect the VMA list
  1230. */
  1231. void zap_page_range(struct vm_area_struct *vma, unsigned long start,
  1232. unsigned long size, struct zap_details *details)
  1233. {
  1234. struct mm_struct *mm = vma->vm_mm;
  1235. struct mmu_gather tlb;
  1236. unsigned long end = start + size;
  1237. lru_add_drain();
  1238. tlb_gather_mmu(&tlb, mm, start, end);
  1239. update_hiwater_rss(mm);
  1240. mmu_notifier_invalidate_range_start(mm, start, end);
  1241. for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
  1242. unmap_single_vma(&tlb, vma, start, end, details);
  1243. mmu_notifier_invalidate_range_end(mm, start, end);
  1244. tlb_finish_mmu(&tlb, start, end);
  1245. }
  1246. /**
  1247. * zap_page_range_single - remove user pages in a given range
  1248. * @vma: vm_area_struct holding the applicable pages
  1249. * @address: starting address of pages to zap
  1250. * @size: number of bytes to zap
  1251. * @details: details of nonlinear truncation or shared cache invalidation
  1252. *
  1253. * The range must fit into one VMA.
  1254. */
  1255. static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
  1256. unsigned long size, struct zap_details *details)
  1257. {
  1258. struct mm_struct *mm = vma->vm_mm;
  1259. struct mmu_gather tlb;
  1260. unsigned long end = address + size;
  1261. lru_add_drain();
  1262. tlb_gather_mmu(&tlb, mm, address, end);
  1263. update_hiwater_rss(mm);
  1264. mmu_notifier_invalidate_range_start(mm, address, end);
  1265. unmap_single_vma(&tlb, vma, address, end, details);
  1266. mmu_notifier_invalidate_range_end(mm, address, end);
  1267. tlb_finish_mmu(&tlb, address, end);
  1268. }
  1269. /**
  1270. * zap_vma_ptes - remove ptes mapping the vma
  1271. * @vma: vm_area_struct holding ptes to be zapped
  1272. * @address: starting address of pages to zap
  1273. * @size: number of bytes to zap
  1274. *
  1275. * This function only unmaps ptes assigned to VM_PFNMAP vmas.
  1276. *
  1277. * The entire address range must be fully contained within the vma.
  1278. *
  1279. * Returns 0 if successful.
  1280. */
  1281. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  1282. unsigned long size)
  1283. {
  1284. if (address < vma->vm_start || address + size > vma->vm_end ||
  1285. !(vma->vm_flags & VM_PFNMAP))
  1286. return -1;
  1287. zap_page_range_single(vma, address, size, NULL);
  1288. return 0;
  1289. }
  1290. EXPORT_SYMBOL_GPL(zap_vma_ptes);
  1291. pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1292. spinlock_t **ptl)
  1293. {
  1294. pgd_t * pgd = pgd_offset(mm, addr);
  1295. pud_t * pud = pud_alloc(mm, pgd, addr);
  1296. if (pud) {
  1297. pmd_t * pmd = pmd_alloc(mm, pud, addr);
  1298. if (pmd) {
  1299. VM_BUG_ON(pmd_trans_huge(*pmd));
  1300. return pte_alloc_map_lock(mm, pmd, addr, ptl);
  1301. }
  1302. }
  1303. return NULL;
  1304. }
  1305. /*
  1306. * This is the old fallback for page remapping.
  1307. *
  1308. * For historical reasons, it only allows reserved pages. Only
  1309. * old drivers should use this, and they needed to mark their
  1310. * pages reserved for the old functions anyway.
  1311. */
  1312. static int insert_page(struct vm_area_struct *vma, unsigned long addr,
  1313. struct page *page, pgprot_t prot)
  1314. {
  1315. struct mm_struct *mm = vma->vm_mm;
  1316. int retval;
  1317. pte_t *pte;
  1318. spinlock_t *ptl;
  1319. retval = -EINVAL;
  1320. if (PageAnon(page))
  1321. goto out;
  1322. retval = -ENOMEM;
  1323. flush_dcache_page(page);
  1324. pte = get_locked_pte(mm, addr, &ptl);
  1325. if (!pte)
  1326. goto out;
  1327. retval = -EBUSY;
  1328. if (!pte_none(*pte))
  1329. goto out_unlock;
  1330. /* Ok, finally just insert the thing.. */
  1331. get_page(page);
  1332. inc_mm_counter_fast(mm, MM_FILEPAGES);
  1333. page_add_file_rmap(page);
  1334. set_pte_at(mm, addr, pte, mk_pte(page, prot));
  1335. retval = 0;
  1336. pte_unmap_unlock(pte, ptl);
  1337. return retval;
  1338. out_unlock:
  1339. pte_unmap_unlock(pte, ptl);
  1340. out:
  1341. return retval;
  1342. }
  1343. /**
  1344. * vm_insert_page - insert single page into user vma
  1345. * @vma: user vma to map to
  1346. * @addr: target user address of this page
  1347. * @page: source kernel page
  1348. *
  1349. * This allows drivers to insert individual pages they've allocated
  1350. * into a user vma.
  1351. *
  1352. * The page has to be a nice clean _individual_ kernel allocation.
  1353. * If you allocate a compound page, you need to have marked it as
  1354. * such (__GFP_COMP), or manually just split the page up yourself
  1355. * (see split_page()).
  1356. *
  1357. * NOTE! Traditionally this was done with "remap_pfn_range()" which
  1358. * took an arbitrary page protection parameter. This doesn't allow
  1359. * that. Your vma protection will have to be set up correctly, which
  1360. * means that if you want a shared writable mapping, you'd better
  1361. * ask for a shared writable mapping!
  1362. *
  1363. * The page does not need to be reserved.
  1364. *
  1365. * Usually this function is called from f_op->mmap() handler
  1366. * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
  1367. * Caller must set VM_MIXEDMAP on vma if it wants to call this
  1368. * function from other places, for example from page-fault handler.
  1369. */
  1370. int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
  1371. struct page *page)
  1372. {
  1373. if (addr < vma->vm_start || addr >= vma->vm_end)
  1374. return -EFAULT;
  1375. if (!page_count(page))
  1376. return -EINVAL;
  1377. if (!(vma->vm_flags & VM_MIXEDMAP)) {
  1378. BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
  1379. BUG_ON(vma->vm_flags & VM_PFNMAP);
  1380. vma->vm_flags |= VM_MIXEDMAP;
  1381. }
  1382. return insert_page(vma, addr, page, vma->vm_page_prot);
  1383. }
  1384. EXPORT_SYMBOL(vm_insert_page);
  1385. static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1386. unsigned long pfn, pgprot_t prot)
  1387. {
  1388. struct mm_struct *mm = vma->vm_mm;
  1389. int retval;
  1390. pte_t *pte, entry;
  1391. spinlock_t *ptl;
  1392. retval = -ENOMEM;
  1393. pte = get_locked_pte(mm, addr, &ptl);
  1394. if (!pte)
  1395. goto out;
  1396. retval = -EBUSY;
  1397. if (!pte_none(*pte))
  1398. goto out_unlock;
  1399. /* Ok, finally just insert the thing.. */
  1400. entry = pte_mkspecial(pfn_pte(pfn, prot));
  1401. set_pte_at(mm, addr, pte, entry);
  1402. update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
  1403. retval = 0;
  1404. out_unlock:
  1405. pte_unmap_unlock(pte, ptl);
  1406. out:
  1407. return retval;
  1408. }
  1409. /**
  1410. * vm_insert_pfn - insert single pfn into user vma
  1411. * @vma: user vma to map to
  1412. * @addr: target user address of this page
  1413. * @pfn: source kernel pfn
  1414. *
  1415. * Similar to vm_insert_page, this allows drivers to insert individual pages
  1416. * they've allocated into a user vma. Same comments apply.
  1417. *
  1418. * This function should only be called from a vm_ops->fault handler, and
  1419. * in that case the handler should return NULL.
  1420. *
  1421. * vma cannot be a COW mapping.
  1422. *
  1423. * As this is called only for pages that do not currently exist, we
  1424. * do not need to flush old virtual caches or the TLB.
  1425. */
  1426. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1427. unsigned long pfn)
  1428. {
  1429. int ret;
  1430. pgprot_t pgprot = vma->vm_page_prot;
  1431. /*
  1432. * Technically, architectures with pte_special can avoid all these
  1433. * restrictions (same for remap_pfn_range). However we would like
  1434. * consistency in testing and feature parity among all, so we should
  1435. * try to keep these invariants in place for everybody.
  1436. */
  1437. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  1438. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  1439. (VM_PFNMAP|VM_MIXEDMAP));
  1440. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  1441. BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
  1442. if (addr < vma->vm_start || addr >= vma->vm_end)
  1443. return -EFAULT;
  1444. if (track_pfn_insert(vma, &pgprot, pfn))
  1445. return -EINVAL;
  1446. ret = insert_pfn(vma, addr, pfn, pgprot);
  1447. return ret;
  1448. }
  1449. EXPORT_SYMBOL(vm_insert_pfn);
  1450. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1451. unsigned long pfn)
  1452. {
  1453. BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
  1454. if (addr < vma->vm_start || addr >= vma->vm_end)
  1455. return -EFAULT;
  1456. /*
  1457. * If we don't have pte special, then we have to use the pfn_valid()
  1458. * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
  1459. * refcount the page if pfn_valid is true (hence insert_page rather
  1460. * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
  1461. * without pte special, it would there be refcounted as a normal page.
