delayed-inode.c 51 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980
  1. /*
  2. * Copyright (C) 2011 Fujitsu. All rights reserved.
  3. * Written by Miao Xie <miaox@cn.fujitsu.com>
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public
  7. * License v2 as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public
  15. * License along with this program; if not, write to the
  16. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  17. * Boston, MA 021110-1307, USA.
  18. */
  19. #include <linux/slab.h>
  20. #include "delayed-inode.h"
  21. #include "disk-io.h"
  22. #include "transaction.h"
  23. #include "ctree.h"
  24. #define BTRFS_DELAYED_WRITEBACK 512
  25. #define BTRFS_DELAYED_BACKGROUND 128
  26. #define BTRFS_DELAYED_BATCH 16
  27. static struct kmem_cache *delayed_node_cache;
  28. int __init btrfs_delayed_inode_init(void)
  29. {
  30. delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
  31. sizeof(struct btrfs_delayed_node),
  32. 0,
  33. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  34. NULL);
  35. if (!delayed_node_cache)
  36. return -ENOMEM;
  37. return 0;
  38. }
  39. void btrfs_delayed_inode_exit(void)
  40. {
  41. if (delayed_node_cache)
  42. kmem_cache_destroy(delayed_node_cache);
  43. }
  44. static inline void btrfs_init_delayed_node(
  45. struct btrfs_delayed_node *delayed_node,
  46. struct btrfs_root *root, u64 inode_id)
  47. {
  48. delayed_node->root = root;
  49. delayed_node->inode_id = inode_id;
  50. atomic_set(&delayed_node->refs, 0);
  51. delayed_node->count = 0;
  52. delayed_node->flags = 0;
  53. delayed_node->ins_root = RB_ROOT;
  54. delayed_node->del_root = RB_ROOT;
  55. mutex_init(&delayed_node->mutex);
  56. delayed_node->index_cnt = 0;
  57. INIT_LIST_HEAD(&delayed_node->n_list);
  58. INIT_LIST_HEAD(&delayed_node->p_list);
  59. delayed_node->bytes_reserved = 0;
  60. memset(&delayed_node->inode_item, 0, sizeof(delayed_node->inode_item));
  61. }
  62. static inline int btrfs_is_continuous_delayed_item(
  63. struct btrfs_delayed_item *item1,
  64. struct btrfs_delayed_item *item2)
  65. {
  66. if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
  67. item1->key.objectid == item2->key.objectid &&
  68. item1->key.type == item2->key.type &&
  69. item1->key.offset + 1 == item2->key.offset)
  70. return 1;
  71. return 0;
  72. }
  73. static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
  74. struct btrfs_root *root)
  75. {
  76. return root->fs_info->delayed_root;
  77. }
  78. static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
  79. {
  80. struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
  81. struct btrfs_root *root = btrfs_inode->root;
  82. u64 ino = btrfs_ino(inode);
  83. struct btrfs_delayed_node *node;
  84. node = ACCESS_ONCE(btrfs_inode->delayed_node);
  85. if (node) {
  86. atomic_inc(&node->refs);
  87. return node;
  88. }
  89. spin_lock(&root->inode_lock);
  90. node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
  91. if (node) {
  92. if (btrfs_inode->delayed_node) {
  93. atomic_inc(&node->refs); /* can be accessed */
  94. BUG_ON(btrfs_inode->delayed_node != node);
  95. spin_unlock(&root->inode_lock);
  96. return node;
  97. }
  98. btrfs_inode->delayed_node = node;
  99. /* can be accessed and cached in the inode */
  100. atomic_add(2, &node->refs);
  101. spin_unlock(&root->inode_lock);
  102. return node;
  103. }
  104. spin_unlock(&root->inode_lock);
  105. return NULL;
  106. }
  107. /* Will return either the node or PTR_ERR(-ENOMEM) */
  108. static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
  109. struct inode *inode)
  110. {
  111. struct btrfs_delayed_node *node;
  112. struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
  113. struct btrfs_root *root = btrfs_inode->root;
  114. u64 ino = btrfs_ino(inode);
  115. int ret;
  116. again:
  117. node = btrfs_get_delayed_node(inode);
  118. if (node)
  119. return node;
  120. node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
  121. if (!node)
  122. return ERR_PTR(-ENOMEM);
  123. btrfs_init_delayed_node(node, root, ino);
  124. /* cached in the btrfs inode and can be accessed */
  125. atomic_add(2, &node->refs);
  126. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  127. if (ret) {
  128. kmem_cache_free(delayed_node_cache, node);
  129. return ERR_PTR(ret);
  130. }
  131. spin_lock(&root->inode_lock);
  132. ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
  133. if (ret == -EEXIST) {
  134. spin_unlock(&root->inode_lock);
  135. kmem_cache_free(delayed_node_cache, node);
  136. radix_tree_preload_end();
  137. goto again;
  138. }
  139. btrfs_inode->delayed_node = node;
  140. spin_unlock(&root->inode_lock);
  141. radix_tree_preload_end();
  142. return node;
  143. }
  144. /*
  145. * Call it when holding delayed_node->mutex
  146. *
  147. * If mod = 1, add this node into the prepared list.
  148. */
  149. static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
  150. struct btrfs_delayed_node *node,
  151. int mod)
  152. {
  153. spin_lock(&root->lock);
  154. if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
  155. if (!list_empty(&node->p_list))
  156. list_move_tail(&node->p_list, &root->prepare_list);
  157. else if (mod)
  158. list_add_tail(&node->p_list, &root->prepare_list);
  159. } else {
  160. list_add_tail(&node->n_list, &root->node_list);
  161. list_add_tail(&node->p_list, &root->prepare_list);
  162. atomic_inc(&node->refs); /* inserted into list */
  163. root->nodes++;
  164. set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
  165. }
  166. spin_unlock(&root->lock);
  167. }
  168. /* Call it when holding delayed_node->mutex */
  169. static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
  170. struct btrfs_delayed_node *node)
  171. {
  172. spin_lock(&root->lock);
  173. if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
  174. root->nodes--;
  175. atomic_dec(&node->refs); /* not in the list */
  176. list_del_init(&node->n_list);
  177. if (!list_empty(&node->p_list))
  178. list_del_init(&node->p_list);
  179. clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
  180. }
  181. spin_unlock(&root->lock);
  182. }
  183. static struct btrfs_delayed_node *btrfs_first_delayed_node(
  184. struct btrfs_delayed_root *delayed_root)
  185. {
  186. struct list_head *p;
  187. struct btrfs_delayed_node *node = NULL;
  188. spin_lock(&delayed_root->lock);
  189. if (list_empty(&delayed_root->node_list))
  190. goto out;
  191. p = delayed_root->node_list.next;
  192. node = list_entry(p, struct btrfs_delayed_node, n_list);
  193. atomic_inc(&node->refs);
  194. out:
  195. spin_unlock(&delayed_root->lock);
  196. return node;
  197. }
  198. static struct btrfs_delayed_node *btrfs_next_delayed_node(
  199. struct btrfs_delayed_node *node)
  200. {
  201. struct btrfs_delayed_root *delayed_root;
  202. struct list_head *p;
  203. struct btrfs_delayed_node *next = NULL;
  204. delayed_root = node->root->fs_info->delayed_root;
  205. spin_lock(&delayed_root->lock);
  206. if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
  207. /* not in the list */
  208. if (list_empty(&delayed_root->node_list))
  209. goto out;
  210. p = delayed_root->node_list.next;
  211. } else if (list_is_last(&node->n_list, &delayed_root->node_list))
  212. goto out;
  213. else
  214. p = node->n_list.next;
  215. next = list_entry(p, struct btrfs_delayed_node, n_list);
  216. atomic_inc(&next->refs);
  217. out:
  218. spin_unlock(&delayed_root->lock);
  219. return next;
  220. }
  221. static void __btrfs_release_delayed_node(
  222. struct btrfs_delayed_node *delayed_node,
  223. int mod)
  224. {
  225. struct btrfs_delayed_root *delayed_root;
  226. if (!delayed_node)
  227. return;
