ordered-data.c 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/slab.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/writeback.h>
  21. #include <linux/pagevec.h>
  22. #include "ctree.h"
  23. #include "transaction.h"
  24. #include "btrfs_inode.h"
  25. #include "extent_io.h"
  26. #include "disk-io.h"
  27. static struct kmem_cache *btrfs_ordered_extent_cache;
  28. static u64 entry_end(struct btrfs_ordered_extent *entry)
  29. {
  30. if (entry->file_offset + entry->len < entry->file_offset)
  31. return (u64)-1;
  32. return entry->file_offset + entry->len;
  33. }
  34. /* returns NULL if the insertion worked, or it returns the node it did find
  35. * in the tree
  36. */
  37. static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
  38. struct rb_node *node)
  39. {
  40. struct rb_node **p = &root->rb_node;
  41. struct rb_node *parent = NULL;
  42. struct btrfs_ordered_extent *entry;
  43. while (*p) {
  44. parent = *p;
  45. entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
  46. if (file_offset < entry->file_offset)
  47. p = &(*p)->rb_left;
  48. else if (file_offset >= entry_end(entry))
  49. p = &(*p)->rb_right;
  50. else
  51. return parent;
  52. }
  53. rb_link_node(node, parent, p);
  54. rb_insert_color(node, root);
  55. return NULL;
  56. }
  57. static void ordered_data_tree_panic(struct inode *inode, int errno,
  58. u64 offset)
  59. {
  60. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  61. btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
  62. "%llu", offset);
  63. }
  64. /*
  65. * look for a given offset in the tree, and if it can't be found return the
  66. * first lesser offset
  67. */
  68. static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
  69. struct rb_node **prev_ret)
  70. {
  71. struct rb_node *n = root->rb_node;
  72. struct rb_node *prev = NULL;
  73. struct rb_node *test;
  74. struct btrfs_ordered_extent *entry;
  75. struct btrfs_ordered_extent *prev_entry = NULL;
  76. while (n) {
  77. entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
  78. prev = n;
  79. prev_entry = entry;
  80. if (file_offset < entry->file_offset)
  81. n = n->rb_left;
  82. else if (file_offset >= entry_end(entry))
  83. n = n->rb_right;
  84. else
  85. return n;
  86. }
  87. if (!prev_ret)
  88. return NULL;
  89. while (prev && file_offset >= entry_end(prev_entry)) {
  90. test = rb_next(prev);
  91. if (!test)
  92. break;
  93. prev_entry = rb_entry(test, struct btrfs_ordered_extent,
  94. rb_node);
  95. if (file_offset < entry_end(prev_entry))
  96. break;
  97. prev = test;
  98. }
  99. if (prev)
  100. prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
  101. rb_node);
  102. while (prev && file_offset < entry_end(prev_entry)) {
  103. test = rb_prev(prev);
  104. if (!test)
  105. break;
  106. prev_entry = rb_entry(test, struct btrfs_ordered_extent,
  107. rb_node);
  108. prev = test;
  109. }
  110. *prev_ret = prev;
  111. return NULL;
  112. }
  113. /*
  114. * helper to check if a given offset is inside a given entry
  115. */
  116. static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
  117. {
  118. if (file_offset < entry->file_offset ||
  119. entry->file_offset + entry->len <= file_offset)
  120. return 0;
  121. return 1;
  122. }
  123. static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
  124. u64 len)
  125. {
  126. if (file_offset + len <= entry->file_offset ||
  127. entry->file_offset + entry->len <= file_offset)
  128. return 0;
  129. return 1;
  130. }
  131. /*
  132. * look find the first ordered struct that has this offset, otherwise
  133. * the first one less than this offset
  134. */
  135. static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
  136. u64 file_offset)
  137. {
  138. struct rb_root *root = &tree->tree;
  139. struct rb_node *prev = NULL;
  140. struct rb_node *ret;
  141. struct btrfs_ordered_extent *entry;
  142. if (tree->last) {
  143. entry = rb_entry(tree->last, struct btrfs_ordered_extent,
  144. rb_node);
  145. if (offset_in_entry(entry, file_offset))
  146. return tree->last;
  147. }
  148. ret = __tree_search(root, file_offset, &prev);
  149. if (!ret)
  150. ret = prev;
  151. if (ret)
  152. tree->last = ret;
  153. return ret;
  154. }
  155. /* allocate and add a new ordered_extent into the per-inode tree.
