pid.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470
  1. /*
  2. * Generic pidhash and scalable, time-bounded PID allocator
  3. *
  4. * (C) 2002-2003 Nadia Yvette Chambers, IBM
  5. * (C) 2004 Nadia Yvette Chambers, Oracle
  6. * (C) 2002-2004 Ingo Molnar, Red Hat
  7. *
  8. * pid-structures are backing objects for tasks sharing a given ID to chain
  9. * against. There is very little to them aside from hashing them and
  10. * parking tasks using given ID's on a list.
  11. *
  12. * The hash is always changed with the tasklist_lock write-acquired,
  13. * and the hash is only accessed with the tasklist_lock at least
  14. * read-acquired, so there's no additional SMP locking needed here.
  15. *
  16. * We have a list of bitmap pages, which bitmaps represent the PID space.
  17. * Allocating and freeing PIDs is completely lockless. The worst-case
  18. * allocation scenario when all but one out of 1 million PIDs possible are
  19. * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
  20. * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
  21. *
  22. * Pid namespaces:
  23. * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
  24. * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
  25. * Many thanks to Oleg Nesterov for comments and help
  26. *
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/export.h>
  30. #include <linux/slab.h>
  31. #include <linux/init.h>
  32. #include <linux/rculist.h>
  33. #include <linux/bootmem.h>
  34. #include <linux/hash.h>
  35. #include <linux/pid_namespace.h>
  36. #include <linux/init_task.h>
  37. #include <linux/syscalls.h>
  38. #include <linux/proc_ns.h>
  39. #include <linux/proc_fs.h>
  40. #include <linux/sched/task.h>
  41. #include <linux/idr.h>
  42. struct pid init_struct_pid = {
  43. .count = ATOMIC_INIT(1),
  44. .tasks = {
  45. { .first = NULL },
  46. { .first = NULL },
  47. { .first = NULL },
  48. },
  49. .level = 0,
  50. .numbers = { {
  51. .nr = 0,
  52. .ns = &init_pid_ns,
  53. }, }
  54. };
  55. int pid_max = PID_MAX_DEFAULT;
  56. #define RESERVED_PIDS 300
  57. int pid_max_min = RESERVED_PIDS + 1;
  58. int pid_max_max = PID_MAX_LIMIT;
  59. /*
  60. * PID-map pages start out as NULL, they get allocated upon
  61. * first use and are never deallocated. This way a low pid_max
  62. * value does not cause lots of bitmaps to be allocated, but
  63. * the scheme scales to up to 4 million PIDs, runtime.
  64. */
  65. struct pid_namespace init_pid_ns = {
  66. .kref = KREF_INIT(2),
  67. .idr = IDR_INIT,
  68. .pid_allocated = PIDNS_ADDING,
  69. .level = 0,
  70. .child_reaper = &init_task,
  71. .user_ns = &init_user_ns,
  72. .ns.inum = PROC_PID_INIT_INO,
  73. #ifdef CONFIG_PID_NS
  74. .ns.ops = &pidns_operations,
  75. #endif
  76. };
  77. EXPORT_SYMBOL_GPL(init_pid_ns);
  78. /*
  79. * Note: disable interrupts while the pidmap_lock is held as an
  80. * interrupt might come in and do read_lock(&tasklist_lock).
  81. *
  82. * If we don't disable interrupts there is a nasty deadlock between
  83. * detach_pid()->free_pid() and another cpu that does
  84. * spin_lock(&pidmap_lock) followed by an interrupt routine that does
  85. * read_lock(&tasklist_lock);
  86. *
  87. * After we clean up the tasklist_lock and know there are no
  88. * irq handlers that take it we can leave the interrupts enabled.
  89. * For now it is easier to be safe than to prove it can't happen.
  90. */
  91. static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
  92. void put_pid(struct pid *pid)
  93. {
  94. struct pid_namespace *ns;
  95. if (!pid)
  96. return;
  97. ns = pid->numbers[pid->level].ns;
  98. if ((atomic_read(&pid->count) == 1) ||
  99. atomic_dec_and_test(&pid->count)) {
  100. kmem_cache_free(ns->pid_cachep, pid);
  101. put_pid_ns(ns);
  102. }
  103. }
  104. EXPORT_SYMBOL_GPL(put_pid);
  105. static void delayed_put_pid(struct rcu_head *rhp)
  106. {
  107. struct pid *pid = container_of(rhp, struct pid, rcu);
  108. put_pid(pid);
  109. }
  110. void free_pid(struct pid *pid)
  111. {
  112. /* We can be called with write_lock_irq(&tasklist_lock) held */
  113. int i;
  114. unsigned long flags;
  115. spin_lock_irqsave(&pidmap_lock, flags);
  116. for (i = 0; i <= pid->level; i++) {
  117. struct upid *upid = pid->numbers + i;
  118. struct pid_namespace *ns = upid->ns;
  119. switch (--ns->pid_allocated) {
  120. case 2:
  121. case 1:
  122. /* When all that is left in the pid namespace
  123. * is the reaper wake up the reaper. The reaper
  124. * may be sleeping in zap_pid_ns_processes().