  228. delayed_root = delayed_node->root->fs_info->delayed_root;
  229. mutex_lock(&delayed_node->mutex);
  230. if (delayed_node->count)
  231. btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
  232. else
  233. btrfs_dequeue_delayed_node(delayed_root, delayed_node);
  234. mutex_unlock(&delayed_node->mutex);
  235. if (atomic_dec_and_test(&delayed_node->refs)) {
  236. bool free = false;
  237. struct btrfs_root *root = delayed_node->root;
  238. spin_lock(&root->inode_lock);
  239. if (atomic_read(&delayed_node->refs) == 0) {
  240. radix_tree_delete(&root->delayed_nodes_tree,
  241. delayed_node->inode_id);
  242. free = true;
  243. }
  244. spin_unlock(&root->inode_lock);
  245. if (free)
  246. kmem_cache_free(delayed_node_cache, delayed_node);
  247. }
  248. }
  249. static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
  250. {
  251. __btrfs_release_delayed_node(node, 0);
  252. }
  253. static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
  254. struct btrfs_delayed_root *delayed_root)
  255. {
  256. struct list_head *p;
  257. struct btrfs_delayed_node *node = NULL;
  258. spin_lock(&delayed_root->lock);
  259. if (list_empty(&delayed_root->prepare_list))
  260. goto out;
  261. p = delayed_root->prepare_list.next;
  262. list_del_init(p);
  263. node = list_entry(p, struct btrfs_delayed_node, p_list);
  264. atomic_inc(&node->refs);
  265. out:
  266. spin_unlock(&delayed_root->lock);
  267. return node;
  268. }
  269. static inline void btrfs_release_prepared_delayed_node(
  270. struct btrfs_delayed_node *node)
  271. {
  272. __btrfs_release_delayed_node(node, 1);
  273. }
  274. static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
  275. {
  276. struct btrfs_delayed_item *item;
  277. item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
  278. if (item) {
  279. item->data_len = data_len;
  280. item->ins_or_del = 0;
  281. item->bytes_reserved = 0;
  282. item->delayed_node = NULL;
  283. atomic_set(&item->refs, 1);
  284. }
  285. return item;
  286. }
  287. /*
  288. * __btrfs_lookup_delayed_item - look up the delayed item by key
  289. * @delayed_node: pointer to the delayed node
  290. * @key: the key to look up
  291. * @prev: used to store the prev item if the right item isn't found
  292. * @next: used to store the next item if the right item isn't found
  293. *
  294. * Note: if we don't find the right item, we will return the prev item and
  295. * the next item.
  296. */
  297. static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
  298. struct rb_root *root,
  299. struct btrfs_key *key,
  300. struct btrfs_delayed_item **prev,
  301. struct btrfs_delayed_item **next)
  302. {
  303. struct rb_node *node, *prev_node = NULL;
  304. struct btrfs_delayed_item *delayed_item = NULL;
  305. int ret = 0;
  306. node = root->rb_node;
  307. while (node) {
  308. delayed_item = rb_entry(node, struct btrfs_delayed_item,
  309. rb_node);
  310. prev_node = node;
  311. ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
  312. if (ret < 0)
  313. node = node->rb_right;
  314. else if (ret > 0)
  315. node = node->rb_left;
  316. else
  317. return delayed_item;
  318. }
  319. if (prev) {
  320. if (!prev_node)
  321. *prev = NULL;
  322. else if (ret < 0)
  323. *prev = delayed_item;
  324. else if ((node = rb_prev(prev_node)) != NULL) {
  325. *prev = rb_entry(node, struct btrfs_delayed_item,
  326. rb_node);
  327. } else
  328. *prev = NULL;
  329. }
  330. if (next) {
  331. if (!prev_node)
  332. *next = NULL;
  333. else if (ret > 0)
  334. *next = delayed_item;
  335. else if ((node = rb_next(prev_node)) != NULL) {
  336. *next = rb_entry(node, struct btrfs_delayed_item,
  337. rb_node);
  338. } else
  339. *next = NULL;
  340. }
  341. return NULL;
  342. }
  343. static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
  344. struct btrfs_delayed_node *delayed_node,
  345. struct btrfs_key *key)
  346. {
  347. struct btrfs_delayed_item *item;
  348. item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
  349. NULL, NULL);
  350. return item;
  351. }
  352. static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
  353. struct btrfs_delayed_item *ins,
  354. int action)
  355. {
  356. struct rb_node **p, *node;
  357. struct rb_node *parent_node = NULL;
  358. struct rb_root *root;
  359. struct btrfs_delayed_item *item;
  360. int cmp;
  361. if (action == BTRFS_DELAYED_INSERTION_ITEM)
  362. root = &delayed_node->ins_root;
  363. else if (action == BTRFS_DELAYED_DELETION_ITEM)
  364. root = &delayed_node->del_root;
  365. else
  366. BUG();
  367. p = &root->rb_node;
  368. node = &ins->rb_node;
  369. while (*p) {
  370. parent_node = *p;
  371. item = rb_entry(parent_node, struct btrfs_delayed_item,
  372. rb_node);
  373. cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
  374. if (cmp < 0)
  375. p = &(*p)->rb_right;
  376. else if (cmp > 0)
  377. p = &(*p)->rb_left;
  378. else
  379. return -EEXIST;
  380. }
  381. rb_link_node(node, parent_node, p);
  382. rb_insert_color(node, root);
  383. ins->delayed_node = delayed_node;
  384. ins->ins_or_del = action;
  385. if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
  386. action == BTRFS_DELAYED_INSERTION_ITEM &&
  387. ins->key.offset >= delayed_node->index_cnt)
  388. delayed_node->index_cnt = ins->key.offset + 1;
  389. delayed_node->count++;
  390. atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
  391. return 0;
  392. }
  393. static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
  394. struct btrfs_delayed_item *item)
  395. {
  396. return __btrfs_add_delayed_item(node, item,
  397. BTRFS_DELAYED_INSERTION_ITEM);
  398. }
  399. static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
  400. struct btrfs_delayed_item *item)
  401. {
  402. return __btrfs_add_delayed_item(node, item,
  403. BTRFS_DELAYED_DELETION_ITEM);
  404. }
  405. static void finish_one_item(struct btrfs_delayed_root *delayed_root)
  406. {
  407. int seq = atomic_inc_return(&delayed_root->items_seq);
  408. if ((atomic_dec_return(&delayed_root->items) <
  409. BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
  410. waitqueue_active(&delayed_root->wait))
  411. wake_up(&delayed_root->wait);
  412. }
  413. static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
  414. {
  415. struct rb_root *root;
  416. struct btrfs_delayed_root *delayed_root;
  417. delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
  418. BUG_ON(!delayed_root);
  419. BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
  420. delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
  421. if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
  422. root = &delayed_item->delayed_node->ins_root;
  423. else
  424. root = &delayed_item->delayed_node->del_root;
  425. rb_erase(&delayed_item->rb_node, root);
  426. delayed_item->delayed_node->count--;
  427. finish_one_item(delayed_root);
  428. }
  429. static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
  430. {
  431. if (item) {
  432. __btrfs_remove_delayed_item(item);
  433. if (atomic_dec_and_test(&item->refs))
  434. kfree(item);
  435. }
  436. }
  437. static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
  438. struct btrfs_delayed_node *delayed_node)
  439. {
  440. struct rb_node *p;
  441. struct btrfs_delayed_item *item = NULL;
  442. p = rb_first(&delayed_node->ins_root);
  443. if (p)
  444. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  445. return item;
  446. }
  447. static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
  448. struct btrfs_delayed_node *delayed_node)
  449. {
  450. struct rb_node *p;
  451. struct btrfs_delayed_item *item = NULL;
  452. p = rb_first(&delayed_node->del_root);
  453. if (p)
  454. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  455. return item;
