futex.c 97 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638
  1. /*
  2. * Fast Userspace Mutexes (which I call "Futexes!").
  3. * (C) Rusty Russell, IBM 2002
  4. *
  5. * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
  6. * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
  7. *
  8. * Removed page pinning, fix privately mapped COW pages and other cleanups
  9. * (C) Copyright 2003, 2004 Jamie Lokier
  10. *
  11. * Robust futex support started by Ingo Molnar
  12. * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
  13. * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
  14. *
  15. * PI-futex support started by Ingo Molnar and Thomas Gleixner
  16. * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  17. * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
  18. *
  19. * PRIVATE futexes by Eric Dumazet
  20. * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
  21. *
  22. * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
  23. * Copyright (C) IBM Corporation, 2009
  24. * Thanks to Thomas Gleixner for conceptual design and careful reviews.
  25. *
  26. * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
  27. * enough at me, Linus for the original (flawed) idea, Matthew
  28. * Kirkwood for proof-of-concept implementation.
  29. *
  30. * "The futexes are also cursed."
  31. * "But they come in a choice of three flavours!"
  32. *
  33. * This program is free software; you can redistribute it and/or modify
  34. * it under the terms of the GNU General Public License as published by
  35. * the Free Software Foundation; either version 2 of the License, or
  36. * (at your option) any later version.
  37. *
  38. * This program is distributed in the hope that it will be useful,
  39. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  40. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  41. * GNU General Public License for more details.
  42. *
  43. * You should have received a copy of the GNU General Public License
  44. * along with this program; if not, write to the Free Software
  45. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  46. */
  47. #include <linux/slab.h>
  48. #include <linux/poll.h>
  49. #include <linux/fs.h>
  50. #include <linux/file.h>
  51. #include <linux/jhash.h>
  52. #include <linux/init.h>
  53. #include <linux/futex.h>
  54. #include <linux/mount.h>
  55. #include <linux/pagemap.h>
  56. #include <linux/syscalls.h>
  57. #include <linux/signal.h>
  58. #include <linux/export.h>
  59. #include <linux/magic.h>
  60. #include <linux/pid.h>
  61. #include <linux/nsproxy.h>
  62. #include <linux/ptrace.h>
  63. #include <linux/sched/rt.h>
  64. #include <linux/sched/wake_q.h>
  65. #include <linux/sched/mm.h>
  66. #include <linux/hugetlb.h>
  67. #include <linux/freezer.h>
  68. #include <linux/bootmem.h>
  69. #include <linux/fault-inject.h>
  70. #include <asm/futex.h>
  71. #include "locking/rtmutex_common.h"
  72. /*
  73. * READ this before attempting to hack on futexes!
  74. *
  75. * Basic futex operation and ordering guarantees
  76. * =============================================
  77. *
  78. * The waiter reads the futex value in user space and calls
  79. * futex_wait(). This function computes the hash bucket and acquires
  80. * the hash bucket lock. After that it reads the futex user space value
  81. * again and verifies that the data has not changed. If it has not changed
  82. * it enqueues itself into the hash bucket, releases the hash bucket lock
  83. * and schedules.
  84. *
  85. * The waker side modifies the user space value of the futex and calls
  86. * futex_wake(). This function computes the hash bucket and acquires the
  87. * hash bucket lock. Then it looks for waiters on that futex in the hash
  88. * bucket and wakes them.
  89. *
  90. * In futex wake up scenarios where no tasks are blocked on a futex, taking
  91. * the hb spinlock can be avoided and simply return. In order for this
  92. * optimization to work, ordering guarantees must exist so that the waiter
  93. * being added to the list is acknowledged when the list is concurrently being
  94. * checked by the waker, avoiding scenarios like the following:
  95. *
  96. * CPU 0 CPU 1
  97. * val = *futex;
  98. * sys_futex(WAIT, futex, val);
  99. * futex_wait(futex, val);
  100. * uval = *futex;
  101. * *futex = newval;
  102. * sys_futex(WAKE, futex);
  103. * futex_wake(futex);
  104. * if (queue_empty())
  105. * return;
  106. * if (uval == val)
  107. * lock(hash_bucket(futex));
  108. * queue();
  109. * unlock(hash_bucket(futex));
  110. * schedule();
  111. *
  112. * This would cause the waiter on CPU 0 to wait forever because it
  113. * missed the transition of the user space value from val to newval
  114. * and the waker did not find the waiter in the hash bucket queue.
  115. *
  116. * The correct serialization ensures that a waiter either observes
  117. * the changed user space value before blocking or is woken by a
  118. * concurrent waker:
  119. *
  120. * CPU 0 CPU 1
  121. * val = *futex;
  122. * sys_futex(WAIT, futex, val);
  123. * futex_wait(futex, val);
  124. *
  125. * waiters++; (a)
  126. * smp_mb(); (A) <-- paired with -.
  127. * |
  128. * lock(hash_bucket(futex)); |
  129. * |
  130. * uval = *futex; |
  131. * | *futex = newval;
  132. * | sys_futex(WAKE, futex);
  133. * | futex_wake(futex);
  134. * |
  135. * `--------> smp_mb(); (B)
  136. * if (uval == val)
  137. * queue();
  138. * unlock(hash_bucket(futex));
  139. * schedule(); if (waiters)
  140. * lock(hash_bucket(futex));
  141. * else wake_waiters(futex);
  142. * waiters--; (b) unlock(hash_bucket(futex));
  143. *
  144. * Where (A) orders the waiters increment and the futex value read through
  145. * atomic operations (see hb_waiters_inc) and where (B) orders the write
  146. * to futex and the waiters read -- this is done by the barriers for both
  147. * shared and private futexes in get_futex_key_refs().
  148. *
  149. * This yields the following case (where X:=waiters, Y:=futex):
  150. *
  151. * X = Y = 0
  152. *
  153. * w[X]=1 w[Y]=1
  154. * MB MB
  155. * r[Y]=y r[X]=x
  156. *
  157. * Which guarantees that x==0 && y==0 is impossible; which translates back into
  158. * the guarantee that we cannot both miss the futex variable change and the
  159. * enqueue.
  160. *
  161. * Note that a new waiter is accounted for in (a) even when it is possible that
  162. * the wait call can return error, in which case we backtrack from it in (b).
  163. * Refer to the comment in queue_lock().
  164. *
  165. * Similarly, in order to account for waiters being requeued on another
  166. * address we always increment the waiters for the destination bucket before
  167. * acquiring the lock. It then decrements them again after releasing it -
  168. * the code that actually moves the futex(es) between hash buckets (requeue_futex)
  169. * will do the additional required waiter count housekeeping. This is done for
  170. * double_lock_hb() and double_unlock_hb(), respectively.
  171. */
  172. #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
  173. int __read_mostly futex_cmpxchg_enabled;
  174. #endif
  175. /*
  176. * Futex flags used to encode options to functions and preserve them across
  177. * restarts.
  178. */
  179. #ifdef CONFIG_MMU
  180. # define FLAGS_SHARED 0x01
  181. #else
  182. /*
  183. * NOMMU does not have per process address space. Let the compiler optimize
  184. * code away.
  185. */
  186. # define FLAGS_SHARED 0x00
  187. #endif
  188. #define FLAGS_CLOCKRT 0x02
  189. #define FLAGS_HAS_TIMEOUT 0x04
  190. /*
  191. * Priority Inheritance state:
  192. */
  193. struct futex_pi_state {
  194. /*
  195. * list of 'owned' pi_state instances - these have to be
  196. * cleaned up in do_exit() if the task exits prematurely:
  197. */
  198. struct list_head list;
  199. /*
  200. * The PI object:
  201. */
  202. struct rt_mutex pi_mutex;
  203. struct task_struct *owner;
  204. atomic_t refcount;
  205. union futex_key key;
  206. } __randomize_layout;
  207. /**
  208. * struct futex_q - The hashed futex queue entry, one per waiting task
  209. * @list: priority-sorted list of tasks waiting on this futex
  210. * @task: the task waiting on the futex
  211. * @lock_ptr: the hash bucket lock
  212. * @key: the key the futex is hashed on
  213. * @pi_state: optional priority inheritance state
  214. * @rt_waiter: rt_waiter storage for use with requeue_pi
  215. * @requeue_pi_key: the requeue_pi target futex key
  216. * @bitset: bitset for the optional bitmasked wakeup
  217. *
  218. * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
  219. * we can wake only the relevant ones (hashed queues may be shared).
  220. *
  221. * A futex_q has a woken state, just like tasks have TASK_RUNNING.
  222. * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
  223. * The order of wakeup is always to make the first condition true, then
  224. * the second.
  225. *
  226. * PI futexes are typically woken before they are removed from the hash list via
  227. * the rt_mutex code. See unqueue_me_pi().
  228. */
  229. struct futex_q {
  230. struct plist_node list;
  231. struct task_struct *task;
  232. spinlock_t *lock_ptr;
  233. union futex_key key;
  234. struct futex_pi_state *pi_state;
  235. struct rt_mutex_waiter *rt_waiter;
  236. union futex_key *requeue_pi_key;
  237. u32 bitset;
  238. } __randomize_layout;
  239. static const struct futex_q futex_q_init = {
  240. /* list gets initialized in queue_me()*/
  241. .key = FUTEX_KEY_INIT,
  242. .bitset = FUTEX_BITSET_MATCH_ANY
  243. };
  244. /*
  245. * Hash buckets are shared by all the futex_keys that hash to the same
  246. * location. Each key may have multiple futex_q structures, one for each task
  247. * waiting on a futex.
  248. */
  249. struct futex_hash_bucket {
  250. atomic_t waiters;
  251. spinlock_t lock;
  252. struct plist_head chain;
  253. } ____cacheline_aligned_in_smp;
  254. /*
  255. * The base of the bucket array and its size are always used together
  256. * (after initialization only in hash_futex()), so ensure that they
  257. * reside in the same cacheline.
