ipmr.c 73 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058
  1. /*
  2. * IP multicast routing support for mrouted 3.6/3.8
  3. *
  4. * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
  5. * Linux Consultancy and Custom Driver Development
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. *
  12. * Fixes:
  13. * Michael Chastain : Incorrect size of copying.
  14. * Alan Cox : Added the cache manager code
  15. * Alan Cox : Fixed the clone/copy bug and device race.
  16. * Mike McLagan : Routing by source
  17. * Malcolm Beattie : Buffer handling fixes.
  18. * Alexey Kuznetsov : Double buffer free and other fixes.
  19. * SVR Anand : Fixed several multicast bugs and problems.
  20. * Alexey Kuznetsov : Status, optimisations and more.
  21. * Brad Parker : Better behaviour on mrouted upcall
  22. * overflow.
  23. * Carlos Picoto : PIMv1 Support
  24. * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header
  25. * Relax this requirement to work with older peers.
  26. *
  27. */
  28. #include <linux/uaccess.h>
  29. #include <linux/types.h>
  30. #include <linux/cache.h>
  31. #include <linux/capability.h>
  32. #include <linux/errno.h>
  33. #include <linux/mm.h>
  34. #include <linux/kernel.h>
  35. #include <linux/fcntl.h>
  36. #include <linux/stat.h>
  37. #include <linux/socket.h>
  38. #include <linux/in.h>
  39. #include <linux/inet.h>
  40. #include <linux/netdevice.h>
  41. #include <linux/inetdevice.h>
  42. #include <linux/igmp.h>
  43. #include <linux/proc_fs.h>
  44. #include <linux/seq_file.h>
  45. #include <linux/mroute.h>
  46. #include <linux/init.h>
  47. #include <linux/if_ether.h>
  48. #include <linux/slab.h>
  49. #include <net/net_namespace.h>
  50. #include <net/ip.h>
  51. #include <net/protocol.h>
  52. #include <linux/skbuff.h>
  53. #include <net/route.h>
  54. #include <net/icmp.h>
  55. #include <net/udp.h>
  56. #include <net/raw.h>
  57. #include <linux/notifier.h>
  58. #include <linux/if_arp.h>
  59. #include <linux/netfilter_ipv4.h>
  60. #include <linux/compat.h>
  61. #include <linux/export.h>
  62. #include <net/ip_tunnels.h>
  63. #include <net/checksum.h>
  64. #include <net/netlink.h>
  65. #include <net/fib_rules.h>
  66. #include <linux/netconf.h>
  67. #include <net/nexthop.h>
  68. #include <net/switchdev.h>
  69. struct ipmr_rule {
  70. struct fib_rule common;
  71. };
  72. struct ipmr_result {
  73. struct mr_table *mrt;
  74. };
  75. /* Big lock, protecting vif table, mrt cache and mroute socket state.
  76. * Note that the changes are semaphored via rtnl_lock.
  77. */
  78. static DEFINE_RWLOCK(mrt_lock);
  79. /* Multicast router control variables */
  80. /* Special spinlock for queue of unresolved entries */
  81. static DEFINE_SPINLOCK(mfc_unres_lock);
  82. /* We return to original Alan's scheme. Hash table of resolved
  83. * entries is changed only in process context and protected
  84. * with weak lock mrt_lock. Queue of unresolved entries is protected
  85. * with strong spinlock mfc_unres_lock.
  86. *
  87. * In this case data path is free of exclusive locks at all.
  88. */
  89. static struct kmem_cache *mrt_cachep __ro_after_init;
  90. static struct mr_table *ipmr_new_table(struct net *net, u32 id);
  91. static void ipmr_free_table(struct mr_table *mrt);
  92. static void ip_mr_forward(struct net *net, struct mr_table *mrt,
  93. struct net_device *dev, struct sk_buff *skb,
  94. struct mfc_cache *cache, int local);
  95. static int ipmr_cache_report(struct mr_table *mrt,
  96. struct sk_buff *pkt, vifi_t vifi, int assert);
  97. static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
  98. int cmd);
  99. static void igmpmsg_netlink_event(struct mr_table *mrt, struct sk_buff *pkt);
  100. static void mroute_clean_tables(struct mr_table *mrt, bool all);
  101. static void ipmr_expire_process(struct timer_list *t);
  102. #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
  103. #define ipmr_for_each_table(mrt, net) \
  104. list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
  105. static struct mr_table *ipmr_mr_table_iter(struct net *net,
  106. struct mr_table *mrt)
  107. {
  108. struct mr_table *ret;
  109. if (!mrt)
  110. ret = list_entry_rcu(net->ipv4.mr_tables.next,
  111. struct mr_table, list);
  112. else
  113. ret = list_entry_rcu(mrt->list.next,
  114. struct mr_table, list);
  115. if (&ret->list == &net->ipv4.mr_tables)
  116. return NULL;
  117. return ret;
  118. }
  119. static struct mr_table *ipmr_get_table(struct net *net, u32 id)
  120. {
  121. struct mr_table *mrt;
  122. ipmr_for_each_table(mrt, net) {
  123. if (mrt->id == id)
  124. return mrt;
  125. }
  126. return NULL;
  127. }
  128. static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
  129. struct mr_table **mrt)
  130. {
  131. int err;
  132. struct ipmr_result res;
  133. struct fib_lookup_arg arg = {
  134. .result = &res,
  135. .flags = FIB_LOOKUP_NOREF,
  136. };
  137. /* update flow if oif or iif point to device enslaved to l3mdev */
  138. l3mdev_update_flow(net, flowi4_to_flowi(flp4));
  139. err = fib_rules_lookup(net->ipv4.mr_rules_ops,
  140. flowi4_to_flowi(flp4), 0, &arg);
  141. if (err < 0)
  142. return err;
  143. *mrt = res.mrt;
  144. return 0;
  145. }
  146. static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
  147. int flags, struct fib_lookup_arg *arg)
  148. {
  149. struct ipmr_result *res = arg->result;
  150. struct mr_table *mrt;
  151. switch (rule->action) {
  152. case FR_ACT_TO_TBL:
  153. break;
  154. case FR_ACT_UNREACHABLE:
  155. return -ENETUNREACH;
  156. case FR_ACT_PROHIBIT:
  157. return -EACCES;
  158. case FR_ACT_BLACKHOLE:
  159. default:
  160. return -EINVAL;
  161. }
  162. arg->table = fib_rule_get_table(rule, arg);
  163. mrt = ipmr_get_table(rule->fr_net, arg->table);
  164. if (!mrt)
  165. return -EAGAIN;
  166. res->mrt = mrt;
  167. return 0;
  168. }
  169. static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
  170. {
  171. return 1;
  172. }
  173. static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
  174. FRA_GENERIC_POLICY,
  175. };
  176. static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
  177. struct fib_rule_hdr *frh, struct nlattr **tb,
  178. struct netlink_ext_ack *extack)
  179. {
  180. return 0;
  181. }
  182. static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
  183. struct nlattr **tb)
  184. {
  185. return 1;
  186. }
  187. static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
  188. struct fib_rule_hdr *frh)
  189. {
  190. frh->dst_len = 0;
  191. frh->src_len = 0;
  192. frh->tos = 0;
  193. return 0;
  194. }
  195. static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
  196. .family = RTNL_FAMILY_IPMR,
  197. .rule_size = sizeof(struct ipmr_rule),
  198. .addr_size = sizeof(u32),
  199. .action = ipmr_rule_action,
  200. .match = ipmr_rule_match,
  201. .configure = ipmr_rule_configure,
  202. .compare = ipmr_rule_compare,
  203. .fill = ipmr_rule_fill,
  204. .nlgroup = RTNLGRP_IPV4_RULE,
  205. .policy = ipmr_rule_policy,
  206. .owner = THIS_MODULE,
  207. };
  208. static int __net_init ipmr_rules_init(struct net *net)
  209. {
  210. struct fib_rules_ops *ops;
  211. struct mr_table *mrt;
  212. int err;
  213. ops = fib_rules_register(&ipmr_rules_ops_template, net);
  214. if (IS_ERR(ops))
  215. return PTR_ERR(ops);
  216. INIT_LIST_HEAD(&net->ipv4.mr_tables);
  217. mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
  218. if (IS_ERR(mrt)) {
  219. err = PTR_ERR(mrt);
  220. goto err1;
  221. }
  222. err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
  223. if (err < 0)
  224. goto err2;
  225. net->ipv4.mr_rules_ops = ops;
  226. return 0;
  227. err2:
  228. ipmr_free_table(mrt);
  229. err1:
  230. fib_rules_unregister(ops);
  231. return err;
  232. }
  233. static void __net_exit ipmr_rules_exit(struct net *net)
  234. {
  235. struct mr_table *mrt, *next;
  236. rtnl_lock();
  237. list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
  238. list_del(&mrt->list);
  239. ipmr_free_table(mrt);
  240. }
  241. fib_rules_unregister(net->ipv4.mr_rules_ops);
  242. rtnl_unlock();
  243. }
  244. static int ipmr_rules_dump(struct net *net, struct notifier_block *nb)
  245. {
  246. return fib_rules_dump(net, nb, RTNL_FAMILY_IPMR);
  247. }
  248. static unsigned int ipmr_rules_seq_read(struct net *net)
  249. {
  250. return fib_rules_seq_read(net, RTNL_FAMILY_IPMR);
  251. }
  252. bool ipmr_rule_default(const struct fib_rule *rule)
  253. {
  254. return fib_rule_matchall(rule) && rule->table == RT_TABLE_DEFAULT;
  255. }
  256. EXPORT_SYMBOL(ipmr_rule_default);
  257. #else
  258. #define ipmr_for_each_table(mrt, net) \
  259. for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
  260. static struct mr_table *ipmr_mr_table_iter(struct net *net,
  261. struct mr_table *mrt)
  262. {
  263. if (!mrt)
  264. return net->ipv4.mrt;
  265. return NULL;
  266. }
  267. static struct mr_table *ipmr_get_table(struct net *net, u32 id)
  268. {
  269. return net->ipv4.mrt;
  270. }
  271. static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
  272. struct mr_table **mrt)
  273. {
  274. *mrt = net->ipv4.mrt;
  275. return 0;
  276. }
  277. static int __net_init ipmr_rules_init(struct net *net)
  278. {
  279. struct mr_table *mrt;
  280. mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
  281. if (IS_ERR(mrt))
  282. return PTR_ERR(mrt);
  283. net->ipv4.mrt = mrt;
  284. return 0;
  285. }
  286. static void __net_exit ipmr_rules_exit(struct net *net)
  287. {
  288. rtnl_lock();
  289. ipmr_free_table(net->ipv4.mrt);
  290. net->ipv4.mrt = NULL;
  291. rtnl_unlock();
  292. }
  293. static int ipmr_rules_dump(struct net *net, struct notifier_block *nb)
  294. {
  295. return 0;
  296. }
  297. static unsigned int ipmr_rules_seq_read(struct net *net)
  298. {
  299. return 0;
  300. }
  301. bool ipmr_rule_default(const struct fib_rule *rule)
  302. {
  303. return true;
  304. }
  305. EXPORT_SYMBOL(ipmr_rule_default);
  306. #endif
  307. static inline int ipmr_hash_cmp(struct rhashtable_compare_arg *arg,
  308. const void *ptr)
  309. {
  310. const struct mfc_cache_cmp_arg *cmparg = arg->key;