  156. * file_offset is the logical offset in the file
  157. *
  158. * start is the disk block number of an extent already reserved in the
  159. * extent allocation tree
  160. *
  161. * len is the length of the extent
  162. *
  163. * The tree is given a single reference on the ordered extent that was
  164. * inserted.
  165. */
  166. static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
  167. u64 start, u64 len, u64 disk_len,
  168. int type, int dio, int compress_type)
  169. {
  170. struct btrfs_root *root = BTRFS_I(inode)->root;
  171. struct btrfs_ordered_inode_tree *tree;
  172. struct rb_node *node;
  173. struct btrfs_ordered_extent *entry;
  174. tree = &BTRFS_I(inode)->ordered_tree;
  175. entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
  176. if (!entry)
  177. return -ENOMEM;
  178. entry->file_offset = file_offset;
  179. entry->start = start;
  180. entry->len = len;
  181. if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) &&
  182. !(type == BTRFS_ORDERED_NOCOW))
  183. entry->csum_bytes_left = disk_len;
  184. entry->disk_len = disk_len;
  185. entry->bytes_left = len;
  186. entry->inode = igrab(inode);
  187. entry->compress_type = compress_type;
  188. entry->truncated_len = (u64)-1;
  189. if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
  190. set_bit(type, &entry->flags);
  191. if (dio)
  192. set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
  193. /* one ref for the tree */
  194. atomic_set(&entry->refs, 1);
  195. init_waitqueue_head(&entry->wait);
  196. INIT_LIST_HEAD(&entry->list);
  197. INIT_LIST_HEAD(&entry->root_extent_list);
  198. INIT_LIST_HEAD(&entry->work_list);
  199. init_completion(&entry->completion);
  200. INIT_LIST_HEAD(&entry->log_list);
  201. trace_btrfs_ordered_extent_add(inode, entry);
  202. spin_lock_irq(&tree->lock);
  203. node = tree_insert(&tree->tree, file_offset,
  204. &entry->rb_node);
  205. if (node)
  206. ordered_data_tree_panic(inode, -EEXIST, file_offset);
  207. spin_unlock_irq(&tree->lock);
  208. spin_lock(&root->ordered_extent_lock);
  209. list_add_tail(&entry->root_extent_list,
  210. &root->ordered_extents);
  211. root->nr_ordered_extents++;
  212. if (root->nr_ordered_extents == 1) {
  213. spin_lock(&root->fs_info->ordered_root_lock);
  214. BUG_ON(!list_empty(&root->ordered_root));
  215. list_add_tail(&root->ordered_root,
  216. &root->fs_info->ordered_roots);
  217. spin_unlock(&root->fs_info->ordered_root_lock);
  218. }
  219. spin_unlock(&root->ordered_extent_lock);
  220. return 0;
  221. }
  222. int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
  223. u64 start, u64 len, u64 disk_len, int type)
  224. {
  225. return __btrfs_add_ordered_extent(inode, file_offset, start, len,
  226. disk_len, type, 0,
  227. BTRFS_COMPRESS_NONE);
  228. }
  229. int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
  230. u64 start, u64 len, u64 disk_len, int type)
  231. {
  232. return __btrfs_add_ordered_extent(inode, file_offset, start, len,
  233. disk_len, type, 1,
  234. BTRFS_COMPRESS_NONE);
  235. }
  236. int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
  237. u64 start, u64 len, u64 disk_len,
  238. int type, int compress_type)
  239. {
  240. return __btrfs_add_ordered_extent(inode, file_offset, start, len,
  241. disk_len, type, 0,
  242. compress_type);
  243. }
  244. /*
  245. * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
  246. * when an ordered extent is finished. If the list covers more than one
  247. * ordered extent, it is split across multiples.
  248. */
  249. void btrfs_add_ordered_sum(struct inode *inode,
  250. struct btrfs_ordered_extent *entry,
  251. struct btrfs_ordered_sum *sum)
  252. {
  253. struct btrfs_ordered_inode_tree *tree;
  254. tree = &BTRFS_I(inode)->ordered_tree;
  255. spin_lock_irq(&tree->lock);
  256. list_add_tail(&sum->list, &entry->list);
  257. WARN_ON(entry->csum_bytes_left < sum->len);
  258. entry->csum_bytes_left -= sum->len;
  259. if (entry->csum_bytes_left == 0)
  260. wake_up(&entry->wait);
  261. spin_unlock_irq(&tree->lock);
  262. }
  263. /*
  264. * this is used to account for finished IO across a given range
  265. * of the file. The IO may span ordered extents. If
  266. * a given ordered_extent is completely done, 1 is returned, otherwise
  267. * 0.