  258. */
  259. static struct {
  260. struct futex_hash_bucket *queues;
  261. unsigned long hashsize;
  262. } __futex_data __read_mostly __aligned(2*sizeof(long));
  263. #define futex_queues (__futex_data.queues)
  264. #define futex_hashsize (__futex_data.hashsize)
  265. /*
  266. * Fault injections for futexes.
  267. */
  268. #ifdef CONFIG_FAIL_FUTEX
  269. static struct {
  270. struct fault_attr attr;
  271. bool ignore_private;
  272. } fail_futex = {
  273. .attr = FAULT_ATTR_INITIALIZER,
  274. .ignore_private = false,
  275. };
  276. static int __init setup_fail_futex(char *str)
  277. {
  278. return setup_fault_attr(&fail_futex.attr, str);
  279. }
  280. __setup("fail_futex=", setup_fail_futex);
  281. static bool should_fail_futex(bool fshared)
  282. {
  283. if (fail_futex.ignore_private && !fshared)
  284. return false;
  285. return should_fail(&fail_futex.attr, 1);
  286. }
  287. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  288. static int __init fail_futex_debugfs(void)
  289. {
  290. umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  291. struct dentry *dir;
  292. dir = fault_create_debugfs_attr("fail_futex", NULL,
  293. &fail_futex.attr);
  294. if (IS_ERR(dir))
  295. return PTR_ERR(dir);
  296. if (!debugfs_create_bool("ignore-private", mode, dir,
  297. &fail_futex.ignore_private)) {
  298. debugfs_remove_recursive(dir);
  299. return -ENOMEM;
  300. }
  301. return 0;
  302. }
  303. late_initcall(fail_futex_debugfs);
  304. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  305. #else
  306. static inline bool should_fail_futex(bool fshared)
  307. {
  308. return false;
  309. }
  310. #endif /* CONFIG_FAIL_FUTEX */
  311. static inline void futex_get_mm(union futex_key *key)
  312. {
  313. mmgrab(key->private.mm);
  314. /*
  315. * Ensure futex_get_mm() implies a full barrier such that
  316. * get_futex_key() implies a full barrier. This is relied upon
  317. * as smp_mb(); (B), see the ordering comment above.
  318. */
  319. smp_mb__after_atomic();
  320. }
  321. /*
  322. * Reflects a new waiter being added to the waitqueue.
  323. */
  324. static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
  325. {
  326. #ifdef CONFIG_SMP
  327. atomic_inc(&hb->waiters);
  328. /*
  329. * Full barrier (A), see the ordering comment above.
  330. */
  331. smp_mb__after_atomic();
  332. #endif
  333. }
  334. /*
  335. * Reflects a waiter being removed from the waitqueue by wakeup
  336. * paths.
  337. */
  338. static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
  339. {
  340. #ifdef CONFIG_SMP
  341. atomic_dec(&hb->waiters);
  342. #endif
  343. }
  344. static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
  345. {
  346. #ifdef CONFIG_SMP
  347. return atomic_read(&hb->waiters);
  348. #else
  349. return 1;
  350. #endif
  351. }
  352. /**
  353. * hash_futex - Return the hash bucket in the global hash
  354. * @key: Pointer to the futex key for which the hash is calculated
  355. *
  356. * We hash on the keys returned from get_futex_key (see below) and return the
  357. * corresponding hash bucket in the global hash.
  358. */
  359. static struct futex_hash_bucket *hash_futex(union futex_key *key)
  360. {
  361. u32 hash = jhash2((u32*)&key->both.word,
  362. (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
  363. key->both.offset);
  364. return &futex_queues[hash & (futex_hashsize - 1)];
  365. }
  366. /**
  367. * match_futex - Check whether two futex keys are equal
  368. * @key1: Pointer to key1
  369. * @key2: Pointer to key2
  370. *
  371. * Return 1 if two futex_keys are equal, 0 otherwise.
  372. */
  373. static inline int match_futex(union futex_key *key1, union futex_key *key2)
  374. {
  375. return (key1 && key2
  376. && key1->both.word == key2->both.word
  377. && key1->both.ptr == key2->both.ptr
  378. && key1->both.offset == key2->both.offset);
  379. }
  380. /*
  381. * Take a reference to the resource addressed by a key.
  382. * Can be called while holding spinlocks.
  383. *
  384. */
  385. static void get_futex_key_refs(union futex_key *key)
  386. {
  387. if (!key->both.ptr)
  388. return;
  389. /*
  390. * On MMU less systems futexes are always "private" as there is no per
  391. * process address space. We need the smp wmb nevertheless - yes,
  392. * arch/blackfin has MMU less SMP ...
  393. */
  394. if (!IS_ENABLED(CONFIG_MMU)) {
  395. smp_mb(); /* explicit smp_mb(); (B) */
  396. return;
  397. }
  398. switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
  399. case FUT_OFF_INODE:
  400. ihold(key->shared.inode); /* implies smp_mb(); (B) */
  401. break;
  402. case FUT_OFF_MMSHARED:
  403. futex_get_mm(key); /* implies smp_mb(); (B) */
  404. break;
  405. default:
  406. /*
  407. * Private futexes do not hold reference on an inode or
  408. * mm, therefore the only purpose of calling get_futex_key_refs
  409. * is because we need the barrier for the lockless waiter check.
  410. */
  411. smp_mb(); /* explicit smp_mb(); (B) */
  412. }
  413. }
  414. /*
  415. * Drop a reference to the resource addressed by a key.
  416. * The hash bucket spinlock must not be held. This is
  417. * a no-op for private futexes, see comment in the get
  418. * counterpart.
  419. */
  420. static void drop_futex_key_refs(union futex_key *key)
  421. {
  422. if (!key->both.ptr) {
  423. /* If we're here then we tried to put a key we failed to get */
  424. WARN_ON_ONCE(1);
  425. return;
  426. }
  427. if (!IS_ENABLED(CONFIG_MMU))
  428. return;
  429. switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
  430. case FUT_OFF_INODE:
  431. iput(key->shared.inode);
  432. break;
  433. case FUT_OFF_MMSHARED:
  434. mmdrop(key->private.mm);
  435. break;
  436. }
  437. }
  438. /**
  439. * get_futex_key() - Get parameters which are the keys for a futex
  440. * @uaddr: virtual address of the futex
  441. * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
  442. * @key: address where result is stored.
  443. * @rw: mapping needs to be read/write (values: VERIFY_READ,
  444. * VERIFY_WRITE)
  445. *
  446. * Return: a negative error code or 0
  447. *
  448. * The key words are stored in @key on success.
  449. *
  450. * For shared mappings, it's (page->index, file_inode(vma->vm_file),
  451. * offset_within_page). For private mappings, it's (uaddr, current->mm).
  452. * We can usually work out the index without swapping in the page.
  453. *
  454. * lock_page() might sleep, the caller should not hold a spinlock.
  455. */
  456. static int
  457. get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
  458. {
  459. unsigned long address = (unsigned long)uaddr;
  460. struct mm_struct *mm = current->mm;
  461. struct page *page, *tail;
  462. struct address_space *mapping;
  463. int err, ro = 0;
  464. /*
  465. * The futex address must be "naturally" aligned.
  466. */
  467. key->both.offset = address % PAGE_SIZE;
  468. if (unlikely((address % sizeof(u32)) != 0))
  469. return -EINVAL;
  470. address -= key->both.offset;
  471. if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
  472. return -EFAULT;
  473. if (unlikely(should_fail_futex(fshared)))
  474. return -EFAULT;
  475. /*
  476. * PROCESS_PRIVATE futexes are fast.
  477. * As the mm cannot disappear under us and the 'key' only needs
  478. * virtual address, we dont even have to find the underlying vma.
  479. * Note : We do have to check 'uaddr' is a valid user address,
  480. * but access_ok() should be faster than find_vma()
  481. */
  482. if (!fshared) {
  483. key->private.mm = mm;
  484. key->private.address = address;
  485. get_futex_key_refs(key); /* implies smp_mb(); (B) */
  486. return 0;
  487. }
  488. again:
  489. /* Ignore any VERIFY_READ mapping (futex common case) */
  490. if (unlikely(should_fail_futex(fshared)))
  491. return -EFAULT;
  492. err = get_user_pages_fast(address, 1, 1, &page);
  493. /*
  494. * If write access is not required (eg. FUTEX_WAIT), try
  495. * and get read-only access.
  496. */
  497. if (err == -EFAULT && rw == VERIFY_READ) {
  498. err = get_user_pages_fast(address, 1, 0, &page);
  499. ro = 1;
  500. }
  501. if (err < 0)
  502. return err;
  503. else
  504. err = 0;
  505. /*
  506. * The treatment of mapping from this point on is critical. The page
  507. * lock protects many things but in this context the page lock
  508. * stabilizes mapping, prevents inode freeing in the shared
  509. * file-backed region case and guards against movement to swap cache.
  510. *
  511. * Strictly speaking the page lock is not needed in all cases being
  512. * considered here and page lock forces unnecessarily serialization
  513. * From this point on, mapping will be re-verified if necessary and
  514. * page lock will be acquired only if it is unavoidable
  515. *
  516. * Mapping checks require the head page for any compound page so the
  517. * head page and mapping is looked up now. For anonymous pages, it
  518. * does not matter if the page splits in the future as the key is
  519. * based on the address. For filesystem-backed pages, the tail is
  520. * required as the index of the page determines the key. For
  521. * base pages, there is no tail page and tail == page.
  522. */
  523. tail = page;
  524. page = compound_head(page);
  525. mapping = READ_ONCE(page->mapping);
  526. /*
  527. * If page->mapping is NULL, then it cannot be a PageAnon
  528. * page; but it might be the ZERO_PAGE or in the gate area or
  529. * in a special mapping (all cases which we are happy to fail);
  530. * or it may have been a good file page when get_user_pages_fast
  531. * found it, but truncated or holepunched or subjected to
  532. * invalidate_complete_page2 before we got the page lock (also
  533. * cases which we are happy to fail). And we hold a reference,
  534. * so refcount care in invalidate_complete_page's remove_mapping
  535. * prevents drop_caches from setting mapping to NULL beneath us.