  1462. */
  1463. if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
  1464. struct page *page;
  1465. page = pfn_to_page(pfn);
  1466. return insert_page(vma, addr, page, vma->vm_page_prot);
  1467. }
  1468. return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
  1469. }
  1470. EXPORT_SYMBOL(vm_insert_mixed);
  1471. /*
  1472. * maps a range of physical memory into the requested pages. the old
  1473. * mappings are removed. any references to nonexistent pages results
  1474. * in null mappings (currently treated as "copy-on-access")
  1475. */
  1476. static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1477. unsigned long addr, unsigned long end,
  1478. unsigned long pfn, pgprot_t prot)
  1479. {
  1480. pte_t *pte;
  1481. spinlock_t *ptl;
  1482. pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1483. if (!pte)
  1484. return -ENOMEM;
  1485. arch_enter_lazy_mmu_mode();
  1486. do {
  1487. BUG_ON(!pte_none(*pte));
  1488. set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
  1489. pfn++;
  1490. } while (pte++, addr += PAGE_SIZE, addr != end);
  1491. arch_leave_lazy_mmu_mode();
  1492. pte_unmap_unlock(pte - 1, ptl);
  1493. return 0;
  1494. }
  1495. static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
  1496. unsigned long addr, unsigned long end,
  1497. unsigned long pfn, pgprot_t prot)
  1498. {
  1499. pmd_t *pmd;
  1500. unsigned long next;
  1501. pfn -= addr >> PAGE_SHIFT;
  1502. pmd = pmd_alloc(mm, pud, addr);
  1503. if (!pmd)
  1504. return -ENOMEM;
  1505. VM_BUG_ON(pmd_trans_huge(*pmd));
  1506. do {
  1507. next = pmd_addr_end(addr, end);
  1508. if (remap_pte_range(mm, pmd, addr, next,
  1509. pfn + (addr >> PAGE_SHIFT), prot))
  1510. return -ENOMEM;
  1511. } while (pmd++, addr = next, addr != end);
  1512. return 0;
  1513. }
  1514. static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1515. unsigned long addr, unsigned long end,
  1516. unsigned long pfn, pgprot_t prot)
  1517. {
  1518. pud_t *pud;
  1519. unsigned long next;
  1520. pfn -= addr >> PAGE_SHIFT;
  1521. pud = pud_alloc(mm, pgd, addr);
  1522. if (!pud)
  1523. return -ENOMEM;
  1524. do {
  1525. next = pud_addr_end(addr, end);
  1526. if (remap_pmd_range(mm, pud, addr, next,
  1527. pfn + (addr >> PAGE_SHIFT), prot))
  1528. return -ENOMEM;
  1529. } while (pud++, addr = next, addr != end);
  1530. return 0;
  1531. }
  1532. /**
  1533. * remap_pfn_range - remap kernel memory to userspace
  1534. * @vma: user vma to map to
  1535. * @addr: target user address to start at
  1536. * @pfn: physical address of kernel memory
  1537. * @size: size of map area
  1538. * @prot: page protection flags for this mapping
  1539. *
  1540. * Note: this is only safe if the mm semaphore is held when called.
  1541. */
  1542. int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
  1543. unsigned long pfn, unsigned long size, pgprot_t prot)
  1544. {
  1545. pgd_t *pgd;
  1546. unsigned long next;
  1547. unsigned long end = addr + PAGE_ALIGN(size);
  1548. struct mm_struct *mm = vma->vm_mm;
  1549. int err;
  1550. /*
  1551. * Physically remapped pages are special. Tell the
  1552. * rest of the world about it:
  1553. * VM_IO tells people not to look at these pages
  1554. * (accesses can have side effects).
  1555. * VM_PFNMAP tells the core MM that the base pages are just
  1556. * raw PFN mappings, and do not have a "struct page" associated
  1557. * with them.
  1558. * VM_DONTEXPAND
  1559. * Disable vma merging and expanding with mremap().
  1560. * VM_DONTDUMP
  1561. * Omit vma from core dump, even when VM_IO turned off.
  1562. *
  1563. * There's a horrible special case to handle copy-on-write
  1564. * behaviour that some programs depend on. We mark the "original"
  1565. * un-COW'ed pages by matching them up with "vma->vm_pgoff".
  1566. * See vm_normal_page() for details.
  1567. */
  1568. if (is_cow_mapping(vma->vm_flags)) {
  1569. if (addr != vma->vm_start || end != vma->vm_end)
  1570. return -EINVAL;
  1571. vma->vm_pgoff = pfn;
  1572. }
  1573. err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
  1574. if (err)
  1575. return -EINVAL;
  1576. vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
  1577. BUG_ON(addr >= end);
  1578. pfn -= addr >> PAGE_SHIFT;
  1579. pgd = pgd_offset(mm, addr);
  1580. flush_cache_range(vma, addr, end);
  1581. do {
  1582. next = pgd_addr_end(addr, end);
  1583. err = remap_pud_range(mm, pgd, addr, next,
  1584. pfn + (addr >> PAGE_SHIFT), prot);
  1585. if (err)
  1586. break;
  1587. } while (pgd++, addr = next, addr != end);
  1588. if (err)
  1589. untrack_pfn(vma, pfn, PAGE_ALIGN(size));
  1590. return err;
  1591. }
  1592. EXPORT_SYMBOL(remap_pfn_range);
  1593. /**
  1594. * vm_iomap_memory - remap memory to userspace
  1595. * @vma: user vma to map to
  1596. * @start: start of area
  1597. * @len: size of area
  1598. *
  1599. * This is a simplified io_remap_pfn_range() for common driver use. The
  1600. * driver just needs to give us the physical memory range to be mapped,
  1601. * we'll figure out the rest from the vma information.
  1602. *
  1603. * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
  1604. * whatever write-combining details or similar.
  1605. */
  1606. int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
  1607. {
  1608. unsigned long vm_len, pfn, pages;
  1609. /* Check that the physical memory area passed in looks valid */
  1610. if (start + len < start)
  1611. return -EINVAL;
  1612. /*
  1613. * You *really* shouldn't map things that aren't page-aligned,
  1614. * but we've historically allowed it because IO memory might
  1615. * just have smaller alignment.
  1616. */
  1617. len += start & ~PAGE_MASK;
  1618. pfn = start >> PAGE_SHIFT;
  1619. pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
  1620. if (pfn + pages < pfn)
  1621. return -EINVAL;
  1622. /* We start the mapping 'vm_pgoff' pages into the area */
  1623. if (vma->vm_pgoff > pages)
  1624. return -EINVAL;
  1625. pfn += vma->vm_pgoff;
  1626. pages -= vma->vm_pgoff;
  1627. /* Can we fit all of the mapping? */
  1628. vm_len = vma->vm_end - vma->vm_start;
  1629. if (vm_len >> PAGE_SHIFT > pages)
  1630. return -EINVAL;
  1631. /* Ok, let it rip */
  1632. return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
  1633. }
  1634. EXPORT_SYMBOL(vm_iomap_memory);
  1635. static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1636. unsigned long addr, unsigned long end,
  1637. pte_fn_t fn, void *data)
  1638. {
  1639. pte_t *pte;
  1640. int err;
  1641. pgtable_t token;
  1642. spinlock_t *uninitialized_var(ptl);
  1643. pte = (mm == &init_mm) ?
  1644. pte_alloc_kernel(pmd, addr) :
  1645. pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1646. if (!pte)
  1647. return -ENOMEM;
  1648. BUG_ON(pmd_huge(*pmd));
  1649. arch_enter_lazy_mmu_mode();
  1650. token = pmd_pgtable(*pmd);
  1651. do {
  1652. err = fn(pte++, token, addr, data);
  1653. if (err)
  1654. break;
  1655. } while (addr += PAGE_SIZE, addr != end);
  1656. arch_leave_lazy_mmu_mode();
  1657. if (mm != &init_mm)
  1658. pte_unmap_unlock(pte-1, ptl);
  1659. return err;
  1660. }
  1661. static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
  1662. unsigned long addr, unsigned long end,
  1663. pte_fn_t fn, void *data)
  1664. {
  1665. pmd_t *pmd;
  1666. unsigned long next;
  1667. int err;
  1668. BUG_ON(pud_huge(*pud));
  1669. pmd = pmd_alloc(mm, pud, addr);
  1670. if (!pmd)
  1671. return -ENOMEM;
  1672. do {
  1673. next = pmd_addr_end(addr, end);
  1674. err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
  1675. if (err)
  1676. break;
  1677. } while (pmd++, addr = next, addr != end);
  1678. return err;
  1679. }
  1680. static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1681. unsigned long addr, unsigned long end,
  1682. pte_fn_t fn, void *data)
  1683. {
  1684. pud_t *pud;
  1685. unsigned long next;
  1686. int err;
  1687. pud = pud_alloc(mm, pgd, addr);
  1688. if (!pud)
  1689. return -ENOMEM;
  1690. do {
  1691. next = pud_addr_end(addr, end);
  1692. err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
  1693. if (err)
  1694. break;
  1695. } while (pud++, addr = next, addr != end);
  1696. return err;
  1697. }
  1698. /*
  1699. * Scan a region of virtual memory, filling in page tables as necessary
  1700. * and calling a provided function on each leaf page table.
  1701. */
  1702. int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
  1703. unsigned long size, pte_fn_t fn, void *data)
  1704. {
  1705. pgd_t *pgd;
  1706. unsigned long next;
  1707. unsigned long end = addr + size;
  1708. int err;
  1709. BUG_ON(addr >= end);
  1710. pgd = pgd_offset(mm, addr);
  1711. do {
  1712. next = pgd_addr_end(addr, end);
  1713. err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
  1714. if (err)
  1715. break;
  1716. } while (pgd++, addr = next, addr != end);
  1717. return err;
  1718. }
  1719. EXPORT_SYMBOL_GPL(apply_to_page_range);
  1720. /*
  1721. * handle_pte_fault chooses page fault handler according to an entry
  1722. * which was read non-atomically. Before making any commitment, on
  1723. * those architectures or configurations (e.g. i386 with PAE) which
  1724. * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
  1725. * must check under lock before unmapping the pte and proceeding
  1726. * (but do_wp_page is only called after already making such a check;
  1727. * and do_anonymous_page can safely check later on).
  1728. */
  1729. static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
  1730. pte_t *page_table, pte_t orig_pte)
  1731. {
  1732. int same = 1;
  1733. #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
  1734. if (sizeof(pte_t) > sizeof(unsigned long)) {
  1735. spinlock_t *ptl = pte_lockptr(mm, pmd);
  1736. spin_lock(ptl);
  1737. same = pte_same(*page_table, orig_pte);
  1738. spin_unlock(ptl);
  1739. }
  1740. #endif
  1741. pte_unmap(page_table);
  1742. return same;
  1743. }
  1744. static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
  1745. {
  1746. debug_dma_assert_idle(src);
  1747. /*
  1748. * If the source page was a PFN mapping, we don't have
  1749. * a "struct page" for it. We do a best-effort copy by
  1750. * just copying from the original user address. If that
  1751. * fails, we just zero-fill it. Live with it.
  1752. */
  1753. if (unlikely(!src)) {
  1754. void *kaddr = kmap_atomic(dst);
  1755. void __user *uaddr = (void __user *)(va & PAGE_MASK);
  1756. /*
  1757. * This really shouldn't fail, because the page is there
  1758. * in the page tables. But it might just be unreadable,
  1759. * in which case we just give up and fill the result with
  1760. * zeroes.