  456. }
  457. static struct btrfs_delayed_item *__btrfs_next_delayed_item(
  458. struct btrfs_delayed_item *item)
  459. {
  460. struct rb_node *p;
  461. struct btrfs_delayed_item *next = NULL;
  462. p = rb_next(&item->rb_node);
  463. if (p)
  464. next = rb_entry(p, struct btrfs_delayed_item, rb_node);
  465. return next;
  466. }
  467. static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
  468. struct btrfs_root *root,
  469. struct btrfs_delayed_item *item)
  470. {
  471. struct btrfs_block_rsv *src_rsv;
  472. struct btrfs_block_rsv *dst_rsv;
  473. u64 num_bytes;
  474. int ret;
  475. if (!trans->bytes_reserved)
  476. return 0;
  477. src_rsv = trans->block_rsv;
  478. dst_rsv = &root->fs_info->delayed_block_rsv;
  479. num_bytes = btrfs_calc_trans_metadata_size(root, 1);
  480. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
  481. if (!ret) {
  482. trace_btrfs_space_reservation(root->fs_info, "delayed_item",
  483. item->key.objectid,
  484. num_bytes, 1);
  485. item->bytes_reserved = num_bytes;
  486. }
  487. return ret;
  488. }
  489. static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
  490. struct btrfs_delayed_item *item)
  491. {
  492. struct btrfs_block_rsv *rsv;
  493. if (!item->bytes_reserved)
  494. return;
  495. rsv = &root->fs_info->delayed_block_rsv;
  496. trace_btrfs_space_reservation(root->fs_info, "delayed_item",
  497. item->key.objectid, item->bytes_reserved,
  498. 0);
  499. btrfs_block_rsv_release(root, rsv,
  500. item->bytes_reserved);
  501. }
  502. static int btrfs_delayed_inode_reserve_metadata(
  503. struct btrfs_trans_handle *trans,
  504. struct btrfs_root *root,
  505. struct inode *inode,
  506. struct btrfs_delayed_node *node)
  507. {
  508. struct btrfs_block_rsv *src_rsv;
  509. struct btrfs_block_rsv *dst_rsv;
  510. u64 num_bytes;
  511. int ret;
  512. bool release = false;
  513. src_rsv = trans->block_rsv;
  514. dst_rsv = &root->fs_info->delayed_block_rsv;
  515. num_bytes = btrfs_calc_trans_metadata_size(root, 1);
  516. /*
  517. * btrfs_dirty_inode will update the inode under btrfs_join_transaction
  518. * which doesn't reserve space for speed. This is a problem since we
  519. * still need to reserve space for this update, so try to reserve the
  520. * space.
  521. *
  522. * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
  523. * we're accounted for.
  524. */
  525. if (!src_rsv || (!trans->bytes_reserved &&
  526. src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
  527. ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
  528. BTRFS_RESERVE_NO_FLUSH);
  529. /*
  530. * Since we're under a transaction reserve_metadata_bytes could
  531. * try to commit the transaction which will make it return
  532. * EAGAIN to make us stop the transaction we have, so return
  533. * ENOSPC instead so that btrfs_dirty_inode knows what to do.
  534. */
  535. if (ret == -EAGAIN)
  536. ret = -ENOSPC;
  537. if (!ret) {
  538. node->bytes_reserved = num_bytes;
  539. trace_btrfs_space_reservation(root->fs_info,
  540. "delayed_inode",
  541. btrfs_ino(inode),
  542. num_bytes, 1);
  543. }
  544. return ret;
  545. } else if (src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) {
  546. spin_lock(&BTRFS_I(inode)->lock);
  547. if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
  548. &BTRFS_I(inode)->runtime_flags)) {
  549. spin_unlock(&BTRFS_I(inode)->lock);
  550. release = true;
  551. goto migrate;
  552. }
  553. spin_unlock(&BTRFS_I(inode)->lock);
  554. /* Ok we didn't have space pre-reserved. This shouldn't happen
  555. * too often but it can happen if we do delalloc to an existing
  556. * inode which gets dirtied because of the time update, and then
  557. * isn't touched again until after the transaction commits and
  558. * then we try to write out the data. First try to be nice and
  559. * reserve something strictly for us. If not be a pain and try
  560. * to steal from the delalloc block rsv.
  561. */
  562. ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
  563. BTRFS_RESERVE_NO_FLUSH);
  564. if (!ret)
  565. goto out;
  566. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
  567. if (!WARN_ON(ret))
  568. goto out;
  569. /*
  570. * Ok this is a problem, let's just steal from the global rsv
  571. * since this really shouldn't happen that often.
  572. */
  573. ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv,
  574. dst_rsv, num_bytes);
  575. goto out;
  576. }
  577. migrate:
  578. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
  579. out:
  580. /*
  581. * Migrate only takes a reservation, it doesn't touch the size of the
  582. * block_rsv. This is to simplify people who don't normally have things
  583. * migrated from their block rsv. If they go to release their
  584. * reservation, that will decrease the size as well, so if migrate
  585. * reduced size we'd end up with a negative size. But for the
  586. * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
  587. * but we could in fact do this reserve/migrate dance several times
  588. * between the time we did the original reservation and we'd clean it
  589. * up. So to take care of this, release the space for the meta
  590. * reservation here. I think it may be time for a documentation page on
  591. * how block rsvs. work.
  592. */
  593. if (!ret) {
  594. trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
  595. btrfs_ino(inode), num_bytes, 1);
  596. node->bytes_reserved = num_bytes;
  597. }
  598. if (release) {
  599. trace_btrfs_space_reservation(root->fs_info, "delalloc",
  600. btrfs_ino(inode), num_bytes, 0);
  601. btrfs_block_rsv_release(root, src_rsv, num_bytes);
  602. }
  603. return ret;
  604. }
  605. static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
  606. struct btrfs_delayed_node *node)
  607. {
  608. struct btrfs_block_rsv *rsv;
  609. if (!node->bytes_reserved)
  610. return;
  611. rsv = &root->fs_info->delayed_block_rsv;
  612. trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
  613. node->inode_id, node->bytes_reserved, 0);
  614. btrfs_block_rsv_release(root, rsv,
  615. node->bytes_reserved);
  616. node->bytes_reserved = 0;
  617. }
  618. /*
  619. * This helper will insert some continuous items into the same leaf according
  620. * to the free space of the leaf.
  621. */
  622. static int btrfs_batch_insert_items(struct btrfs_root *root,
  623. struct btrfs_path *path,
  624. struct btrfs_delayed_item *item)
  625. {
  626. struct btrfs_delayed_item *curr, *next;
  627. int free_space;
  628. int total_data_size = 0, total_size = 0;
  629. struct extent_buffer *leaf;
  630. char *data_ptr;
  631. struct btrfs_key *keys;
  632. u32 *data_size;
  633. struct list_head head;
  634. int slot;
  635. int nitems;
  636. int i;
  637. int ret = 0;
  638. BUG_ON(!path->nodes[0]);
  639. leaf = path->nodes[0];
  640. free_space = btrfs_leaf_free_space(root, leaf);
  641. INIT_LIST_HEAD(&head);
  642. next = item;
  643. nitems = 0;
  644. /*
  645. * count the number of the continuous items that we can insert in batch
  646. */
  647. while (total_size + next->data_len + sizeof(struct btrfs_item) <=
  648. free_space) {
  649. total_data_size += next->data_len;
  650. total_size += next->data_len + sizeof(struct btrfs_item);
  651. list_add_tail(&next->tree_list, &head);
  652. nitems++;
  653. curr = next;
  654. next = __btrfs_next_delayed_item(curr);
  655. if (!next)
  656. break;
  657. if (!btrfs_is_continuous_delayed_item(curr, next))
  658. break;
  659. }
  660. if (!nitems) {
  661. ret = 0;
  662. goto out;
  663. }
  664. /*
  665. * we need allocate some memory space, but it might cause the task
  666. * to sleep, so we set all locked nodes in the path to blocking locks
  667. * first.