  125. */
  126. wake_up_process(ns->child_reaper);
  127. break;
  128. case PIDNS_ADDING:
  129. /* Handle a fork failure of the first process */
  130. WARN_ON(ns->child_reaper);
  131. ns->pid_allocated = 0;
  132. /* fall through */
  133. case 0:
  134. schedule_work(&ns->proc_work);
  135. break;
  136. }
  137. idr_remove(&ns->idr, upid->nr);
  138. }
  139. spin_unlock_irqrestore(&pidmap_lock, flags);
  140. call_rcu(&pid->rcu, delayed_put_pid);
  141. }
  142. struct pid *alloc_pid(struct pid_namespace *ns)
  143. {
  144. struct pid *pid;
  145. enum pid_type type;
  146. int i, nr;
  147. struct pid_namespace *tmp;
  148. struct upid *upid;
  149. int retval = -ENOMEM;
  150. pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
  151. if (!pid)
  152. return ERR_PTR(retval);
  153. tmp = ns;
  154. pid->level = ns->level;
  155. for (i = ns->level; i >= 0; i--) {
  156. int pid_min = 1;
  157. idr_preload(GFP_KERNEL);
  158. spin_lock_irq(&pidmap_lock);
  159. /*
  160. * init really needs pid 1, but after reaching the maximum
  161. * wrap back to RESERVED_PIDS
  162. */
  163. if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS)
  164. pid_min = RESERVED_PIDS;
  165. /*
  166. * Store a null pointer so find_pid_ns does not find
  167. * a partially initialized PID (see below).
  168. */
  169. nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min,
  170. pid_max, GFP_ATOMIC);
  171. spin_unlock_irq(&pidmap_lock);
  172. idr_preload_end();
  173. if (nr < 0) {
  174. retval = nr;
  175. goto out_free;
  176. }
  177. pid->numbers[i].nr = nr;
  178. pid->numbers[i].ns = tmp;
  179. tmp = tmp->parent;
  180. }
  181. if (unlikely(is_child_reaper(pid))) {
  182. if (pid_ns_prepare_proc(ns))
  183. goto out_free;
  184. }
  185. get_pid_ns(ns);
  186. atomic_set(&pid->count, 1);
  187. for (type = 0; type < PIDTYPE_MAX; ++type)
  188. INIT_HLIST_HEAD(&pid->tasks[type]);
  189. upid = pid->numbers + ns->level;
  190. spin_lock_irq(&pidmap_lock);
  191. if (!(ns->pid_allocated & PIDNS_ADDING))
  192. goto out_unlock;
  193. for ( ; upid >= pid->numbers; --upid) {
  194. /* Make the PID visible to find_pid_ns. */
  195. idr_replace(&upid->ns->idr, pid, upid->nr);
  196. upid->ns->pid_allocated++;
  197. }
  198. spin_unlock_irq(&pidmap_lock);
  199. return pid;
  200. out_unlock:
  201. spin_unlock_irq(&pidmap_lock);
  202. put_pid_ns(ns);
  203. out_free:
  204. spin_lock_irq(&pidmap_lock);
  205. while (++i <= ns->level)
  206. idr_remove(&ns->idr, (pid->numbers + i)->nr);
  207. /* On failure to allocate the first pid, reset the state */
  208. if (ns->pid_allocated == PIDNS_ADDING)
  209. idr_set_cursor(&ns->idr, 0);
  210. spin_unlock_irq(&pidmap_lock);
  211. kmem_cache_free(ns->pid_cachep, pid);
  212. return ERR_PTR(retval);
  213. }
  214. void disable_pid_allocation(struct pid_namespace *ns)
  215. {
  216. spin_lock_irq(&pidmap_lock);
  217. ns->pid_allocated &= ~PIDNS_ADDING;
  218. spin_unlock_irq(&pidmap_lock);
  219. }
  220. struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
  221. {
  222. return idr_find(&ns->idr, nr);
  223. }
  224. EXPORT_SYMBOL_GPL(find_pid_ns);
  225. struct pid *find_vpid(int nr)
  226. {
  227. return find_pid_ns(nr, task_active_pid_ns(current));
  228. }
  229. EXPORT_SYMBOL_GPL(find_vpid);
  230. /*
  231. * attach_pid() must be called with the tasklist_lock write-held.