  1761. */
  1762. if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
  1763. clear_page(kaddr);
  1764. kunmap_atomic(kaddr);
  1765. flush_dcache_page(dst);
  1766. } else
  1767. copy_user_highpage(dst, src, va, vma);
  1768. }
  1769. /*
  1770. * Notify the address space that the page is about to become writable so that
  1771. * it can prohibit this or wait for the page to get into an appropriate state.
  1772. *
  1773. * We do this without the lock held, so that it can sleep if it needs to.
  1774. */
  1775. static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
  1776. unsigned long address)
  1777. {
  1778. struct vm_fault vmf;
  1779. int ret;
  1780. vmf.virtual_address = (void __user *)(address & PAGE_MASK);
  1781. vmf.pgoff = page->index;
  1782. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  1783. vmf.page = page;
  1784. ret = vma->vm_ops->page_mkwrite(vma, &vmf);
  1785. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
  1786. return ret;
  1787. if (unlikely(!(ret & VM_FAULT_LOCKED))) {
  1788. lock_page(page);
  1789. if (!page->mapping) {
  1790. unlock_page(page);
  1791. return 0; /* retry */
  1792. }
  1793. ret |= VM_FAULT_LOCKED;
  1794. } else
  1795. VM_BUG_ON_PAGE(!PageLocked(page), page);
  1796. return ret;
  1797. }
  1798. /*
  1799. * This routine handles present pages, when users try to write
  1800. * to a shared page. It is done by copying the page to a new address
  1801. * and decrementing the shared-page counter for the old page.
  1802. *
  1803. * Note that this routine assumes that the protection checks have been
  1804. * done by the caller (the low-level page fault routine in most cases).
  1805. * Thus we can safely just mark it writable once we've done any necessary
  1806. * COW.
  1807. *
  1808. * We also mark the page dirty at this point even though the page will
  1809. * change only once the write actually happens. This avoids a few races,
  1810. * and potentially makes it more efficient.
  1811. *
  1812. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  1813. * but allow concurrent faults), with pte both mapped and locked.
  1814. * We return with mmap_sem still held, but pte unmapped and unlocked.
  1815. */
  1816. static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1817. unsigned long address, pte_t *page_table, pmd_t *pmd,
  1818. spinlock_t *ptl, pte_t orig_pte)
  1819. __releases(ptl)
  1820. {
  1821. struct page *old_page, *new_page = NULL;
  1822. pte_t entry;
  1823. int ret = 0;
  1824. int page_mkwrite = 0;
  1825. struct page *dirty_page = NULL;
  1826. unsigned long mmun_start = 0; /* For mmu_notifiers */
  1827. unsigned long mmun_end = 0; /* For mmu_notifiers */
  1828. struct mem_cgroup *memcg;
  1829. old_page = vm_normal_page(vma, address, orig_pte);
  1830. if (!old_page) {
  1831. /*
  1832. * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
  1833. * VM_PFNMAP VMA.
  1834. *
  1835. * We should not cow pages in a shared writeable mapping.
  1836. * Just mark the pages writable as we can't do any dirty
  1837. * accounting on raw pfn maps.
  1838. */
  1839. if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  1840. (VM_WRITE|VM_SHARED))
  1841. goto reuse;
  1842. goto gotten;
  1843. }
  1844. /*
  1845. * Take out anonymous pages first, anonymous shared vmas are
  1846. * not dirty accountable.
  1847. */
  1848. if (PageAnon(old_page) && !PageKsm(old_page)) {
  1849. if (!trylock_page(old_page)) {
  1850. page_cache_get(old_page);
  1851. pte_unmap_unlock(page_table, ptl);
  1852. lock_page(old_page);
  1853. page_table = pte_offset_map_lock(mm, pmd, address,
  1854. &ptl);
  1855. if (!pte_same(*page_table, orig_pte)) {
  1856. unlock_page(old_page);
  1857. goto unlock;
  1858. }
  1859. page_cache_release(old_page);
  1860. }
  1861. if (reuse_swap_page(old_page)) {
  1862. /*
  1863. * The page is all ours. Move it to our anon_vma so
  1864. * the rmap code will not search our parent or siblings.
  1865. * Protected against the rmap code by the page lock.
  1866. */
  1867. page_move_anon_rmap(old_page, vma, address);
  1868. unlock_page(old_page);
  1869. goto reuse;
  1870. }
  1871. unlock_page(old_page);
  1872. } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  1873. (VM_WRITE|VM_SHARED))) {
  1874. /*
  1875. * Only catch write-faults on shared writable pages,
  1876. * read-only shared pages can get COWed by
  1877. * get_user_pages(.write=1, .force=1).
  1878. */
  1879. if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
  1880. int tmp;
  1881. page_cache_get(old_page);
  1882. pte_unmap_unlock(page_table, ptl);
  1883. tmp = do_page_mkwrite(vma, old_page, address);
  1884. if (unlikely(!tmp || (tmp &
  1885. (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
  1886. page_cache_release(old_page);
  1887. return tmp;
  1888. }
  1889. /*
  1890. * Since we dropped the lock we need to revalidate
  1891. * the PTE as someone else may have changed it. If
  1892. * they did, we just return, as we can count on the
  1893. * MMU to tell us if they didn't also make it writable.
  1894. */
  1895. page_table = pte_offset_map_lock(mm, pmd, address,
  1896. &ptl);
  1897. if (!pte_same(*page_table, orig_pte)) {
  1898. unlock_page(old_page);
  1899. goto unlock;
  1900. }
  1901. page_mkwrite = 1;
  1902. }
  1903. dirty_page = old_page;
  1904. get_page(dirty_page);
  1905. reuse:
  1906. /*
  1907. * Clear the pages cpupid information as the existing
  1908. * information potentially belongs to a now completely
  1909. * unrelated process.
  1910. */
  1911. if (old_page)
  1912. page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1);
  1913. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1914. entry = pte_mkyoung(orig_pte);
  1915. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1916. if (ptep_set_access_flags(vma, address, page_table, entry,1))
  1917. update_mmu_cache(vma, address, page_table);
  1918. pte_unmap_unlock(page_table, ptl);
  1919. ret |= VM_FAULT_WRITE;
  1920. if (!dirty_page)
  1921. return ret;
  1922. /*
  1923. * Yes, Virginia, this is actually required to prevent a race
  1924. * with clear_page_dirty_for_io() from clearing the page dirty
  1925. * bit after it clear all dirty ptes, but before a racing
  1926. * do_wp_page installs a dirty pte.
  1927. *
  1928. * do_shared_fault is protected similarly.
  1929. */
  1930. if (!page_mkwrite) {
  1931. wait_on_page_locked(dirty_page);
  1932. set_page_dirty_balance(dirty_page);
  1933. /* file_update_time outside page_lock */
  1934. if (vma->vm_file)
  1935. file_update_time(vma->vm_file);
  1936. }
  1937. put_page(dirty_page);
  1938. if (page_mkwrite) {
  1939. struct address_space *mapping = dirty_page->mapping;
  1940. set_page_dirty(dirty_page);
  1941. unlock_page(dirty_page);
  1942. page_cache_release(dirty_page);
  1943. if (mapping) {
  1944. /*
  1945. * Some device drivers do not set page.mapping
  1946. * but still dirty their pages
  1947. */
  1948. balance_dirty_pages_ratelimited(mapping);
  1949. }
  1950. }
  1951. return ret;
  1952. }
  1953. /*
  1954. * Ok, we need to copy. Oh, well..
  1955. */
  1956. page_cache_get(old_page);
  1957. gotten:
  1958. pte_unmap_unlock(page_table, ptl);
  1959. if (unlikely(anon_vma_prepare(vma)))
  1960. goto oom;
  1961. if (is_zero_pfn(pte_pfn(orig_pte))) {
  1962. new_page = alloc_zeroed_user_highpage_movable(vma, address);
  1963. if (!new_page)
  1964. goto oom;
  1965. } else {
  1966. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  1967. if (!new_page)
  1968. goto oom;
  1969. cow_user_page(new_page, old_page, address, vma);
  1970. }
  1971. __SetPageUptodate(new_page);
  1972. if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg))
  1973. goto oom_free_new;
  1974. mmun_start = address & PAGE_MASK;
  1975. mmun_end = mmun_start + PAGE_SIZE;
  1976. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1977. /*
  1978. * Re-check the pte - we dropped the lock
  1979. */
  1980. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  1981. if (likely(pte_same(*page_table, orig_pte))) {
  1982. if (old_page) {
  1983. if (!PageAnon(old_page)) {
  1984. dec_mm_counter_fast(mm, MM_FILEPAGES);
  1985. inc_mm_counter_fast(mm, MM_ANONPAGES);
  1986. }
  1987. } else
  1988. inc_mm_counter_fast(mm, MM_ANONPAGES);
  1989. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1990. entry = mk_pte(new_page, vma->vm_page_prot);
  1991. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1992. /*
  1993. * Clear the pte entry and flush it first, before updating the
  1994. * pte with the new entry. This will avoid a race condition
  1995. * seen in the presence of one thread doing SMC and another
  1996. * thread doing COW.
  1997. */
  1998. ptep_clear_flush(vma, address, page_table);
  1999. page_add_new_anon_rmap(new_page, vma, address);
  2000. mem_cgroup_commit_charge(new_page, memcg, false);
  2001. lru_cache_add_active_or_unevictable(new_page, vma);
  2002. /*
  2003. * We call the notify macro here because, when using secondary
  2004. * mmu page tables (such as kvm shadow page tables), we want the
  2005. * new page to be mapped directly into the secondary page table.
  2006. */
  2007. set_pte_at_notify(mm, address, page_table, entry);
  2008. update_mmu_cache(vma, address, page_table);
  2009. if (old_page) {
  2010. /*
  2011. * Only after switching the pte to the new page may
  2012. * we remove the mapcount here. Otherwise another
  2013. * process may come and find the rmap count decremented
  2014. * before the pte is switched to the new page, and
  2015. * "reuse" the old page writing into it while our pte
  2016. * here still points into it and can be read by other
  2017. * threads.
  2018. *
  2019. * The critical issue is to order this
  2020. * page_remove_rmap with the ptp_clear_flush above.
  2021. * Those stores are ordered by (if nothing else,)
  2022. * the barrier present in the atomic_add_negative
  2023. * in page_remove_rmap.
  2024. *
  2025. * Then the TLB flush in ptep_clear_flush ensures that
  2026. * no process can access the old page before the
  2027. * decremented mapcount is visible. And the old page
  2028. * cannot be reused until after the decremented
  2029. * mapcount is visible. So transitively, TLBs to
  2030. * old page will be flushed before it can be reused.