  668. */
  669. btrfs_set_path_blocking(path);
  670. keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
  671. if (!keys) {
  672. ret = -ENOMEM;
  673. goto out;
  674. }
  675. data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
  676. if (!data_size) {
  677. ret = -ENOMEM;
  678. goto error;
  679. }
  680. /* get keys of all the delayed items */
  681. i = 0;
  682. list_for_each_entry(next, &head, tree_list) {
  683. keys[i] = next->key;
  684. data_size[i] = next->data_len;
  685. i++;
  686. }
  687. /* reset all the locked nodes in the patch to spinning locks. */
  688. btrfs_clear_path_blocking(path, NULL, 0);
  689. /* insert the keys of the items */
  690. setup_items_for_insert(root, path, keys, data_size,
  691. total_data_size, total_size, nitems);
  692. /* insert the dir index items */
  693. slot = path->slots[0];
  694. list_for_each_entry_safe(curr, next, &head, tree_list) {
  695. data_ptr = btrfs_item_ptr(leaf, slot, char);
  696. write_extent_buffer(leaf, &curr->data,
  697. (unsigned long)data_ptr,
  698. curr->data_len);
  699. slot++;
  700. btrfs_delayed_item_release_metadata(root, curr);
  701. list_del(&curr->tree_list);
  702. btrfs_release_delayed_item(curr);
  703. }
  704. error:
  705. kfree(data_size);
  706. kfree(keys);
  707. out:
  708. return ret;
  709. }
  710. /*
  711. * This helper can just do simple insertion that needn't extend item for new
  712. * data, such as directory name index insertion, inode insertion.
  713. */
  714. static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
  715. struct btrfs_root *root,
  716. struct btrfs_path *path,
  717. struct btrfs_delayed_item *delayed_item)
  718. {
  719. struct extent_buffer *leaf;
  720. char *ptr;
  721. int ret;
  722. ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
  723. delayed_item->data_len);
  724. if (ret < 0 && ret != -EEXIST)
  725. return ret;
  726. leaf = path->nodes[0];
  727. ptr = btrfs_item_ptr(leaf, path->slots[0], char);
  728. write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
  729. delayed_item->data_len);
  730. btrfs_mark_buffer_dirty(leaf);
  731. btrfs_delayed_item_release_metadata(root, delayed_item);
  732. return 0;
  733. }
  734. /*
  735. * we insert an item first, then if there are some continuous items, we try
  736. * to insert those items into the same leaf.
  737. */
  738. static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
  739. struct btrfs_path *path,
  740. struct btrfs_root *root,
  741. struct btrfs_delayed_node *node)
  742. {
  743. struct btrfs_delayed_item *curr, *prev;
  744. int ret = 0;
  745. do_again:
  746. mutex_lock(&node->mutex);
  747. curr = __btrfs_first_delayed_insertion_item(node);
  748. if (!curr)
  749. goto insert_end;
  750. ret = btrfs_insert_delayed_item(trans, root, path, curr);
  751. if (ret < 0) {
  752. btrfs_release_path(path);
  753. goto insert_end;
  754. }
  755. prev = curr;
  756. curr = __btrfs_next_delayed_item(prev);
  757. if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
  758. /* insert the continuous items into the same leaf */
  759. path->slots[0]++;
  760. btrfs_batch_insert_items(root, path, curr);
  761. }
  762. btrfs_release_delayed_item(prev);
  763. btrfs_mark_buffer_dirty(path->nodes[0]);
  764. btrfs_release_path(path);
  765. mutex_unlock(&node->mutex);
  766. goto do_again;
  767. insert_end:
  768. mutex_unlock(&node->mutex);
  769. return ret;
  770. }
  771. static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
  772. struct btrfs_root *root,
  773. struct btrfs_path *path,
  774. struct btrfs_delayed_item *item)
  775. {
  776. struct btrfs_delayed_item *curr, *next;
  777. struct extent_buffer *leaf;
  778. struct btrfs_key key;
  779. struct list_head head;
  780. int nitems, i, last_item;
  781. int ret = 0;
  782. BUG_ON(!path->nodes[0]);
  783. leaf = path->nodes[0];
  784. i = path->slots[0];
  785. last_item = btrfs_header_nritems(leaf) - 1;
  786. if (i > last_item)
  787. return -ENOENT; /* FIXME: Is errno suitable? */
  788. next = item;
  789. INIT_LIST_HEAD(&head);
  790. btrfs_item_key_to_cpu(leaf, &key, i);
  791. nitems = 0;
  792. /*
  793. * count the number of the dir index items that we can delete in batch
  794. */
  795. while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
  796. list_add_tail(&next->tree_list, &head);
  797. nitems++;
  798. curr = next;
  799. next = __btrfs_next_delayed_item(curr);
  800. if (!next)
  801. break;
  802. if (!btrfs_is_continuous_delayed_item(curr, next))
  803. break;
  804. i++;
  805. if (i > last_item)
  806. break;
  807. btrfs_item_key_to_cpu(leaf, &key, i);
  808. }
  809. if (!nitems)
  810. return 0;
  811. ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
  812. if (ret)
  813. goto out;
  814. list_for_each_entry_safe(curr, next, &head, tree_list) {
  815. btrfs_delayed_item_release_metadata(root, curr);
  816. list_del(&curr->tree_list);
  817. btrfs_release_delayed_item(curr);
  818. }
  819. out:
  820. return ret;
  821. }
  822. static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
  823. struct btrfs_path *path,
  824. struct btrfs_root *root,
  825. struct btrfs_delayed_node *node)
  826. {
  827. struct btrfs_delayed_item *curr, *prev;
  828. int ret = 0;
  829. do_again:
  830. mutex_lock(&node->mutex);
  831. curr = __btrfs_first_delayed_deletion_item(node);
  832. if (!curr)
  833. goto delete_fail;
  834. ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
  835. if (ret < 0)
  836. goto delete_fail;
  837. else if (ret > 0) {
  838. /*
  839. * can't find the item which the node points to, so this node
  840. * is invalid, just drop it.