  311. struct mfc_cache *c = (struct mfc_cache *)ptr;
  312. return cmparg->mfc_mcastgrp != c->mfc_mcastgrp ||
  313. cmparg->mfc_origin != c->mfc_origin;
  314. }
  315. static const struct rhashtable_params ipmr_rht_params = {
  316. .head_offset = offsetof(struct mr_mfc, mnode),
  317. .key_offset = offsetof(struct mfc_cache, cmparg),
  318. .key_len = sizeof(struct mfc_cache_cmp_arg),
  319. .nelem_hint = 3,
  320. .locks_mul = 1,
  321. .obj_cmpfn = ipmr_hash_cmp,
  322. .automatic_shrinking = true,
  323. };
  324. static void ipmr_new_table_set(struct mr_table *mrt,
  325. struct net *net)
  326. {
  327. #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
  328. list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
  329. #endif
  330. }
  331. static struct mfc_cache_cmp_arg ipmr_mr_table_ops_cmparg_any = {
  332. .mfc_mcastgrp = htonl(INADDR_ANY),
  333. .mfc_origin = htonl(INADDR_ANY),
  334. };
  335. static struct mr_table_ops ipmr_mr_table_ops = {
  336. .rht_params = &ipmr_rht_params,
  337. .cmparg_any = &ipmr_mr_table_ops_cmparg_any,
  338. };
  339. static struct mr_table *ipmr_new_table(struct net *net, u32 id)
  340. {
  341. struct mr_table *mrt;
  342. /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
  343. if (id != RT_TABLE_DEFAULT && id >= 1000000000)
  344. return ERR_PTR(-EINVAL);
  345. mrt = ipmr_get_table(net, id);
  346. if (mrt)
  347. return mrt;
  348. return mr_table_alloc(net, id, &ipmr_mr_table_ops,
  349. ipmr_expire_process, ipmr_new_table_set);
  350. }
  351. static void ipmr_free_table(struct mr_table *mrt)
  352. {
  353. del_timer_sync(&mrt->ipmr_expire_timer);
  354. mroute_clean_tables(mrt, true);
  355. rhltable_destroy(&mrt->mfc_hash);
  356. kfree(mrt);
  357. }
  358. /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
  359. static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
  360. {
  361. struct net *net = dev_net(dev);
  362. dev_close(dev);
  363. dev = __dev_get_by_name(net, "tunl0");
  364. if (dev) {
  365. const struct net_device_ops *ops = dev->netdev_ops;
  366. struct ifreq ifr;
  367. struct ip_tunnel_parm p;
  368. memset(&p, 0, sizeof(p));
  369. p.iph.daddr = v->vifc_rmt_addr.s_addr;
  370. p.iph.saddr = v->vifc_lcl_addr.s_addr;
  371. p.iph.version = 4;
  372. p.iph.ihl = 5;
  373. p.iph.protocol = IPPROTO_IPIP;
  374. sprintf(p.name, "dvmrp%d", v->vifc_vifi);
  375. ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
  376. if (ops->ndo_do_ioctl) {
  377. mm_segment_t oldfs = get_fs();
  378. set_fs(KERNEL_DS);
  379. ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
  380. set_fs(oldfs);
  381. }
  382. }
  383. }
  384. /* Initialize ipmr pimreg/tunnel in_device */
  385. static bool ipmr_init_vif_indev(const struct net_device *dev)
  386. {
  387. struct in_device *in_dev;
  388. ASSERT_RTNL();
  389. in_dev = __in_dev_get_rtnl(dev);
  390. if (!in_dev)
  391. return false;
  392. ipv4_devconf_setall(in_dev);
  393. neigh_parms_data_state_setall(in_dev->arp_parms);
  394. IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
  395. return true;
  396. }
  397. static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
  398. {
  399. struct net_device *dev;
  400. dev = __dev_get_by_name(net, "tunl0");
  401. if (dev) {
  402. const struct net_device_ops *ops = dev->netdev_ops;
  403. int err;
  404. struct ifreq ifr;
  405. struct ip_tunnel_parm p;
  406. memset(&p, 0, sizeof(p));
  407. p.iph.daddr = v->vifc_rmt_addr.s_addr;
  408. p.iph.saddr = v->vifc_lcl_addr.s_addr;
  409. p.iph.version = 4;
  410. p.iph.ihl = 5;
  411. p.iph.protocol = IPPROTO_IPIP;
  412. sprintf(p.name, "dvmrp%d", v->vifc_vifi);
  413. ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
  414. if (ops->ndo_do_ioctl) {
  415. mm_segment_t oldfs = get_fs();
  416. set_fs(KERNEL_DS);
  417. err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
  418. set_fs(oldfs);
  419. } else {
  420. err = -EOPNOTSUPP;
  421. }
  422. dev = NULL;
  423. if (err == 0 &&
  424. (dev = __dev_get_by_name(net, p.name)) != NULL) {
  425. dev->flags |= IFF_MULTICAST;
  426. if (!ipmr_init_vif_indev(dev))
  427. goto failure;
  428. if (dev_open(dev))
  429. goto failure;
  430. dev_hold(dev);
  431. }
  432. }
  433. return dev;
  434. failure:
  435. unregister_netdevice(dev);
  436. return NULL;
  437. }
  438. #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
  439. static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
  440. {
  441. struct net *net = dev_net(dev);
  442. struct mr_table *mrt;
  443. struct flowi4 fl4 = {
  444. .flowi4_oif = dev->ifindex,
  445. .flowi4_iif = skb->skb_iif ? : LOOPBACK_IFINDEX,
  446. .flowi4_mark = skb->mark,
  447. };
  448. int err;
  449. err = ipmr_fib_lookup(net, &fl4, &mrt);
  450. if (err < 0) {
  451. kfree_skb(skb);
  452. return err;
  453. }
  454. read_lock(&mrt_lock);
  455. dev->stats.tx_bytes += skb->len;
  456. dev->stats.tx_packets++;
  457. ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
  458. read_unlock(&mrt_lock);
  459. kfree_skb(skb);
  460. return NETDEV_TX_OK;
  461. }
  462. static int reg_vif_get_iflink(const struct net_device *dev)
  463. {
  464. return 0;
  465. }
  466. static const struct net_device_ops reg_vif_netdev_ops = {
  467. .ndo_start_xmit = reg_vif_xmit,
  468. .ndo_get_iflink = reg_vif_get_iflink,
  469. };
  470. static void reg_vif_setup(struct net_device *dev)
  471. {
  472. dev->type = ARPHRD_PIMREG;
  473. dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
  474. dev->flags = IFF_NOARP;
  475. dev->netdev_ops = &reg_vif_netdev_ops;
  476. dev->needs_free_netdev = true;
  477. dev->features |= NETIF_F_NETNS_LOCAL;
  478. }
  479. static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
  480. {
  481. struct net_device *dev;
  482. char name[IFNAMSIZ];
  483. if (mrt->id == RT_TABLE_DEFAULT)
  484. sprintf(name, "pimreg");
  485. else
  486. sprintf(name, "pimreg%u", mrt->id);
  487. dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
  488. if (!dev)
  489. return NULL;
  490. dev_net_set(dev, net);
  491. if (register_netdevice(dev)) {
  492. free_netdev(dev);
  493. return NULL;
  494. }
  495. if (!ipmr_init_vif_indev(dev))
  496. goto failure;
  497. if (dev_open(dev))
  498. goto failure;
  499. dev_hold(dev);
  500. return dev;
  501. failure:
  502. unregister_netdevice(dev);
  503. return NULL;
  504. }
  505. /* called with rcu_read_lock() */
  506. static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
  507. unsigned int pimlen)
  508. {
  509. struct net_device *reg_dev = NULL;
  510. struct iphdr *encap;
  511. encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
  512. /* Check that:
  513. * a. packet is really sent to a multicast group
  514. * b. packet is not a NULL-REGISTER
  515. * c. packet is not truncated
  516. */
  517. if (!ipv4_is_multicast(encap->daddr) ||
  518. encap->tot_len == 0 ||
  519. ntohs(encap->tot_len) + pimlen > skb->len)
  520. return 1;
  521. read_lock(&mrt_lock);
  522. if (mrt->mroute_reg_vif_num >= 0)
  523. reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
  524. read_unlock(&mrt_lock);
  525. if (!reg_dev)
  526. return 1;
  527. skb->mac_header = skb->network_header;
  528. skb_pull(skb, (u8 *)encap - skb->data);
  529. skb_reset_network_header(skb);
  530. skb->protocol = htons(ETH_P_IP);
  531. skb->ip_summed = CHECKSUM_NONE;
  532. skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
  533. netif_rx(skb);
  534. return NET_RX_SUCCESS;
  535. }
  536. #else
  537. static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
  538. {
  539. return NULL;
  540. }
  541. #endif
  542. static int call_ipmr_vif_entry_notifiers(struct net *net,
  543. enum fib_event_type event_type,
  544. struct vif_device *vif,
  545. vifi_t vif_index, u32 tb_id)
  546. {
  547. return mr_call_vif_notifiers(net, RTNL_FAMILY_IPMR, event_type,
  548. vif, vif_index, tb_id,
  549. &net->ipv4.ipmr_seq);
  550. }
  551. static int call_ipmr_mfc_entry_notifiers(struct net *net,
  552. enum fib_event_type event_type,
  553. struct mfc_cache *mfc, u32 tb_id)
  554. {
  555. return mr_call_mfc_notifiers(net, RTNL_FAMILY_IPMR, event_type,
  556. &mfc->_c, tb_id, &net->ipv4.ipmr_seq);
  557. }
  558. /**
  559. * vif_delete - Delete a VIF entry
  560. * @notify: Set to 1, if the caller is a notifier_call
  561. */
  562. static int vif_delete(struct mr_table *mrt, int vifi, int notify,
  563. struct list_head *head)
  564. {
  565. struct net *net = read_pnet(&mrt->net);
  566. struct vif_device *v;
  567. struct net_device *dev;
  568. struct in_device *in_dev;
  569. if (vifi < 0 || vifi >= mrt->maxvif)
  570. return -EADDRNOTAVAIL;
  571. v = &mrt->vif_table[vifi];
  572. if (VIF_EXISTS(mrt, vifi))
  573. call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_DEL, v, vifi,
  574. mrt->id);
  575. write_lock_bh(&mrt_lock);
  576. dev = v->dev;
  577. v->dev = NULL;
  578. if (!dev) {
  579. write_unlock_bh(&mrt_lock);
  580. return -EADDRNOTAVAIL;
  581. }
  582. if (vifi == mrt->mroute_reg_vif_num)
  583. mrt->mroute_reg_vif_num = -1;
  584. if (vifi + 1 == mrt->maxvif) {
  585. int tmp;
  586. for (tmp = vifi - 1; tmp >= 0; tmp--) {
  587. if (VIF_EXISTS(mrt, tmp))
  588. break;
  589. }
  590. mrt->maxvif = tmp+1;
  591. }
  592. write_unlock_bh(&mrt_lock);
  593. dev_set_allmulti(dev, -1);
  594. in_dev = __in_dev_get_rtnl(dev);
  595. if (in_dev) {
  596. IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
  597. inet_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF,
  598. NETCONFA_MC_FORWARDING,
  599. dev->ifindex, &in_dev->cnf);
  600. ip_rt_multicast_event(in_dev);
  601. }
  602. if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
  603. unregister_netdevice_queue(dev, head);
  604. dev_put(dev);
  605. return 0;
  606. }
  607. static void ipmr_cache_free_rcu(struct rcu_head *head)
  608. {
  609. struct mr_mfc *c = container_of(head, struct mr_mfc, rcu);
  610. kmem_cache_free(mrt_cachep, (struct mfc_cache *)c);
  611. }
  612. static void ipmr_cache_free(struct mfc_cache *c)
  613. {
  614. call_rcu(&c->_c.rcu, ipmr_cache_free_rcu);
  615. }
  616. /* Destroy an unresolved cache entry, killing queued skbs
  617. * and reporting error to netlink readers.