  268. *
  269. * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
  270. * to make sure this function only returns 1 once for a given ordered extent.
  271. *
  272. * file_offset is updated to one byte past the range that is recorded as
  273. * complete. This allows you to walk forward in the file.
  274. */
  275. int btrfs_dec_test_first_ordered_pending(struct inode *inode,
  276. struct btrfs_ordered_extent **cached,
  277. u64 *file_offset, u64 io_size, int uptodate)
  278. {
  279. struct btrfs_ordered_inode_tree *tree;
  280. struct rb_node *node;
  281. struct btrfs_ordered_extent *entry = NULL;
  282. int ret;
  283. unsigned long flags;
  284. u64 dec_end;
  285. u64 dec_start;
  286. u64 to_dec;
  287. tree = &BTRFS_I(inode)->ordered_tree;
  288. spin_lock_irqsave(&tree->lock, flags);
  289. node = tree_search(tree, *file_offset);
  290. if (!node) {
  291. ret = 1;
  292. goto out;
  293. }
  294. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  295. if (!offset_in_entry(entry, *file_offset)) {
  296. ret = 1;
  297. goto out;
  298. }
  299. dec_start = max(*file_offset, entry->file_offset);
  300. dec_end = min(*file_offset + io_size, entry->file_offset +
  301. entry->len);
  302. *file_offset = dec_end;
  303. if (dec_start > dec_end) {
  304. btrfs_crit(BTRFS_I(inode)->root->fs_info,
  305. "bad ordering dec_start %llu end %llu", dec_start, dec_end);
  306. }
  307. to_dec = dec_end - dec_start;
  308. if (to_dec > entry->bytes_left) {
  309. btrfs_crit(BTRFS_I(inode)->root->fs_info,
  310. "bad ordered accounting left %llu size %llu",
  311. entry->bytes_left, to_dec);
  312. }
  313. entry->bytes_left -= to_dec;
  314. if (!uptodate)
  315. set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
  316. if (entry->bytes_left == 0) {
  317. ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
  318. if (waitqueue_active(&entry->wait))
  319. wake_up(&entry->wait);
  320. } else {
  321. ret = 1;
  322. }
  323. out:
  324. if (!ret && cached && entry) {
  325. *cached = entry;
  326. atomic_inc(&entry->refs);
  327. }
  328. spin_unlock_irqrestore(&tree->lock, flags);
  329. return ret == 0;
  330. }
  331. /*
  332. * this is used to account for finished IO across a given range
  333. * of the file. The IO should not span ordered extents. If
  334. * a given ordered_extent is completely done, 1 is returned, otherwise
  335. * 0.
  336. *
  337. * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
  338. * to make sure this function only returns 1 once for a given ordered extent.