  841. */
  842. prev = curr;
  843. curr = __btrfs_next_delayed_item(prev);
  844. btrfs_release_delayed_item(prev);
  845. ret = 0;
  846. btrfs_release_path(path);
  847. if (curr) {
  848. mutex_unlock(&node->mutex);
  849. goto do_again;
  850. } else
  851. goto delete_fail;
  852. }
  853. btrfs_batch_delete_items(trans, root, path, curr);
  854. btrfs_release_path(path);
  855. mutex_unlock(&node->mutex);
  856. goto do_again;
  857. delete_fail:
  858. btrfs_release_path(path);
  859. mutex_unlock(&node->mutex);
  860. return ret;
  861. }
  862. static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
  863. {
  864. struct btrfs_delayed_root *delayed_root;
  865. if (delayed_node &&
  866. test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  867. BUG_ON(!delayed_node->root);
  868. clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
  869. delayed_node->count--;
  870. delayed_root = delayed_node->root->fs_info->delayed_root;
  871. finish_one_item(delayed_root);
  872. }
  873. }
  874. static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
  875. {
  876. struct btrfs_delayed_root *delayed_root;
  877. ASSERT(delayed_node->root);
  878. clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
  879. delayed_node->count--;
  880. delayed_root = delayed_node->root->fs_info->delayed_root;
  881. finish_one_item(delayed_root);
  882. }
  883. static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
  884. struct btrfs_root *root,
  885. struct btrfs_path *path,
  886. struct btrfs_delayed_node *node)
  887. {
  888. struct btrfs_key key;
  889. struct btrfs_inode_item *inode_item;
  890. struct extent_buffer *leaf;
  891. int mod;
  892. int ret;
  893. key.objectid = node->inode_id;
  894. key.type = BTRFS_INODE_ITEM_KEY;
  895. key.offset = 0;
  896. if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
  897. mod = -1;
  898. else
  899. mod = 1;
  900. ret = btrfs_lookup_inode(trans, root, path, &key, mod);
  901. if (ret > 0) {
  902. btrfs_release_path(path);
  903. return -ENOENT;
  904. } else if (ret < 0) {
  905. return ret;
  906. }
  907. leaf = path->nodes[0];
  908. inode_item = btrfs_item_ptr(leaf, path->slots[0],
  909. struct btrfs_inode_item);
  910. write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
  911. sizeof(struct btrfs_inode_item));
  912. btrfs_mark_buffer_dirty(leaf);
  913. if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
  914. goto no_iref;
  915. path->slots[0]++;
  916. if (path->slots[0] >= btrfs_header_nritems(leaf))
  917. goto search;
  918. again:
  919. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  920. if (key.objectid != node->inode_id)
  921. goto out;
  922. if (key.type != BTRFS_INODE_REF_KEY &&
  923. key.type != BTRFS_INODE_EXTREF_KEY)
  924. goto out;
  925. /*
  926. * Delayed iref deletion is for the inode who has only one link,
  927. * so there is only one iref. The case that several irefs are
  928. * in the same item doesn't exist.
  929. */
  930. btrfs_del_item(trans, root, path);
  931. out:
  932. btrfs_release_delayed_iref(node);
  933. no_iref:
  934. btrfs_release_path(path);
  935. err_out:
  936. btrfs_delayed_inode_release_metadata(root, node);
  937. btrfs_release_delayed_inode(node);
  938. return ret;
  939. search:
  940. btrfs_release_path(path);
  941. key.type = BTRFS_INODE_EXTREF_KEY;
  942. key.offset = -1;
  943. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  944. if (ret < 0)
  945. goto err_out;
  946. ASSERT(ret);
  947. ret = 0;
  948. leaf = path->nodes[0];
  949. path->slots[0]--;
  950. goto again;
  951. }
  952. static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
  953. struct btrfs_root *root,
  954. struct btrfs_path *path,
  955. struct btrfs_delayed_node *node)
  956. {
  957. int ret;
  958. mutex_lock(&node->mutex);
  959. if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
  960. mutex_unlock(&node->mutex);
  961. return 0;
  962. }
  963. ret = __btrfs_update_delayed_inode(trans, root, path, node);
  964. mutex_unlock(&node->mutex);
  965. return ret;
  966. }
  967. static inline int
  968. __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  969. struct btrfs_path *path,
  970. struct btrfs_delayed_node *node)
  971. {
  972. int ret;
  973. ret = btrfs_insert_delayed_items(trans, path, node->root, node);
  974. if (ret)
  975. return ret;
  976. ret = btrfs_delete_delayed_items(trans, path, node->root, node);
  977. if (ret)
  978. return ret;
  979. ret = btrfs_update_delayed_inode(trans, node->root, path, node);
  980. return ret;
  981. }
  982. /*
  983. * Called when committing the transaction.
  984. * Returns 0 on success.
  985. * Returns < 0 on error and returns with an aborted transaction with any
  986. * outstanding delayed items cleaned up.
  987. */
  988. static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
  989. struct btrfs_root *root, int nr)
  990. {
  991. struct btrfs_delayed_root *delayed_root;
  992. struct btrfs_delayed_node *curr_node, *prev_node;
  993. struct btrfs_path *path;
  994. struct btrfs_block_rsv *block_rsv;
  995. int ret = 0;
  996. bool count = (nr > 0);
  997. if (trans->aborted)
  998. return -EIO;
  999. path = btrfs_alloc_path();
  1000. if (!path)
  1001. return -ENOMEM;
  1002. path->leave_spinning = 1;
  1003. block_rsv = trans->block_rsv;
  1004. trans->block_rsv = &root->fs_info->delayed_block_rsv;
  1005. delayed_root = btrfs_get_delayed_root(root);
  1006. curr_node = btrfs_first_delayed_node(delayed_root);
  1007. while (curr_node && (!count || (count && nr--))) {
  1008. ret = __btrfs_commit_inode_delayed_items(trans, path,
  1009. curr_node);
  1010. if (ret) {
  1011. btrfs_release_delayed_node(curr_node);
  1012. curr_node = NULL;
  1013. btrfs_abort_transaction(trans, root, ret);
  1014. break;
  1015. }
  1016. prev_node = curr_node;
  1017. curr_node = btrfs_next_delayed_node(curr_node);
  1018. btrfs_release_delayed_node(prev_node);
  1019. }
  1020. if (curr_node)
  1021. btrfs_release_delayed_node(curr_node);
  1022. btrfs_free_path(path);
  1023. trans->block_rsv = block_rsv;
  1024. return ret;
  1025. }
  1026. int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
  1027. struct btrfs_root *root)
  1028. {
  1029. return __btrfs_run_delayed_items(trans, root, -1);
  1030. }
  1031. int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
  1032. struct btrfs_root *root, int nr)
  1033. {
  1034. return __btrfs_run_delayed_items(trans, root, nr);
  1035. }
  1036. int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  1037. struct inode *inode)
  1038. {
  1039. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1040. struct btrfs_path *path;
  1041. struct btrfs_block_rsv *block_rsv;
  1042. int ret;
  1043. if (!delayed_node)
  1044. return 0;
  1045. mutex_lock(&delayed_node->mutex);
  1046. if (!delayed_node->count) {
  1047. mutex_unlock(&delayed_node->mutex);
  1048. btrfs_release_delayed_node(delayed_node);
  1049. return 0;
  1050. }
  1051. mutex_unlock(&delayed_node->mutex);
  1052. path = btrfs_alloc_path();
  1053. if (!path) {
  1054. btrfs_release_delayed_node(delayed_node);
  1055. return -ENOMEM;
  1056. }
  1057. path->leave_spinning = 1;
  1058. block_rsv = trans->block_rsv;
  1059. trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
  1060. ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
  1061. btrfs_release_delayed_node(delayed_node);
  1062. btrfs_free_path(path);
  1063. trans->block_rsv = block_rsv;
  1064. return ret;
  1065. }
  1066. int btrfs_commit_inode_delayed_inode(struct inode *inode)
  1067. {
  1068. struct btrfs_trans_handle *trans;
  1069. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1070. struct btrfs_path *path;
  1071. struct btrfs_block_rsv *block_rsv;
  1072. int ret;
  1073. if (!delayed_node)
  1074. return 0;
  1075. mutex_lock(&delayed_node->mutex);
  1076. if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1077. mutex_unlock(&delayed_node->mutex);
  1078. btrfs_release_delayed_node(delayed_node);
  1079. return 0;
  1080. }
  1081. mutex_unlock(&delayed_node->mutex);
  1082. trans = btrfs_join_transaction(delayed_node->root);
  1083. if (IS_ERR(trans)) {
  1084. ret = PTR_ERR(trans);
  1085. goto out;
  1086. }
  1087. path = btrfs_alloc_path();
  1088. if (!path) {
  1089. ret = -ENOMEM;
  1090. goto trans_out;