  536. *
  537. * The case we do have to guard against is when memory pressure made
  538. * shmem_writepage move it from filecache to swapcache beneath us:
  539. * an unlikely race, but we do need to retry for page->mapping.
  540. */
  541. if (unlikely(!mapping)) {
  542. int shmem_swizzled;
  543. /*
  544. * Page lock is required to identify which special case above
  545. * applies. If this is really a shmem page then the page lock
  546. * will prevent unexpected transitions.
  547. */
  548. lock_page(page);
  549. shmem_swizzled = PageSwapCache(page) || page->mapping;
  550. unlock_page(page);
  551. put_page(page);
  552. if (shmem_swizzled)
  553. goto again;
  554. return -EFAULT;
  555. }
  556. /*
  557. * Private mappings are handled in a simple way.
  558. *
  559. * If the futex key is stored on an anonymous page, then the associated
  560. * object is the mm which is implicitly pinned by the calling process.
  561. *
  562. * NOTE: When userspace waits on a MAP_SHARED mapping, even if
  563. * it's a read-only handle, it's expected that futexes attach to
  564. * the object not the particular process.
  565. */
  566. if (PageAnon(page)) {
  567. /*
  568. * A RO anonymous page will never change and thus doesn't make
  569. * sense for futex operations.
  570. */
  571. if (unlikely(should_fail_futex(fshared)) || ro) {
  572. err = -EFAULT;
  573. goto out;
  574. }
  575. key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
  576. key->private.mm = mm;
  577. key->private.address = address;
  578. get_futex_key_refs(key); /* implies smp_mb(); (B) */
  579. } else {
  580. struct inode *inode;
  581. /*
  582. * The associated futex object in this case is the inode and
  583. * the page->mapping must be traversed. Ordinarily this should
  584. * be stabilised under page lock but it's not strictly
  585. * necessary in this case as we just want to pin the inode, not
  586. * update the radix tree or anything like that.
  587. *
  588. * The RCU read lock is taken as the inode is finally freed
  589. * under RCU. If the mapping still matches expectations then the
  590. * mapping->host can be safely accessed as being a valid inode.
  591. */
  592. rcu_read_lock();
  593. if (READ_ONCE(page->mapping) != mapping) {
  594. rcu_read_unlock();
  595. put_page(page);
  596. goto again;
  597. }
  598. inode = READ_ONCE(mapping->host);
  599. if (!inode) {
  600. rcu_read_unlock();
  601. put_page(page);
  602. goto again;
  603. }
  604. /*
  605. * Take a reference unless it is about to be freed. Previously
  606. * this reference was taken by ihold under the page lock
  607. * pinning the inode in place so i_lock was unnecessary. The
  608. * only way for this check to fail is if the inode was
  609. * truncated in parallel which is almost certainly an
  610. * application bug. In such a case, just retry.
  611. *
  612. * We are not calling into get_futex_key_refs() in file-backed
  613. * cases, therefore a successful atomic_inc return below will
  614. * guarantee that get_futex_key() will still imply smp_mb(); (B).
  615. */
  616. if (!atomic_inc_not_zero(&inode->i_count)) {
  617. rcu_read_unlock();
  618. put_page(page);
  619. goto again;
  620. }
  621. /* Should be impossible but lets be paranoid for now */
  622. if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
  623. err = -EFAULT;
  624. rcu_read_unlock();
  625. iput(inode);
  626. goto out;
  627. }
  628. key->both.offset |= FUT_OFF_INODE; /* inode-based key */
  629. key->shared.inode = inode;
  630. key->shared.pgoff = basepage_index(tail);
  631. rcu_read_unlock();
  632. }
  633. out:
  634. put_page(page);
  635. return err;
  636. }
  637. static inline void put_futex_key(union futex_key *key)
  638. {
  639. drop_futex_key_refs(key);
  640. }
  641. /**
  642. * fault_in_user_writeable() - Fault in user address and verify RW access
  643. * @uaddr: pointer to faulting user space address
  644. *
  645. * Slow path to fixup the fault we just took in the atomic write
  646. * access to @uaddr.
  647. *
  648. * We have no generic implementation of a non-destructive write to the
  649. * user address. We know that we faulted in the atomic pagefault
  650. * disabled section so we can as well avoid the #PF overhead by
  651. * calling get_user_pages() right away.
  652. */
  653. static int fault_in_user_writeable(u32 __user *uaddr)
  654. {
  655. struct mm_struct *mm = current->mm;
  656. int ret;
  657. down_read(&mm->mmap_sem);
  658. ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
  659. FAULT_FLAG_WRITE, NULL);
  660. up_read(&mm->mmap_sem);
  661. return ret < 0 ? ret : 0;
  662. }
  663. /**
  664. * futex_top_waiter() - Return the highest priority waiter on a futex
  665. * @hb: the hash bucket the futex_q's reside in
  666. * @key: the futex key (to distinguish it from other futex futex_q's)
  667. *
  668. * Must be called with the hb lock held.
  669. */
  670. static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
  671. union futex_key *key)
  672. {
  673. struct futex_q *this;
  674. plist_for_each_entry(this, &hb->chain, list) {
  675. if (match_futex(&this->key, key))
  676. return this;
  677. }
  678. return NULL;
  679. }
  680. static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
  681. u32 uval, u32 newval)
  682. {
  683. int ret;
  684. pagefault_disable();
  685. ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
  686. pagefault_enable();
  687. return ret;
  688. }
  689. static int get_futex_value_locked(u32 *dest, u32 __user *from)
  690. {
  691. int ret;
  692. pagefault_disable();
  693. ret = __get_user(*dest, from);
  694. pagefault_enable();
  695. return ret ? -EFAULT : 0;
  696. }
  697. /*
  698. * PI code:
  699. */
  700. static int refill_pi_state_cache(void)
  701. {
  702. struct futex_pi_state *pi_state;
  703. if (likely(current->pi_state_cache))
  704. return 0;
  705. pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
  706. if (!pi_state)
  707. return -ENOMEM;
  708. INIT_LIST_HEAD(&pi_state->list);
  709. /* pi_mutex gets initialized later */
  710. pi_state->owner = NULL;
  711. atomic_set(&pi_state->refcount, 1);
  712. pi_state->key = FUTEX_KEY_INIT;
  713. current->pi_state_cache = pi_state;
  714. return 0;
  715. }
  716. static struct futex_pi_state *alloc_pi_state(void)
  717. {
  718. struct futex_pi_state *pi_state = current->pi_state_cache;
  719. WARN_ON(!pi_state);
  720. current->pi_state_cache = NULL;
  721. return pi_state;
  722. }
  723. static void get_pi_state(struct futex_pi_state *pi_state)
  724. {
  725. WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
  726. }
  727. /*
  728. * Drops a reference to the pi_state object and frees or caches it
  729. * when the last reference is gone.
  730. */
  731. static void put_pi_state(struct futex_pi_state *pi_state)
  732. {
  733. if (!pi_state)
  734. return;
  735. if (!atomic_dec_and_test(&pi_state->refcount))
  736. return;
  737. /*
  738. * If pi_state->owner is NULL, the owner is most probably dying
  739. * and has cleaned up the pi_state already
  740. */
  741. if (pi_state->owner) {
  742. struct task_struct *owner;
  743. raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
  744. owner = pi_state->owner;
  745. if (owner) {
  746. raw_spin_lock(&owner->pi_lock);
  747. list_del_init(&pi_state->list);
  748. raw_spin_unlock(&owner->pi_lock);
  749. }
  750. rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
  751. raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
  752. }
  753. if (current->pi_state_cache) {
  754. kfree(pi_state);
  755. } else {
  756. /*
  757. * pi_state->list is already empty.
  758. * clear pi_state->owner.
  759. * refcount is at 0 - put it back to 1.
  760. */
  761. pi_state->owner = NULL;
  762. atomic_set(&pi_state->refcount, 1);
  763. current->pi_state_cache = pi_state;
  764. }
  765. }
  766. #ifdef CONFIG_FUTEX_PI
  767. /*
  768. * This task is holding PI mutexes at exit time => bad.
  769. * Kernel cleans up PI-state, but userspace is likely hosed.
  770. * (Robust-futex cleanup is separate and might save the day for userspace.)
  771. */
  772. void exit_pi_state_list(struct task_struct *curr)
  773. {
  774. struct list_head *next, *head = &curr->pi_state_list;
  775. struct futex_pi_state *pi_state;
  776. struct futex_hash_bucket *hb;
  777. union futex_key key = FUTEX_KEY_INIT;
  778. if (!futex_cmpxchg_enabled)
  779. return;
  780. /*
  781. * We are a ZOMBIE and nobody can enqueue itself on
  782. * pi_state_list anymore, but we have to be careful
  783. * versus waiters unqueueing themselves:
  784. */
  785. raw_spin_lock_irq(&curr->pi_lock);
  786. while (!list_empty(head)) {
  787. next = head->next;
  788. pi_state = list_entry(next, struct futex_pi_state, list);
  789. key = pi_state->key;
  790. hb = hash_futex(&key);
  791. /*
  792. * We can race against put_pi_state() removing itself from the
  793. * list (a waiter going away). put_pi_state() will first
  794. * decrement the reference count and then modify the list, so
  795. * its possible to see the list entry but fail this reference
  796. * acquire.
  797. *
  798. * In that case; drop the locks to let put_pi_state() make
  799. * progress and retry the loop.