  339. */
  340. int btrfs_dec_test_ordered_pending(struct inode *inode,
  341. struct btrfs_ordered_extent **cached,
  342. u64 file_offset, u64 io_size, int uptodate)
  343. {
  344. struct btrfs_ordered_inode_tree *tree;
  345. struct rb_node *node;
  346. struct btrfs_ordered_extent *entry = NULL;
  347. unsigned long flags;
  348. int ret;
  349. tree = &BTRFS_I(inode)->ordered_tree;
  350. spin_lock_irqsave(&tree->lock, flags);
  351. if (cached && *cached) {
  352. entry = *cached;
  353. goto have_entry;
  354. }
  355. node = tree_search(tree, file_offset);
  356. if (!node) {
  357. ret = 1;
  358. goto out;
  359. }
  360. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  361. have_entry:
  362. if (!offset_in_entry(entry, file_offset)) {
  363. ret = 1;
  364. goto out;
  365. }
  366. if (io_size > entry->bytes_left) {
  367. btrfs_crit(BTRFS_I(inode)->root->fs_info,
  368. "bad ordered accounting left %llu size %llu",
  369. entry->bytes_left, io_size);
  370. }
  371. entry->bytes_left -= io_size;
  372. if (!uptodate)
  373. set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
  374. if (entry->bytes_left == 0) {
  375. ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
  376. if (waitqueue_active(&entry->wait))
  377. wake_up(&entry->wait);
  378. } else {
  379. ret = 1;
  380. }
  381. out:
  382. if (!ret && cached && entry) {
  383. *cached = entry;
  384. atomic_inc(&entry->refs);
  385. }
  386. spin_unlock_irqrestore(&tree->lock, flags);
  387. return ret == 0;
  388. }
  389. /* Needs to either be called under a log transaction or the log_mutex */
  390. void btrfs_get_logged_extents(struct inode *inode,
  391. struct list_head *logged_list)
  392. {
  393. struct btrfs_ordered_inode_tree *tree;
  394. struct btrfs_ordered_extent *ordered;
  395. struct rb_node *n;
  396. tree = &BTRFS_I(inode)->ordered_tree;
  397. spin_lock_irq(&tree->lock);
  398. for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
  399. ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
  400. if (!list_empty(&ordered->log_list))
  401. continue;
  402. list_add_tail(&ordered->log_list, logged_list);
  403. atomic_inc(&ordered->refs);
  404. }
  405. spin_unlock_irq(&tree->lock);
  406. }
  407. void btrfs_put_logged_extents(struct list_head *logged_list)
  408. {
  409. struct btrfs_ordered_extent *ordered;
  410. while (!list_empty(logged_list)) {
  411. ordered = list_first_entry(logged_list,
  412. struct btrfs_ordered_extent,
  413. log_list);
  414. list_del_init(&ordered->log_list);
  415. btrfs_put_ordered_extent(ordered);
  416. }
  417. }
  418. void btrfs_submit_logged_extents(struct list_head *logged_list,
  419. struct btrfs_root *log)
  420. {
  421. int index = log->log_transid % 2;
  422. spin_lock_irq(&log->log_extents_lock[index]);
  423. list_splice_tail(logged_list, &log->logged_list[index]);
  424. spin_unlock_irq(&log->log_extents_lock[index]);
  425. }
  426. void btrfs_wait_logged_extents(struct btrfs_root *log, u64 transid)
  427. {
  428. struct btrfs_ordered_extent *ordered;
  429. int index = transid % 2;
  430. spin_lock_irq(&log->log_extents_lock[index]);
  431. while (!list_empty(&log->logged_list[index])) {
  432. ordered = list_first_entry(&log->logged_list[index],
  433. struct btrfs_ordered_extent,
  434. log_list);
  435. list_del_init(&ordered->log_list);
  436. spin_unlock_irq(&log->log_extents_lock[index]);
  437. if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
  438. !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
  439. struct inode *inode = ordered->inode;
  440. u64 start = ordered->file_offset;
  441. u64 end = ordered->file_offset + ordered->len - 1;
  442. WARN_ON(!inode);
  443. filemap_fdatawrite_range(inode->i_mapping, start, end);
  444. }
  445. wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
  446. &ordered->flags));
  447. btrfs_put_ordered_extent(ordered);
  448. spin_lock_irq(&log->log_extents_lock[index]);
  449. }
  450. spin_unlock_irq(&log->log_extents_lock[index]);
  451. }
  452. void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
  453. {
  454. struct btrfs_ordered_extent *ordered;
  455. int index = transid % 2;
  456. spin_lock_irq(&log->log_extents_lock[index]);
  457. while (!list_empty(&log->logged_list[index])) {
  458. ordered = list_first_entry(&log->logged_list[index],
  459. struct btrfs_ordered_extent,
  460. log_list);
  461. list_del_init(&ordered->log_list);
  462. spin_unlock_irq(&log->log_extents_lock[index]);
  463. btrfs_put_ordered_extent(ordered);
  464. spin_lock_irq(&log->log_extents_lock[index]);
  465. }
  466. spin_unlock_irq(&log->log_extents_lock[index]);
  467. }
  468. /*
  469. * used to drop a reference on an ordered extent. This will free
  470. * the extent if the last reference is dropped
  471. */
  472. void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
  473. {
  474. struct list_head *cur;
  475. struct btrfs_ordered_sum *sum;
  476. trace_btrfs_ordered_extent_put(entry->inode, entry);
  477. if (atomic_dec_and_test(&entry->refs)) {
  478. if (entry->inode)
  479. btrfs_add_delayed_iput(entry->inode);
  480. while (!list_empty(&entry->list)) {
  481. cur = entry->list.next;
  482. sum = list_entry(cur, struct btrfs_ordered_sum, list);
  483. list_del(&sum->list);
  484. kfree(sum);
  485. }
  486. kmem_cache_free(btrfs_ordered_extent_cache, entry);
  487. }
  488. }
  489. /*
  490. * remove an ordered extent from the tree. No references are dropped
  491. * and waiters are woken up.