  2031. */
  2032. page_remove_rmap(old_page);
  2033. }
  2034. /* Free the old page.. */
  2035. new_page = old_page;
  2036. ret |= VM_FAULT_WRITE;
  2037. } else
  2038. mem_cgroup_cancel_charge(new_page, memcg);
  2039. if (new_page)
  2040. page_cache_release(new_page);
  2041. unlock:
  2042. pte_unmap_unlock(page_table, ptl);
  2043. if (mmun_end > mmun_start)
  2044. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2045. if (old_page) {
  2046. /*
  2047. * Don't let another task, with possibly unlocked vma,
  2048. * keep the mlocked page.
  2049. */
  2050. if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
  2051. lock_page(old_page); /* LRU manipulation */
  2052. munlock_vma_page(old_page);
  2053. unlock_page(old_page);
  2054. }
  2055. page_cache_release(old_page);
  2056. }
  2057. return ret;
  2058. oom_free_new:
  2059. page_cache_release(new_page);
  2060. oom:
  2061. if (old_page)
  2062. page_cache_release(old_page);
  2063. return VM_FAULT_OOM;
  2064. }
  2065. static void unmap_mapping_range_vma(struct vm_area_struct *vma,
  2066. unsigned long start_addr, unsigned long end_addr,
  2067. struct zap_details *details)
  2068. {
  2069. zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
  2070. }
  2071. static inline void unmap_mapping_range_tree(struct rb_root *root,
  2072. struct zap_details *details)
  2073. {
  2074. struct vm_area_struct *vma;
  2075. pgoff_t vba, vea, zba, zea;
  2076. vma_interval_tree_foreach(vma, root,
  2077. details->first_index, details->last_index) {
  2078. vba = vma->vm_pgoff;
  2079. vea = vba + vma_pages(vma) - 1;
  2080. /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
  2081. zba = details->first_index;
  2082. if (zba < vba)
  2083. zba = vba;
  2084. zea = details->last_index;
  2085. if (zea > vea)
  2086. zea = vea;
  2087. unmap_mapping_range_vma(vma,
  2088. ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
  2089. ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
  2090. details);
  2091. }
  2092. }
  2093. static inline void unmap_mapping_range_list(struct list_head *head,
  2094. struct zap_details *details)
  2095. {
  2096. struct vm_area_struct *vma;
  2097. /*
  2098. * In nonlinear VMAs there is no correspondence between virtual address
  2099. * offset and file offset. So we must perform an exhaustive search
  2100. * across *all* the pages in each nonlinear VMA, not just the pages
  2101. * whose virtual address lies outside the file truncation point.
  2102. */
  2103. list_for_each_entry(vma, head, shared.nonlinear) {
  2104. details->nonlinear_vma = vma;
  2105. unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
  2106. }
  2107. }
  2108. /**
  2109. * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
  2110. * @mapping: the address space containing mmaps to be unmapped.
  2111. * @holebegin: byte in first page to unmap, relative to the start of
  2112. * the underlying file. This will be rounded down to a PAGE_SIZE
  2113. * boundary. Note that this is different from truncate_pagecache(), which
  2114. * must keep the partial page. In contrast, we must get rid of
  2115. * partial pages.
  2116. * @holelen: size of prospective hole in bytes. This will be rounded
  2117. * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
  2118. * end of the file.
  2119. * @even_cows: 1 when truncating a file, unmap even private COWed pages;
  2120. * but 0 when invalidating pagecache, don't throw away private data.
  2121. */
  2122. void unmap_mapping_range(struct address_space *mapping,
  2123. loff_t const holebegin, loff_t const holelen, int even_cows)
  2124. {
  2125. struct zap_details details;
  2126. pgoff_t hba = holebegin >> PAGE_SHIFT;
  2127. pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2128. /* Check for overflow. */
  2129. if (sizeof(holelen) > sizeof(hlen)) {
  2130. long long holeend =
  2131. (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2132. if (holeend & ~(long long)ULONG_MAX)
  2133. hlen = ULONG_MAX - hba + 1;
  2134. }
  2135. details.check_mapping = even_cows? NULL: mapping;
  2136. details.nonlinear_vma = NULL;
  2137. details.first_index = hba;
  2138. details.last_index = hba + hlen - 1;
  2139. if (details.last_index < details.first_index)
  2140. details.last_index = ULONG_MAX;
  2141. mutex_lock(&mapping->i_mmap_mutex);
  2142. if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
  2143. unmap_mapping_range_tree(&mapping->i_mmap, &details);
  2144. if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
  2145. unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
  2146. mutex_unlock(&mapping->i_mmap_mutex);
  2147. }
  2148. EXPORT_SYMBOL(unmap_mapping_range);
  2149. /*
  2150. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2151. * but allow concurrent faults), and pte mapped but not yet locked.
  2152. * We return with pte unmapped and unlocked.
  2153. *
  2154. * We return with the mmap_sem locked or unlocked in the same cases
  2155. * as does filemap_fault().
  2156. */
  2157. static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2158. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2159. unsigned int flags, pte_t orig_pte)
  2160. {
  2161. spinlock_t *ptl;
  2162. struct page *page, *swapcache;
  2163. struct mem_cgroup *memcg;
  2164. swp_entry_t entry;
  2165. pte_t pte;
  2166. int locked;
  2167. int exclusive = 0;
  2168. int ret = 0;
  2169. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2170. goto out;
  2171. entry = pte_to_swp_entry(orig_pte);
  2172. if (unlikely(non_swap_entry(entry))) {
  2173. if (is_migration_entry(entry)) {
  2174. migration_entry_wait(mm, pmd, address);
  2175. } else if (is_hwpoison_entry(entry)) {
  2176. ret = VM_FAULT_HWPOISON;
  2177. } else {
  2178. print_bad_pte(vma, address, orig_pte, NULL);
  2179. ret = VM_FAULT_SIGBUS;
  2180. }
  2181. goto out;
  2182. }
  2183. delayacct_set_flag(DELAYACCT_PF_SWAPIN);
  2184. page = lookup_swap_cache(entry);
  2185. if (!page) {
  2186. page = swapin_readahead(entry,
  2187. GFP_HIGHUSER_MOVABLE, vma, address);
  2188. if (!page) {
  2189. /*
  2190. * Back out if somebody else faulted in this pte
  2191. * while we released the pte lock.
  2192. */
  2193. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2194. if (likely(pte_same(*page_table, orig_pte)))
  2195. ret = VM_FAULT_OOM;
  2196. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2197. goto unlock;
  2198. }
  2199. /* Had to read the page from swap area: Major fault */
  2200. ret = VM_FAULT_MAJOR;
  2201. count_vm_event(PGMAJFAULT);
  2202. mem_cgroup_count_vm_event(mm, PGMAJFAULT);
  2203. } else if (PageHWPoison(page)) {
  2204. /*
  2205. * hwpoisoned dirty swapcache pages are kept for killing
  2206. * owner processes (which may be unknown at hwpoison time)
  2207. */
  2208. ret = VM_FAULT_HWPOISON;
  2209. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2210. swapcache = page;
  2211. goto out_release;
  2212. }
  2213. swapcache = page;
  2214. locked = lock_page_or_retry(page, mm, flags);
  2215. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2216. if (!locked) {
  2217. ret |= VM_FAULT_RETRY;
  2218. goto out_release;
  2219. }
  2220. /*
  2221. * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
  2222. * release the swapcache from under us. The page pin, and pte_same
  2223. * test below, are not enough to exclude that. Even if it is still
  2224. * swapcache, we need to check that the page's swap has not changed.
  2225. */
  2226. if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
  2227. goto out_page;
  2228. page = ksm_might_need_to_copy(page, vma, address);
  2229. if (unlikely(!page)) {
  2230. ret = VM_FAULT_OOM;
  2231. page = swapcache;
  2232. goto out_page;
  2233. }
  2234. if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) {
  2235. ret = VM_FAULT_OOM;
  2236. goto out_page;
  2237. }
  2238. /*
  2239. * Back out if somebody else already faulted in this pte.
  2240. */
  2241. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2242. if (unlikely(!pte_same(*page_table, orig_pte)))
  2243. goto out_nomap;
  2244. if (unlikely(!PageUptodate(page))) {
  2245. ret = VM_FAULT_SIGBUS;
  2246. goto out_nomap;
  2247. }
  2248. /*
  2249. * The page isn't present yet, go ahead with the fault.
  2250. *
  2251. * Be careful about the sequence of operations here.
  2252. * To get its accounting right, reuse_swap_page() must be called
  2253. * while the page is counted on swap but not yet in mapcount i.e.
  2254. * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
  2255. * must be called after the swap_free(), or it will never succeed.
  2256. */
  2257. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2258. dec_mm_counter_fast(mm, MM_SWAPENTS);
  2259. pte = mk_pte(page, vma->vm_page_prot);
  2260. if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
  2261. pte = maybe_mkwrite(pte_mkdirty(pte), vma);
  2262. flags &= ~FAULT_FLAG_WRITE;
  2263. ret |= VM_FAULT_WRITE;
  2264. exclusive = 1;
  2265. }
  2266. flush_icache_page(vma, page);
  2267. if (pte_swp_soft_dirty(orig_pte))
  2268. pte = pte_mksoft_dirty(pte);
  2269. set_pte_at(mm, address, page_table, pte);
  2270. if (page == swapcache) {
  2271. do_page_add_anon_rmap(page, vma, address, exclusive);
  2272. mem_cgroup_commit_charge(page, memcg, true);
  2273. } else { /* ksm created a completely new copy */
  2274. page_add_new_anon_rmap(page, vma, address);
  2275. mem_cgroup_commit_charge(page, memcg, false);
  2276. lru_cache_add_active_or_unevictable(page, vma);
  2277. }
  2278. swap_free(entry);
  2279. if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
  2280. try_to_free_swap(page);
  2281. unlock_page(page);
  2282. if (page != swapcache) {
  2283. /*
  2284. * Hold the lock to avoid the swap entry to be reused
  2285. * until we take the PT lock for the pte_same() check
  2286. * (to avoid false positives from pte_same). For
  2287. * further safety release the lock after the swap_free
  2288. * so that the swap count won't change under a
  2289. * parallel locked swapcache.