  232. */
  233. void attach_pid(struct task_struct *task, enum pid_type type)
  234. {
  235. struct pid_link *link = &task->pids[type];
  236. hlist_add_head_rcu(&link->node, &link->pid->tasks[type]);
  237. }
  238. static void __change_pid(struct task_struct *task, enum pid_type type,
  239. struct pid *new)
  240. {
  241. struct pid_link *link;
  242. struct pid *pid;
  243. int tmp;
  244. link = &task->pids[type];
  245. pid = link->pid;
  246. hlist_del_rcu(&link->node);
  247. link->pid = new;
  248. for (tmp = PIDTYPE_MAX; --tmp >= 0; )
  249. if (!hlist_empty(&pid->tasks[tmp]))
  250. return;
  251. free_pid(pid);
  252. }
  253. void detach_pid(struct task_struct *task, enum pid_type type)
  254. {
  255. __change_pid(task, type, NULL);
  256. }
  257. void change_pid(struct task_struct *task, enum pid_type type,
  258. struct pid *pid)
  259. {
  260. __change_pid(task, type, pid);
  261. attach_pid(task, type);
  262. }
  263. /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
  264. void transfer_pid(struct task_struct *old, struct task_struct *new,
  265. enum pid_type type)
  266. {
  267. new->pids[type].pid = old->pids[type].pid;
  268. hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
  269. }
  270. struct task_struct *pid_task(struct pid *pid, enum pid_type type)
  271. {
  272. struct task_struct *result = NULL;
  273. if (pid) {
  274. struct hlist_node *first;
  275. first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
  276. lockdep_tasklist_lock_is_held());
  277. if (first)
  278. result = hlist_entry(first, struct task_struct, pids[(type)].node);
  279. }
  280. return result;
  281. }
  282. EXPORT_SYMBOL(pid_task);
  283. /*
  284. * Must be called under rcu_read_lock().
  285. */
  286. struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
  287. {
  288. RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
  289. "find_task_by_pid_ns() needs rcu_read_lock() protection");
  290. return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
  291. }
  292. struct task_struct *find_task_by_vpid(pid_t vnr)
  293. {
  294. return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
  295. }
  296. struct task_struct *find_get_task_by_vpid(pid_t nr)
  297. {
  298. struct task_struct *task;
  299. rcu_read_lock();
  300. task = find_task_by_vpid(nr);
  301. if (task)
  302. get_task_struct(task);
  303. rcu_read_unlock();
  304. return task;
  305. }
  306. struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
  307. {
  308. struct pid *pid;
  309. rcu_read_lock();
  310. if (type != PIDTYPE_PID)
  311. task = task->group_leader;
  312. pid = get_pid(rcu_dereference(task->pids[type].pid));
  313. rcu_read_unlock();
  314. return pid;
  315. }
  316. EXPORT_SYMBOL_GPL(get_task_pid);
  317. struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
  318. {
  319. struct task_struct *result;
  320. rcu_read_lock();
  321. result = pid_task(pid, type);
  322. if (result)
  323. get_task_struct(result);
  324. rcu_read_unlock();
  325. return result;
  326. }
  327. EXPORT_SYMBOL_GPL(get_pid_task);
  328. struct pid *find_get_pid(pid_t nr)
  329. {
  330. struct pid *pid;
  331. rcu_read_lock();
  332. pid = get_pid(find_vpid(nr));
  333. rcu_read_unlock();
  334. return pid;
  335. }
  336. EXPORT_SYMBOL_GPL(find_get_pid);
  337. pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
  338. {
  339. struct upid *upid;
  340. pid_t nr = 0;
  341. if (pid && ns->level <= pid->level) {
  342. upid = &pid->numbers[ns->level];
  343. if (upid->ns == ns)
  344. nr = upid->nr;
  345. }
  346. return nr;
  347. }
  348. EXPORT_SYMBOL_GPL(pid_nr_ns);
  349. pid_t pid_vnr(struct pid *pid)
  350. {
  351. return pid_nr_ns(pid, task_active_pid_ns(current));
  352. }
  353. EXPORT_SYMBOL_GPL(pid_vnr);
  354. pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
  355. struct pid_namespace *ns)
  356. {
  357. pid_t nr = 0;
  358. rcu_read_lock();
  359. if (!ns)
  360. ns = task_active_pid_ns(current);
  361. if (likely(pid_alive(task))) {
  362. if (type != PIDTYPE_PID) {
  363. if (type == __PIDTYPE_TGID)
  364. type = PIDTYPE_PID;
  365. task = task->group_leader;
  366. }
  367. nr = pid_nr_ns(rcu_dereference(task->pids[type].pid), ns);
  368. }
  369. rcu_read_unlock();
  370. return nr;
  371. }
  372. EXPORT_SYMBOL(__task_pid_nr_ns);
  373. struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
  374. {
  375. return ns_of_pid(task_pid(tsk));
  376. }
  377. EXPORT_SYMBOL_GPL(task_active_pid_ns);
  378. /*
  379. * Used by proc to find the first pid that is greater than or equal to nr.
  380. *
  381. * If there is a pid at nr this function is exactly the same as find_pid_ns.
  382. */
  383. struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
  384. {
  385. return idr_get_next(&ns->idr, &nr);
  386. }
  387. void __init pid_idr_init(void)
  388. {
  389. /* Verify no one has done anything silly: */
  390. BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING);
  391. /* bump default and minimum pid_max based on number of cpus */
  392. pid_max = min(pid_max_max, max_t(int, pid_max,
  393. PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
  394. pid_max_min = max_t(int, pid_max_min,
  395. PIDS_PER_CPU_MIN * num_possible_cpus());
  396. pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
  397. idr_init(&init_pid_ns.idr);
  398. init_pid_ns.pid_cachep = KMEM_CACHE(pid,
  399. SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
  400. }