  492. */
  493. void btrfs_remove_ordered_extent(struct inode *inode,
  494. struct btrfs_ordered_extent *entry)
  495. {
  496. struct btrfs_ordered_inode_tree *tree;
  497. struct btrfs_root *root = BTRFS_I(inode)->root;
  498. struct rb_node *node;
  499. tree = &BTRFS_I(inode)->ordered_tree;
  500. spin_lock_irq(&tree->lock);
  501. node = &entry->rb_node;
  502. rb_erase(node, &tree->tree);
  503. if (tree->last == node)
  504. tree->last = NULL;
  505. set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
  506. spin_unlock_irq(&tree->lock);
  507. spin_lock(&root->ordered_extent_lock);
  508. list_del_init(&entry->root_extent_list);
  509. root->nr_ordered_extents--;
  510. trace_btrfs_ordered_extent_remove(inode, entry);
  511. if (!root->nr_ordered_extents) {
  512. spin_lock(&root->fs_info->ordered_root_lock);
  513. BUG_ON(list_empty(&root->ordered_root));
  514. list_del_init(&root->ordered_root);
  515. spin_unlock(&root->fs_info->ordered_root_lock);
  516. }
  517. spin_unlock(&root->ordered_extent_lock);
  518. wake_up(&entry->wait);
  519. }
  520. static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
  521. {
  522. struct btrfs_ordered_extent *ordered;
  523. ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
  524. btrfs_start_ordered_extent(ordered->inode, ordered, 1);
  525. complete(&ordered->completion);
  526. }
  527. /*
  528. * wait for all the ordered extents in a root. This is done when balancing
  529. * space between drives.
  530. */
  531. int btrfs_wait_ordered_extents(struct btrfs_root *root, int nr)
  532. {
  533. struct list_head splice, works;
  534. struct btrfs_ordered_extent *ordered, *next;
  535. int count = 0;
  536. INIT_LIST_HEAD(&splice);
  537. INIT_LIST_HEAD(&works);
  538. mutex_lock(&root->ordered_extent_mutex);
  539. spin_lock(&root->ordered_extent_lock);
  540. list_splice_init(&root->ordered_extents, &splice);
  541. while (!list_empty(&splice) && nr) {
  542. ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
  543. root_extent_list);
  544. list_move_tail(&ordered->root_extent_list,
  545. &root->ordered_extents);
  546. atomic_inc(&ordered->refs);
  547. spin_unlock(&root->ordered_extent_lock);
  548. btrfs_init_work(&ordered->flush_work,
  549. btrfs_flush_delalloc_helper,
  550. btrfs_run_ordered_extent_work, NULL, NULL);
  551. list_add_tail(&ordered->work_list, &works);
  552. btrfs_queue_work(root->fs_info->flush_workers,
  553. &ordered->flush_work);
  554. cond_resched();
  555. spin_lock(&root->ordered_extent_lock);
  556. if (nr != -1)
  557. nr--;
  558. count++;
  559. }
  560. list_splice_tail(&splice, &root->ordered_extents);
  561. spin_unlock(&root->ordered_extent_lock);
  562. list_for_each_entry_safe(ordered, next, &works, work_list) {
  563. list_del_init(&ordered->work_list);
  564. wait_for_completion(&ordered->completion);
  565. btrfs_put_ordered_extent(ordered);
  566. cond_resched();
  567. }
  568. mutex_unlock(&root->ordered_extent_mutex);
  569. return count;
  570. }
  571. void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, int nr)
  572. {
  573. struct btrfs_root *root;
  574. struct list_head splice;
  575. int done;
  576. INIT_LIST_HEAD(&splice);
  577. mutex_lock(&fs_info->ordered_operations_mutex);
  578. spin_lock(&fs_info->ordered_root_lock);
  579. list_splice_init(&fs_info->ordered_roots, &splice);
  580. while (!list_empty(&splice) && nr) {
  581. root = list_first_entry(&splice, struct btrfs_root,
  582. ordered_root);
  583. root = btrfs_grab_fs_root(root);
  584. BUG_ON(!root);
  585. list_move_tail(&root->ordered_root,
  586. &fs_info->ordered_roots);
  587. spin_unlock(&fs_info->ordered_root_lock);
  588. done = btrfs_wait_ordered_extents(root, nr);
  589. btrfs_put_fs_root(root);
  590. spin_lock(&fs_info->ordered_root_lock);
  591. if (nr != -1) {
  592. nr -= done;
  593. WARN_ON(nr < 0);
  594. }
  595. }
  596. list_splice_tail(&splice, &fs_info->ordered_roots);
  597. spin_unlock(&fs_info->ordered_root_lock);
  598. mutex_unlock(&fs_info->ordered_operations_mutex);
  599. }
  600. /*
  601. * Used to start IO or wait for a given ordered extent to finish.