  1091. }
  1092. path->leave_spinning = 1;
  1093. block_rsv = trans->block_rsv;
  1094. trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
  1095. mutex_lock(&delayed_node->mutex);
  1096. if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
  1097. ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
  1098. path, delayed_node);
  1099. else
  1100. ret = 0;
  1101. mutex_unlock(&delayed_node->mutex);
  1102. btrfs_free_path(path);
  1103. trans->block_rsv = block_rsv;
  1104. trans_out:
  1105. btrfs_end_transaction(trans, delayed_node->root);
  1106. btrfs_btree_balance_dirty(delayed_node->root);
  1107. out:
  1108. btrfs_release_delayed_node(delayed_node);
  1109. return ret;
  1110. }
  1111. void btrfs_remove_delayed_node(struct inode *inode)
  1112. {
  1113. struct btrfs_delayed_node *delayed_node;
  1114. delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
  1115. if (!delayed_node)
  1116. return;
  1117. BTRFS_I(inode)->delayed_node = NULL;
  1118. btrfs_release_delayed_node(delayed_node);
  1119. }
  1120. struct btrfs_async_delayed_work {
  1121. struct btrfs_delayed_root *delayed_root;
  1122. int nr;
  1123. struct btrfs_work work;
  1124. };
  1125. static void btrfs_async_run_delayed_root(struct btrfs_work *work)
  1126. {
  1127. struct btrfs_async_delayed_work *async_work;
  1128. struct btrfs_delayed_root *delayed_root;
  1129. struct btrfs_trans_handle *trans;
  1130. struct btrfs_path *path;
  1131. struct btrfs_delayed_node *delayed_node = NULL;
  1132. struct btrfs_root *root;
  1133. struct btrfs_block_rsv *block_rsv;
  1134. int total_done = 0;
  1135. async_work = container_of(work, struct btrfs_async_delayed_work, work);
  1136. delayed_root = async_work->delayed_root;
  1137. path = btrfs_alloc_path();
  1138. if (!path)
  1139. goto out;
  1140. again:
  1141. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
  1142. goto free_path;
  1143. delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
  1144. if (!delayed_node)
  1145. goto free_path;
  1146. path->leave_spinning = 1;
  1147. root = delayed_node->root;
  1148. trans = btrfs_join_transaction(root);
  1149. if (IS_ERR(trans))
  1150. goto release_path;
  1151. block_rsv = trans->block_rsv;
  1152. trans->block_rsv = &root->fs_info->delayed_block_rsv;
  1153. __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
  1154. trans->block_rsv = block_rsv;
  1155. btrfs_end_transaction(trans, root);
  1156. btrfs_btree_balance_dirty_nodelay(root);
  1157. release_path:
  1158. btrfs_release_path(path);
  1159. total_done++;
  1160. btrfs_release_prepared_delayed_node(delayed_node);
  1161. if (async_work->nr == 0 || total_done < async_work->nr)
  1162. goto again;
  1163. free_path:
  1164. btrfs_free_path(path);
  1165. out:
  1166. wake_up(&delayed_root->wait);
  1167. kfree(async_work);
  1168. }
  1169. static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
  1170. struct btrfs_root *root, int nr)
  1171. {
  1172. struct btrfs_async_delayed_work *async_work;
  1173. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
  1174. return 0;
  1175. async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
  1176. if (!async_work)
  1177. return -ENOMEM;
  1178. async_work->delayed_root = delayed_root;
  1179. btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
  1180. btrfs_async_run_delayed_root, NULL, NULL);
  1181. async_work->nr = nr;
  1182. btrfs_queue_work(root->fs_info->delayed_workers, &async_work->work);
  1183. return 0;
  1184. }
  1185. void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
  1186. {
  1187. struct btrfs_delayed_root *delayed_root;
  1188. delayed_root = btrfs_get_delayed_root(root);
  1189. WARN_ON(btrfs_first_delayed_node(delayed_root));
  1190. }
  1191. static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
  1192. {
  1193. int val = atomic_read(&delayed_root->items_seq);
  1194. if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
  1195. return 1;
  1196. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
  1197. return 1;
  1198. return 0;
  1199. }
  1200. void btrfs_balance_delayed_items(struct btrfs_root *root)
  1201. {
  1202. struct btrfs_delayed_root *delayed_root;
  1203. delayed_root = btrfs_get_delayed_root(root);
  1204. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
  1205. return;
  1206. if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
  1207. int seq;
  1208. int ret;
  1209. seq = atomic_read(&delayed_root->items_seq);
  1210. ret = btrfs_wq_run_delayed_node(delayed_root, root, 0);
  1211. if (ret)
  1212. return;
  1213. wait_event_interruptible(delayed_root->wait,
  1214. could_end_wait(delayed_root, seq));
  1215. return;
  1216. }
  1217. btrfs_wq_run_delayed_node(delayed_root, root, BTRFS_DELAYED_BATCH);
  1218. }
  1219. /* Will return 0 or -ENOMEM */
  1220. int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
  1221. struct btrfs_root *root, const char *name,
  1222. int name_len, struct inode *dir,
  1223. struct btrfs_disk_key *disk_key, u8 type,
  1224. u64 index)
  1225. {
  1226. struct btrfs_delayed_node *delayed_node;
  1227. struct btrfs_delayed_item *delayed_item;
  1228. struct btrfs_dir_item *dir_item;
  1229. int ret;
  1230. delayed_node = btrfs_get_or_create_delayed_node(dir);
  1231. if (IS_ERR(delayed_node))
  1232. return PTR_ERR(delayed_node);
  1233. delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
  1234. if (!delayed_item) {
  1235. ret = -ENOMEM;
  1236. goto release_node;
  1237. }
  1238. delayed_item->key.objectid = btrfs_ino(dir);
  1239. delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
  1240. delayed_item->key.offset = index;
  1241. dir_item = (struct btrfs_dir_item *)delayed_item->data;
  1242. dir_item->location = *disk_key;
  1243. btrfs_set_stack_dir_transid(dir_item, trans->transid);
  1244. btrfs_set_stack_dir_data_len(dir_item, 0);
  1245. btrfs_set_stack_dir_name_len(dir_item, name_len);
  1246. btrfs_set_stack_dir_type(dir_item, type);
  1247. memcpy((char *)(dir_item + 1), name, name_len);
  1248. ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
  1249. /*
  1250. * we have reserved enough space when we start a new transaction,
  1251. * so reserving metadata failure is impossible
  1252. */
  1253. BUG_ON(ret);
  1254. mutex_lock(&delayed_node->mutex);
  1255. ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
  1256. if (unlikely(ret)) {
  1257. btrfs_err(root->fs_info, "err add delayed dir index item(name: %.*s) "
  1258. "into the insertion tree of the delayed node"
  1259. "(root id: %llu, inode id: %llu, errno: %d)",
  1260. name_len, name, delayed_node->root->objectid,
  1261. delayed_node->inode_id, ret);
  1262. BUG();
  1263. }
  1264. mutex_unlock(&delayed_node->mutex);
  1265. release_node:
  1266. btrfs_release_delayed_node(delayed_node);
  1267. return ret;
  1268. }
  1269. static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
  1270. struct btrfs_delayed_node *node,
  1271. struct btrfs_key *key)
  1272. {
  1273. struct btrfs_delayed_item *item;
  1274. mutex_lock(&node->mutex);
  1275. item = __btrfs_lookup_delayed_insertion_item(node, key);
  1276. if (!item) {
  1277. mutex_unlock(&node->mutex);
  1278. return 1;
  1279. }
  1280. btrfs_delayed_item_release_metadata(root, item);
  1281. btrfs_release_delayed_item(item);
  1282. mutex_unlock(&node->mutex);
  1283. return 0;
  1284. }
  1285. int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
  1286. struct btrfs_root *root, struct inode *dir,
  1287. u64 index)
  1288. {
  1289. struct btrfs_delayed_node *node;
  1290. struct btrfs_delayed_item *item;
  1291. struct btrfs_key item_key;
  1292. int ret;
  1293. node = btrfs_get_or_create_delayed_node(dir);
  1294. if (IS_ERR(node))
  1295. return PTR_ERR(node);
  1296. item_key.objectid = btrfs_ino(dir);
  1297. item_key.type = BTRFS_DIR_INDEX_KEY;
  1298. item_key.offset = index;
  1299. ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
  1300. if (!ret)
  1301. goto end;
  1302. item = btrfs_alloc_delayed_item(0);
  1303. if (!item) {
  1304. ret = -ENOMEM;
  1305. goto end;
  1306. }
  1307. item->key = item_key;
  1308. ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
  1309. /*
  1310. * we have reserved enough space when we start a new transaction,
  1311. * so reserving metadata failure is impossible.