  800. */
  801. if (!atomic_inc_not_zero(&pi_state->refcount)) {
  802. raw_spin_unlock_irq(&curr->pi_lock);
  803. cpu_relax();
  804. raw_spin_lock_irq(&curr->pi_lock);
  805. continue;
  806. }
  807. raw_spin_unlock_irq(&curr->pi_lock);
  808. spin_lock(&hb->lock);
  809. raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
  810. raw_spin_lock(&curr->pi_lock);
  811. /*
  812. * We dropped the pi-lock, so re-check whether this
  813. * task still owns the PI-state:
  814. */
  815. if (head->next != next) {
  816. /* retain curr->pi_lock for the loop invariant */
  817. raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
  818. spin_unlock(&hb->lock);
  819. put_pi_state(pi_state);
  820. continue;
  821. }
  822. WARN_ON(pi_state->owner != curr);
  823. WARN_ON(list_empty(&pi_state->list));
  824. list_del_init(&pi_state->list);
  825. pi_state->owner = NULL;
  826. raw_spin_unlock(&curr->pi_lock);
  827. raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
  828. spin_unlock(&hb->lock);
  829. rt_mutex_futex_unlock(&pi_state->pi_mutex);
  830. put_pi_state(pi_state);
  831. raw_spin_lock_irq(&curr->pi_lock);
  832. }
  833. raw_spin_unlock_irq(&curr->pi_lock);
  834. }
  835. #endif
  836. /*
  837. * We need to check the following states:
  838. *
  839. * Waiter | pi_state | pi->owner | uTID | uODIED | ?
  840. *
  841. * [1] NULL | --- | --- | 0 | 0/1 | Valid
  842. * [2] NULL | --- | --- | >0 | 0/1 | Valid
  843. *
  844. * [3] Found | NULL | -- | Any | 0/1 | Invalid
  845. *
  846. * [4] Found | Found | NULL | 0 | 1 | Valid
  847. * [5] Found | Found | NULL | >0 | 1 | Invalid
  848. *
  849. * [6] Found | Found | task | 0 | 1 | Valid
  850. *
  851. * [7] Found | Found | NULL | Any | 0 | Invalid
  852. *
  853. * [8] Found | Found | task | ==taskTID | 0/1 | Valid
  854. * [9] Found | Found | task | 0 | 0 | Invalid
  855. * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
  856. *
  857. * [1] Indicates that the kernel can acquire the futex atomically. We
  858. * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
  859. *
  860. * [2] Valid, if TID does not belong to a kernel thread. If no matching
  861. * thread is found then it indicates that the owner TID has died.
  862. *
  863. * [3] Invalid. The waiter is queued on a non PI futex
  864. *
  865. * [4] Valid state after exit_robust_list(), which sets the user space
  866. * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
  867. *
  868. * [5] The user space value got manipulated between exit_robust_list()
  869. * and exit_pi_state_list()
  870. *
  871. * [6] Valid state after exit_pi_state_list() which sets the new owner in
  872. * the pi_state but cannot access the user space value.
  873. *
  874. * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
  875. *
  876. * [8] Owner and user space value match
  877. *
  878. * [9] There is no transient state which sets the user space TID to 0
  879. * except exit_robust_list(), but this is indicated by the
  880. * FUTEX_OWNER_DIED bit. See [4]
  881. *
  882. * [10] There is no transient state which leaves owner and user space
  883. * TID out of sync.
  884. *
  885. *
  886. * Serialization and lifetime rules:
  887. *
  888. * hb->lock:
  889. *
  890. * hb -> futex_q, relation
  891. * futex_q -> pi_state, relation
  892. *
  893. * (cannot be raw because hb can contain arbitrary amount
  894. * of futex_q's)
  895. *
  896. * pi_mutex->wait_lock:
  897. *
  898. * {uval, pi_state}
  899. *
  900. * (and pi_mutex 'obviously')
  901. *
  902. * p->pi_lock:
  903. *
  904. * p->pi_state_list -> pi_state->list, relation
  905. *
  906. * pi_state->refcount:
  907. *
  908. * pi_state lifetime
  909. *
  910. *
  911. * Lock order:
  912. *
  913. * hb->lock
  914. * pi_mutex->wait_lock
  915. * p->pi_lock
  916. *
  917. */
  918. /*
  919. * Validate that the existing waiter has a pi_state and sanity check
  920. * the pi_state against the user space value. If correct, attach to
  921. * it.
  922. */
  923. static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
  924. struct futex_pi_state *pi_state,
  925. struct futex_pi_state **ps)
  926. {
  927. pid_t pid = uval & FUTEX_TID_MASK;
  928. u32 uval2;
  929. int ret;
  930. /*
  931. * Userspace might have messed up non-PI and PI futexes [3]
  932. */
  933. if (unlikely(!pi_state))
  934. return -EINVAL;
  935. /*
  936. * We get here with hb->lock held, and having found a
  937. * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
  938. * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
  939. * which in turn means that futex_lock_pi() still has a reference on
  940. * our pi_state.
  941. *
  942. * The waiter holding a reference on @pi_state also protects against
  943. * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
  944. * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
  945. * free pi_state before we can take a reference ourselves.
  946. */
  947. WARN_ON(!atomic_read(&pi_state->refcount));
  948. /*
  949. * Now that we have a pi_state, we can acquire wait_lock
  950. * and do the state validation.
  951. */
  952. raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
  953. /*
  954. * Since {uval, pi_state} is serialized by wait_lock, and our current
  955. * uval was read without holding it, it can have changed. Verify it
  956. * still is what we expect it to be, otherwise retry the entire
  957. * operation.
  958. */
  959. if (get_futex_value_locked(&uval2, uaddr))
  960. goto out_efault;
  961. if (uval != uval2)
  962. goto out_eagain;
  963. /*
  964. * Handle the owner died case:
  965. */
  966. if (uval & FUTEX_OWNER_DIED) {
  967. /*
  968. * exit_pi_state_list sets owner to NULL and wakes the
  969. * topmost waiter. The task which acquires the
  970. * pi_state->rt_mutex will fixup owner.
  971. */
  972. if (!pi_state->owner) {
  973. /*
  974. * No pi state owner, but the user space TID
  975. * is not 0. Inconsistent state. [5]
  976. */
  977. if (pid)
  978. goto out_einval;
  979. /*
  980. * Take a ref on the state and return success. [4]
  981. */
  982. goto out_attach;
  983. }
  984. /*
  985. * If TID is 0, then either the dying owner has not
  986. * yet executed exit_pi_state_list() or some waiter
  987. * acquired the rtmutex in the pi state, but did not
  988. * yet fixup the TID in user space.
  989. *
  990. * Take a ref on the state and return success. [6]
  991. */
  992. if (!pid)
  993. goto out_attach;
  994. } else {
  995. /*
  996. * If the owner died bit is not set, then the pi_state
  997. * must have an owner. [7]
  998. */
  999. if (!pi_state->owner)
  1000. goto out_einval;
  1001. }
  1002. /*
  1003. * Bail out if user space manipulated the futex value. If pi
  1004. * state exists then the owner TID must be the same as the
  1005. * user space TID. [9/10]
  1006. */
  1007. if (pid != task_pid_vnr(pi_state->owner))
  1008. goto out_einval;
  1009. out_attach:
  1010. get_pi_state(pi_state);
  1011. raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
  1012. *ps = pi_state;
  1013. return 0;
  1014. out_einval:
  1015. ret = -EINVAL;
  1016. goto out_error;
  1017. out_eagain:
  1018. ret = -EAGAIN;
  1019. goto out_error;
  1020. out_efault:
  1021. ret = -EFAULT;
  1022. goto out_error;
  1023. out_error:
  1024. raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
  1025. return ret;
  1026. }
  1027. /*
  1028. * Lookup the task for the TID provided from user space and attach to
  1029. * it after doing proper sanity checks.
  1030. */
  1031. static int attach_to_pi_owner(u32 uval, union futex_key *key,
  1032. struct futex_pi_state **ps)
  1033. {
  1034. pid_t pid = uval & FUTEX_TID_MASK;
  1035. struct futex_pi_state *pi_state;
  1036. struct task_struct *p;
  1037. /*
  1038. * We are the first waiter - try to look up the real owner and attach
  1039. * the new pi_state to it, but bail out when TID = 0 [1]
  1040. */
  1041. if (!pid)
  1042. return -ESRCH;
  1043. p = find_get_task_by_vpid(pid);
  1044. if (!p)
  1045. return -ESRCH;
  1046. if (unlikely(p->flags & PF_KTHREAD)) {
  1047. put_task_struct(p);
  1048. return -EPERM;
  1049. }
  1050. /*
  1051. * We need to look at the task state flags to figure out,
  1052. * whether the task is exiting. To protect against the do_exit
  1053. * change of the task flags, we do this protected by
  1054. * p->pi_lock:
  1055. */
  1056. raw_spin_lock_irq(&p->pi_lock);
  1057. if (unlikely(p->flags & PF_EXITING)) {
  1058. /*
  1059. * The task is on the way out. When PF_EXITPIDONE is
  1060. * set, we know that the task has finished the
  1061. * cleanup:
  1062. */
  1063. int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
  1064. raw_spin_unlock_irq(&p->pi_lock);
  1065. put_task_struct(p);
  1066. return ret;
  1067. }
  1068. /*
  1069. * No existing pi state. First waiter. [2]
  1070. *
  1071. * This creates pi_state, we have hb->lock held, this means nothing can
  1072. * observe this state, wait_lock is irrelevant.
  1073. */
  1074. pi_state = alloc_pi_state();
  1075. /*
  1076. * Initialize the pi_mutex in locked state and make @p
  1077. * the owner of it:
  1078. */
  1079. rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
  1080. /* Store the key for possible exit cleanups: */
  1081. pi_state->key = *key;
  1082. WARN_ON(!list_empty(&pi_state->list));
  1083. list_add(&pi_state->list, &p->pi_state_list);
  1084. /*
  1085. * Assignment without holding pi_state->pi_mutex.wait_lock is safe
  1086. * because there is no concurrency as the object is not published yet.
  1087. */
  1088. pi_state->owner = p;
  1089. raw_spin_unlock_irq(&p->pi_lock);
  1090. put_task_struct(p);
  1091. *ps = pi_state;
  1092. return 0;
  1093. }
  1094. static int lookup_pi_state(u32 __user *uaddr, u32 uval,
  1095. struct futex_hash_bucket *hb,
  1096. union futex_key *key, struct futex_pi_state **ps)
  1097. {
  1098. struct futex_q *top_waiter = futex_top_waiter(hb, key);
  1099. /*
  1100. * If there is a waiter on that futex, validate it and
  1101. * attach to the pi_state when the validation succeeds.