  602. *
  603. * If wait is one, this effectively waits on page writeback for all the pages
  604. * in the extent, and it waits on the io completion code to insert
  605. * metadata into the btree corresponding to the extent
  606. */
  607. void btrfs_start_ordered_extent(struct inode *inode,
  608. struct btrfs_ordered_extent *entry,
  609. int wait)
  610. {
  611. u64 start = entry->file_offset;
  612. u64 end = start + entry->len - 1;
  613. trace_btrfs_ordered_extent_start(inode, entry);
  614. /*
  615. * pages in the range can be dirty, clean or writeback. We
  616. * start IO on any dirty ones so the wait doesn't stall waiting
  617. * for the flusher thread to find them
  618. */
  619. if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
  620. filemap_fdatawrite_range(inode->i_mapping, start, end);
  621. if (wait) {
  622. wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
  623. &entry->flags));
  624. }
  625. }
  626. /*
  627. * Used to wait on ordered extents across a large range of bytes.
  628. */
  629. int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
  630. {
  631. int ret = 0;
  632. u64 end;
  633. u64 orig_end;
  634. struct btrfs_ordered_extent *ordered;
  635. if (start + len < start) {
  636. orig_end = INT_LIMIT(loff_t);
  637. } else {
  638. orig_end = start + len - 1;
  639. if (orig_end > INT_LIMIT(loff_t))
  640. orig_end = INT_LIMIT(loff_t);
  641. }
  642. /* start IO across the range first to instantiate any delalloc
  643. * extents
  644. */
  645. ret = filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
  646. if (ret)
  647. return ret;
  648. /*
  649. * So with compression we will find and lock a dirty page and clear the
  650. * first one as dirty, setup an async extent, and immediately return
  651. * with the entire range locked but with nobody actually marked with
  652. * writeback. So we can't just filemap_write_and_wait_range() and
  653. * expect it to work since it will just kick off a thread to do the
  654. * actual work. So we need to call filemap_fdatawrite_range _again_
  655. * since it will wait on the page lock, which won't be unlocked until
  656. * after the pages have been marked as writeback and so we're good to go
  657. * from there. We have to do this otherwise we'll miss the ordered
  658. * extents and that results in badness. Please Josef, do not think you
  659. * know better and pull this out at some point in the future, it is
  660. * right and you are wrong.