  2290. */
  2291. unlock_page(swapcache);
  2292. page_cache_release(swapcache);
  2293. }
  2294. if (flags & FAULT_FLAG_WRITE) {
  2295. ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
  2296. if (ret & VM_FAULT_ERROR)
  2297. ret &= VM_FAULT_ERROR;
  2298. goto out;
  2299. }
  2300. /* No need to invalidate - it was non-present before */
  2301. update_mmu_cache(vma, address, page_table);
  2302. unlock:
  2303. pte_unmap_unlock(page_table, ptl);
  2304. out:
  2305. return ret;
  2306. out_nomap:
  2307. mem_cgroup_cancel_charge(page, memcg);
  2308. pte_unmap_unlock(page_table, ptl);
  2309. out_page:
  2310. unlock_page(page);
  2311. out_release:
  2312. page_cache_release(page);
  2313. if (page != swapcache) {
  2314. unlock_page(swapcache);
  2315. page_cache_release(swapcache);
  2316. }
  2317. return ret;
  2318. }
  2319. /*
  2320. * This is like a special single-page "expand_{down|up}wards()",
  2321. * except we must first make sure that 'address{-|+}PAGE_SIZE'
  2322. * doesn't hit another vma.
  2323. */
  2324. static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
  2325. {
  2326. address &= PAGE_MASK;
  2327. if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
  2328. struct vm_area_struct *prev = vma->vm_prev;
  2329. /*
  2330. * Is there a mapping abutting this one below?
  2331. *
  2332. * That's only ok if it's the same stack mapping
  2333. * that has gotten split..
  2334. */
  2335. if (prev && prev->vm_end == address)
  2336. return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
  2337. expand_downwards(vma, address - PAGE_SIZE);
  2338. }
  2339. if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
  2340. struct vm_area_struct *next = vma->vm_next;
  2341. /* As VM_GROWSDOWN but s/below/above/ */
  2342. if (next && next->vm_start == address + PAGE_SIZE)
  2343. return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
  2344. expand_upwards(vma, address + PAGE_SIZE);
  2345. }
  2346. return 0;
  2347. }
  2348. /*
  2349. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2350. * but allow concurrent faults), and pte mapped but not yet locked.
  2351. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2352. */
  2353. static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2354. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2355. unsigned int flags)
  2356. {
  2357. struct mem_cgroup *memcg;
  2358. struct page *page;
  2359. spinlock_t *ptl;
  2360. pte_t entry;
  2361. pte_unmap(page_table);
  2362. /* Check if we need to add a guard page to the stack */
  2363. if (check_stack_guard_page(vma, address) < 0)
  2364. return VM_FAULT_SIGBUS;
  2365. /* Use the zero-page for reads */
  2366. if (!(flags & FAULT_FLAG_WRITE)) {
  2367. entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
  2368. vma->vm_page_prot));
  2369. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2370. if (!pte_none(*page_table))
  2371. goto unlock;
  2372. goto setpte;
  2373. }
  2374. /* Allocate our own private page. */
  2375. if (unlikely(anon_vma_prepare(vma)))
  2376. goto oom;
  2377. page = alloc_zeroed_user_highpage_movable(vma, address);
  2378. if (!page)
  2379. goto oom;
  2380. /*
  2381. * The memory barrier inside __SetPageUptodate makes sure that
  2382. * preceeding stores to the page contents become visible before
  2383. * the set_pte_at() write.
  2384. */
  2385. __SetPageUptodate(page);
  2386. if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg))
  2387. goto oom_free_page;
  2388. entry = mk_pte(page, vma->vm_page_prot);
  2389. if (vma->vm_flags & VM_WRITE)
  2390. entry = pte_mkwrite(pte_mkdirty(entry));
  2391. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2392. if (!pte_none(*page_table))
  2393. goto release;
  2394. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2395. page_add_new_anon_rmap(page, vma, address);
  2396. mem_cgroup_commit_charge(page, memcg, false);
  2397. lru_cache_add_active_or_unevictable(page, vma);
  2398. setpte:
  2399. set_pte_at(mm, address, page_table, entry);
  2400. /* No need to invalidate - it was non-present before */
  2401. update_mmu_cache(vma, address, page_table);
  2402. unlock:
  2403. pte_unmap_unlock(page_table, ptl);
  2404. return 0;
  2405. release:
  2406. mem_cgroup_cancel_charge(page, memcg);
  2407. page_cache_release(page);
  2408. goto unlock;
  2409. oom_free_page:
  2410. page_cache_release(page);
  2411. oom:
  2412. return VM_FAULT_OOM;
  2413. }
  2414. /*
  2415. * The mmap_sem must have been held on entry, and may have been
  2416. * released depending on flags and vma->vm_ops->fault() return value.
  2417. * See filemap_fault() and __lock_page_retry().
  2418. */
  2419. static int __do_fault(struct vm_area_struct *vma, unsigned long address,
  2420. pgoff_t pgoff, unsigned int flags, struct page **page)
  2421. {
  2422. struct vm_fault vmf;
  2423. int ret;
  2424. vmf.virtual_address = (void __user *)(address & PAGE_MASK);
  2425. vmf.pgoff = pgoff;
  2426. vmf.flags = flags;
  2427. vmf.page = NULL;
  2428. ret = vma->vm_ops->fault(vma, &vmf);
  2429. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
  2430. return ret;
  2431. if (unlikely(PageHWPoison(vmf.page))) {
  2432. if (ret & VM_FAULT_LOCKED)
  2433. unlock_page(vmf.page);
  2434. page_cache_release(vmf.page);
  2435. return VM_FAULT_HWPOISON;
  2436. }
  2437. if (unlikely(!(ret & VM_FAULT_LOCKED)))
  2438. lock_page(vmf.page);
  2439. else
  2440. VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
  2441. *page = vmf.page;
  2442. return ret;
  2443. }
  2444. /**
  2445. * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
  2446. *
  2447. * @vma: virtual memory area
  2448. * @address: user virtual address
  2449. * @page: page to map
  2450. * @pte: pointer to target page table entry
  2451. * @write: true, if new entry is writable
  2452. * @anon: true, if it's anonymous page
  2453. *
  2454. * Caller must hold page table lock relevant for @pte.
  2455. *
  2456. * Target users are page handler itself and implementations of
  2457. * vm_ops->map_pages.
  2458. */
  2459. void do_set_pte(struct vm_area_struct *vma, unsigned long address,
  2460. struct page *page, pte_t *pte, bool write, bool anon)
  2461. {
  2462. pte_t entry;
  2463. flush_icache_page(vma, page);
  2464. entry = mk_pte(page, vma->vm_page_prot);
  2465. if (write)
  2466. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2467. else if (pte_file(*pte) && pte_file_soft_dirty(*pte))
  2468. entry = pte_mksoft_dirty(entry);
  2469. if (anon) {
  2470. inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
  2471. page_add_new_anon_rmap(page, vma, address);
  2472. } else {
  2473. inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
  2474. page_add_file_rmap(page);
  2475. }
  2476. set_pte_at(vma->vm_mm, address, pte, entry);
  2477. /* no need to invalidate: a not-present page won't be cached */
  2478. update_mmu_cache(vma, address, pte);
  2479. }
  2480. static unsigned long fault_around_bytes __read_mostly =
  2481. rounddown_pow_of_two(65536);
  2482. #ifdef CONFIG_DEBUG_FS
  2483. static int fault_around_bytes_get(void *data, u64 *val)
  2484. {
  2485. *val = fault_around_bytes;
  2486. return 0;
  2487. }
  2488. /*
  2489. * fault_around_pages() and fault_around_mask() expects fault_around_bytes
  2490. * rounded down to nearest page order. It's what do_fault_around() expects to
  2491. * see.
  2492. */
  2493. static int fault_around_bytes_set(void *data, u64 val)
  2494. {
  2495. if (val / PAGE_SIZE > PTRS_PER_PTE)
  2496. return -EINVAL;
  2497. if (val > PAGE_SIZE)
  2498. fault_around_bytes = rounddown_pow_of_two(val);
  2499. else
  2500. fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
  2501. return 0;
  2502. }
  2503. DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
  2504. fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
  2505. static int __init fault_around_debugfs(void)
  2506. {
  2507. void *ret;
  2508. ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
  2509. &fault_around_bytes_fops);
  2510. if (!ret)
  2511. pr_warn("Failed to create fault_around_bytes in debugfs");
  2512. return 0;
  2513. }
  2514. late_initcall(fault_around_debugfs);
  2515. #endif
  2516. /*
  2517. * do_fault_around() tries to map few pages around the fault address. The hope
  2518. * is that the pages will be needed soon and this will lower the number of
  2519. * faults to handle.
  2520. *
  2521. * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
  2522. * not ready to be mapped: not up-to-date, locked, etc.
  2523. *
  2524. * This function is called with the page table lock taken. In the split ptlock
  2525. * case the page table lock only protects only those entries which belong to
  2526. * the page table corresponding to the fault address.
  2527. *
  2528. * This function doesn't cross the VMA boundaries, in order to call map_pages()
  2529. * only once.
  2530. *
  2531. * fault_around_pages() defines how many pages we'll try to map.
  2532. * do_fault_around() expects it to return a power of two less than or equal to
  2533. * PTRS_PER_PTE.
  2534. *
  2535. * The virtual address of the area that we map is naturally aligned to the
  2536. * fault_around_pages() value (and therefore to page order). This way it's
  2537. * easier to guarantee that we don't cross page table boundaries.
  2538. */
  2539. static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
  2540. pte_t *pte, pgoff_t pgoff, unsigned int flags)
  2541. {
  2542. unsigned long start_addr, nr_pages, mask;
  2543. pgoff_t max_pgoff;
  2544. struct vm_fault vmf;
  2545. int off;
  2546. nr_pages = ACCESS_ONCE(fault_around_bytes) >> PAGE_SHIFT;
  2547. mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
  2548. start_addr = max(address & mask, vma->vm_start);
  2549. off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
  2550. pte -= off;
  2551. pgoff -= off;
  2552. /*
  2553. * max_pgoff is either end of page table or end of vma
  2554. * or fault_around_pages() from pgoff, depending what is nearest.
  2555. */
  2556. max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
  2557. PTRS_PER_PTE - 1;
  2558. max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
  2559. pgoff + nr_pages - 1);
  2560. /* Check if it makes any sense to call ->map_pages */
  2561. while (!pte_none(*pte)) {
  2562. if (++pgoff > max_pgoff)
  2563. return;
  2564. start_addr += PAGE_SIZE;
  2565. if (start_addr >= vma->vm_end)
  2566. return;
  2567. pte++;
  2568. }
  2569. vmf.virtual_address = (void __user *) start_addr;
  2570. vmf.pte = pte;
  2571. vmf.pgoff = pgoff;
  2572. vmf.max_pgoff = max_pgoff;
  2573. vmf.flags = flags;
  2574. vma->vm_ops->map_pages(vma, &vmf);
  2575. }
  2576. static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2577. unsigned long address, pmd_t *pmd,
  2578. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2579. {
  2580. struct page *fault_page;
  2581. spinlock_t *ptl;
  2582. pte_t *pte;
  2583. int ret = 0;
  2584. /*
  2585. * Let's call ->map_pages() first and use ->fault() as fallback
  2586. * if page by the offset is not ready to be mapped (cold cache or
  2587. * something).