  618. */
  619. static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
  620. {
  621. struct net *net = read_pnet(&mrt->net);
  622. struct sk_buff *skb;
  623. struct nlmsgerr *e;
  624. atomic_dec(&mrt->cache_resolve_queue_len);
  625. while ((skb = skb_dequeue(&c->_c.mfc_un.unres.unresolved))) {
  626. if (ip_hdr(skb)->version == 0) {
  627. struct nlmsghdr *nlh = skb_pull(skb,
  628. sizeof(struct iphdr));
  629. nlh->nlmsg_type = NLMSG_ERROR;
  630. nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
  631. skb_trim(skb, nlh->nlmsg_len);
  632. e = nlmsg_data(nlh);
  633. e->error = -ETIMEDOUT;
  634. memset(&e->msg, 0, sizeof(e->msg));
  635. rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
  636. } else {
  637. kfree_skb(skb);
  638. }
  639. }
  640. ipmr_cache_free(c);
  641. }
  642. /* Timer process for the unresolved queue. */
  643. static void ipmr_expire_process(struct timer_list *t)
  644. {
  645. struct mr_table *mrt = from_timer(mrt, t, ipmr_expire_timer);
  646. struct mr_mfc *c, *next;
  647. unsigned long expires;
  648. unsigned long now;
  649. if (!spin_trylock(&mfc_unres_lock)) {
  650. mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
  651. return;
  652. }
  653. if (list_empty(&mrt->mfc_unres_queue))
  654. goto out;
  655. now = jiffies;
  656. expires = 10*HZ;
  657. list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
  658. if (time_after(c->mfc_un.unres.expires, now)) {
  659. unsigned long interval = c->mfc_un.unres.expires - now;
  660. if (interval < expires)
  661. expires = interval;
  662. continue;
  663. }
  664. list_del(&c->list);
  665. mroute_netlink_event(mrt, (struct mfc_cache *)c, RTM_DELROUTE);
  666. ipmr_destroy_unres(mrt, (struct mfc_cache *)c);
  667. }
  668. if (!list_empty(&mrt->mfc_unres_queue))
  669. mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
  670. out:
  671. spin_unlock(&mfc_unres_lock);
  672. }
  673. /* Fill oifs list. It is called under write locked mrt_lock. */
  674. static void ipmr_update_thresholds(struct mr_table *mrt, struct mr_mfc *cache,
  675. unsigned char *ttls)
  676. {
  677. int vifi;
  678. cache->mfc_un.res.minvif = MAXVIFS;
  679. cache->mfc_un.res.maxvif = 0;
  680. memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
  681. for (vifi = 0; vifi < mrt->maxvif; vifi++) {
  682. if (VIF_EXISTS(mrt, vifi) &&
  683. ttls[vifi] && ttls[vifi] < 255) {
  684. cache->mfc_un.res.ttls[vifi] = ttls[vifi];
  685. if (cache->mfc_un.res.minvif > vifi)
  686. cache->mfc_un.res.minvif = vifi;
  687. if (cache->mfc_un.res.maxvif <= vifi)
  688. cache->mfc_un.res.maxvif = vifi + 1;
  689. }
  690. }
  691. cache->mfc_un.res.lastuse = jiffies;
  692. }
  693. static int vif_add(struct net *net, struct mr_table *mrt,
  694. struct vifctl *vifc, int mrtsock)
  695. {
  696. int vifi = vifc->vifc_vifi;
  697. struct switchdev_attr attr = {
  698. .id = SWITCHDEV_ATTR_ID_PORT_PARENT_ID,
  699. };
  700. struct vif_device *v = &mrt->vif_table[vifi];
  701. struct net_device *dev;
  702. struct in_device *in_dev;
  703. int err;
  704. /* Is vif busy ? */
  705. if (VIF_EXISTS(mrt, vifi))
  706. return -EADDRINUSE;
  707. switch (vifc->vifc_flags) {
  708. case VIFF_REGISTER:
  709. if (!ipmr_pimsm_enabled())
  710. return -EINVAL;
  711. /* Special Purpose VIF in PIM
  712. * All the packets will be sent to the daemon
  713. */
  714. if (mrt->mroute_reg_vif_num >= 0)
  715. return -EADDRINUSE;
  716. dev = ipmr_reg_vif(net, mrt);
  717. if (!dev)
  718. return -ENOBUFS;
  719. err = dev_set_allmulti(dev, 1);
  720. if (err) {
  721. unregister_netdevice(dev);
  722. dev_put(dev);
  723. return err;
  724. }
  725. break;
  726. case VIFF_TUNNEL:
  727. dev = ipmr_new_tunnel(net, vifc);
  728. if (!dev)
  729. return -ENOBUFS;
  730. err = dev_set_allmulti(dev, 1);
  731. if (err) {
  732. ipmr_del_tunnel(dev, vifc);
  733. dev_put(dev);
  734. return err;
  735. }
  736. break;
  737. case VIFF_USE_IFINDEX:
  738. case 0:
  739. if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
  740. dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
  741. if (dev && !__in_dev_get_rtnl(dev)) {
  742. dev_put(dev);
  743. return -EADDRNOTAVAIL;
  744. }
  745. } else {
  746. dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
  747. }
  748. if (!dev)
  749. return -EADDRNOTAVAIL;
  750. err = dev_set_allmulti(dev, 1);
  751. if (err) {
  752. dev_put(dev);
  753. return err;
  754. }
  755. break;
  756. default:
  757. return -EINVAL;
  758. }
  759. in_dev = __in_dev_get_rtnl(dev);
  760. if (!in_dev) {
  761. dev_put(dev);
  762. return -EADDRNOTAVAIL;
  763. }
  764. IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
  765. inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_MC_FORWARDING,
  766. dev->ifindex, &in_dev->cnf);
  767. ip_rt_multicast_event(in_dev);
  768. /* Fill in the VIF structures */
  769. vif_device_init(v, dev, vifc->vifc_rate_limit,
  770. vifc->vifc_threshold,
  771. vifc->vifc_flags | (!mrtsock ? VIFF_STATIC : 0),
  772. (VIFF_TUNNEL | VIFF_REGISTER));
  773. attr.orig_dev = dev;
  774. if (!switchdev_port_attr_get(dev, &attr)) {
  775. memcpy(v->dev_parent_id.id, attr.u.ppid.id, attr.u.ppid.id_len);
  776. v->dev_parent_id.id_len = attr.u.ppid.id_len;
  777. } else {
  778. v->dev_parent_id.id_len = 0;
  779. }
  780. v->local = vifc->vifc_lcl_addr.s_addr;
  781. v->remote = vifc->vifc_rmt_addr.s_addr;
  782. /* And finish update writing critical data */
  783. write_lock_bh(&mrt_lock);
  784. v->dev = dev;
  785. if (v->flags & VIFF_REGISTER)
  786. mrt->mroute_reg_vif_num = vifi;
  787. if (vifi+1 > mrt->maxvif)
  788. mrt->maxvif = vifi+1;
  789. write_unlock_bh(&mrt_lock);
  790. call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_ADD, v, vifi, mrt->id);
  791. return 0;
  792. }
  793. /* called with rcu_read_lock() */
  794. static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
  795. __be32 origin,
  796. __be32 mcastgrp)
  797. {
  798. struct mfc_cache_cmp_arg arg = {
  799. .mfc_mcastgrp = mcastgrp,
  800. .mfc_origin = origin
  801. };
  802. return mr_mfc_find(mrt, &arg);
  803. }
  804. /* Look for a (*,G) entry */
  805. static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
  806. __be32 mcastgrp, int vifi)
  807. {
  808. struct mfc_cache_cmp_arg arg = {
  809. .mfc_mcastgrp = mcastgrp,
  810. .mfc_origin = htonl(INADDR_ANY)
  811. };
  812. if (mcastgrp == htonl(INADDR_ANY))
  813. return mr_mfc_find_any_parent(mrt, vifi);
  814. return mr_mfc_find_any(mrt, vifi, &arg);
  815. }
  816. /* Look for a (S,G,iif) entry if parent != -1 */
  817. static struct mfc_cache *ipmr_cache_find_parent(struct mr_table *mrt,
  818. __be32 origin, __be32 mcastgrp,
  819. int parent)
  820. {
  821. struct mfc_cache_cmp_arg arg = {
  822. .mfc_mcastgrp = mcastgrp,
  823. .mfc_origin = origin,
  824. };
  825. return mr_mfc_find_parent(mrt, &arg, parent);
  826. }
  827. /* Allocate a multicast cache entry */
  828. static struct mfc_cache *ipmr_cache_alloc(void)
  829. {
  830. struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
  831. if (c) {
  832. c->_c.mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1;
  833. c->_c.mfc_un.res.minvif = MAXVIFS;
  834. c->_c.free = ipmr_cache_free_rcu;
  835. refcount_set(&c->_c.mfc_un.res.refcount, 1);
  836. }
  837. return c;
  838. }
  839. static struct mfc_cache *ipmr_cache_alloc_unres(void)
  840. {
  841. struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
  842. if (c) {
  843. skb_queue_head_init(&c->_c.mfc_un.unres.unresolved);
  844. c->_c.mfc_un.unres.expires = jiffies + 10 * HZ;
  845. }
  846. return c;
  847. }
  848. /* A cache entry has gone into a resolved state from queued */
  849. static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
  850. struct mfc_cache *uc, struct mfc_cache *c)
  851. {
  852. struct sk_buff *skb;
  853. struct nlmsgerr *e;
  854. /* Play the pending entries through our router */
  855. while ((skb = __skb_dequeue(&uc->_c.mfc_un.unres.unresolved))) {
  856. if (ip_hdr(skb)->version == 0) {
  857. struct nlmsghdr *nlh = skb_pull(skb,
  858. sizeof(struct iphdr));
  859. if (mr_fill_mroute(mrt, skb, &c->_c,
  860. nlmsg_data(nlh)) > 0) {
  861. nlh->nlmsg_len = skb_tail_pointer(skb) -
  862. (u8 *)nlh;
  863. } else {
  864. nlh->nlmsg_type = NLMSG_ERROR;
  865. nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
  866. skb_trim(skb, nlh->nlmsg_len);
  867. e = nlmsg_data(nlh);
  868. e->error = -EMSGSIZE;
  869. memset(&e->msg, 0, sizeof(e->msg));
  870. }
  871. rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
  872. } else {
  873. ip_mr_forward(net, mrt, skb->dev, skb, c, 0);
  874. }
  875. }
  876. }
  877. /* Bounce a cache query up to mrouted and netlink.
  878. *
  879. * Called under mrt_lock.
  880. */
  881. static int ipmr_cache_report(struct mr_table *mrt,
  882. struct sk_buff *pkt, vifi_t vifi, int assert)
  883. {
  884. const int ihl = ip_hdrlen(pkt);
  885. struct sock *mroute_sk;
  886. struct igmphdr *igmp;
  887. struct igmpmsg *msg;
  888. struct sk_buff *skb;
  889. int ret;
  890. if (assert == IGMPMSG_WHOLEPKT)
  891. skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
  892. else
  893. skb = alloc_skb(128, GFP_ATOMIC);
  894. if (!skb)
  895. return -ENOBUFS;
  896. if (assert == IGMPMSG_WHOLEPKT) {
  897. /* Ugly, but we have no choice with this interface.
  898. * Duplicate old header, fix ihl, length etc.
  899. * And all this only to mangle msg->im_msgtype and
  900. * to set msg->im_mbz to "mbz" :-)
  901. */
  902. skb_push(skb, sizeof(struct iphdr));
  903. skb_reset_network_header(skb);
  904. skb_reset_transport_header(skb);
  905. msg = (struct igmpmsg *)skb_network_header(skb);
  906. memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
  907. msg->im_msgtype = IGMPMSG_WHOLEPKT;
  908. msg->im_mbz = 0;
  909. msg->im_vif = mrt->mroute_reg_vif_num;
  910. ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
  911. ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
  912. sizeof(struct iphdr));
  913. } else {
  914. /* Copy the IP header */
  915. skb_set_network_header(skb, skb->len);
  916. skb_put(skb, ihl);
  917. skb_copy_to_linear_data(skb, pkt->data, ihl);
  918. /* Flag to the kernel this is a route add */
  919. ip_hdr(skb)->protocol = 0;
  920. msg = (struct igmpmsg *)skb_network_header(skb);
  921. msg->im_vif = vifi;
  922. skb_dst_set(skb, dst_clone(skb_dst(pkt)));
  923. /* Add our header */
  924. igmp = skb_put(skb, sizeof(struct igmphdr));
  925. igmp->type = assert;
  926. msg->im_msgtype = assert;
  927. igmp->code = 0;
  928. ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */
  929. skb->transport_header = skb->network_header;
  930. }
  931. rcu_read_lock();
  932. mroute_sk = rcu_dereference(mrt->mroute_sk);
  933. if (!mroute_sk) {
  934. rcu_read_unlock();
  935. kfree_skb(skb);
  936. return -EINVAL;
  937. }
  938. igmpmsg_netlink_event(mrt, skb);
  939. /* Deliver to mrouted */
  940. ret = sock_queue_rcv_skb(mroute_sk, skb);
  941. rcu_read_unlock();
  942. if (ret < 0) {
  943. net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
  944. kfree_skb(skb);
  945. }
  946. return ret;
  947. }
  948. /* Queue a packet for resolution. It gets locked cache entry! */
  949. static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi,
  950. struct sk_buff *skb, struct net_device *dev)
  951. {
  952. const struct iphdr *iph = ip_hdr(skb);
  953. struct mfc_cache *c;
  954. bool found = false;
  955. int err;
  956. spin_lock_bh(&mfc_unres_lock);
  957. list_for_each_entry(c, &mrt->mfc_unres_queue, _c.list) {
  958. if (c->mfc_mcastgrp == iph->daddr &&
  959. c->mfc_origin == iph->saddr) {
  960. found = true;
  961. break;
  962. }
  963. }
  964. if (!found) {
  965. /* Create a new entry if allowable */
  966. if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
  967. (c = ipmr_cache_alloc_unres()) == NULL) {
  968. spin_unlock_bh(&mfc_unres_lock);
  969. kfree_skb(skb);
  970. return -ENOBUFS;
  971. }
  972. /* Fill in the new cache entry */
  973. c->_c.mfc_parent = -1;
  974. c->mfc_origin = iph->saddr;
  975. c->mfc_mcastgrp = iph->daddr;
  976. /* Reflect first query at mrouted. */
  977. err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
  978. if (err < 0) {
  979. /* If the report failed throw the cache entry
  980. out - Brad Parker
  981. */
  982. spin_unlock_bh(&mfc_unres_lock);
  983. ipmr_cache_free(c);
  984. kfree_skb(skb);
  985. return err;
  986. }
  987. atomic_inc(&mrt->cache_resolve_queue_len);
  988. list_add(&c->_c.list, &mrt->mfc_unres_queue);
  989. mroute_netlink_event(mrt, c, RTM_NEWROUTE);
  990. if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
  991. mod_timer(&mrt->ipmr_expire_timer,
  992. c->_c.mfc_un.unres.expires);
  993. }
  994. /* See if we can append the packet */
  995. if (c->_c.mfc_un.unres.unresolved.qlen > 3) {
  996. kfree_skb(skb);
  997. err = -ENOBUFS;
  998. } else {
  999. if (dev) {
  1000. skb->dev = dev;
  1001. skb->skb_iif = dev->ifindex;
  1002. }
  1003. skb_queue_tail(&c->_c.mfc_un.unres.unresolved, skb);
  1004. err = 0;
  1005. }
  1006. spin_unlock_bh(&mfc_unres_lock);
  1007. return err;
  1008. }
  1009. /* MFC cache manipulation by user space mroute daemon */
  1010. static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
  1011. {
  1012. struct net *net = read_pnet(&mrt->net);
  1013. struct mfc_cache *c;
  1014. /* The entries are added/deleted only under RTNL */
  1015. rcu_read_lock();
  1016. c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
  1017. mfc->mfcc_mcastgrp.s_addr, parent);
  1018. rcu_read_unlock();
  1019. if (!c)
  1020. return -ENOENT;
  1021. rhltable_remove(&mrt->mfc_hash, &c->_c.mnode, ipmr_rht_params);
  1022. list_del_rcu(&c->_c.list);
  1023. call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, c, mrt->id);
  1024. mroute_netlink_event(mrt, c, RTM_DELROUTE);
  1025. mr_cache_put(&c->_c);
  1026. return 0;
  1027. }
  1028. static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
  1029. struct mfcctl *mfc, int mrtsock, int parent)
  1030. {
  1031. struct mfc_cache *uc, *c;
  1032. struct mr_mfc *_uc;
  1033. bool found;
  1034. int ret;
  1035. if (mfc->mfcc_parent >= MAXVIFS)
  1036. return -ENFILE;
  1037. /* The entries are added/deleted only under RTNL */
  1038. rcu_read_lock();
  1039. c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
  1040. mfc->mfcc_mcastgrp.s_addr, parent);
  1041. rcu_read_unlock();
  1042. if (c) {
  1043. write_lock_bh(&mrt_lock);
  1044. c->_c.mfc_parent = mfc->mfcc_parent;
  1045. ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
  1046. if (!mrtsock)
  1047. c->_c.mfc_flags |= MFC_STATIC;
  1048. write_unlock_bh(&mrt_lock);
  1049. call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, c,
  1050. mrt->id);
  1051. mroute_netlink_event(mrt, c, RTM_NEWROUTE);
  1052. return 0;
  1053. }
  1054. if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
  1055. !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
  1056. return -EINVAL;
  1057. c = ipmr_cache_alloc();
  1058. if (!c)
  1059. return -ENOMEM;
  1060. c->mfc_origin = mfc->mfcc_origin.s_addr;
  1061. c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
  1062. c->_c.mfc_parent = mfc->mfcc_parent;
  1063. ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
  1064. if (!mrtsock)
  1065. c->_c.mfc_flags |= MFC_STATIC;
  1066. ret = rhltable_insert_key(&mrt->mfc_hash, &c->cmparg, &c->_c.mnode,
  1067. ipmr_rht_params);
  1068. if (ret) {
  1069. pr_err("ipmr: rhtable insert error %d\n", ret);
  1070. ipmr_cache_free(c);
  1071. return ret;
  1072. }
  1073. list_add_tail_rcu(&c->_c.list, &mrt->mfc_cache_list);
  1074. /* Check to see if we resolved a queued list. If so we
  1075. * need to send on the frames and tidy up.