  1102. */
  1103. if (top_waiter)
  1104. return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
  1105. /*
  1106. * We are the first waiter - try to look up the owner based on
  1107. * @uval and attach to it.
  1108. */
  1109. return attach_to_pi_owner(uval, key, ps);
  1110. }
  1111. static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
  1112. {
  1113. u32 uninitialized_var(curval);
  1114. if (unlikely(should_fail_futex(true)))
  1115. return -EFAULT;
  1116. if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
  1117. return -EFAULT;
  1118. /* If user space value changed, let the caller retry */
  1119. return curval != uval ? -EAGAIN : 0;
  1120. }
  1121. /**
  1122. * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
  1123. * @uaddr: the pi futex user address
  1124. * @hb: the pi futex hash bucket
  1125. * @key: the futex key associated with uaddr and hb
  1126. * @ps: the pi_state pointer where we store the result of the
  1127. * lookup
  1128. * @task: the task to perform the atomic lock work for. This will
  1129. * be "current" except in the case of requeue pi.
  1130. * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
  1131. *
  1132. * Return:
  1133. * - 0 - ready to wait;
  1134. * - 1 - acquired the lock;
  1135. * - <0 - error
  1136. *
  1137. * The hb->lock and futex_key refs shall be held by the caller.
  1138. */
  1139. static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
  1140. union futex_key *key,
  1141. struct futex_pi_state **ps,
  1142. struct task_struct *task, int set_waiters)
  1143. {
  1144. u32 uval, newval, vpid = task_pid_vnr(task);
  1145. struct futex_q *top_waiter;
  1146. int ret;
  1147. /*
  1148. * Read the user space value first so we can validate a few
  1149. * things before proceeding further.
  1150. */
  1151. if (get_futex_value_locked(&uval, uaddr))
  1152. return -EFAULT;
  1153. if (unlikely(should_fail_futex(true)))
  1154. return -EFAULT;
  1155. /*
  1156. * Detect deadlocks.
  1157. */
  1158. if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
  1159. return -EDEADLK;
  1160. if ((unlikely(should_fail_futex(true))))
  1161. return -EDEADLK;
  1162. /*
  1163. * Lookup existing state first. If it exists, try to attach to
  1164. * its pi_state.
  1165. */
  1166. top_waiter = futex_top_waiter(hb, key);
  1167. if (top_waiter)
  1168. return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
  1169. /*
  1170. * No waiter and user TID is 0. We are here because the
  1171. * waiters or the owner died bit is set or called from
  1172. * requeue_cmp_pi or for whatever reason something took the
  1173. * syscall.
  1174. */
  1175. if (!(uval & FUTEX_TID_MASK)) {
  1176. /*
  1177. * We take over the futex. No other waiters and the user space
  1178. * TID is 0. We preserve the owner died bit.
  1179. */
  1180. newval = uval & FUTEX_OWNER_DIED;
  1181. newval |= vpid;
  1182. /* The futex requeue_pi code can enforce the waiters bit */
  1183. if (set_waiters)
  1184. newval |= FUTEX_WAITERS;
  1185. ret = lock_pi_update_atomic(uaddr, uval, newval);
  1186. /* If the take over worked, return 1 */
  1187. return ret < 0 ? ret : 1;
  1188. }
  1189. /*
  1190. * First waiter. Set the waiters bit before attaching ourself to
  1191. * the owner. If owner tries to unlock, it will be forced into
  1192. * the kernel and blocked on hb->lock.
  1193. */
  1194. newval = uval | FUTEX_WAITERS;
  1195. ret = lock_pi_update_atomic(uaddr, uval, newval);
  1196. if (ret)
  1197. return ret;
  1198. /*
  1199. * If the update of the user space value succeeded, we try to
  1200. * attach to the owner. If that fails, no harm done, we only
  1201. * set the FUTEX_WAITERS bit in the user space variable.
  1202. */
  1203. return attach_to_pi_owner(uval, key, ps);
  1204. }
  1205. /**
  1206. * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
  1207. * @q: The futex_q to unqueue
  1208. *
  1209. * The q->lock_ptr must not be NULL and must be held by the caller.
  1210. */
  1211. static void __unqueue_futex(struct futex_q *q)
  1212. {
  1213. struct futex_hash_bucket *hb;
  1214. if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
  1215. || WARN_ON(plist_node_empty(&q->list)))
  1216. return;
  1217. hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
  1218. plist_del(&q->list, &hb->chain);
  1219. hb_waiters_dec(hb);
  1220. }
  1221. /*
  1222. * The hash bucket lock must be held when this is called.
  1223. * Afterwards, the futex_q must not be accessed. Callers
  1224. * must ensure to later call wake_up_q() for the actual
  1225. * wakeups to occur.
  1226. */
  1227. static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
  1228. {
  1229. struct task_struct *p = q->task;
  1230. if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
  1231. return;
  1232. /*
  1233. * Queue the task for later wakeup for after we've released
  1234. * the hb->lock. wake_q_add() grabs reference to p.
  1235. */
  1236. wake_q_add(wake_q, p);
  1237. __unqueue_futex(q);
  1238. /*
  1239. * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
  1240. * is written, without taking any locks. This is possible in the event
  1241. * of a spurious wakeup, for example. A memory barrier is required here
  1242. * to prevent the following store to lock_ptr from getting ahead of the
  1243. * plist_del in __unqueue_futex().
  1244. */
  1245. smp_store_release(&q->lock_ptr, NULL);
  1246. }
  1247. /*
  1248. * Caller must hold a reference on @pi_state.
  1249. */
  1250. static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
  1251. {
  1252. u32 uninitialized_var(curval), newval;
  1253. struct task_struct *new_owner;
  1254. bool postunlock = false;
  1255. DEFINE_WAKE_Q(wake_q);
  1256. int ret = 0;
  1257. new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
  1258. if (WARN_ON_ONCE(!new_owner)) {
  1259. /*
  1260. * As per the comment in futex_unlock_pi() this should not happen.
  1261. *
  1262. * When this happens, give up our locks and try again, giving
  1263. * the futex_lock_pi() instance time to complete, either by
  1264. * waiting on the rtmutex or removing itself from the futex
  1265. * queue.
  1266. */
  1267. ret = -EAGAIN;
  1268. goto out_unlock;
  1269. }
  1270. /*
  1271. * We pass it to the next owner. The WAITERS bit is always kept
  1272. * enabled while there is PI state around. We cleanup the owner
  1273. * died bit, because we are the owner.
  1274. */
  1275. newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
  1276. if (unlikely(should_fail_futex(true)))
  1277. ret = -EFAULT;
  1278. if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
  1279. ret = -EFAULT;
  1280. } else if (curval != uval) {
  1281. /*
  1282. * If a unconditional UNLOCK_PI operation (user space did not
  1283. * try the TID->0 transition) raced with a waiter setting the
  1284. * FUTEX_WAITERS flag between get_user() and locking the hash
  1285. * bucket lock, retry the operation.
  1286. */
  1287. if ((FUTEX_TID_MASK & curval) == uval)
  1288. ret = -EAGAIN;
  1289. else
  1290. ret = -EINVAL;
  1291. }
  1292. if (ret)
  1293. goto out_unlock;
  1294. /*
  1295. * This is a point of no return; once we modify the uval there is no
  1296. * going back and subsequent operations must not fail.
  1297. */
  1298. raw_spin_lock(&pi_state->owner->pi_lock);
  1299. WARN_ON(list_empty(&pi_state->list));
  1300. list_del_init(&pi_state->list);
  1301. raw_spin_unlock(&pi_state->owner->pi_lock);
  1302. raw_spin_lock(&new_owner->pi_lock);
  1303. WARN_ON(!list_empty(&pi_state->list));
  1304. list_add(&pi_state->list, &new_owner->pi_state_list);
  1305. pi_state->owner = new_owner;
  1306. raw_spin_unlock(&new_owner->pi_lock);
  1307. postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
  1308. out_unlock:
  1309. raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
  1310. if (postunlock)
  1311. rt_mutex_postunlock(&wake_q);
  1312. return ret;
  1313. }
  1314. /*
  1315. * Express the locking dependencies for lockdep:
  1316. */
  1317. static inline void
  1318. double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
  1319. {
  1320. if (hb1 <= hb2) {
  1321. spin_lock(&hb1->lock);
  1322. if (hb1 < hb2)
  1323. spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
  1324. } else { /* hb1 > hb2 */
  1325. spin_lock(&hb2->lock);
  1326. spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
  1327. }
  1328. }
  1329. static inline void
  1330. double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
  1331. {
  1332. spin_unlock(&hb1->lock);
  1333. if (hb1 != hb2)
  1334. spin_unlock(&hb2->lock);
  1335. }
  1336. /*
  1337. * Wake up waiters matching bitset queued on this futex (uaddr).