  661. */
  662. if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
  663. &BTRFS_I(inode)->runtime_flags)) {
  664. ret = filemap_fdatawrite_range(inode->i_mapping, start,
  665. orig_end);
  666. if (ret)
  667. return ret;
  668. }
  669. ret = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
  670. if (ret)
  671. return ret;
  672. end = orig_end;
  673. while (1) {
  674. ordered = btrfs_lookup_first_ordered_extent(inode, end);
  675. if (!ordered)
  676. break;
  677. if (ordered->file_offset > orig_end) {
  678. btrfs_put_ordered_extent(ordered);
  679. break;
  680. }
  681. if (ordered->file_offset + ordered->len <= start) {
  682. btrfs_put_ordered_extent(ordered);
  683. break;
  684. }
  685. btrfs_start_ordered_extent(inode, ordered, 1);
  686. end = ordered->file_offset;
  687. if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
  688. ret = -EIO;
  689. btrfs_put_ordered_extent(ordered);
  690. if (ret || end == 0 || end == start)
  691. break;
  692. end--;
  693. }
  694. return ret;
  695. }
  696. /*
  697. * find an ordered extent corresponding to file_offset. return NULL if
  698. * nothing is found, otherwise take a reference on the extent and return it
  699. */
  700. struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
  701. u64 file_offset)
  702. {
  703. struct btrfs_ordered_inode_tree *tree;
  704. struct rb_node *node;
  705. struct btrfs_ordered_extent *entry = NULL;
  706. tree = &BTRFS_I(inode)->ordered_tree;
  707. spin_lock_irq(&tree->lock);
  708. node = tree_search(tree, file_offset);
  709. if (!node)
  710. goto out;
  711. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  712. if (!offset_in_entry(entry, file_offset))
  713. entry = NULL;
  714. if (entry)
  715. atomic_inc(&entry->refs);
  716. out:
  717. spin_unlock_irq(&tree->lock);
  718. return entry;
  719. }
  720. /* Since the DIO code tries to lock a wide area we need to look for any ordered
  721. * extents that exist in the range, rather than just the start of the range.
  722. */
  723. struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
  724. u64 file_offset,
  725. u64 len)
  726. {
  727. struct btrfs_ordered_inode_tree *tree;
  728. struct rb_node *node;
  729. struct btrfs_ordered_extent *entry = NULL;
  730. tree = &BTRFS_I(inode)->ordered_tree;
  731. spin_lock_irq(&tree->lock);
  732. node = tree_search(tree, file_offset);
  733. if (!node) {
  734. node = tree_search(tree, file_offset + len);
  735. if (!node)
  736. goto out;
  737. }
  738. while (1) {
  739. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  740. if (range_overlaps(entry, file_offset, len))
  741. break;
  742. if (entry->file_offset >= file_offset + len) {
  743. entry = NULL;
  744. break;
  745. }
  746. entry = NULL;
  747. node = rb_next(node);
  748. if (!node)
  749. break;
  750. }
  751. out:
  752. if (entry)
  753. atomic_inc(&entry->refs);
  754. spin_unlock_irq(&tree->lock);
  755. return entry;
  756. }
  757. /*
  758. * lookup and return any extent before 'file_offset'. NULL is returned
  759. * if none is found
  760. */
  761. struct btrfs_ordered_extent *
  762. btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
  763. {
  764. struct btrfs_ordered_inode_tree *tree;
  765. struct rb_node *node;
  766. struct btrfs_ordered_extent *entry = NULL;
  767. tree = &BTRFS_I(inode)->ordered_tree;
  768. spin_lock_irq(&tree->lock);
  769. node = tree_search(tree, file_offset);
  770. if (!node)
  771. goto out;
  772. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  773. atomic_inc(&entry->refs);
  774. out:
  775. spin_unlock_irq(&tree->lock);
  776. return entry;
  777. }
  778. /*
  779. * After an extent is done, call this to conditionally update the on disk
  780. * i_size. i_size is updated to cover any fully written part of the file.
  781. */
  782. int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
  783. struct btrfs_ordered_extent *ordered)
  784. {
  785. struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
  786. u64 disk_i_size;
  787. u64 new_i_size;
  788. u64 i_size = i_size_read(inode);
  789. struct rb_node *node;
  790. struct rb_node *prev = NULL;
  791. struct btrfs_ordered_extent *test;
  792. int ret = 1;
  793. spin_lock_irq(&tree->lock);
  794. if (ordered) {
  795. offset = entry_end(ordered);
  796. if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
  797. offset = min(offset,
  798. ordered->file_offset +
  799. ordered->truncated_len);
  800. } else {
  801. offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
  802. }
  803. disk_i_size = BTRFS_I(inode)->disk_i_size;
  804. /* truncate file */
  805. if (disk_i_size > i_size) {
  806. BTRFS_I(inode)->disk_i_size = i_size;
  807. ret = 0;
  808. goto out;
  809. }
  810. /*
  811. * if the disk i_size is already at the inode->i_size, or
  812. * this ordered extent is inside the disk i_size, we're done
  813. */
  814. if (disk_i_size == i_size)
  815. goto out;
  816. /*
  817. * We still need to update disk_i_size if outstanding_isize is greater
  818. * than disk_i_size.