  1076. */
  1077. found = false;
  1078. spin_lock_bh(&mfc_unres_lock);
  1079. list_for_each_entry(_uc, &mrt->mfc_unres_queue, list) {
  1080. uc = (struct mfc_cache *)_uc;
  1081. if (uc->mfc_origin == c->mfc_origin &&
  1082. uc->mfc_mcastgrp == c->mfc_mcastgrp) {
  1083. list_del(&_uc->list);
  1084. atomic_dec(&mrt->cache_resolve_queue_len);
  1085. found = true;
  1086. break;
  1087. }
  1088. }
  1089. if (list_empty(&mrt->mfc_unres_queue))
  1090. del_timer(&mrt->ipmr_expire_timer);
  1091. spin_unlock_bh(&mfc_unres_lock);
  1092. if (found) {
  1093. ipmr_cache_resolve(net, mrt, uc, c);
  1094. ipmr_cache_free(uc);
  1095. }
  1096. call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, c, mrt->id);
  1097. mroute_netlink_event(mrt, c, RTM_NEWROUTE);
  1098. return 0;
  1099. }
  1100. /* Close the multicast socket, and clear the vif tables etc */
  1101. static void mroute_clean_tables(struct mr_table *mrt, bool all)
  1102. {
  1103. struct net *net = read_pnet(&mrt->net);
  1104. struct mr_mfc *c, *tmp;
  1105. struct mfc_cache *cache;
  1106. LIST_HEAD(list);
  1107. int i;
  1108. /* Shut down all active vif entries */
  1109. for (i = 0; i < mrt->maxvif; i++) {
  1110. if (!all && (mrt->vif_table[i].flags & VIFF_STATIC))
  1111. continue;
  1112. vif_delete(mrt, i, 0, &list);
  1113. }
  1114. unregister_netdevice_many(&list);
  1115. /* Wipe the cache */
  1116. list_for_each_entry_safe(c, tmp, &mrt->mfc_cache_list, list) {
  1117. if (!all && (c->mfc_flags & MFC_STATIC))
  1118. continue;
  1119. rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params);
  1120. list_del_rcu(&c->list);
  1121. cache = (struct mfc_cache *)c;
  1122. call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, cache,
  1123. mrt->id);
  1124. mroute_netlink_event(mrt, cache, RTM_DELROUTE);
  1125. mr_cache_put(c);
  1126. }
  1127. if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
  1128. spin_lock_bh(&mfc_unres_lock);
  1129. list_for_each_entry_safe(c, tmp, &mrt->mfc_unres_queue, list) {
  1130. list_del(&c->list);
  1131. cache = (struct mfc_cache *)c;
  1132. mroute_netlink_event(mrt, cache, RTM_DELROUTE);
  1133. ipmr_destroy_unres(mrt, cache);
  1134. }
  1135. spin_unlock_bh(&mfc_unres_lock);
  1136. }
  1137. }
  1138. /* called from ip_ra_control(), before an RCU grace period,
  1139. * we dont need to call synchronize_rcu() here
  1140. */
  1141. static void mrtsock_destruct(struct sock *sk)
  1142. {
  1143. struct net *net = sock_net(sk);
  1144. struct mr_table *mrt;
  1145. rtnl_lock();
  1146. ipmr_for_each_table(mrt, net) {
  1147. if (sk == rtnl_dereference(mrt->mroute_sk)) {
  1148. IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
  1149. inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
  1150. NETCONFA_MC_FORWARDING,
  1151. NETCONFA_IFINDEX_ALL,
  1152. net->ipv4.devconf_all);
  1153. RCU_INIT_POINTER(mrt->mroute_sk, NULL);
  1154. mroute_clean_tables(mrt, false);
  1155. }
  1156. }
  1157. rtnl_unlock();
  1158. }
  1159. /* Socket options and virtual interface manipulation. The whole
  1160. * virtual interface system is a complete heap, but unfortunately
  1161. * that's how BSD mrouted happens to think. Maybe one day with a proper
  1162. * MOSPF/PIM router set up we can clean this up.
  1163. */
  1164. int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval,
  1165. unsigned int optlen)
  1166. {
  1167. struct net *net = sock_net(sk);
  1168. int val, ret = 0, parent = 0;
  1169. struct mr_table *mrt;
  1170. struct vifctl vif;
  1171. struct mfcctl mfc;
  1172. u32 uval;
  1173. /* There's one exception to the lock - MRT_DONE which needs to unlock */
  1174. rtnl_lock();
  1175. if (sk->sk_type != SOCK_RAW ||
  1176. inet_sk(sk)->inet_num != IPPROTO_IGMP) {
  1177. ret = -EOPNOTSUPP;
  1178. goto out_unlock;
  1179. }
  1180. mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
  1181. if (!mrt) {
  1182. ret = -ENOENT;
  1183. goto out_unlock;
  1184. }
  1185. if (optname != MRT_INIT) {
  1186. if (sk != rcu_access_pointer(mrt->mroute_sk) &&
  1187. !ns_capable(net->user_ns, CAP_NET_ADMIN)) {
  1188. ret = -EACCES;
  1189. goto out_unlock;
  1190. }
  1191. }
  1192. switch (optname) {
  1193. case MRT_INIT:
  1194. if (optlen != sizeof(int)) {
  1195. ret = -EINVAL;
  1196. break;
  1197. }
  1198. if (rtnl_dereference(mrt->mroute_sk)) {
  1199. ret = -EADDRINUSE;
  1200. break;
  1201. }
  1202. ret = ip_ra_control(sk, 1, mrtsock_destruct);
  1203. if (ret == 0) {
  1204. rcu_assign_pointer(mrt->mroute_sk, sk);
  1205. IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
  1206. inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
  1207. NETCONFA_MC_FORWARDING,
  1208. NETCONFA_IFINDEX_ALL,
  1209. net->ipv4.devconf_all);
  1210. }
  1211. break;
  1212. case MRT_DONE:
  1213. if (sk != rcu_access_pointer(mrt->mroute_sk)) {
  1214. ret = -EACCES;
  1215. } else {
  1216. /* We need to unlock here because mrtsock_destruct takes
  1217. * care of rtnl itself and we can't change that due to
  1218. * the IP_ROUTER_ALERT setsockopt which runs without it.
  1219. */
  1220. rtnl_unlock();
  1221. ret = ip_ra_control(sk, 0, NULL);
  1222. goto out;
  1223. }
  1224. break;
  1225. case MRT_ADD_VIF:
  1226. case MRT_DEL_VIF:
  1227. if (optlen != sizeof(vif)) {
  1228. ret = -EINVAL;
  1229. break;
  1230. }
  1231. if (copy_from_user(&vif, optval, sizeof(vif))) {
  1232. ret = -EFAULT;
  1233. break;
  1234. }
  1235. if (vif.vifc_vifi >= MAXVIFS) {
  1236. ret = -ENFILE;
  1237. break;
  1238. }
  1239. if (optname == MRT_ADD_VIF) {
  1240. ret = vif_add(net, mrt, &vif,
  1241. sk == rtnl_dereference(mrt->mroute_sk));
  1242. } else {
  1243. ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
  1244. }
  1245. break;
  1246. /* Manipulate the forwarding caches. These live
  1247. * in a sort of kernel/user symbiosis.
  1248. */
  1249. case MRT_ADD_MFC:
  1250. case MRT_DEL_MFC:
  1251. parent = -1;
  1252. /* fall through */
  1253. case MRT_ADD_MFC_PROXY:
  1254. case MRT_DEL_MFC_PROXY:
  1255. if (optlen != sizeof(mfc)) {
  1256. ret = -EINVAL;
  1257. break;
  1258. }
  1259. if (copy_from_user(&mfc, optval, sizeof(mfc))) {
  1260. ret = -EFAULT;
  1261. break;
  1262. }
  1263. if (parent == 0)
  1264. parent = mfc.mfcc_parent;
  1265. if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
  1266. ret = ipmr_mfc_delete(mrt, &mfc, parent);
  1267. else
  1268. ret = ipmr_mfc_add(net, mrt, &mfc,
  1269. sk == rtnl_dereference(mrt->mroute_sk),
  1270. parent);
  1271. break;
  1272. /* Control PIM assert. */
  1273. case MRT_ASSERT:
  1274. if (optlen != sizeof(val)) {
  1275. ret = -EINVAL;
  1276. break;
  1277. }
  1278. if (get_user(val, (int __user *)optval)) {
  1279. ret = -EFAULT;
  1280. break;
  1281. }
  1282. mrt->mroute_do_assert = val;
  1283. break;
  1284. case MRT_PIM:
  1285. if (!ipmr_pimsm_enabled()) {
  1286. ret = -ENOPROTOOPT;
  1287. break;
  1288. }
  1289. if (optlen != sizeof(val)) {
  1290. ret = -EINVAL;
  1291. break;
  1292. }
  1293. if (get_user(val, (int __user *)optval)) {
  1294. ret = -EFAULT;
  1295. break;
  1296. }
  1297. val = !!val;
  1298. if (val != mrt->mroute_do_pim) {
  1299. mrt->mroute_do_pim = val;
  1300. mrt->mroute_do_assert = val;
  1301. }
  1302. break;
  1303. case MRT_TABLE:
  1304. if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) {
  1305. ret = -ENOPROTOOPT;
  1306. break;
  1307. }
  1308. if (optlen != sizeof(uval)) {
  1309. ret = -EINVAL;
  1310. break;
  1311. }
  1312. if (get_user(uval, (u32 __user *)optval)) {
  1313. ret = -EFAULT;
  1314. break;
  1315. }
  1316. if (sk == rtnl_dereference(mrt->mroute_sk)) {
  1317. ret = -EBUSY;
  1318. } else {
  1319. mrt = ipmr_new_table(net, uval);
  1320. if (IS_ERR(mrt))
  1321. ret = PTR_ERR(mrt);
  1322. else
  1323. raw_sk(sk)->ipmr_table = uval;
  1324. }
  1325. break;
  1326. /* Spurious command, or MRT_VERSION which you cannot set. */
  1327. default:
  1328. ret = -ENOPROTOOPT;
  1329. }
  1330. out_unlock:
  1331. rtnl_unlock();
  1332. out:
  1333. return ret;
  1334. }
  1335. /* Getsock opt support for the multicast routing system. */
  1336. int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
  1337. {
  1338. int olr;
  1339. int val;
  1340. struct net *net = sock_net(sk);
  1341. struct mr_table *mrt;
  1342. if (sk->sk_type != SOCK_RAW ||
  1343. inet_sk(sk)->inet_num != IPPROTO_IGMP)
  1344. return -EOPNOTSUPP;
  1345. mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
  1346. if (!mrt)
  1347. return -ENOENT;
  1348. switch (optname) {
  1349. case MRT_VERSION:
  1350. val = 0x0305;
  1351. break;
  1352. case MRT_PIM:
  1353. if (!ipmr_pimsm_enabled())
  1354. return -ENOPROTOOPT;
  1355. val = mrt->mroute_do_pim;
  1356. break;
  1357. case MRT_ASSERT:
  1358. val = mrt->mroute_do_assert;
  1359. break;
  1360. default:
  1361. return -ENOPROTOOPT;
  1362. }
  1363. if (get_user(olr, optlen))
  1364. return -EFAULT;
  1365. olr = min_t(unsigned int, olr, sizeof(int));
  1366. if (olr < 0)
  1367. return -EINVAL;
  1368. if (put_user(olr, optlen))
  1369. return -EFAULT;
  1370. if (copy_to_user(optval, &val, olr))
  1371. return -EFAULT;
  1372. return 0;
  1373. }
  1374. /* The IP multicast ioctl support routines. */
  1375. int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
  1376. {
  1377. struct sioc_sg_req sr;
  1378. struct sioc_vif_req vr;
  1379. struct vif_device *vif;
  1380. struct mfc_cache *c;
  1381. struct net *net = sock_net(sk);
  1382. struct mr_table *mrt;
  1383. mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
  1384. if (!mrt)
  1385. return -ENOENT;
  1386. switch (cmd) {
  1387. case SIOCGETVIFCNT:
  1388. if (copy_from_user(&vr, arg, sizeof(vr)))
  1389. return -EFAULT;
  1390. if (vr.vifi >= mrt->maxvif)
  1391. return -EINVAL;
  1392. read_lock(&mrt_lock);
  1393. vif = &mrt->vif_table[vr.vifi];
  1394. if (VIF_EXISTS(mrt, vr.vifi)) {
  1395. vr.icount = vif->pkt_in;
  1396. vr.ocount = vif->pkt_out;
  1397. vr.ibytes = vif->bytes_in;
  1398. vr.obytes = vif->bytes_out;
  1399. read_unlock(&mrt_lock);
  1400. if (copy_to_user(arg, &vr, sizeof(vr)))