  2588. */
  2589. if (vma->vm_ops->map_pages && !(flags & FAULT_FLAG_NONLINEAR) &&
  2590. fault_around_bytes >> PAGE_SHIFT > 1) {
  2591. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2592. do_fault_around(vma, address, pte, pgoff, flags);
  2593. if (!pte_same(*pte, orig_pte))
  2594. goto unlock_out;
  2595. pte_unmap_unlock(pte, ptl);
  2596. }
  2597. ret = __do_fault(vma, address, pgoff, flags, &fault_page);
  2598. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
  2599. return ret;
  2600. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2601. if (unlikely(!pte_same(*pte, orig_pte))) {
  2602. pte_unmap_unlock(pte, ptl);
  2603. unlock_page(fault_page);
  2604. page_cache_release(fault_page);
  2605. return ret;
  2606. }
  2607. do_set_pte(vma, address, fault_page, pte, false, false);
  2608. unlock_page(fault_page);
  2609. unlock_out:
  2610. pte_unmap_unlock(pte, ptl);
  2611. return ret;
  2612. }
  2613. static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2614. unsigned long address, pmd_t *pmd,
  2615. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2616. {
  2617. struct page *fault_page, *new_page;
  2618. struct mem_cgroup *memcg;
  2619. spinlock_t *ptl;
  2620. pte_t *pte;
  2621. int ret;
  2622. if (unlikely(anon_vma_prepare(vma)))
  2623. return VM_FAULT_OOM;
  2624. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  2625. if (!new_page)
  2626. return VM_FAULT_OOM;
  2627. if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) {
  2628. page_cache_release(new_page);
  2629. return VM_FAULT_OOM;
  2630. }
  2631. ret = __do_fault(vma, address, pgoff, flags, &fault_page);
  2632. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
  2633. goto uncharge_out;
  2634. copy_user_highpage(new_page, fault_page, address, vma);
  2635. __SetPageUptodate(new_page);
  2636. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2637. if (unlikely(!pte_same(*pte, orig_pte))) {
  2638. pte_unmap_unlock(pte, ptl);
  2639. unlock_page(fault_page);
  2640. page_cache_release(fault_page);
  2641. goto uncharge_out;
  2642. }
  2643. do_set_pte(vma, address, new_page, pte, true, true);
  2644. mem_cgroup_commit_charge(new_page, memcg, false);
  2645. lru_cache_add_active_or_unevictable(new_page, vma);
  2646. pte_unmap_unlock(pte, ptl);
  2647. unlock_page(fault_page);
  2648. page_cache_release(fault_page);
  2649. return ret;
  2650. uncharge_out:
  2651. mem_cgroup_cancel_charge(new_page, memcg);
  2652. page_cache_release(new_page);
  2653. return ret;
  2654. }
  2655. static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2656. unsigned long address, pmd_t *pmd,
  2657. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2658. {
  2659. struct page *fault_page;
  2660. struct address_space *mapping;
  2661. spinlock_t *ptl;
  2662. pte_t *pte;
  2663. int dirtied = 0;
  2664. int ret, tmp;
  2665. ret = __do_fault(vma, address, pgoff, flags, &fault_page);
  2666. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
  2667. return ret;
  2668. /*
  2669. * Check if the backing address space wants to know that the page is
  2670. * about to become writable
  2671. */
  2672. if (vma->vm_ops->page_mkwrite) {
  2673. unlock_page(fault_page);
  2674. tmp = do_page_mkwrite(vma, fault_page, address);
  2675. if (unlikely(!tmp ||
  2676. (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
  2677. page_cache_release(fault_page);
  2678. return tmp;
  2679. }
  2680. }
  2681. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2682. if (unlikely(!pte_same(*pte, orig_pte))) {
  2683. pte_unmap_unlock(pte, ptl);
  2684. unlock_page(fault_page);
  2685. page_cache_release(fault_page);
  2686. return ret;
  2687. }
  2688. do_set_pte(vma, address, fault_page, pte, true, false);
  2689. pte_unmap_unlock(pte, ptl);
  2690. if (set_page_dirty(fault_page))
  2691. dirtied = 1;
  2692. mapping = fault_page->mapping;
  2693. unlock_page(fault_page);
  2694. if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
  2695. /*
  2696. * Some device drivers do not set page.mapping but still
  2697. * dirty their pages
  2698. */
  2699. balance_dirty_pages_ratelimited(mapping);
  2700. }
  2701. /* file_update_time outside page_lock */
  2702. if (vma->vm_file && !vma->vm_ops->page_mkwrite)
  2703. file_update_time(vma->vm_file);
  2704. return ret;
  2705. }
  2706. /*
  2707. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2708. * but allow concurrent faults).
  2709. * The mmap_sem may have been released depending on flags and our
  2710. * return value. See filemap_fault() and __lock_page_or_retry().
  2711. */
  2712. static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2713. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2714. unsigned int flags, pte_t orig_pte)
  2715. {
  2716. pgoff_t pgoff = (((address & PAGE_MASK)
  2717. - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2718. pte_unmap(page_table);
  2719. if (!(flags & FAULT_FLAG_WRITE))
  2720. return do_read_fault(mm, vma, address, pmd, pgoff, flags,
  2721. orig_pte);
  2722. if (!(vma->vm_flags & VM_SHARED))
  2723. return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
  2724. orig_pte);
  2725. return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2726. }
  2727. /*
  2728. * Fault of a previously existing named mapping. Repopulate the pte
  2729. * from the encoded file_pte if possible. This enables swappable
  2730. * nonlinear vmas.
  2731. *
  2732. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2733. * but allow concurrent faults), and pte mapped but not yet locked.
  2734. * We return with pte unmapped and unlocked.
  2735. * The mmap_sem may have been released depending on flags and our
  2736. * return value. See filemap_fault() and __lock_page_or_retry().
  2737. */
  2738. static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2739. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2740. unsigned int flags, pte_t orig_pte)
  2741. {
  2742. pgoff_t pgoff;
  2743. flags |= FAULT_FLAG_NONLINEAR;
  2744. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2745. return 0;
  2746. if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
  2747. /*
  2748. * Page table corrupted: show pte and kill process.
  2749. */
  2750. print_bad_pte(vma, address, orig_pte, NULL);
  2751. return VM_FAULT_SIGBUS;
  2752. }
  2753. pgoff = pte_to_pgoff(orig_pte);
  2754. if (!(flags & FAULT_FLAG_WRITE))
  2755. return do_read_fault(mm, vma, address, pmd, pgoff, flags,
  2756. orig_pte);
  2757. if (!(vma->vm_flags & VM_SHARED))
  2758. return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
  2759. orig_pte);
  2760. return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2761. }
  2762. static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
  2763. unsigned long addr, int page_nid,
  2764. int *flags)
  2765. {
  2766. get_page(page);
  2767. count_vm_numa_event(NUMA_HINT_FAULTS);
  2768. if (page_nid == numa_node_id()) {
  2769. count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
  2770. *flags |= TNF_FAULT_LOCAL;
  2771. }
  2772. return mpol_misplaced(page, vma, addr);
  2773. }
  2774. static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2775. unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
  2776. {
  2777. struct page *page = NULL;
  2778. spinlock_t *ptl;
  2779. int page_nid = -1;
  2780. int last_cpupid;
  2781. int target_nid;
  2782. bool migrated = false;
  2783. int flags = 0;
  2784. /*
  2785. * The "pte" at this point cannot be used safely without
  2786. * validation through pte_unmap_same(). It's of NUMA type but
  2787. * the pfn may be screwed if the read is non atomic.
  2788. *
  2789. * ptep_modify_prot_start is not called as this is clearing
  2790. * the _PAGE_NUMA bit and it is not really expected that there
  2791. * would be concurrent hardware modifications to the PTE.
  2792. */
  2793. ptl = pte_lockptr(mm, pmd);
  2794. spin_lock(ptl);
  2795. if (unlikely(!pte_same(*ptep, pte))) {
  2796. pte_unmap_unlock(ptep, ptl);
  2797. goto out;
  2798. }
  2799. pte = pte_mknonnuma(pte);
  2800. set_pte_at(mm, addr, ptep, pte);
  2801. update_mmu_cache(vma, addr, ptep);
  2802. page = vm_normal_page(vma, addr, pte);
  2803. if (!page) {
  2804. pte_unmap_unlock(ptep, ptl);
  2805. return 0;
  2806. }
  2807. BUG_ON(is_zero_pfn(page_to_pfn(page)));
  2808. /*
  2809. * Avoid grouping on DSO/COW pages in specific and RO pages
  2810. * in general, RO pages shouldn't hurt as much anyway since
  2811. * they can be in shared cache state.
  2812. */
  2813. if (!pte_write(pte))
  2814. flags |= TNF_NO_GROUP;
  2815. /*
  2816. * Flag if the page is shared between multiple address spaces. This
  2817. * is later used when determining whether to group tasks together
  2818. */
  2819. if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
  2820. flags |= TNF_SHARED;
  2821. last_cpupid = page_cpupid_last(page);
  2822. page_nid = page_to_nid(page);
  2823. target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
  2824. pte_unmap_unlock(ptep, ptl);
  2825. if (target_nid == -1) {
  2826. put_page(page);
  2827. goto out;
  2828. }
  2829. /* Migrate to the requested node */
  2830. migrated = migrate_misplaced_page(page, vma, target_nid);
  2831. if (migrated) {
  2832. page_nid = target_nid;
  2833. flags |= TNF_MIGRATED;
  2834. }
  2835. out:
  2836. if (page_nid != -1)
  2837. task_numa_fault(last_cpupid, page_nid, 1, flags);
  2838. return 0;
  2839. }
  2840. /*
  2841. * These routines also need to handle stuff like marking pages dirty
  2842. * and/or accessed for architectures that don't do it in hardware (most
  2843. * RISC architectures). The early dirtying is also good on the i386.
  2844. *
  2845. * There is also a hook called "update_mmu_cache()" that architectures
  2846. * with external mmu caches can use to update those (ie the Sparc or
  2847. * PowerPC hashed page tables that act as extended TLBs).
  2848. *
  2849. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2850. * but allow concurrent faults), and pte mapped but not yet locked.
  2851. * We return with pte unmapped and unlocked.