  1312. */
  1313. BUG_ON(ret);
  1314. mutex_lock(&node->mutex);
  1315. ret = __btrfs_add_delayed_deletion_item(node, item);
  1316. if (unlikely(ret)) {
  1317. btrfs_err(root->fs_info, "err add delayed dir index item(index: %llu) "
  1318. "into the deletion tree of the delayed node"
  1319. "(root id: %llu, inode id: %llu, errno: %d)",
  1320. index, node->root->objectid, node->inode_id,
  1321. ret);
  1322. BUG();
  1323. }
  1324. mutex_unlock(&node->mutex);
  1325. end:
  1326. btrfs_release_delayed_node(node);
  1327. return ret;
  1328. }
  1329. int btrfs_inode_delayed_dir_index_count(struct inode *inode)
  1330. {
  1331. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1332. if (!delayed_node)
  1333. return -ENOENT;
  1334. /*
  1335. * Since we have held i_mutex of this directory, it is impossible that
  1336. * a new directory index is added into the delayed node and index_cnt
  1337. * is updated now. So we needn't lock the delayed node.
  1338. */
  1339. if (!delayed_node->index_cnt) {
  1340. btrfs_release_delayed_node(delayed_node);
  1341. return -EINVAL;
  1342. }
  1343. BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
  1344. btrfs_release_delayed_node(delayed_node);
  1345. return 0;
  1346. }
  1347. void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
  1348. struct list_head *del_list)
  1349. {
  1350. struct btrfs_delayed_node *delayed_node;
  1351. struct btrfs_delayed_item *item;
  1352. delayed_node = btrfs_get_delayed_node(inode);
  1353. if (!delayed_node)
  1354. return;
  1355. mutex_lock(&delayed_node->mutex);
  1356. item = __btrfs_first_delayed_insertion_item(delayed_node);
  1357. while (item) {
  1358. atomic_inc(&item->refs);
  1359. list_add_tail(&item->readdir_list, ins_list);
  1360. item = __btrfs_next_delayed_item(item);
  1361. }
  1362. item = __btrfs_first_delayed_deletion_item(delayed_node);
  1363. while (item) {
  1364. atomic_inc(&item->refs);
  1365. list_add_tail(&item->readdir_list, del_list);
  1366. item = __btrfs_next_delayed_item(item);
  1367. }
  1368. mutex_unlock(&delayed_node->mutex);
  1369. /*
  1370. * This delayed node is still cached in the btrfs inode, so refs
  1371. * must be > 1 now, and we needn't check it is going to be freed
  1372. * or not.
  1373. *
  1374. * Besides that, this function is used to read dir, we do not
  1375. * insert/delete delayed items in this period. So we also needn't
  1376. * requeue or dequeue this delayed node.
  1377. */
  1378. atomic_dec(&delayed_node->refs);
  1379. }
  1380. void btrfs_put_delayed_items(struct list_head *ins_list,
  1381. struct list_head *del_list)
  1382. {
  1383. struct btrfs_delayed_item *curr, *next;
  1384. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1385. list_del(&curr->readdir_list);
  1386. if (atomic_dec_and_test(&curr->refs))
  1387. kfree(curr);
  1388. }
  1389. list_for_each_entry_safe(curr, next, del_list, readdir_list) {
  1390. list_del(&curr->readdir_list);
  1391. if (atomic_dec_and_test(&curr->refs))
  1392. kfree(curr);
  1393. }
  1394. }
  1395. int btrfs_should_delete_dir_index(struct list_head *del_list,
  1396. u64 index)
  1397. {
  1398. struct btrfs_delayed_item *curr, *next;
  1399. int ret;
  1400. if (list_empty(del_list))
  1401. return 0;
  1402. list_for_each_entry_safe(curr, next, del_list, readdir_list) {
  1403. if (curr->key.offset > index)
  1404. break;
  1405. list_del(&curr->readdir_list);
  1406. ret = (curr->key.offset == index);
  1407. if (atomic_dec_and_test(&curr->refs))
  1408. kfree(curr);
  1409. if (ret)
  1410. return 1;
  1411. else
  1412. continue;
  1413. }
  1414. return 0;
  1415. }
  1416. /*
  1417. * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
  1418. *
  1419. */
  1420. int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
  1421. struct list_head *ins_list)
  1422. {
  1423. struct btrfs_dir_item *di;
  1424. struct btrfs_delayed_item *curr, *next;
  1425. struct btrfs_key location;
  1426. char *name;
  1427. int name_len;
  1428. int over = 0;
  1429. unsigned char d_type;
  1430. if (list_empty(ins_list))
  1431. return 0;
  1432. /*
  1433. * Changing the data of the delayed item is impossible. So
  1434. * we needn't lock them. And we have held i_mutex of the
  1435. * directory, nobody can delete any directory indexes now.