  1401. return -EFAULT;
  1402. return 0;
  1403. }
  1404. read_unlock(&mrt_lock);
  1405. return -EADDRNOTAVAIL;
  1406. case SIOCGETSGCNT:
  1407. if (copy_from_user(&sr, arg, sizeof(sr)))
  1408. return -EFAULT;
  1409. rcu_read_lock();
  1410. c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
  1411. if (c) {
  1412. sr.pktcnt = c->_c.mfc_un.res.pkt;
  1413. sr.bytecnt = c->_c.mfc_un.res.bytes;
  1414. sr.wrong_if = c->_c.mfc_un.res.wrong_if;
  1415. rcu_read_unlock();
  1416. if (copy_to_user(arg, &sr, sizeof(sr)))
  1417. return -EFAULT;
  1418. return 0;
  1419. }
  1420. rcu_read_unlock();
  1421. return -EADDRNOTAVAIL;
  1422. default:
  1423. return -ENOIOCTLCMD;
  1424. }
  1425. }
  1426. #ifdef CONFIG_COMPAT
  1427. struct compat_sioc_sg_req {
  1428. struct in_addr src;
  1429. struct in_addr grp;
  1430. compat_ulong_t pktcnt;
  1431. compat_ulong_t bytecnt;
  1432. compat_ulong_t wrong_if;
  1433. };
  1434. struct compat_sioc_vif_req {
  1435. vifi_t vifi; /* Which iface */
  1436. compat_ulong_t icount;
  1437. compat_ulong_t ocount;
  1438. compat_ulong_t ibytes;
  1439. compat_ulong_t obytes;
  1440. };
  1441. int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
  1442. {
  1443. struct compat_sioc_sg_req sr;
  1444. struct compat_sioc_vif_req vr;
  1445. struct vif_device *vif;
  1446. struct mfc_cache *c;
  1447. struct net *net = sock_net(sk);
  1448. struct mr_table *mrt;
  1449. mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
  1450. if (!mrt)
  1451. return -ENOENT;
  1452. switch (cmd) {
  1453. case SIOCGETVIFCNT:
  1454. if (copy_from_user(&vr, arg, sizeof(vr)))
  1455. return -EFAULT;
  1456. if (vr.vifi >= mrt->maxvif)
  1457. return -EINVAL;
  1458. read_lock(&mrt_lock);
  1459. vif = &mrt->vif_table[vr.vifi];
  1460. if (VIF_EXISTS(mrt, vr.vifi)) {
  1461. vr.icount = vif->pkt_in;
  1462. vr.ocount = vif->pkt_out;
  1463. vr.ibytes = vif->bytes_in;
  1464. vr.obytes = vif->bytes_out;
  1465. read_unlock(&mrt_lock);
  1466. if (copy_to_user(arg, &vr, sizeof(vr)))
  1467. return -EFAULT;
  1468. return 0;
  1469. }
  1470. read_unlock(&mrt_lock);
  1471. return -EADDRNOTAVAIL;
  1472. case SIOCGETSGCNT:
  1473. if (copy_from_user(&sr, arg, sizeof(sr)))
  1474. return -EFAULT;
  1475. rcu_read_lock();
  1476. c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
  1477. if (c) {
  1478. sr.pktcnt = c->_c.mfc_un.res.pkt;
  1479. sr.bytecnt = c->_c.mfc_un.res.bytes;
  1480. sr.wrong_if = c->_c.mfc_un.res.wrong_if;
  1481. rcu_read_unlock();
  1482. if (copy_to_user(arg, &sr, sizeof(sr)))
  1483. return -EFAULT;
  1484. return 0;
  1485. }
  1486. rcu_read_unlock();
  1487. return -EADDRNOTAVAIL;
  1488. default:
  1489. return -ENOIOCTLCMD;
  1490. }
  1491. }
  1492. #endif
  1493. static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
  1494. {
  1495. struct net_device *dev = netdev_notifier_info_to_dev(ptr);
  1496. struct net *net = dev_net(dev);
  1497. struct mr_table *mrt;
  1498. struct vif_device *v;
  1499. int ct;
  1500. if (event != NETDEV_UNREGISTER)
  1501. return NOTIFY_DONE;
  1502. ipmr_for_each_table(mrt, net) {
  1503. v = &mrt->vif_table[0];
  1504. for (ct = 0; ct < mrt->maxvif; ct++, v++) {
  1505. if (v->dev == dev)
  1506. vif_delete(mrt, ct, 1, NULL);
  1507. }
  1508. }
  1509. return NOTIFY_DONE;
  1510. }
  1511. static struct notifier_block ip_mr_notifier = {
  1512. .notifier_call = ipmr_device_event,
  1513. };
  1514. /* Encapsulate a packet by attaching a valid IPIP header to it.
  1515. * This avoids tunnel drivers and other mess and gives us the speed so
  1516. * important for multicast video.
  1517. */
  1518. static void ip_encap(struct net *net, struct sk_buff *skb,
  1519. __be32 saddr, __be32 daddr)
  1520. {
  1521. struct iphdr *iph;
  1522. const struct iphdr *old_iph = ip_hdr(skb);
  1523. skb_push(skb, sizeof(struct iphdr));
  1524. skb->transport_header = skb->network_header;
  1525. skb_reset_network_header(skb);
  1526. iph = ip_hdr(skb);
  1527. iph->version = 4;
  1528. iph->tos = old_iph->tos;
  1529. iph->ttl = old_iph->ttl;
  1530. iph->frag_off = 0;
  1531. iph->daddr = daddr;
  1532. iph->saddr = saddr;
  1533. iph->protocol = IPPROTO_IPIP;
  1534. iph->ihl = 5;
  1535. iph->tot_len = htons(skb->len);
  1536. ip_select_ident(net, skb, NULL);
  1537. ip_send_check(iph);
  1538. memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
  1539. nf_reset(skb);
  1540. }
  1541. static inline int ipmr_forward_finish(struct net *net, struct sock *sk,
  1542. struct sk_buff *skb)
  1543. {
  1544. struct ip_options *opt = &(IPCB(skb)->opt);
  1545. IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS);
  1546. IP_ADD_STATS(net, IPSTATS_MIB_OUTOCTETS, skb->len);
  1547. if (unlikely(opt->optlen))
  1548. ip_forward_options(skb);
  1549. return dst_output(net, sk, skb);
  1550. }
  1551. #ifdef CONFIG_NET_SWITCHDEV
  1552. static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
  1553. int in_vifi, int out_vifi)
  1554. {
  1555. struct vif_device *out_vif = &mrt->vif_table[out_vifi];
  1556. struct vif_device *in_vif = &mrt->vif_table[in_vifi];
  1557. if (!skb->offload_mr_fwd_mark)
  1558. return false;
  1559. if (!out_vif->dev_parent_id.id_len || !in_vif->dev_parent_id.id_len)
  1560. return false;
  1561. return netdev_phys_item_id_same(&out_vif->dev_parent_id,
  1562. &in_vif->dev_parent_id);
  1563. }
  1564. #else
  1565. static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
  1566. int in_vifi, int out_vifi)
  1567. {
  1568. return false;
  1569. }
  1570. #endif
  1571. /* Processing handlers for ipmr_forward */
  1572. static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
  1573. int in_vifi, struct sk_buff *skb,
  1574. struct mfc_cache *c, int vifi)
  1575. {
  1576. const struct iphdr *iph = ip_hdr(skb);
  1577. struct vif_device *vif = &mrt->vif_table[vifi];
  1578. struct net_device *dev;
  1579. struct rtable *rt;
  1580. struct flowi4 fl4;
  1581. int encap = 0;
  1582. if (!vif->dev)
  1583. goto out_free;
  1584. if (vif->flags & VIFF_REGISTER) {
  1585. vif->pkt_out++;
  1586. vif->bytes_out += skb->len;
  1587. vif->dev->stats.tx_bytes += skb->len;
  1588. vif->dev->stats.tx_packets++;
  1589. ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
  1590. goto out_free;
  1591. }
  1592. if (ipmr_forward_offloaded(skb, mrt, in_vifi, vifi))
  1593. goto out_free;
  1594. if (vif->flags & VIFF_TUNNEL) {
  1595. rt = ip_route_output_ports(net, &fl4, NULL,
  1596. vif->remote, vif->local,
  1597. 0, 0,
  1598. IPPROTO_IPIP,
  1599. RT_TOS(iph->tos), vif->link);
  1600. if (IS_ERR(rt))
  1601. goto out_free;
  1602. encap = sizeof(struct iphdr);
  1603. } else {
  1604. rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
  1605. 0, 0,
  1606. IPPROTO_IPIP,
  1607. RT_TOS(iph->tos), vif->link);
  1608. if (IS_ERR(rt))
  1609. goto out_free;
  1610. }
  1611. dev = rt->dst.dev;
  1612. if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
  1613. /* Do not fragment multicasts. Alas, IPv4 does not
  1614. * allow to send ICMP, so that packets will disappear
  1615. * to blackhole.
  1616. */
  1617. IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
  1618. ip_rt_put(rt);
  1619. goto out_free;
  1620. }
  1621. encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
  1622. if (skb_cow(skb, encap)) {
  1623. ip_rt_put(rt);
  1624. goto out_free;
  1625. }
  1626. vif->pkt_out++;
  1627. vif->bytes_out += skb->len;
  1628. skb_dst_drop(skb);
  1629. skb_dst_set(skb, &rt->dst);
  1630. ip_decrease_ttl(ip_hdr(skb));
  1631. /* FIXME: forward and output firewalls used to be called here.
  1632. * What do we do with netfilter? -- RR
  1633. */
  1634. if (vif->flags & VIFF_TUNNEL) {
  1635. ip_encap(net, skb, vif->local, vif->remote);
  1636. /* FIXME: extra output firewall step used to be here. --RR */
  1637. vif->dev->stats.tx_packets++;
  1638. vif->dev->stats.tx_bytes += skb->len;
  1639. }
  1640. IPCB(skb)->flags |= IPSKB_FORWARDED;
  1641. /* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
  1642. * not only before forwarding, but after forwarding on all output
  1643. * interfaces. It is clear, if mrouter runs a multicasting
  1644. * program, it should receive packets not depending to what interface
  1645. * program is joined.
  1646. * If we will not make it, the program will have to join on all
  1647. * interfaces. On the other hand, multihoming host (or router, but
  1648. * not mrouter) cannot join to more than one interface - it will
  1649. * result in receiving multiple packets.
  1650. */
  1651. NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD,
  1652. net, NULL, skb, skb->dev, dev,
  1653. ipmr_forward_finish);
  1654. return;
  1655. out_free:
  1656. kfree_skb(skb);
  1657. }
  1658. static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
  1659. {
  1660. int ct;
  1661. for (ct = mrt->maxvif-1; ct >= 0; ct--) {
  1662. if (mrt->vif_table[ct].dev == dev)
  1663. break;
  1664. }
  1665. return ct;
  1666. }
  1667. /* "local" means that we should preserve one skb (for local delivery) */
  1668. static void ip_mr_forward(struct net *net, struct mr_table *mrt,
  1669. struct net_device *dev, struct sk_buff *skb,
  1670. struct mfc_cache *c, int local)
  1671. {
  1672. int true_vifi = ipmr_find_vif(mrt, dev);
  1673. int psend = -1;
  1674. int vif, ct;
  1675. vif = c->_c.mfc_parent;
  1676. c->_c.mfc_un.res.pkt++;
  1677. c->_c.mfc_un.res.bytes += skb->len;
  1678. c->_c.mfc_un.res.lastuse = jiffies;
  1679. if (c->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
  1680. struct mfc_cache *cache_proxy;
  1681. /* For an (*,G) entry, we only check that the incomming
  1682. * interface is part of the static tree.
  1683. */
  1684. cache_proxy = mr_mfc_find_any_parent(mrt, vif);
  1685. if (cache_proxy &&
  1686. cache_proxy->_c.mfc_un.res.ttls[true_vifi] < 255)
  1687. goto forward;
  1688. }
  1689. /* Wrong interface: drop packet and (maybe) send PIM assert. */
  1690. if (mrt->vif_table[vif].dev != dev) {
  1691. if (rt_is_output_route(skb_rtable(skb))) {
  1692. /* It is our own packet, looped back.
  1693. * Very complicated situation...