  1338. */
  1339. static int
  1340. futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
  1341. {
  1342. struct futex_hash_bucket *hb;
  1343. struct futex_q *this, *next;
  1344. union futex_key key = FUTEX_KEY_INIT;
  1345. int ret;
  1346. DEFINE_WAKE_Q(wake_q);
  1347. if (!bitset)
  1348. return -EINVAL;
  1349. ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
  1350. if (unlikely(ret != 0))
  1351. goto out;
  1352. hb = hash_futex(&key);
  1353. /* Make sure we really have tasks to wakeup */
  1354. if (!hb_waiters_pending(hb))
  1355. goto out_put_key;
  1356. spin_lock(&hb->lock);
  1357. plist_for_each_entry_safe(this, next, &hb->chain, list) {
  1358. if (match_futex (&this->key, &key)) {
  1359. if (this->pi_state || this->rt_waiter) {
  1360. ret = -EINVAL;
  1361. break;
  1362. }
  1363. /* Check if one of the bits is set in both bitsets */
  1364. if (!(this->bitset & bitset))
  1365. continue;
  1366. mark_wake_futex(&wake_q, this);
  1367. if (++ret >= nr_wake)
  1368. break;
  1369. }
  1370. }
  1371. spin_unlock(&hb->lock);
  1372. wake_up_q(&wake_q);
  1373. out_put_key:
  1374. put_futex_key(&key);
  1375. out:
  1376. return ret;
  1377. }
  1378. static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
  1379. {
  1380. unsigned int op = (encoded_op & 0x70000000) >> 28;
  1381. unsigned int cmp = (encoded_op & 0x0f000000) >> 24;
  1382. int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
  1383. int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
  1384. int oldval, ret;
  1385. if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
  1386. if (oparg < 0 || oparg > 31) {
  1387. char comm[sizeof(current->comm)];
  1388. /*
  1389. * kill this print and return -EINVAL when userspace
  1390. * is sane again
  1391. */
  1392. pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
  1393. get_task_comm(comm, current), oparg);
  1394. oparg &= 31;
  1395. }
  1396. oparg = 1 << oparg;
  1397. }
  1398. if (!access_ok(VERIFY_WRITE, uaddr, sizeof(u32)))
  1399. return -EFAULT;
  1400. ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
  1401. if (ret)
  1402. return ret;
  1403. switch (cmp) {
  1404. case FUTEX_OP_CMP_EQ:
  1405. return oldval == cmparg;
  1406. case FUTEX_OP_CMP_NE:
  1407. return oldval != cmparg;
  1408. case FUTEX_OP_CMP_LT:
  1409. return oldval < cmparg;
  1410. case FUTEX_OP_CMP_GE:
  1411. return oldval >= cmparg;
  1412. case FUTEX_OP_CMP_LE:
  1413. return oldval <= cmparg;
  1414. case FUTEX_OP_CMP_GT:
  1415. return oldval > cmparg;
  1416. default:
  1417. return -ENOSYS;
  1418. }
  1419. }
  1420. /*
  1421. * Wake up all waiters hashed on the physical page that is mapped
  1422. * to this virtual address:
  1423. */
  1424. static int
  1425. futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
  1426. int nr_wake, int nr_wake2, int op)
  1427. {
  1428. union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
  1429. struct futex_hash_bucket *hb1, *hb2;
  1430. struct futex_q *this, *next;
  1431. int ret, op_ret;
  1432. DEFINE_WAKE_Q(wake_q);
  1433. retry:
  1434. ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
  1435. if (unlikely(ret != 0))
  1436. goto out;
  1437. ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
  1438. if (unlikely(ret != 0))
  1439. goto out_put_key1;
  1440. hb1 = hash_futex(&key1);
  1441. hb2 = hash_futex(&key2);
  1442. retry_private:
  1443. double_lock_hb(hb1, hb2);
  1444. op_ret = futex_atomic_op_inuser(op, uaddr2);
  1445. if (unlikely(op_ret < 0)) {
  1446. double_unlock_hb(hb1, hb2);
  1447. #ifndef CONFIG_MMU
  1448. /*
  1449. * we don't get EFAULT from MMU faults if we don't have an MMU,
  1450. * but we might get them from range checking
  1451. */
  1452. ret = op_ret;
  1453. goto out_put_keys;
  1454. #endif
  1455. if (unlikely(op_ret != -EFAULT)) {
  1456. ret = op_ret;
  1457. goto out_put_keys;
  1458. }
  1459. ret = fault_in_user_writeable(uaddr2);
  1460. if (ret)
  1461. goto out_put_keys;
  1462. if (!(flags & FLAGS_SHARED))
  1463. goto retry_private;
  1464. put_futex_key(&key2);
  1465. put_futex_key(&key1);
  1466. goto retry;
  1467. }
  1468. plist_for_each_entry_safe(this, next, &hb1->chain, list) {
  1469. if (match_futex (&this->key, &key1)) {
  1470. if (this->pi_state || this->rt_waiter) {
  1471. ret = -EINVAL;
  1472. goto out_unlock;
  1473. }
  1474. mark_wake_futex(&wake_q, this);
  1475. if (++ret >= nr_wake)
  1476. break;
  1477. }
  1478. }
  1479. if (op_ret > 0) {
  1480. op_ret = 0;
  1481. plist_for_each_entry_safe(this, next, &hb2->chain, list) {
  1482. if (match_futex (&this->key, &key2)) {
  1483. if (this->pi_state || this->rt_waiter) {
  1484. ret = -EINVAL;
  1485. goto out_unlock;
  1486. }
  1487. mark_wake_futex(&wake_q, this);
  1488. if (++op_ret >= nr_wake2)
  1489. break;
  1490. }
  1491. }
  1492. ret += op_ret;
  1493. }
  1494. out_unlock:
  1495. double_unlock_hb(hb1, hb2);
  1496. wake_up_q(&wake_q);
  1497. out_put_keys:
  1498. put_futex_key(&key2);
  1499. out_put_key1:
  1500. put_futex_key(&key1);
  1501. out:
  1502. return ret;
  1503. }
  1504. /**
  1505. * requeue_futex() - Requeue a futex_q from one hb to another
  1506. * @q: the futex_q to requeue
  1507. * @hb1: the source hash_bucket
  1508. * @hb2: the target hash_bucket
  1509. * @key2: the new key for the requeued futex_q
  1510. */
  1511. static inline
  1512. void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
  1513. struct futex_hash_bucket *hb2, union futex_key *key2)
  1514. {
  1515. /*
  1516. * If key1 and key2 hash to the same bucket, no need to
  1517. * requeue.
  1518. */
  1519. if (likely(&hb1->chain != &hb2->chain)) {
  1520. plist_del(&q->list, &hb1->chain);
  1521. hb_waiters_dec(hb1);
  1522. hb_waiters_inc(hb2);
  1523. plist_add(&q->list, &hb2->chain);
  1524. q->lock_ptr = &hb2->lock;
  1525. }
  1526. get_futex_key_refs(key2);
  1527. q->key = *key2;
  1528. }
  1529. /**
  1530. * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
  1531. * @q: the futex_q
  1532. * @key: the key of the requeue target futex
  1533. * @hb: the hash_bucket of the requeue target futex
  1534. *
  1535. * During futex_requeue, with requeue_pi=1, it is possible to acquire the
  1536. * target futex if it is uncontended or via a lock steal. Set the futex_q key
  1537. * to the requeue target futex so the waiter can detect the wakeup on the right
  1538. * futex, but remove it from the hb and NULL the rt_waiter so it can detect
  1539. * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
  1540. * to protect access to the pi_state to fixup the owner later. Must be called
  1541. * with both q->lock_ptr and hb->lock held.
  1542. */
  1543. static inline
  1544. void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
  1545. struct futex_hash_bucket *hb)
  1546. {
  1547. get_futex_key_refs(key);
  1548. q->key = *key;
  1549. __unqueue_futex(q);
  1550. WARN_ON(!q->rt_waiter);
  1551. q->rt_waiter = NULL;
  1552. q->lock_ptr = &hb->lock;
  1553. wake_up_state(q->task, TASK_NORMAL);
  1554. }
  1555. /**
  1556. * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
  1557. * @pifutex: the user address of the to futex
  1558. * @hb1: the from futex hash bucket, must be locked by the caller
  1559. * @hb2: the to futex hash bucket, must be locked by the caller
  1560. * @key1: the from futex key
  1561. * @key2: the to futex key
  1562. * @ps: address to store the pi_state pointer
  1563. * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
  1564. *
  1565. * Try and get the lock on behalf of the top waiter if we can do it atomically.
  1566. * Wake the top waiter if we succeed. If the caller specified set_waiters,
  1567. * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
  1568. * hb1 and hb2 must be held by the caller.
  1569. *
  1570. * Return:
  1571. * - 0 - failed to acquire the lock atomically;
  1572. * - >0 - acquired the lock, return value is vpid of the top_waiter
  1573. * - <0 - error
  1574. */
  1575. static int futex_proxy_trylock_atomic(u32 __user *pifutex,
  1576. struct futex_hash_bucket *hb1,
  1577. struct futex_hash_bucket *hb2,
  1578. union futex_key *key1, union futex_key *key2,
  1579. struct futex_pi_state **ps, int set_waiters)
  1580. {
  1581. struct futex_q *top_waiter = NULL;
  1582. u32 curval;
  1583. int ret, vpid;
  1584. if (get_futex_value_locked(&curval, pifutex))
  1585. return -EFAULT;
  1586. if (unlikely(should_fail_futex(true)))
  1587. return -EFAULT;
  1588. /*
  1589. * Find the top_waiter and determine if there are additional waiters.
  1590. * If the caller intends to requeue more than 1 waiter to pifutex,
  1591. * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
  1592. * as we have means to handle the possible fault. If not, don't set
  1593. * the bit unecessarily as it will force the subsequent unlock to enter
  1594. * the kernel.
  1595. */
  1596. top_waiter = futex_top_waiter(hb1, key1);
  1597. /* There are no waiters, nothing for us to do. */
  1598. if (!top_waiter)
  1599. return 0;
  1600. /* Ensure we requeue to the expected futex. */
  1601. if (!match_futex(top_waiter->requeue_pi_key, key2))
  1602. return -EINVAL;
  1603. /*
  1604. * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
  1605. * the contended case or if set_waiters is 1. The pi_state is returned
  1606. * in ps in contended cases.
  1607. */
  1608. vpid = task_pid_vnr(top_waiter->task);
  1609. ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
  1610. set_waiters);
  1611. if (ret == 1) {
  1612. requeue_pi_wake_futex(top_waiter, key2, hb2);
  1613. return vpid;
  1614. }
  1615. return ret;
  1616. }
  1617. /**
  1618. * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
  1619. * @uaddr1: source futex user address
  1620. * @flags: futex flags (FLAGS_SHARED, etc.)
  1621. * @uaddr2: target futex user address
  1622. * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
  1623. * @nr_requeue: number of waiters to requeue (0-INT_MAX)
  1624. * @cmpval: @uaddr1 expected value (or %NULL)
  1625. * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
  1626. * pi futex (pi to pi requeue is not supported)
  1627. *
  1628. * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
  1629. * uaddr2 atomically on behalf of the top waiter.