  1436. */
  1437. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1438. list_del(&curr->readdir_list);
  1439. if (curr->key.offset < ctx->pos) {
  1440. if (atomic_dec_and_test(&curr->refs))
  1441. kfree(curr);
  1442. continue;
  1443. }
  1444. ctx->pos = curr->key.offset;
  1445. di = (struct btrfs_dir_item *)curr->data;
  1446. name = (char *)(di + 1);
  1447. name_len = btrfs_stack_dir_name_len(di);
  1448. d_type = btrfs_filetype_table[di->type];
  1449. btrfs_disk_key_to_cpu(&location, &di->location);
  1450. over = !dir_emit(ctx, name, name_len,
  1451. location.objectid, d_type);
  1452. if (atomic_dec_and_test(&curr->refs))
  1453. kfree(curr);
  1454. if (over)
  1455. return 1;
  1456. }
  1457. return 0;
  1458. }
  1459. static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
  1460. struct btrfs_inode_item *inode_item,
  1461. struct inode *inode)
  1462. {
  1463. btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
  1464. btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
  1465. btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
  1466. btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
  1467. btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
  1468. btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
  1469. btrfs_set_stack_inode_generation(inode_item,
  1470. BTRFS_I(inode)->generation);
  1471. btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
  1472. btrfs_set_stack_inode_transid(inode_item, trans->transid);
  1473. btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
  1474. btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
  1475. btrfs_set_stack_inode_block_group(inode_item, 0);
  1476. btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
  1477. inode->i_atime.tv_sec);
  1478. btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
  1479. inode->i_atime.tv_nsec);
  1480. btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
  1481. inode->i_mtime.tv_sec);
  1482. btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
  1483. inode->i_mtime.tv_nsec);
  1484. btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
  1485. inode->i_ctime.tv_sec);
  1486. btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
  1487. inode->i_ctime.tv_nsec);
  1488. }
  1489. int btrfs_fill_inode(struct inode *inode, u32 *rdev)
  1490. {
  1491. struct btrfs_delayed_node *delayed_node;
  1492. struct btrfs_inode_item *inode_item;
  1493. struct btrfs_timespec *tspec;
  1494. delayed_node = btrfs_get_delayed_node(inode);
  1495. if (!delayed_node)
  1496. return -ENOENT;
  1497. mutex_lock(&delayed_node->mutex);
  1498. if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1499. mutex_unlock(&delayed_node->mutex);
  1500. btrfs_release_delayed_node(delayed_node);
  1501. return -ENOENT;
  1502. }
  1503. inode_item = &delayed_node->inode_item;
  1504. i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
  1505. i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
  1506. btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
  1507. inode->i_mode = btrfs_stack_inode_mode(inode_item);
  1508. set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
  1509. inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
  1510. BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
  1511. inode->i_version = btrfs_stack_inode_sequence(inode_item);
  1512. inode->i_rdev = 0;
  1513. *rdev = btrfs_stack_inode_rdev(inode_item);
  1514. BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
  1515. tspec = btrfs_inode_atime(inode_item);
  1516. inode->i_atime.tv_sec = btrfs_stack_timespec_sec(tspec);
  1517. inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
  1518. tspec = btrfs_inode_mtime(inode_item);
  1519. inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(tspec);
  1520. inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
  1521. tspec = btrfs_inode_ctime(inode_item);
  1522. inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(tspec);
  1523. inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
  1524. inode->i_generation = BTRFS_I(inode)->generation;
  1525. BTRFS_I(inode)->index_cnt = (u64)-1;
  1526. mutex_unlock(&delayed_node->mutex);
  1527. btrfs_release_delayed_node(delayed_node);
  1528. return 0;
  1529. }
  1530. int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
  1531. struct btrfs_root *root, struct inode *inode)
  1532. {
  1533. struct btrfs_delayed_node *delayed_node;
  1534. int ret = 0;
  1535. delayed_node = btrfs_get_or_create_delayed_node(inode);
  1536. if (IS_ERR(delayed_node))
  1537. return PTR_ERR(delayed_node);
  1538. mutex_lock(&delayed_node->mutex);
  1539. if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1540. fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
  1541. goto release_node;
  1542. }
  1543. ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
  1544. delayed_node);
  1545. if (ret)
  1546. goto release_node;
  1547. fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
  1548. set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
  1549. delayed_node->count++;
  1550. atomic_inc(&root->fs_info->delayed_root->items);
  1551. release_node:
  1552. mutex_unlock(&delayed_node->mutex);
  1553. btrfs_release_delayed_node(delayed_node);
  1554. return ret;
  1555. }
  1556. int btrfs_delayed_delete_inode_ref(struct inode *inode)
  1557. {
  1558. struct btrfs_delayed_node *delayed_node;
  1559. delayed_node = btrfs_get_or_create_delayed_node(inode);
  1560. if (IS_ERR(delayed_node))
  1561. return PTR_ERR(delayed_node);
  1562. /*
  1563. * We don't reserve space for inode ref deletion is because:
  1564. * - We ONLY do async inode ref deletion for the inode who has only
  1565. * one link(i_nlink == 1), it means there is only one inode ref.
  1566. * And in most case, the inode ref and the inode item are in the
  1567. * same leaf, and we will deal with them at the same time.
  1568. * Since we are sure we will reserve the space for the inode item,
  1569. * it is unnecessary to reserve space for inode ref deletion.
  1570. * - If the inode ref and the inode item are not in the same leaf,
  1571. * We also needn't worry about enospc problem, because we reserve
  1572. * much more space for the inode update than it needs.
  1573. * - At the worst, we can steal some space from the global reservation.
  1574. * It is very rare.
  1575. */
  1576. mutex_lock(&delayed_node->mutex);
  1577. if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
  1578. goto release_node;
  1579. set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
  1580. delayed_node->count++;
  1581. atomic_inc(&BTRFS_I(inode)->root->fs_info->delayed_root->items);
  1582. release_node:
  1583. mutex_unlock(&delayed_node->mutex);
  1584. btrfs_release_delayed_node(delayed_node);
  1585. return 0;
  1586. }
  1587. static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
  1588. {
  1589. struct btrfs_root *root = delayed_node->root;
  1590. struct btrfs_delayed_item *curr_item, *prev_item;
  1591. mutex_lock(&delayed_node->mutex);
  1592. curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
  1593. while (curr_item) {
  1594. btrfs_delayed_item_release_metadata(root, curr_item);
  1595. prev_item = curr_item;
  1596. curr_item = __btrfs_next_delayed_item(prev_item);
  1597. btrfs_release_delayed_item(prev_item);
  1598. }
  1599. curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
  1600. while (curr_item) {
  1601. btrfs_delayed_item_release_metadata(root, curr_item);
  1602. prev_item = curr_item;
  1603. curr_item = __btrfs_next_delayed_item(prev_item);
  1604. btrfs_release_delayed_item(prev_item);
  1605. }
  1606. if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
  1607. btrfs_release_delayed_iref(delayed_node);
  1608. if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
  1609. btrfs_delayed_inode_release_metadata(root, delayed_node);
  1610. btrfs_release_delayed_inode(delayed_node);
  1611. }
  1612. mutex_unlock(&delayed_node->mutex);
  1613. }
  1614. void btrfs_kill_delayed_inode_items(struct inode *inode)
  1615. {
  1616. struct btrfs_delayed_node *delayed_node;
  1617. delayed_node = btrfs_get_delayed_node(inode);
  1618. if (!delayed_node)
  1619. return;
  1620. __btrfs_kill_delayed_node(delayed_node);
  1621. btrfs_release_delayed_node(delayed_node);
  1622. }
  1623. void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
  1624. {
  1625. u64 inode_id = 0;
  1626. struct btrfs_delayed_node *delayed_nodes[8];
  1627. int i, n;
  1628. while (1) {
  1629. spin_lock(&root->inode_lock);
  1630. n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
  1631. (void **)delayed_nodes, inode_id,
  1632. ARRAY_SIZE(delayed_nodes));
  1633. if (!n) {
  1634. spin_unlock(&root->inode_lock);
  1635. break;
  1636. }
  1637. inode_id = delayed_nodes[n - 1]->inode_id + 1;
  1638. for (i = 0; i < n; i++)
  1639. atomic_inc(&delayed_nodes[i]->refs);
  1640. spin_unlock(&root->inode_lock);
  1641. for (i = 0; i < n; i++) {
  1642. __btrfs_kill_delayed_node(delayed_nodes[i]);
  1643. btrfs_release_delayed_node(delayed_nodes[i]);
  1644. }
  1645. }
  1646. }
  1647. void btrfs_destroy_delayed_inodes(struct btrfs_root *root)
  1648. {
  1649. struct btrfs_delayed_root *delayed_root;
  1650. struct btrfs_delayed_node *curr_node, *prev_node;
  1651. delayed_root = btrfs_get_delayed_root(root);
  1652. curr_node = btrfs_first_delayed_node(delayed_root);
  1653. while (curr_node) {
  1654. __btrfs_kill_delayed_node(curr_node);
  1655. prev_node = curr_node;
  1656. curr_node = btrfs_next_delayed_node(curr_node);
  1657. btrfs_release_delayed_node(prev_node);
  1658. }
  1659. }