  2852. *
  2853. * The mmap_sem may have been released depending on flags and our
  2854. * return value. See filemap_fault() and __lock_page_or_retry().
  2855. */
  2856. static int handle_pte_fault(struct mm_struct *mm,
  2857. struct vm_area_struct *vma, unsigned long address,
  2858. pte_t *pte, pmd_t *pmd, unsigned int flags)
  2859. {
  2860. pte_t entry;
  2861. spinlock_t *ptl;
  2862. entry = ACCESS_ONCE(*pte);
  2863. if (!pte_present(entry)) {
  2864. if (pte_none(entry)) {
  2865. if (vma->vm_ops) {
  2866. if (likely(vma->vm_ops->fault))
  2867. return do_linear_fault(mm, vma, address,
  2868. pte, pmd, flags, entry);
  2869. }
  2870. return do_anonymous_page(mm, vma, address,
  2871. pte, pmd, flags);
  2872. }
  2873. if (pte_file(entry))
  2874. return do_nonlinear_fault(mm, vma, address,
  2875. pte, pmd, flags, entry);
  2876. return do_swap_page(mm, vma, address,
  2877. pte, pmd, flags, entry);
  2878. }
  2879. if (pte_numa(entry))
  2880. return do_numa_page(mm, vma, address, entry, pte, pmd);
  2881. ptl = pte_lockptr(mm, pmd);
  2882. spin_lock(ptl);
  2883. if (unlikely(!pte_same(*pte, entry)))
  2884. goto unlock;
  2885. if (flags & FAULT_FLAG_WRITE) {
  2886. if (!pte_write(entry))
  2887. return do_wp_page(mm, vma, address,
  2888. pte, pmd, ptl, entry);
  2889. entry = pte_mkdirty(entry);
  2890. }
  2891. entry = pte_mkyoung(entry);
  2892. if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
  2893. update_mmu_cache(vma, address, pte);
  2894. } else {
  2895. /*
  2896. * This is needed only for protection faults but the arch code
  2897. * is not yet telling us if this is a protection fault or not.
  2898. * This still avoids useless tlb flushes for .text page faults
  2899. * with threads.
  2900. */
  2901. if (flags & FAULT_FLAG_WRITE)
  2902. flush_tlb_fix_spurious_fault(vma, address);
  2903. }
  2904. unlock:
  2905. pte_unmap_unlock(pte, ptl);
  2906. return 0;
  2907. }
  2908. /*
  2909. * By the time we get here, we already hold the mm semaphore
  2910. *
  2911. * The mmap_sem may have been released depending on flags and our
  2912. * return value. See filemap_fault() and __lock_page_or_retry().
  2913. */
  2914. static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2915. unsigned long address, unsigned int flags)
  2916. {
  2917. pgd_t *pgd;
  2918. pud_t *pud;
  2919. pmd_t *pmd;
  2920. pte_t *pte;
  2921. if (unlikely(is_vm_hugetlb_page(vma)))
  2922. return hugetlb_fault(mm, vma, address, flags);
  2923. pgd = pgd_offset(mm, address);
  2924. pud = pud_alloc(mm, pgd, address);
  2925. if (!pud)
  2926. return VM_FAULT_OOM;
  2927. pmd = pmd_alloc(mm, pud, address);
  2928. if (!pmd)
  2929. return VM_FAULT_OOM;
  2930. if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
  2931. int ret = VM_FAULT_FALLBACK;
  2932. if (!vma->vm_ops)
  2933. ret = do_huge_pmd_anonymous_page(mm, vma, address,
  2934. pmd, flags);
  2935. if (!(ret & VM_FAULT_FALLBACK))
  2936. return ret;
  2937. } else {
  2938. pmd_t orig_pmd = *pmd;
  2939. int ret;
  2940. barrier();
  2941. if (pmd_trans_huge(orig_pmd)) {
  2942. unsigned int dirty = flags & FAULT_FLAG_WRITE;
  2943. /*
  2944. * If the pmd is splitting, return and retry the
  2945. * the fault. Alternative: wait until the split
  2946. * is done, and goto retry.
  2947. */
  2948. if (pmd_trans_splitting(orig_pmd))
  2949. return 0;
  2950. if (pmd_numa(orig_pmd))
  2951. return do_huge_pmd_numa_page(mm, vma, address,
  2952. orig_pmd, pmd);
  2953. if (dirty && !pmd_write(orig_pmd)) {
  2954. ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
  2955. orig_pmd);
  2956. if (!(ret & VM_FAULT_FALLBACK))
  2957. return ret;
  2958. } else {
  2959. huge_pmd_set_accessed(mm, vma, address, pmd,
  2960. orig_pmd, dirty);
  2961. return 0;
  2962. }
  2963. }
  2964. }
  2965. /*
  2966. * Use __pte_alloc instead of pte_alloc_map, because we can't
  2967. * run pte_offset_map on the pmd, if an huge pmd could
  2968. * materialize from under us from a different thread.
  2969. */
  2970. if (unlikely(pmd_none(*pmd)) &&
  2971. unlikely(__pte_alloc(mm, vma, pmd, address)))
  2972. return VM_FAULT_OOM;
  2973. /* if an huge pmd materialized from under us just retry later */
  2974. if (unlikely(pmd_trans_huge(*pmd)))
  2975. return 0;
  2976. /*
  2977. * A regular pmd is established and it can't morph into a huge pmd
  2978. * from under us anymore at this point because we hold the mmap_sem
  2979. * read mode and khugepaged takes it in write mode. So now it's
  2980. * safe to run pte_offset_map().
  2981. */
  2982. pte = pte_offset_map(pmd, address);
  2983. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  2984. }
  2985. /*
  2986. * By the time we get here, we already hold the mm semaphore
  2987. *
  2988. * The mmap_sem may have been released depending on flags and our
  2989. * return value. See filemap_fault() and __lock_page_or_retry().
  2990. */
  2991. int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2992. unsigned long address, unsigned int flags)
  2993. {
  2994. int ret;
  2995. __set_current_state(TASK_RUNNING);
  2996. count_vm_event(PGFAULT);
  2997. mem_cgroup_count_vm_event(mm, PGFAULT);
  2998. /* do counter updates before entering really critical section. */
  2999. check_sync_rss_stat(current);
  3000. /*
  3001. * Enable the memcg OOM handling for faults triggered in user
  3002. * space. Kernel faults are handled more gracefully.
  3003. */
  3004. if (flags & FAULT_FLAG_USER)
  3005. mem_cgroup_oom_enable();
  3006. ret = __handle_mm_fault(mm, vma, address, flags);
  3007. if (flags & FAULT_FLAG_USER) {
  3008. mem_cgroup_oom_disable();
  3009. /*
  3010. * The task may have entered a memcg OOM situation but
  3011. * if the allocation error was handled gracefully (no
  3012. * VM_FAULT_OOM), there is no need to kill anything.
  3013. * Just clean up the OOM state peacefully.
  3014. */
  3015. if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
  3016. mem_cgroup_oom_synchronize(false);
  3017. }
  3018. return ret;
  3019. }
  3020. #ifndef __PAGETABLE_PUD_FOLDED
  3021. /*
  3022. * Allocate page upper directory.
  3023. * We've already handled the fast-path in-line.
  3024. */
  3025. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  3026. {
  3027. pud_t *new = pud_alloc_one(mm, address);
  3028. if (!new)
  3029. return -ENOMEM;
  3030. smp_wmb(); /* See comment in __pte_alloc */
  3031. spin_lock(&mm->page_table_lock);
  3032. if (pgd_present(*pgd)) /* Another has populated it */
  3033. pud_free(mm, new);
  3034. else
  3035. pgd_populate(mm, pgd, new);
  3036. spin_unlock(&mm->page_table_lock);
  3037. return 0;
  3038. }
  3039. #endif /* __PAGETABLE_PUD_FOLDED */
  3040. #ifndef __PAGETABLE_PMD_FOLDED
  3041. /*
  3042. * Allocate page middle directory.
  3043. * We've already handled the fast-path in-line.
  3044. */
  3045. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  3046. {
  3047. pmd_t *new = pmd_alloc_one(mm, address);
  3048. if (!new)
  3049. return -ENOMEM;
  3050. smp_wmb(); /* See comment in __pte_alloc */
  3051. spin_lock(&mm->page_table_lock);
  3052. #ifndef __ARCH_HAS_4LEVEL_HACK
  3053. if (pud_present(*pud)) /* Another has populated it */
  3054. pmd_free(mm, new);
  3055. else
  3056. pud_populate(mm, pud, new);
  3057. #else
  3058. if (pgd_present(*pud)) /* Another has populated it */
  3059. pmd_free(mm, new);
  3060. else
  3061. pgd_populate(mm, pud, new);
  3062. #endif /* __ARCH_HAS_4LEVEL_HACK */
  3063. spin_unlock(&mm->page_table_lock);
  3064. return 0;
  3065. }
  3066. #endif /* __PAGETABLE_PMD_FOLDED */
  3067. static int __follow_pte(struct mm_struct *mm, unsigned long address,
  3068. pte_t **ptepp, spinlock_t **ptlp)
  3069. {
  3070. pgd_t *pgd;
  3071. pud_t *pud;
  3072. pmd_t *pmd;
  3073. pte_t *ptep;
  3074. pgd = pgd_offset(mm, address);
  3075. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  3076. goto out;
  3077. pud = pud_offset(pgd, address);
  3078. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  3079. goto out;
  3080. pmd = pmd_offset(pud, address);
  3081. VM_BUG_ON(pmd_trans_huge(*pmd));
  3082. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  3083. goto out;
  3084. /* We cannot handle huge page PFN maps. Luckily they don't exist. */
  3085. if (pmd_huge(*pmd))
  3086. goto out;
  3087. ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
  3088. if (!ptep)
  3089. goto out;
  3090. if (!pte_present(*ptep))
  3091. goto unlock;
  3092. *ptepp = ptep;
  3093. return 0;
  3094. unlock:
  3095. pte_unmap_unlock(ptep, *ptlp);
  3096. out:
  3097. return -EINVAL;
  3098. }
  3099. static inline int follow_pte(struct mm_struct *mm, unsigned long address,
  3100. pte_t **ptepp, spinlock_t **ptlp)
  3101. {
  3102. int res;
  3103. /* (void) is needed to make gcc happy */
  3104. (void) __cond_lock(*ptlp,
  3105. !(res = __follow_pte(mm, address, ptepp, ptlp)));
  3106. return res;
  3107. }
  3108. /**
  3109. * follow_pfn - look up PFN at a user virtual address
  3110. * @vma: memory mapping
  3111. * @address: user virtual address
  3112. * @pfn: location to store found PFN
  3113. *
  3114. * Only IO mappings and raw PFN mappings are allowed.