  1630. *
  1631. * Return:
  1632. * - >=0 - on success, the number of tasks requeued or woken;
  1633. * - <0 - on error
  1634. */
  1635. static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
  1636. u32 __user *uaddr2, int nr_wake, int nr_requeue,
  1637. u32 *cmpval, int requeue_pi)
  1638. {
  1639. union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
  1640. int drop_count = 0, task_count = 0, ret;
  1641. struct futex_pi_state *pi_state = NULL;
  1642. struct futex_hash_bucket *hb1, *hb2;
  1643. struct futex_q *this, *next;
  1644. DEFINE_WAKE_Q(wake_q);
  1645. if (nr_wake < 0 || nr_requeue < 0)
  1646. return -EINVAL;
  1647. /*
  1648. * When PI not supported: return -ENOSYS if requeue_pi is true,
  1649. * consequently the compiler knows requeue_pi is always false past
  1650. * this point which will optimize away all the conditional code
  1651. * further down.
  1652. */
  1653. if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
  1654. return -ENOSYS;
  1655. if (requeue_pi) {
  1656. /*
  1657. * Requeue PI only works on two distinct uaddrs. This
  1658. * check is only valid for private futexes. See below.
  1659. */
  1660. if (uaddr1 == uaddr2)
  1661. return -EINVAL;
  1662. /*
  1663. * requeue_pi requires a pi_state, try to allocate it now
  1664. * without any locks in case it fails.
  1665. */
  1666. if (refill_pi_state_cache())
  1667. return -ENOMEM;
  1668. /*
  1669. * requeue_pi must wake as many tasks as it can, up to nr_wake
  1670. * + nr_requeue, since it acquires the rt_mutex prior to
  1671. * returning to userspace, so as to not leave the rt_mutex with
  1672. * waiters and no owner. However, second and third wake-ups
  1673. * cannot be predicted as they involve race conditions with the
  1674. * first wake and a fault while looking up the pi_state. Both
  1675. * pthread_cond_signal() and pthread_cond_broadcast() should
  1676. * use nr_wake=1.
  1677. */
  1678. if (nr_wake != 1)
  1679. return -EINVAL;
  1680. }
  1681. retry:
  1682. ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
  1683. if (unlikely(ret != 0))
  1684. goto out;
  1685. ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
  1686. requeue_pi ? VERIFY_WRITE : VERIFY_READ);
  1687. if (unlikely(ret != 0))
  1688. goto out_put_key1;
  1689. /*
  1690. * The check above which compares uaddrs is not sufficient for
  1691. * shared futexes. We need to compare the keys:
  1692. */
  1693. if (requeue_pi && match_futex(&key1, &key2)) {
  1694. ret = -EINVAL;
  1695. goto out_put_keys;
  1696. }
  1697. hb1 = hash_futex(&key1);
  1698. hb2 = hash_futex(&key2);
  1699. retry_private:
  1700. hb_waiters_inc(hb2);
  1701. double_lock_hb(hb1, hb2);
  1702. if (likely(cmpval != NULL)) {
  1703. u32 curval;
  1704. ret = get_futex_value_locked(&curval, uaddr1);
  1705. if (unlikely(ret)) {
  1706. double_unlock_hb(hb1, hb2);
  1707. hb_waiters_dec(hb2);
  1708. ret = get_user(curval, uaddr1);
  1709. if (ret)
  1710. goto out_put_keys;
  1711. if (!(flags & FLAGS_SHARED))
  1712. goto retry_private;
  1713. put_futex_key(&key2);
  1714. put_futex_key(&key1);
  1715. goto retry;
  1716. }
  1717. if (curval != *cmpval) {
  1718. ret = -EAGAIN;
  1719. goto out_unlock;
  1720. }
  1721. }
  1722. if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
  1723. /*
  1724. * Attempt to acquire uaddr2 and wake the top waiter. If we
  1725. * intend to requeue waiters, force setting the FUTEX_WAITERS
  1726. * bit. We force this here where we are able to easily handle
  1727. * faults rather in the requeue loop below.
  1728. */
  1729. ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
  1730. &key2, &pi_state, nr_requeue);
  1731. /*
  1732. * At this point the top_waiter has either taken uaddr2 or is
  1733. * waiting on it. If the former, then the pi_state will not
  1734. * exist yet, look it up one more time to ensure we have a
  1735. * reference to it. If the lock was taken, ret contains the
  1736. * vpid of the top waiter task.
  1737. * If the lock was not taken, we have pi_state and an initial
  1738. * refcount on it. In case of an error we have nothing.
  1739. */
  1740. if (ret > 0) {
  1741. WARN_ON(pi_state);
  1742. drop_count++;
  1743. task_count++;
  1744. /*
  1745. * If we acquired the lock, then the user space value
  1746. * of uaddr2 should be vpid. It cannot be changed by
  1747. * the top waiter as it is blocked on hb2 lock if it
  1748. * tries to do so. If something fiddled with it behind
  1749. * our back the pi state lookup might unearth it. So
  1750. * we rather use the known value than rereading and
  1751. * handing potential crap to lookup_pi_state.
  1752. *
  1753. * If that call succeeds then we have pi_state and an
  1754. * initial refcount on it.
  1755. */
  1756. ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
  1757. }
  1758. switch (ret) {
  1759. case 0:
  1760. /* We hold a reference on the pi state. */
  1761. break;
  1762. /* If the above failed, then pi_state is NULL */
  1763. case -EFAULT:
  1764. double_unlock_hb(hb1, hb2);
  1765. hb_waiters_dec(hb2);
  1766. put_futex_key(&key2);
  1767. put_futex_key(&key1);
  1768. ret = fault_in_user_writeable(uaddr2);
  1769. if (!ret)
  1770. goto retry;
  1771. goto out;
  1772. case -EAGAIN:
  1773. /*
  1774. * Two reasons for this:
  1775. * - Owner is exiting and we just wait for the
  1776. * exit to complete.
  1777. * - The user space value changed.
  1778. */
  1779. double_unlock_hb(hb1, hb2);
  1780. hb_waiters_dec(hb2);
  1781. put_futex_key(&key2);
  1782. put_futex_key(&key1);
  1783. cond_resched();
  1784. goto retry;
  1785. default:
  1786. goto out_unlock;
  1787. }
  1788. }
  1789. plist_for_each_entry_safe(this, next, &hb1->chain, list) {
  1790. if (task_count - nr_wake >= nr_requeue)
  1791. break;
  1792. if (!match_futex(&this->key, &key1))
  1793. continue;
  1794. /*
  1795. * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
  1796. * be paired with each other and no other futex ops.
  1797. *
  1798. * We should never be requeueing a futex_q with a pi_state,
  1799. * which is awaiting a futex_unlock_pi().
  1800. */
  1801. if ((requeue_pi && !this->rt_waiter) ||
  1802. (!requeue_pi && this->rt_waiter) ||
  1803. this->pi_state) {
  1804. ret = -EINVAL;
  1805. break;
  1806. }
  1807. /*
  1808. * Wake nr_wake waiters. For requeue_pi, if we acquired the
  1809. * lock, we already woke the top_waiter. If not, it will be
  1810. * woken by futex_unlock_pi().
  1811. */
  1812. if (++task_count <= nr_wake && !requeue_pi) {
  1813. mark_wake_futex(&wake_q, this);
  1814. continue;
  1815. }
  1816. /* Ensure we requeue to the expected futex for requeue_pi. */
  1817. if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
  1818. ret = -EINVAL;
  1819. break;
  1820. }
  1821. /*
  1822. * Requeue nr_requeue waiters and possibly one more in the case
  1823. * of requeue_pi if we couldn't acquire the lock atomically.
  1824. */
  1825. if (requeue_pi) {
  1826. /*
  1827. * Prepare the waiter to take the rt_mutex. Take a
  1828. * refcount on the pi_state and store the pointer in
  1829. * the futex_q object of the waiter.
  1830. */
  1831. get_pi_state(pi_state);
  1832. this->pi_state = pi_state;
  1833. ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
  1834. this->rt_waiter,
  1835. this->task);
  1836. if (ret == 1) {
  1837. /*
  1838. * We got the lock. We do neither drop the
  1839. * refcount on pi_state nor clear
  1840. * this->pi_state because the waiter needs the
  1841. * pi_state for cleaning up the user space
  1842. * value. It will drop the refcount after
  1843. * doing so.
  1844. */
  1845. requeue_pi_wake_futex(this, &key2, hb2);
  1846. drop_count++;
  1847. continue;
  1848. } else if (ret) {
  1849. /*
  1850. * rt_mutex_start_proxy_lock() detected a
  1851. * potential deadlock when we tried to queue
  1852. * that waiter. Drop the pi_state reference
  1853. * which we took above and remove the pointer
  1854. * to the state from the waiters futex_q
  1855. * object.
  1856. */
  1857. this->pi_state = NULL;
  1858. put_pi_state(pi_state);
  1859. /*
  1860. * We stop queueing more waiters and let user
  1861. * space deal with the mess.
  1862. */
  1863. break;
  1864. }
  1865. }
  1866. requeue_futex(this, hb1, hb2, &key2);
  1867. drop_count++;
  1868. }
  1869. /*
  1870. * We took an extra initial reference to the pi_state either
  1871. * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
  1872. * need to drop it here again.
  1873. */
  1874. put_pi_state(pi_state);
  1875. out_unlock:
  1876. double_unlock_hb(hb1, hb2);
  1877. wake_up_q(&wake_q);
  1878. hb_waiters_dec(hb2);
  1879. /*
  1880. * drop_futex_key_refs() must be called outside the spinlocks. During
  1881. * the requeue we moved futex_q's from the hash bucket at key1 to the
  1882. * one at key2 and updated their key pointer. We no longer need to
  1883. * hold the references to key1.