  1694. *
  1695. * The best workaround until routing daemons will be
  1696. * fixed is not to redistribute packet, if it was
  1697. * send through wrong interface. It means, that
  1698. * multicast applications WILL NOT work for
  1699. * (S,G), which have default multicast route pointing
  1700. * to wrong oif. In any case, it is not a good
  1701. * idea to use multicasting applications on router.
  1702. */
  1703. goto dont_forward;
  1704. }
  1705. c->_c.mfc_un.res.wrong_if++;
  1706. if (true_vifi >= 0 && mrt->mroute_do_assert &&
  1707. /* pimsm uses asserts, when switching from RPT to SPT,
  1708. * so that we cannot check that packet arrived on an oif.
  1709. * It is bad, but otherwise we would need to move pretty
  1710. * large chunk of pimd to kernel. Ough... --ANK
  1711. */
  1712. (mrt->mroute_do_pim ||
  1713. c->_c.mfc_un.res.ttls[true_vifi] < 255) &&
  1714. time_after(jiffies,
  1715. c->_c.mfc_un.res.last_assert +
  1716. MFC_ASSERT_THRESH)) {
  1717. c->_c.mfc_un.res.last_assert = jiffies;
  1718. ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
  1719. }
  1720. goto dont_forward;
  1721. }
  1722. forward:
  1723. mrt->vif_table[vif].pkt_in++;
  1724. mrt->vif_table[vif].bytes_in += skb->len;
  1725. /* Forward the frame */
  1726. if (c->mfc_origin == htonl(INADDR_ANY) &&
  1727. c->mfc_mcastgrp == htonl(INADDR_ANY)) {
  1728. if (true_vifi >= 0 &&
  1729. true_vifi != c->_c.mfc_parent &&
  1730. ip_hdr(skb)->ttl >
  1731. c->_c.mfc_un.res.ttls[c->_c.mfc_parent]) {
  1732. /* It's an (*,*) entry and the packet is not coming from
  1733. * the upstream: forward the packet to the upstream
  1734. * only.
  1735. */
  1736. psend = c->_c.mfc_parent;
  1737. goto last_forward;
  1738. }
  1739. goto dont_forward;
  1740. }
  1741. for (ct = c->_c.mfc_un.res.maxvif - 1;
  1742. ct >= c->_c.mfc_un.res.minvif; ct--) {
  1743. /* For (*,G) entry, don't forward to the incoming interface */
  1744. if ((c->mfc_origin != htonl(INADDR_ANY) ||
  1745. ct != true_vifi) &&
  1746. ip_hdr(skb)->ttl > c->_c.mfc_un.res.ttls[ct]) {
  1747. if (psend != -1) {
  1748. struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
  1749. if (skb2)
  1750. ipmr_queue_xmit(net, mrt, true_vifi,
  1751. skb2, c, psend);
  1752. }
  1753. psend = ct;
  1754. }
  1755. }
  1756. last_forward:
  1757. if (psend != -1) {
  1758. if (local) {
  1759. struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
  1760. if (skb2)
  1761. ipmr_queue_xmit(net, mrt, true_vifi, skb2,
  1762. c, psend);
  1763. } else {
  1764. ipmr_queue_xmit(net, mrt, true_vifi, skb, c, psend);
  1765. return;
  1766. }
  1767. }
  1768. dont_forward:
  1769. if (!local)
  1770. kfree_skb(skb);
  1771. }
  1772. static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
  1773. {
  1774. struct rtable *rt = skb_rtable(skb);
  1775. struct iphdr *iph = ip_hdr(skb);
  1776. struct flowi4 fl4 = {
  1777. .daddr = iph->daddr,
  1778. .saddr = iph->saddr,
  1779. .flowi4_tos = RT_TOS(iph->tos),
  1780. .flowi4_oif = (rt_is_output_route(rt) ?
  1781. skb->dev->ifindex : 0),
  1782. .flowi4_iif = (rt_is_output_route(rt) ?
  1783. LOOPBACK_IFINDEX :
  1784. skb->dev->ifindex),
  1785. .flowi4_mark = skb->mark,
  1786. };
  1787. struct mr_table *mrt;
  1788. int err;
  1789. err = ipmr_fib_lookup(net, &fl4, &mrt);
  1790. if (err)
  1791. return ERR_PTR(err);
  1792. return mrt;
  1793. }
  1794. /* Multicast packets for forwarding arrive here
  1795. * Called with rcu_read_lock();
  1796. */
  1797. int ip_mr_input(struct sk_buff *skb)
  1798. {
  1799. struct mfc_cache *cache;
  1800. struct net *net = dev_net(skb->dev);
  1801. int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
  1802. struct mr_table *mrt;
  1803. struct net_device *dev;
  1804. /* skb->dev passed in is the loX master dev for vrfs.
  1805. * As there are no vifs associated with loopback devices,
  1806. * get the proper interface that does have a vif associated with it.
  1807. */
  1808. dev = skb->dev;
  1809. if (netif_is_l3_master(skb->dev)) {
  1810. dev = dev_get_by_index_rcu(net, IPCB(skb)->iif);
  1811. if (!dev) {
  1812. kfree_skb(skb);
  1813. return -ENODEV;
  1814. }
  1815. }
  1816. /* Packet is looped back after forward, it should not be
  1817. * forwarded second time, but still can be delivered locally.
  1818. */
  1819. if (IPCB(skb)->flags & IPSKB_FORWARDED)
  1820. goto dont_forward;
  1821. mrt = ipmr_rt_fib_lookup(net, skb);
  1822. if (IS_ERR(mrt)) {
  1823. kfree_skb(skb);
  1824. return PTR_ERR(mrt);
  1825. }
  1826. if (!local) {
  1827. if (IPCB(skb)->opt.router_alert) {
  1828. if (ip_call_ra_chain(skb))
  1829. return 0;
  1830. } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
  1831. /* IGMPv1 (and broken IGMPv2 implementations sort of
  1832. * Cisco IOS <= 11.2(8)) do not put router alert
  1833. * option to IGMP packets destined to routable
  1834. * groups. It is very bad, because it means
  1835. * that we can forward NO IGMP messages.
  1836. */
  1837. struct sock *mroute_sk;
  1838. mroute_sk = rcu_dereference(mrt->mroute_sk);
  1839. if (mroute_sk) {
  1840. nf_reset(skb);
  1841. raw_rcv(mroute_sk, skb);
  1842. return 0;
  1843. }
  1844. }
  1845. }
  1846. /* already under rcu_read_lock() */
  1847. cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
  1848. if (!cache) {
  1849. int vif = ipmr_find_vif(mrt, dev);
  1850. if (vif >= 0)
  1851. cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
  1852. vif);
  1853. }
  1854. /* No usable cache entry */
  1855. if (!cache) {
  1856. int vif;
  1857. if (local) {
  1858. struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
  1859. ip_local_deliver(skb);
  1860. if (!skb2)
  1861. return -ENOBUFS;
  1862. skb = skb2;
  1863. }
  1864. read_lock(&mrt_lock);
  1865. vif = ipmr_find_vif(mrt, dev);
  1866. if (vif >= 0) {
  1867. int err2 = ipmr_cache_unresolved(mrt, vif, skb, dev);
  1868. read_unlock(&mrt_lock);
  1869. return err2;
  1870. }
  1871. read_unlock(&mrt_lock);
  1872. kfree_skb(skb);
  1873. return -ENODEV;
  1874. }
  1875. read_lock(&mrt_lock);
  1876. ip_mr_forward(net, mrt, dev, skb, cache, local);
  1877. read_unlock(&mrt_lock);
  1878. if (local)
  1879. return ip_local_deliver(skb);
  1880. return 0;
  1881. dont_forward:
  1882. if (local)
  1883. return ip_local_deliver(skb);
  1884. kfree_skb(skb);
  1885. return 0;
  1886. }
  1887. #ifdef CONFIG_IP_PIMSM_V1
  1888. /* Handle IGMP messages of PIMv1 */
  1889. int pim_rcv_v1(struct sk_buff *skb)
  1890. {
  1891. struct igmphdr *pim;
  1892. struct net *net = dev_net(skb->dev);
  1893. struct mr_table *mrt;
  1894. if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
  1895. goto drop;
  1896. pim = igmp_hdr(skb);
  1897. mrt = ipmr_rt_fib_lookup(net, skb);
  1898. if (IS_ERR(mrt))
  1899. goto drop;
  1900. if (!mrt->mroute_do_pim ||
  1901. pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
  1902. goto drop;
  1903. if (__pim_rcv(mrt, skb, sizeof(*pim))) {
  1904. drop:
  1905. kfree_skb(skb);
  1906. }
  1907. return 0;
  1908. }
  1909. #endif
  1910. #ifdef CONFIG_IP_PIMSM_V2
  1911. static int pim_rcv(struct sk_buff *skb)
  1912. {
  1913. struct pimreghdr *pim;
  1914. struct net *net = dev_net(skb->dev);
  1915. struct mr_table *mrt;
  1916. if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
  1917. goto drop;
  1918. pim = (struct pimreghdr *)skb_transport_header(skb);
  1919. if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) ||
  1920. (pim->flags & PIM_NULL_REGISTER) ||
  1921. (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
  1922. csum_fold(skb_checksum(skb, 0, skb->len, 0))))
  1923. goto drop;
  1924. mrt = ipmr_rt_fib_lookup(net, skb);
  1925. if (IS_ERR(mrt))
  1926. goto drop;
  1927. if (__pim_rcv(mrt, skb, sizeof(*pim))) {
  1928. drop:
  1929. kfree_skb(skb);
  1930. }
  1931. return 0;
  1932. }
  1933. #endif
  1934. int ipmr_get_route(struct net *net, struct sk_buff *skb,
  1935. __be32 saddr, __be32 daddr,
  1936. struct rtmsg *rtm, u32 portid)
  1937. {
  1938. struct mfc_cache *cache;
  1939. struct mr_table *mrt;
  1940. int err;
  1941. mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
  1942. if (!mrt)
  1943. return -ENOENT;
  1944. rcu_read_lock();
  1945. cache = ipmr_cache_find(mrt, saddr, daddr);
  1946. if (!cache && skb->dev) {
  1947. int vif = ipmr_find_vif(mrt, skb->dev);
  1948. if (vif >= 0)
  1949. cache = ipmr_cache_find_any(mrt, daddr, vif);
  1950. }
  1951. if (!cache) {
  1952. struct sk_buff *skb2;
  1953. struct iphdr *iph;
  1954. struct net_device *dev;
  1955. int vif = -1;
  1956. dev = skb->dev;
  1957. read_lock(&mrt_lock);
  1958. if (dev)
  1959. vif = ipmr_find_vif(mrt, dev);
  1960. if (vif < 0) {
  1961. read_unlock(&mrt_lock);
  1962. rcu_read_unlock();
  1963. return -ENODEV;
  1964. }
  1965. skb2 = skb_clone(skb, GFP_ATOMIC);
  1966. if (!skb2) {
  1967. read_unlock(&mrt_lock);
  1968. rcu_read_unlock();
  1969. return -ENOMEM;
  1970. }
  1971. NETLINK_CB(skb2).portid = portid;
  1972. skb_push(skb2, sizeof(struct iphdr));
  1973. skb_reset_network_header(skb2);
  1974. iph = ip_hdr(skb2);
  1975. iph->ihl = sizeof(struct iphdr) >> 2;
  1976. iph->saddr = saddr;
  1977. iph->daddr = daddr;
  1978. iph->version = 0;
  1979. err = ipmr_cache_unresolved(mrt, vif, skb2, dev);
  1980. read_unlock(&mrt_lock);
  1981. rcu_read_unlock();
  1982. return err;
  1983. }
  1984. read_lock(&mrt_lock);
  1985. err = mr_fill_mroute(mrt, skb, &cache->_c, rtm);
  1986. read_unlock(&mrt_lock);
  1987. rcu_read_unlock();
  1988. return err;
  1989. }
  1990. static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
  1991. u32 portid, u32 seq, struct mfc_cache *c, int cmd,
  1992. int flags)
  1993. {
  1994. struct nlmsghdr *nlh;
  1995. struct rtmsg *rtm;
  1996. int err;
  1997. nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
  1998. if (!nlh)
  1999. return -EMSGSIZE;
  2000. rtm = nlmsg_data(nlh);
  2001. rtm->rtm_family = RTNL_FAMILY_IPMR;
  2002. rtm->rtm_dst_len = 32;
  2003. rtm->rtm_src_len = 32;
  2004. rtm->rtm_tos = 0;
  2005. rtm->rtm_table = mrt->id;
  2006. if (nla_put_u32(skb, RTA_TABLE, mrt->id))
  2007. goto nla_put_failure;
  2008. rtm->rtm_type = RTN_MULTICAST;
  2009. rtm->rtm_scope = RT_SCOPE_UNIVERSE;
  2010. if (c->_c.mfc_flags & MFC_STATIC)
  2011. rtm->rtm_protocol = RTPROT_STATIC;
  2012. else
  2013. rtm->rtm_protocol = RTPROT_MROUTED;
  2014. rtm->rtm_flags = 0;
  2015. if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
  2016. nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
  2017. goto nla_put_failure;
  2018. err = mr_fill_mroute(mrt, skb, &c->_c, rtm);