  819. */
  820. if (offset <= disk_i_size &&
  821. (!ordered || ordered->outstanding_isize <= disk_i_size))
  822. goto out;
  823. /*
  824. * walk backward from this ordered extent to disk_i_size.
  825. * if we find an ordered extent then we can't update disk i_size
  826. * yet
  827. */
  828. if (ordered) {
  829. node = rb_prev(&ordered->rb_node);
  830. } else {
  831. prev = tree_search(tree, offset);
  832. /*
  833. * we insert file extents without involving ordered struct,
  834. * so there should be no ordered struct cover this offset
  835. */
  836. if (prev) {
  837. test = rb_entry(prev, struct btrfs_ordered_extent,
  838. rb_node);
  839. BUG_ON(offset_in_entry(test, offset));
  840. }
  841. node = prev;
  842. }
  843. for (; node; node = rb_prev(node)) {
  844. test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  845. /* We treat this entry as if it doesnt exist */
  846. if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
  847. continue;
  848. if (test->file_offset + test->len <= disk_i_size)
  849. break;
  850. if (test->file_offset >= i_size)
  851. break;
  852. if (entry_end(test) > disk_i_size) {
  853. /*
  854. * we don't update disk_i_size now, so record this
  855. * undealt i_size. Or we will not know the real
  856. * i_size.
  857. */
  858. if (test->outstanding_isize < offset)
  859. test->outstanding_isize = offset;
  860. if (ordered &&
  861. ordered->outstanding_isize >
  862. test->outstanding_isize)
  863. test->outstanding_isize =
  864. ordered->outstanding_isize;
  865. goto out;
  866. }
  867. }
  868. new_i_size = min_t(u64, offset, i_size);
  869. /*
  870. * Some ordered extents may completed before the current one, and
  871. * we hold the real i_size in ->outstanding_isize.
  872. */
  873. if (ordered && ordered->outstanding_isize > new_i_size)
  874. new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
  875. BTRFS_I(inode)->disk_i_size = new_i_size;
  876. ret = 0;
  877. out:
  878. /*
  879. * We need to do this because we can't remove ordered extents until
  880. * after the i_disk_size has been updated and then the inode has been
  881. * updated to reflect the change, so we need to tell anybody who finds
  882. * this ordered extent that we've already done all the real work, we
  883. * just haven't completed all the other work.
  884. */
  885. if (ordered)
  886. set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
  887. spin_unlock_irq(&tree->lock);
  888. return ret;
  889. }
  890. /*
  891. * search the ordered extents for one corresponding to 'offset' and
  892. * try to find a checksum. This is used because we allow pages to
  893. * be reclaimed before their checksum is actually put into the btree
  894. */
  895. int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
  896. u32 *sum, int len)
  897. {
  898. struct btrfs_ordered_sum *ordered_sum;
  899. struct btrfs_ordered_extent *ordered;
  900. struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
  901. unsigned long num_sectors;
  902. unsigned long i;
  903. u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
  904. int index = 0;
  905. ordered = btrfs_lookup_ordered_extent(inode, offset);
  906. if (!ordered)
  907. return 0;
  908. spin_lock_irq(&tree->lock);
  909. list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
  910. if (disk_bytenr >= ordered_sum->bytenr &&
  911. disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
  912. i = (disk_bytenr - ordered_sum->bytenr) >>
  913. inode->i_sb->s_blocksize_bits;
  914. num_sectors = ordered_sum->len >>
  915. inode->i_sb->s_blocksize_bits;
  916. num_sectors = min_t(int, len - index, num_sectors - i);
  917. memcpy(sum + index, ordered_sum->sums + i,
  918. num_sectors);
  919. index += (int)num_sectors;
  920. if (index == len)
  921. goto out;
  922. disk_bytenr += num_sectors * sectorsize;
  923. }
  924. }
  925. out:
  926. spin_unlock_irq(&tree->lock);
  927. btrfs_put_ordered_extent(ordered);
  928. return index;
  929. }
  930. int __init ordered_data_init(void)
  931. {
  932. btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
  933. sizeof(struct btrfs_ordered_extent), 0,
  934. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  935. NULL);
  936. if (!btrfs_ordered_extent_cache)
  937. return -ENOMEM;
  938. return 0;
  939. }
  940. void ordered_data_exit(void)
  941. {
  942. if (btrfs_ordered_extent_cache)
  943. kmem_cache_destroy(btrfs_ordered_extent_cache);
  944. }