  3115. *
  3116. * Returns zero and the pfn at @pfn on success, -ve otherwise.
  3117. */
  3118. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  3119. unsigned long *pfn)
  3120. {
  3121. int ret = -EINVAL;
  3122. spinlock_t *ptl;
  3123. pte_t *ptep;
  3124. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  3125. return ret;
  3126. ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
  3127. if (ret)
  3128. return ret;
  3129. *pfn = pte_pfn(*ptep);
  3130. pte_unmap_unlock(ptep, ptl);
  3131. return 0;
  3132. }
  3133. EXPORT_SYMBOL(follow_pfn);
  3134. #ifdef CONFIG_HAVE_IOREMAP_PROT
  3135. int follow_phys(struct vm_area_struct *vma,
  3136. unsigned long address, unsigned int flags,
  3137. unsigned long *prot, resource_size_t *phys)
  3138. {
  3139. int ret = -EINVAL;
  3140. pte_t *ptep, pte;
  3141. spinlock_t *ptl;
  3142. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  3143. goto out;
  3144. if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
  3145. goto out;
  3146. pte = *ptep;
  3147. if ((flags & FOLL_WRITE) && !pte_write(pte))
  3148. goto unlock;
  3149. *prot = pgprot_val(pte_pgprot(pte));
  3150. *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
  3151. ret = 0;
  3152. unlock:
  3153. pte_unmap_unlock(ptep, ptl);
  3154. out:
  3155. return ret;
  3156. }
  3157. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  3158. void *buf, int len, int write)
  3159. {
  3160. resource_size_t phys_addr;
  3161. unsigned long prot = 0;
  3162. void __iomem *maddr;
  3163. int offset = addr & (PAGE_SIZE-1);
  3164. if (follow_phys(vma, addr, write, &prot, &phys_addr))
  3165. return -EINVAL;
  3166. maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
  3167. if (write)
  3168. memcpy_toio(maddr + offset, buf, len);
  3169. else
  3170. memcpy_fromio(buf, maddr + offset, len);
  3171. iounmap(maddr);
  3172. return len;
  3173. }
  3174. EXPORT_SYMBOL_GPL(generic_access_phys);
  3175. #endif
  3176. /*
  3177. * Access another process' address space as given in mm. If non-NULL, use the
  3178. * given task for page fault accounting.
  3179. */
  3180. static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
  3181. unsigned long addr, void *buf, int len, int write)
  3182. {
  3183. struct vm_area_struct *vma;
  3184. void *old_buf = buf;
  3185. down_read(&mm->mmap_sem);
  3186. /* ignore errors, just check how much was successfully transferred */
  3187. while (len) {
  3188. int bytes, ret, offset;
  3189. void *maddr;
  3190. struct page *page = NULL;
  3191. ret = get_user_pages(tsk, mm, addr, 1,
  3192. write, 1, &page, &vma);
  3193. if (ret <= 0) {
  3194. #ifndef CONFIG_HAVE_IOREMAP_PROT
  3195. break;
  3196. #else
  3197. /*
  3198. * Check if this is a VM_IO | VM_PFNMAP VMA, which
  3199. * we can access using slightly different code.
  3200. */
  3201. vma = find_vma(mm, addr);
  3202. if (!vma || vma->vm_start > addr)
  3203. break;
  3204. if (vma->vm_ops && vma->vm_ops->access)
  3205. ret = vma->vm_ops->access(vma, addr, buf,
  3206. len, write);
  3207. if (ret <= 0)
  3208. break;
  3209. bytes = ret;
  3210. #endif
  3211. } else {
  3212. bytes = len;
  3213. offset = addr & (PAGE_SIZE-1);
  3214. if (bytes > PAGE_SIZE-offset)
  3215. bytes = PAGE_SIZE-offset;
  3216. maddr = kmap(page);
  3217. if (write) {
  3218. copy_to_user_page(vma, page, addr,
  3219. maddr + offset, buf, bytes);
  3220. set_page_dirty_lock(page);
  3221. } else {
  3222. copy_from_user_page(vma, page, addr,
  3223. buf, maddr + offset, bytes);
  3224. }
  3225. kunmap(page);
  3226. page_cache_release(page);
  3227. }
  3228. len -= bytes;
  3229. buf += bytes;
  3230. addr += bytes;
  3231. }
  3232. up_read(&mm->mmap_sem);
  3233. return buf - old_buf;
  3234. }
  3235. /**
  3236. * access_remote_vm - access another process' address space
  3237. * @mm: the mm_struct of the target address space
  3238. * @addr: start address to access
  3239. * @buf: source or destination buffer
  3240. * @len: number of bytes to transfer
  3241. * @write: whether the access is a write
  3242. *
  3243. * The caller must hold a reference on @mm.
  3244. */
  3245. int access_remote_vm(struct mm_struct *mm, unsigned long addr,
  3246. void *buf, int len, int write)
  3247. {
  3248. return __access_remote_vm(NULL, mm, addr, buf, len, write);
  3249. }
  3250. /*
  3251. * Access another process' address space.
  3252. * Source/target buffer must be kernel space,
  3253. * Do not walk the page table directly, use get_user_pages
  3254. */
  3255. int access_process_vm(struct task_struct *tsk, unsigned long addr,
  3256. void *buf, int len, int write)
  3257. {
  3258. struct mm_struct *mm;
  3259. int ret;
  3260. mm = get_task_mm(tsk);
  3261. if (!mm)
  3262. return 0;
  3263. ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
  3264. mmput(mm);
  3265. return ret;
  3266. }
  3267. /*
  3268. * Print the name of a VMA.
  3269. */
  3270. void print_vma_addr(char *prefix, unsigned long ip)
  3271. {
  3272. struct mm_struct *mm = current->mm;
  3273. struct vm_area_struct *vma;
  3274. /*
  3275. * Do not print if we are in atomic
  3276. * contexts (in exception stacks, etc.):
  3277. */
  3278. if (preempt_count())
  3279. return;
  3280. down_read(&mm->mmap_sem);
  3281. vma = find_vma(mm, ip);
  3282. if (vma && vma->vm_file) {
  3283. struct file *f = vma->vm_file;
  3284. char *buf = (char *)__get_free_page(GFP_KERNEL);
  3285. if (buf) {
  3286. char *p;
  3287. p = d_path(&f->f_path, buf, PAGE_SIZE);
  3288. if (IS_ERR(p))
  3289. p = "?";
  3290. printk("%s%s[%lx+%lx]", prefix, kbasename(p),
  3291. vma->vm_start,
  3292. vma->vm_end - vma->vm_start);
  3293. free_page((unsigned long)buf);
  3294. }
  3295. }
  3296. up_read(&mm->mmap_sem);
  3297. }
  3298. #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
  3299. void might_fault(void)
  3300. {
  3301. /*
  3302. * Some code (nfs/sunrpc) uses socket ops on kernel memory while
  3303. * holding the mmap_sem, this is safe because kernel memory doesn't
  3304. * get paged out, therefore we'll never actually fault, and the
  3305. * below annotations will generate false positives.
  3306. */
  3307. if (segment_eq(get_fs(), KERNEL_DS))
  3308. return;
  3309. /*
  3310. * it would be nicer only to annotate paths which are not under
  3311. * pagefault_disable, however that requires a larger audit and
  3312. * providing helpers like get_user_atomic.
  3313. */
  3314. if (in_atomic())
  3315. return;
  3316. __might_sleep(__FILE__, __LINE__, 0);
  3317. if (current->mm)
  3318. might_lock_read(&current->mm->mmap_sem);
  3319. }
  3320. EXPORT_SYMBOL(might_fault);
  3321. #endif
  3322. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  3323. static void clear_gigantic_page(struct page *page,
  3324. unsigned long addr,
  3325. unsigned int pages_per_huge_page)
  3326. {
  3327. int i;
  3328. struct page *p = page;
  3329. might_sleep();
  3330. for (i = 0; i < pages_per_huge_page;
  3331. i++, p = mem_map_next(p, page, i)) {
  3332. cond_resched();
  3333. clear_user_highpage(p, addr + i * PAGE_SIZE);
  3334. }
  3335. }
  3336. void clear_huge_page(struct page *page,
  3337. unsigned long addr, unsigned int pages_per_huge_page)
  3338. {
  3339. int i;
  3340. if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
  3341. clear_gigantic_page(page, addr, pages_per_huge_page);
  3342. return;
  3343. }
  3344. might_sleep();
  3345. for (i = 0; i < pages_per_huge_page; i++) {
  3346. cond_resched();
  3347. clear_user_highpage(page + i, addr + i * PAGE_SIZE);
  3348. }
  3349. }
  3350. static void copy_user_gigantic_page(struct page *dst, struct page *src,
  3351. unsigned long addr,
  3352. struct vm_area_struct *vma,
  3353. unsigned int pages_per_huge_page)
  3354. {
  3355. int i;
  3356. struct page *dst_base = dst;
  3357. struct page *src_base = src;
  3358. for (i = 0; i < pages_per_huge_page; ) {
  3359. cond_resched();
  3360. copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
  3361. i++;
  3362. dst = mem_map_next(dst, dst_base, i);
  3363. src = mem_map_next(src, src_base, i);
  3364. }
  3365. }
  3366. void copy_user_huge_page(struct page *dst, struct page *src,
  3367. unsigned long addr, struct vm_area_struct *vma,
  3368. unsigned int pages_per_huge_page)
  3369. {
  3370. int i;
  3371. if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
  3372. copy_user_gigantic_page(dst, src, addr, vma,
  3373. pages_per_huge_page);
  3374. return;
  3375. }
  3376. might_sleep();
  3377. for (i = 0; i < pages_per_huge_page; i++) {
  3378. cond_resched();
  3379. copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
  3380. }
  3381. }
  3382. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
  3383. #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
  3384. static struct kmem_cache *page_ptl_cachep;
  3385. void __init ptlock_cache_init(void)
  3386. {
  3387. page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
  3388. SLAB_PANIC, NULL);
  3389. }
  3390. bool ptlock_alloc(struct page *page)
  3391. {
  3392. spinlock_t *ptl;
  3393. ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
  3394. if (!ptl)
  3395. return false;
  3396. page->ptl = ptl;
  3397. return true;
  3398. }
  3399. void ptlock_free(struct page *page)
  3400. {
  3401. kmem_cache_free(page_ptl_cachep, page->ptl);
  3402. }
  3403. #endif