  2019. /* do not break the dump if cache is unresolved */
  2020. if (err < 0 && err != -ENOENT)
  2021. goto nla_put_failure;
  2022. nlmsg_end(skb, nlh);
  2023. return 0;
  2024. nla_put_failure:
  2025. nlmsg_cancel(skb, nlh);
  2026. return -EMSGSIZE;
  2027. }
  2028. static int _ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
  2029. u32 portid, u32 seq, struct mr_mfc *c, int cmd,
  2030. int flags)
  2031. {
  2032. return ipmr_fill_mroute(mrt, skb, portid, seq, (struct mfc_cache *)c,
  2033. cmd, flags);
  2034. }
  2035. static size_t mroute_msgsize(bool unresolved, int maxvif)
  2036. {
  2037. size_t len =
  2038. NLMSG_ALIGN(sizeof(struct rtmsg))
  2039. + nla_total_size(4) /* RTA_TABLE */
  2040. + nla_total_size(4) /* RTA_SRC */
  2041. + nla_total_size(4) /* RTA_DST */
  2042. ;
  2043. if (!unresolved)
  2044. len = len
  2045. + nla_total_size(4) /* RTA_IIF */
  2046. + nla_total_size(0) /* RTA_MULTIPATH */
  2047. + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
  2048. /* RTA_MFC_STATS */
  2049. + nla_total_size_64bit(sizeof(struct rta_mfc_stats))
  2050. ;
  2051. return len;
  2052. }
  2053. static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
  2054. int cmd)
  2055. {
  2056. struct net *net = read_pnet(&mrt->net);
  2057. struct sk_buff *skb;
  2058. int err = -ENOBUFS;
  2059. skb = nlmsg_new(mroute_msgsize(mfc->_c.mfc_parent >= MAXVIFS,
  2060. mrt->maxvif),
  2061. GFP_ATOMIC);
  2062. if (!skb)
  2063. goto errout;
  2064. err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
  2065. if (err < 0)
  2066. goto errout;
  2067. rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
  2068. return;
  2069. errout:
  2070. kfree_skb(skb);
  2071. if (err < 0)
  2072. rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
  2073. }
  2074. static size_t igmpmsg_netlink_msgsize(size_t payloadlen)
  2075. {
  2076. size_t len =
  2077. NLMSG_ALIGN(sizeof(struct rtgenmsg))
  2078. + nla_total_size(1) /* IPMRA_CREPORT_MSGTYPE */
  2079. + nla_total_size(4) /* IPMRA_CREPORT_VIF_ID */
  2080. + nla_total_size(4) /* IPMRA_CREPORT_SRC_ADDR */
  2081. + nla_total_size(4) /* IPMRA_CREPORT_DST_ADDR */
  2082. /* IPMRA_CREPORT_PKT */
  2083. + nla_total_size(payloadlen)
  2084. ;
  2085. return len;
  2086. }
  2087. static void igmpmsg_netlink_event(struct mr_table *mrt, struct sk_buff *pkt)
  2088. {
  2089. struct net *net = read_pnet(&mrt->net);
  2090. struct nlmsghdr *nlh;
  2091. struct rtgenmsg *rtgenm;
  2092. struct igmpmsg *msg;
  2093. struct sk_buff *skb;
  2094. struct nlattr *nla;
  2095. int payloadlen;
  2096. payloadlen = pkt->len - sizeof(struct igmpmsg);
  2097. msg = (struct igmpmsg *)skb_network_header(pkt);
  2098. skb = nlmsg_new(igmpmsg_netlink_msgsize(payloadlen), GFP_ATOMIC);
  2099. if (!skb)
  2100. goto errout;
  2101. nlh = nlmsg_put(skb, 0, 0, RTM_NEWCACHEREPORT,
  2102. sizeof(struct rtgenmsg), 0);
  2103. if (!nlh)
  2104. goto errout;
  2105. rtgenm = nlmsg_data(nlh);
  2106. rtgenm->rtgen_family = RTNL_FAMILY_IPMR;
  2107. if (nla_put_u8(skb, IPMRA_CREPORT_MSGTYPE, msg->im_msgtype) ||
  2108. nla_put_u32(skb, IPMRA_CREPORT_VIF_ID, msg->im_vif) ||
  2109. nla_put_in_addr(skb, IPMRA_CREPORT_SRC_ADDR,
  2110. msg->im_src.s_addr) ||
  2111. nla_put_in_addr(skb, IPMRA_CREPORT_DST_ADDR,
  2112. msg->im_dst.s_addr))
  2113. goto nla_put_failure;
  2114. nla = nla_reserve(skb, IPMRA_CREPORT_PKT, payloadlen);
  2115. if (!nla || skb_copy_bits(pkt, sizeof(struct igmpmsg),
  2116. nla_data(nla), payloadlen))
  2117. goto nla_put_failure;
  2118. nlmsg_end(skb, nlh);
  2119. rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE_R, NULL, GFP_ATOMIC);
  2120. return;
  2121. nla_put_failure:
  2122. nlmsg_cancel(skb, nlh);
  2123. errout:
  2124. kfree_skb(skb);
  2125. rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE_R, -ENOBUFS);
  2126. }
  2127. static int ipmr_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh,
  2128. struct netlink_ext_ack *extack)
  2129. {
  2130. struct net *net = sock_net(in_skb->sk);
  2131. struct nlattr *tb[RTA_MAX + 1];
  2132. struct sk_buff *skb = NULL;
  2133. struct mfc_cache *cache;
  2134. struct mr_table *mrt;
  2135. struct rtmsg *rtm;
  2136. __be32 src, grp;
  2137. u32 tableid;
  2138. int err;
  2139. err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX,
  2140. rtm_ipv4_policy, extack);
  2141. if (err < 0)
  2142. goto errout;
  2143. rtm = nlmsg_data(nlh);
  2144. src = tb[RTA_SRC] ? nla_get_in_addr(tb[RTA_SRC]) : 0;
  2145. grp = tb[RTA_DST] ? nla_get_in_addr(tb[RTA_DST]) : 0;
  2146. tableid = tb[RTA_TABLE] ? nla_get_u32(tb[RTA_TABLE]) : 0;
  2147. mrt = ipmr_get_table(net, tableid ? tableid : RT_TABLE_DEFAULT);
  2148. if (!mrt) {
  2149. err = -ENOENT;
  2150. goto errout_free;
  2151. }
  2152. /* entries are added/deleted only under RTNL */
  2153. rcu_read_lock();
  2154. cache = ipmr_cache_find(mrt, src, grp);
  2155. rcu_read_unlock();
  2156. if (!cache) {
  2157. err = -ENOENT;
  2158. goto errout_free;
  2159. }
  2160. skb = nlmsg_new(mroute_msgsize(false, mrt->maxvif), GFP_KERNEL);
  2161. if (!skb) {
  2162. err = -ENOBUFS;
  2163. goto errout_free;
  2164. }
  2165. err = ipmr_fill_mroute(mrt, skb, NETLINK_CB(in_skb).portid,
  2166. nlh->nlmsg_seq, cache,
  2167. RTM_NEWROUTE, 0);
  2168. if (err < 0)
  2169. goto errout_free;
  2170. err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid);
  2171. errout:
  2172. return err;
  2173. errout_free:
  2174. kfree_skb(skb);
  2175. goto errout;
  2176. }
  2177. static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
  2178. {
  2179. return mr_rtm_dumproute(skb, cb, ipmr_mr_table_iter,
  2180. _ipmr_fill_mroute, &mfc_unres_lock);
  2181. }
  2182. static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = {
  2183. [RTA_SRC] = { .type = NLA_U32 },
  2184. [RTA_DST] = { .type = NLA_U32 },
  2185. [RTA_IIF] = { .type = NLA_U32 },
  2186. [RTA_TABLE] = { .type = NLA_U32 },
  2187. [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) },
  2188. };
  2189. static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol)
  2190. {
  2191. switch (rtm_protocol) {
  2192. case RTPROT_STATIC:
  2193. case RTPROT_MROUTED:
  2194. return true;
  2195. }
  2196. return false;
  2197. }
  2198. static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc)
  2199. {
  2200. struct rtnexthop *rtnh = nla_data(nla);
  2201. int remaining = nla_len(nla), vifi = 0;
  2202. while (rtnh_ok(rtnh, remaining)) {
  2203. mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops;
  2204. if (++vifi == MAXVIFS)
  2205. break;
  2206. rtnh = rtnh_next(rtnh, &remaining);
  2207. }
  2208. return remaining > 0 ? -EINVAL : vifi;
  2209. }
  2210. /* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */
  2211. static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh,
  2212. struct mfcctl *mfcc, int *mrtsock,
  2213. struct mr_table **mrtret,
  2214. struct netlink_ext_ack *extack)
  2215. {
  2216. struct net_device *dev = NULL;
  2217. u32 tblid = RT_TABLE_DEFAULT;
  2218. struct mr_table *mrt;
  2219. struct nlattr *attr;
  2220. struct rtmsg *rtm;
  2221. int ret, rem;
  2222. ret = nlmsg_validate(nlh, sizeof(*rtm), RTA_MAX, rtm_ipmr_policy,
  2223. extack);
  2224. if (ret < 0)
  2225. goto out;
  2226. rtm = nlmsg_data(nlh);
  2227. ret = -EINVAL;
  2228. if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 ||
  2229. rtm->rtm_type != RTN_MULTICAST ||
  2230. rtm->rtm_scope != RT_SCOPE_UNIVERSE ||
  2231. !ipmr_rtm_validate_proto(rtm->rtm_protocol))
  2232. goto out;
  2233. memset(mfcc, 0, sizeof(*mfcc));
  2234. mfcc->mfcc_parent = -1;
  2235. ret = 0;
  2236. nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) {
  2237. switch (nla_type(attr)) {
  2238. case RTA_SRC:
  2239. mfcc->mfcc_origin.s_addr = nla_get_be32(attr);
  2240. break;
  2241. case RTA_DST:
  2242. mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr);
  2243. break;
  2244. case RTA_IIF:
  2245. dev = __dev_get_by_index(net, nla_get_u32(attr));
  2246. if (!dev) {
  2247. ret = -ENODEV;
  2248. goto out;
  2249. }
  2250. break;
  2251. case RTA_MULTIPATH:
  2252. if (ipmr_nla_get_ttls(attr, mfcc) < 0) {
  2253. ret = -EINVAL;
  2254. goto out;
  2255. }
  2256. break;
  2257. case RTA_PREFSRC:
  2258. ret = 1;
  2259. break;
  2260. case RTA_TABLE:
  2261. tblid = nla_get_u32(attr);
  2262. break;
  2263. }
  2264. }
  2265. mrt = ipmr_get_table(net, tblid);
  2266. if (!mrt) {
  2267. ret = -ENOENT;
  2268. goto out;
  2269. }
  2270. *mrtret = mrt;
  2271. *mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0;
  2272. if (dev)
  2273. mfcc->mfcc_parent = ipmr_find_vif(mrt, dev);
  2274. out:
  2275. return ret;
  2276. }
  2277. /* takes care of both newroute and delroute */
  2278. static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh,
  2279. struct netlink_ext_ack *extack)
  2280. {
  2281. struct net *net = sock_net(skb->sk);
  2282. int ret, mrtsock, parent;
  2283. struct mr_table *tbl;
  2284. struct mfcctl mfcc;
  2285. mrtsock = 0;
  2286. tbl = NULL;
  2287. ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl, extack);
  2288. if (ret < 0)
  2289. return ret;
  2290. parent = ret ? mfcc.mfcc_parent : -1;
  2291. if (nlh->nlmsg_type == RTM_NEWROUTE)
  2292. return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent);
  2293. else
  2294. return ipmr_mfc_delete(tbl, &mfcc, parent);
  2295. }
  2296. static bool ipmr_fill_table(struct mr_table *mrt, struct sk_buff *skb)
  2297. {
  2298. u32 queue_len = atomic_read(&mrt->cache_resolve_queue_len);
  2299. if (nla_put_u32(skb, IPMRA_TABLE_ID, mrt->id) ||
  2300. nla_put_u32(skb, IPMRA_TABLE_CACHE_RES_QUEUE_LEN, queue_len) ||
  2301. nla_put_s32(skb, IPMRA_TABLE_MROUTE_REG_VIF_NUM,
  2302. mrt->mroute_reg_vif_num) ||
  2303. nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_ASSERT,
  2304. mrt->mroute_do_assert) ||
  2305. nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_PIM, mrt->mroute_do_pim))
  2306. return false;
  2307. return true;
  2308. }
  2309. static bool ipmr_fill_vif(struct mr_table *mrt, u32 vifid, struct sk_buff *skb)
  2310. {
  2311. struct nlattr *vif_nest;
  2312. struct vif_device *vif;
  2313. /* if the VIF doesn't exist just continue */
  2314. if (!VIF_EXISTS(mrt, vifid))
  2315. return true;
  2316. vif = &mrt->vif_table[vifid];
  2317. vif_nest = nla_nest_start(skb, IPMRA_VIF);
  2318. if (!vif_nest)
  2319. return false;
  2320. if (nla_put_u32(skb, IPMRA_VIFA_IFINDEX, vif->dev->ifindex) ||
  2321. nla_put_u32(skb, IPMRA_VIFA_VIF_ID, vifid) ||
  2322. nla_put_u16(skb, IPMRA_VIFA_FLAGS, vif->flags) ||
  2323. nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_IN, vif->bytes_in,
  2324. IPMRA_VIFA_PAD) ||
  2325. nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_OUT, vif->bytes_out,
  2326. IPMRA_VIFA_PAD) ||
  2327. nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_IN, vif->pkt_in,
  2328. IPMRA_VIFA_PAD) ||
  2329. nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_OUT, vif->pkt_out,
  2330. IPMRA_VIFA_PAD) ||
  2331. nla_put_be32(skb, IPMRA_VIFA_LOCAL_ADDR, vif->local) ||
  2332. nla_put_be32(skb, IPMRA_VIFA_REMOTE_ADDR, vif->remote)) {
  2333. nla_nest_cancel(skb, vif_nest);
  2334. return false;
  2335. }
  2336. nla_nest_end(skb, vif_nest);
  2337. return true;
  2338. }
  2339. static int ipmr_rtm_dumplink(struct sk_buff *skb, struct netlink_callback *cb)
  2340. {
  2341. struct net *net = sock_net(skb->sk);
  2342. struct nlmsghdr *nlh = NULL;
  2343. unsigned int t = 0, s_t;
  2344. unsigned int e = 0, s_e;
  2345. struct mr_table *mrt;
  2346. s_t = cb->args[0];
  2347. s_e = cb->args[1];
  2348. ipmr_for_each_table(mrt, net) {
  2349. struct nlattr *vifs, *af;
  2350. struct ifinfomsg *hdr;
  2351. u32 i;
  2352. if (t < s_t)
  2353. goto skip_table;
  2354. nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid,
  2355. cb->nlh->nlmsg_seq, RTM_NEWLINK,
  2356. sizeof(*hdr), NLM_F_MULTI);
  2357. if (!nlh)
  2358. break;
  2359. hdr = nlmsg_data(nlh);
  2360. memset(hdr, 0, sizeof(*hdr));
  2361. hdr->ifi_family = RTNL_FAMILY_IPMR;
  2362. af = nla_nest_start(skb, IFLA_AF_SPEC);
  2363. if (!af) {
  2364. nlmsg_cancel(skb, nlh);
  2365. goto out;
  2366. }
  2367. if (!ipmr_fill_table(mrt, skb)) {
  2368. nlmsg_cancel(skb, nlh);
  2369. goto out;
  2370. }
  2371. vifs = nla_nest_start(skb, IPMRA_TABLE_VIFS);
  2372. if (!vifs) {
  2373. nla_nest_end(skb, af);
  2374. nlmsg_end(skb, nlh);
  2375. goto out;
  2376. }
  2377. for (i = 0; i < mrt->maxvif; i++) {
  2378. if (e < s_e)
  2379. goto skip_entry;
  2380. if (!ipmr_fill_vif(mrt, i, skb)) {
  2381. nla_nest_end(skb, vifs);
  2382. nla_nest_end(skb, af);
  2383. nlmsg_end(skb, nlh);
  2384. goto out;
  2385. }
  2386. skip_entry:
  2387. e++;
  2388. }
  2389. s_e = 0;
  2390. e = 0;
  2391. nla_nest_end(skb, vifs);
  2392. nla_nest_end(skb, af);
  2393. nlmsg_end(skb, nlh);
  2394. skip_table:
  2395. t++;
  2396. }
  2397. out:
  2398. cb->args[1] = e;
  2399. cb->args[0] = t;
  2400. return skb->len;
  2401. }
  2402. #ifdef CONFIG_PROC_FS
  2403. /* The /proc interfaces to multicast routing :
  2404. * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
  2405. */
  2406. static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
  2407. __acquires(mrt_lock)
  2408. {
  2409. struct mr_vif_iter *iter = seq->private;
  2410. struct net *net = seq_file_net(seq);
  2411. struct mr_table *mrt;
  2412. mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
  2413. if (!mrt)
  2414. return ERR_PTR(-ENOENT);
  2415. iter->mrt = mrt;
  2416. read_lock(&mrt_lock);
  2417. return mr_vif_seq_start(seq, pos);
  2418. }
  2419. static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
  2420. __releases(mrt_lock)
  2421. {
  2422. read_unlock(&mrt_lock);
  2423. }
  2424. static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
  2425. {
  2426. struct mr_vif_iter *iter = seq->private;
  2427. struct mr_table *mrt = iter->mrt;
  2428. if (v == SEQ_START_TOKEN) {
  2429. seq_puts(seq,
  2430. "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n");
  2431. } else {
  2432. const struct vif_device *vif = v;
  2433. const char *name = vif->dev ?
  2434. vif->dev->name : "none";
  2435. seq_printf(seq,
  2436. "%2td %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n",
  2437. vif - mrt->vif_table,
  2438. name, vif->bytes_in, vif->pkt_in,
  2439. vif->bytes_out, vif->pkt_out,
  2440. vif->flags, vif->local, vif->remote);
  2441. }
  2442. return 0;
  2443. }
  2444. static const struct seq_operations ipmr_vif_seq_ops = {
  2445. .start = ipmr_vif_seq_start,
  2446. .next = mr_vif_seq_next,
  2447. .stop = ipmr_vif_seq_stop,
  2448. .show = ipmr_vif_seq_show,
  2449. };
  2450. static int ipmr_vif_open(struct inode *inode, struct file *file)
  2451. {
  2452. return seq_open_net(inode, file, &ipmr_vif_seq_ops,
  2453. sizeof(struct mr_vif_iter));
  2454. }
  2455. static const struct file_operations ipmr_vif_fops = {
  2456. .open = ipmr_vif_open,
  2457. .read = seq_read,
  2458. .llseek = seq_lseek,
  2459. .release = seq_release_net,
  2460. };
  2461. static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
  2462. {
  2463. struct net *net = seq_file_net(seq);
  2464. struct mr_table *mrt;
  2465. mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
  2466. if (!mrt)
  2467. return ERR_PTR(-ENOENT);
  2468. return mr_mfc_seq_start(seq, pos, mrt, &mfc_unres_lock);
  2469. }
  2470. static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
  2471. {
  2472. int n;
  2473. if (v == SEQ_START_TOKEN) {
  2474. seq_puts(seq,
  2475. "Group Origin Iif Pkts Bytes Wrong Oifs\n");
  2476. } else {
  2477. const struct mfc_cache *mfc = v;
  2478. const struct mr_mfc_iter *it = seq->private;
  2479. const struct mr_table *mrt = it->mrt;
  2480. seq_printf(seq, "%08X %08X %-3hd",
  2481. (__force u32) mfc->mfc_mcastgrp,
  2482. (__force u32) mfc->mfc_origin,
  2483. mfc->_c.mfc_parent);
  2484. if (it->cache != &mrt->mfc_unres_queue) {
  2485. seq_printf(seq, " %8lu %8lu %8lu",
  2486. mfc->_c.mfc_un.res.pkt,
  2487. mfc->_c.mfc_un.res.bytes,
  2488. mfc->_c.mfc_un.res.wrong_if);
  2489. for (n = mfc->_c.mfc_un.res.minvif;
  2490. n < mfc->_c.mfc_un.res.maxvif; n++) {
  2491. if (VIF_EXISTS(mrt, n) &&
  2492. mfc->_c.mfc_un.res.ttls[n] < 255)
  2493. seq_printf(seq,
  2494. " %2d:%-3d",
  2495. n, mfc->_c.mfc_un.res.ttls[n]);
  2496. }
  2497. } else {
  2498. /* unresolved mfc_caches don't contain
  2499. * pkt, bytes and wrong_if values
  2500. */
  2501. seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
  2502. }
  2503. seq_putc(seq, '\n');
  2504. }
  2505. return 0;
  2506. }
  2507. static const struct seq_operations ipmr_mfc_seq_ops = {
  2508. .start = ipmr_mfc_seq_start,
  2509. .next = mr_mfc_seq_next,
  2510. .stop = mr_mfc_seq_stop,
  2511. .show = ipmr_mfc_seq_show,
  2512. };
  2513. static int ipmr_mfc_open(struct inode *inode, struct file *file)
  2514. {
  2515. return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
  2516. sizeof(struct mr_mfc_iter));
  2517. }
  2518. static const struct file_operations ipmr_mfc_fops = {
  2519. .open = ipmr_mfc_open,
  2520. .read = seq_read,
  2521. .llseek = seq_lseek,
  2522. .release = seq_release_net,
  2523. };
  2524. #endif
  2525. #ifdef CONFIG_IP_PIMSM_V2
  2526. static const struct net_protocol pim_protocol = {
  2527. .handler = pim_rcv,
  2528. .netns_ok = 1,
  2529. };
  2530. #endif
  2531. static unsigned int ipmr_seq_read(struct net *net)
  2532. {
  2533. ASSERT_RTNL();
  2534. return net->ipv4.ipmr_seq + ipmr_rules_seq_read(net);
  2535. }
  2536. static int ipmr_dump(struct net *net, struct notifier_block *nb)
  2537. {
  2538. return mr_dump(net, nb, RTNL_FAMILY_IPMR, ipmr_rules_dump,
  2539. ipmr_mr_table_iter, &mrt_lock);
  2540. }
  2541. static const struct fib_notifier_ops ipmr_notifier_ops_template = {
  2542. .family = RTNL_FAMILY_IPMR,
  2543. .fib_seq_read = ipmr_seq_read,
  2544. .fib_dump = ipmr_dump,
  2545. .owner = THIS_MODULE,
  2546. };
  2547. static int __net_init ipmr_notifier_init(struct net *net)
  2548. {
  2549. struct fib_notifier_ops *ops;
  2550. net->ipv4.ipmr_seq = 0;
  2551. ops = fib_notifier_ops_register(&ipmr_notifier_ops_template, net);
  2552. if (IS_ERR(ops))
  2553. return PTR_ERR(ops);
  2554. net->ipv4.ipmr_notifier_ops = ops;
  2555. return 0;
  2556. }
  2557. static void __net_exit ipmr_notifier_exit(struct net *net)
  2558. {
  2559. fib_notifier_ops_unregister(net->ipv4.ipmr_notifier_ops);
  2560. net->ipv4.ipmr_notifier_ops = NULL;
  2561. }
  2562. /* Setup for IP multicast routing */
  2563. static int __net_init ipmr_net_init(struct net *net)
  2564. {
  2565. int err;
  2566. err = ipmr_notifier_init(net);
  2567. if (err)
  2568. goto ipmr_notifier_fail;
  2569. err = ipmr_rules_init(net);
  2570. if (err < 0)
  2571. goto ipmr_rules_fail;
  2572. #ifdef CONFIG_PROC_FS
  2573. err = -ENOMEM;
  2574. if (!proc_create("ip_mr_vif", 0, net->proc_net, &ipmr_vif_fops))
  2575. goto proc_vif_fail;
  2576. if (!proc_create("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_fops))
  2577. goto proc_cache_fail;
  2578. #endif
  2579. return 0;
  2580. #ifdef CONFIG_PROC_FS
  2581. proc_cache_fail:
  2582. remove_proc_entry("ip_mr_vif", net->proc_net);
  2583. proc_vif_fail:
  2584. ipmr_rules_exit(net);
  2585. #endif
  2586. ipmr_rules_fail:
  2587. ipmr_notifier_exit(net);
  2588. ipmr_notifier_fail:
  2589. return err;
  2590. }
  2591. static void __net_exit ipmr_net_exit(struct net *net)
  2592. {
  2593. #ifdef CONFIG_PROC_FS
  2594. remove_proc_entry("ip_mr_cache", net->proc_net);
  2595. remove_proc_entry("ip_mr_vif", net->proc_net);
  2596. #endif
  2597. ipmr_notifier_exit(net);
  2598. ipmr_rules_exit(net);
  2599. }
  2600. static struct pernet_operations ipmr_net_ops = {
  2601. .init = ipmr_net_init,
  2602. .exit = ipmr_net_exit,
  2603. };
  2604. int __init ip_mr_init(void)
  2605. {
  2606. int err;
  2607. mrt_cachep = kmem_cache_create("ip_mrt_cache",
  2608. sizeof(struct mfc_cache),
  2609. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
  2610. NULL);
  2611. err = register_pernet_subsys(&ipmr_net_ops);
  2612. if (err)
  2613. goto reg_pernet_fail;
  2614. err = register_netdevice_notifier(&ip_mr_notifier);
  2615. if (err)
  2616. goto reg_notif_fail;
  2617. #ifdef CONFIG_IP_PIMSM_V2
  2618. if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
  2619. pr_err("%s: can't add PIM protocol\n", __func__);
  2620. err = -EAGAIN;
  2621. goto add_proto_fail;
  2622. }
  2623. #endif
  2624. rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
  2625. ipmr_rtm_getroute, ipmr_rtm_dumproute, 0);
  2626. rtnl_register(RTNL_FAMILY_IPMR, RTM_NEWROUTE,
  2627. ipmr_rtm_route, NULL, 0);
  2628. rtnl_register(RTNL_FAMILY_IPMR, RTM_DELROUTE,
  2629. ipmr_rtm_route, NULL, 0);
  2630. rtnl_register(RTNL_FAMILY_IPMR, RTM_GETLINK,
  2631. NULL, ipmr_rtm_dumplink, 0);
  2632. return 0;
  2633. #ifdef CONFIG_IP_PIMSM_V2
  2634. add_proto_fail:
  2635. unregister_netdevice_notifier(&ip_mr_notifier);
  2636. #endif
  2637. reg_notif_fail:
  2638. unregister_pernet_subsys(&ipmr_net_ops);
  2639. reg_pernet_fail:
  2640. kmem_cache_destroy(mrt_cachep);
  2641. return err;
  2642. }