  1884. */
  1885. while (--drop_count >= 0)
  1886. drop_futex_key_refs(&key1);
  1887. out_put_keys:
  1888. put_futex_key(&key2);
  1889. out_put_key1:
  1890. put_futex_key(&key1);
  1891. out:
  1892. return ret ? ret : task_count;
  1893. }
  1894. /* The key must be already stored in q->key. */
  1895. static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
  1896. __acquires(&hb->lock)
  1897. {
  1898. struct futex_hash_bucket *hb;
  1899. hb = hash_futex(&q->key);
  1900. /*
  1901. * Increment the counter before taking the lock so that
  1902. * a potential waker won't miss a to-be-slept task that is
  1903. * waiting for the spinlock. This is safe as all queue_lock()
  1904. * users end up calling queue_me(). Similarly, for housekeeping,
  1905. * decrement the counter at queue_unlock() when some error has
  1906. * occurred and we don't end up adding the task to the list.
  1907. */
  1908. hb_waiters_inc(hb);
  1909. q->lock_ptr = &hb->lock;
  1910. spin_lock(&hb->lock); /* implies smp_mb(); (A) */
  1911. return hb;
  1912. }
  1913. static inline void
  1914. queue_unlock(struct futex_hash_bucket *hb)
  1915. __releases(&hb->lock)
  1916. {
  1917. spin_unlock(&hb->lock);
  1918. hb_waiters_dec(hb);
  1919. }
  1920. static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
  1921. {
  1922. int prio;
  1923. /*
  1924. * The priority used to register this element is
  1925. * - either the real thread-priority for the real-time threads
  1926. * (i.e. threads with a priority lower than MAX_RT_PRIO)
  1927. * - or MAX_RT_PRIO for non-RT threads.
  1928. * Thus, all RT-threads are woken first in priority order, and
  1929. * the others are woken last, in FIFO order.
  1930. */
  1931. prio = min(current->normal_prio, MAX_RT_PRIO);
  1932. plist_node_init(&q->list, prio);
  1933. plist_add(&q->list, &hb->chain);
  1934. q->task = current;
  1935. }
  1936. /**
  1937. * queue_me() - Enqueue the futex_q on the futex_hash_bucket
  1938. * @q: The futex_q to enqueue
  1939. * @hb: The destination hash bucket
  1940. *
  1941. * The hb->lock must be held by the caller, and is released here. A call to
  1942. * queue_me() is typically paired with exactly one call to unqueue_me(). The
  1943. * exceptions involve the PI related operations, which may use unqueue_me_pi()
  1944. * or nothing if the unqueue is done as part of the wake process and the unqueue
  1945. * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
  1946. * an example).
  1947. */
  1948. static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
  1949. __releases(&hb->lock)
  1950. {
  1951. __queue_me(q, hb);
  1952. spin_unlock(&hb->lock);
  1953. }
  1954. /**
  1955. * unqueue_me() - Remove the futex_q from its futex_hash_bucket
  1956. * @q: The futex_q to unqueue
  1957. *
  1958. * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
  1959. * be paired with exactly one earlier call to queue_me().
  1960. *
  1961. * Return:
  1962. * - 1 - if the futex_q was still queued (and we removed unqueued it);
  1963. * - 0 - if the futex_q was already removed by the waking thread
  1964. */
  1965. static int unqueue_me(struct futex_q *q)
  1966. {
  1967. spinlock_t *lock_ptr;
  1968. int ret = 0;
  1969. /* In the common case we don't take the spinlock, which is nice. */
  1970. retry:
  1971. /*
  1972. * q->lock_ptr can change between this read and the following spin_lock.
  1973. * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
  1974. * optimizing lock_ptr out of the logic below.
  1975. */
  1976. lock_ptr = READ_ONCE(q->lock_ptr);
  1977. if (lock_ptr != NULL) {
  1978. spin_lock(lock_ptr);
  1979. /*
  1980. * q->lock_ptr can change between reading it and
  1981. * spin_lock(), causing us to take the wrong lock. This
  1982. * corrects the race condition.
  1983. *
  1984. * Reasoning goes like this: if we have the wrong lock,
  1985. * q->lock_ptr must have changed (maybe several times)
  1986. * between reading it and the spin_lock(). It can
  1987. * change again after the spin_lock() but only if it was
  1988. * already changed before the spin_lock(). It cannot,
  1989. * however, change back to the original value. Therefore
  1990. * we can detect whether we acquired the correct lock.
  1991. */
  1992. if (unlikely(lock_ptr != q->lock_ptr)) {
  1993. spin_unlock(lock_ptr);
  1994. goto retry;
  1995. }
  1996. __unqueue_futex(q);
  1997. BUG_ON(q->pi_state);
  1998. spin_unlock(lock_ptr);
  1999. ret = 1;
  2000. }
  2001. drop_futex_key_refs(&q->key);
  2002. return ret;
  2003. }
  2004. /*
  2005. * PI futexes can not be requeued and must remove themself from the
  2006. * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
  2007. * and dropped here.
  2008. */
  2009. static void unqueue_me_pi(struct futex_q *q)
  2010. __releases(q->lock_ptr)
  2011. {
  2012. __unqueue_futex(q);
  2013. BUG_ON(!q->pi_state);
  2014. put_pi_state(q->pi_state);
  2015. q->pi_state = NULL;
  2016. spin_unlock(q->lock_ptr);
  2017. }
  2018. static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
  2019. struct task_struct *argowner)
  2020. {
  2021. struct futex_pi_state *pi_state = q->pi_state;
  2022. u32 uval, uninitialized_var(curval), newval;
  2023. struct task_struct *oldowner, *newowner;
  2024. u32 newtid;
  2025. int ret;
  2026. lockdep_assert_held(q->lock_ptr);
  2027. raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
  2028. oldowner = pi_state->owner;
  2029. /*
  2030. * We are here because either:
  2031. *
  2032. * - we stole the lock and pi_state->owner needs updating to reflect
  2033. * that (@argowner == current),
  2034. *
  2035. * or:
  2036. *
  2037. * - someone stole our lock and we need to fix things to point to the
  2038. * new owner (@argowner == NULL).
  2039. *
  2040. * Either way, we have to replace the TID in the user space variable.
  2041. * This must be atomic as we have to preserve the owner died bit here.
  2042. *
  2043. * Note: We write the user space value _before_ changing the pi_state
  2044. * because we can fault here. Imagine swapped out pages or a fork
  2045. * that marked all the anonymous memory readonly for cow.
  2046. *
  2047. * Modifying pi_state _before_ the user space value would leave the
  2048. * pi_state in an inconsistent state when we fault here, because we
  2049. * need to drop the locks to handle the fault. This might be observed
  2050. * in the PID check in lookup_pi_state.
  2051. */
  2052. retry:
  2053. if (!argowner) {
  2054. if (oldowner != current) {
  2055. /*
  2056. * We raced against a concurrent self; things are
  2057. * already fixed up. Nothing to do.
  2058. */
  2059. ret = 0;
  2060. goto out_unlock;
  2061. }
  2062. if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
  2063. /* We got the lock after all, nothing to fix. */
  2064. ret = 0;
  2065. goto out_unlock;
  2066. }
  2067. /*
  2068. * Since we just failed the trylock; there must be an owner.
  2069. */
  2070. newowner = rt_mutex_owner(&pi_state->pi_mutex);
  2071. BUG_ON(!newowner);
  2072. } else {
  2073. WARN_ON_ONCE(argowner != current);
  2074. if (oldowner == current) {
  2075. /*
  2076. * We raced against a concurrent self; things are
  2077. * already fixed up. Nothing to do.
  2078. */
  2079. ret = 0;
  2080. goto out_unlock;
  2081. }
  2082. newowner = argowner;
  2083. }
  2084. newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
  2085. /* Owner died? */
  2086. if (!pi_state->owner)
  2087. newtid |= FUTEX_OWNER_DIED;
  2088. if (get_futex_value_locked(&uval, uaddr))
  2089. goto handle_fault;
  2090. for (;;) {
  2091. newval = (uval & FUTEX_OWNER_DIED) | newtid;
  2092. if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
  2093. goto handle_fault;
  2094. if (curval == uval)
  2095. break;
  2096. uval = curval;
  2097. }
  2098. /*
  2099. * We fixed up user space. Now we need to fix the pi_state
  2100. * itself.
  2101. */
  2102. if (pi_state->owner != NULL) {
  2103. raw_spin_lock(&pi_state->owner->pi_lock);
  2104. WARN_ON(list_empty(&pi_state->list));
  2105. list_del_init(&pi_state->list);
  2106. raw_spin_unlock(&pi_state->owner->pi_lock);
  2107. }
  2108. pi_state->owner = newowner;
  2109. raw_spin_lock(&newowner->pi_lock);
  2110. WARN_ON(!list_empty(&pi_state->list));
  2111. list_add(&pi_state->list, &newowner->pi_state_list);
  2112. raw_spin_unlock(&newowner->pi_lock);
  2113. raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
  2114. return 0;
  2115. /*
  2116. * To handle the page fault we need to drop the locks here. That gives
  2117. * the other task (either the highest priority waiter itself or the
  2118. * task which stole the rtmutex) the chance to try the fixup of the
  2119. * pi_state. So once we are back from handling the fault we need to
  2120. * check the pi_state after reacquiring the locks and before trying to
  2121. * do another fixup. When the fixup has been done already we simply
  2122. * return.
  2123. *
  2124. * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
  2125. * drop hb->lock since the caller owns the hb -> futex_q relation.
  2126. * Dropping the pi_mutex->wait_lock requires the state revalidate.
  2127. */
  2128. handle_fault:
  2129. raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
  2130. spin_unlock(q->lock_ptr);
  2131. ret = fault_in_user_writeable(uaddr);
  2132. spin_lock(q->lock_ptr);
  2133. raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
  2134. /*
  2135. * Check if someone else fixed it for us:
  2136. */
  2137. if (pi_state->owner != oldowner) {
  2138. ret = 0;
  2139. goto out_unlock;
  2140. }
  2141. if (ret)
  2142. goto out_unlock;
  2143. goto retry;
  2144. out_unlock:
  2145. raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
  2146. return ret;
  2147. }
  2148. static long futex_wait_restart(struct restart_block *restart);
  2149. /**
  2150. * fixup_owner() - Post lock pi_state and corner case management
  2151. * @uaddr: user address of the futex
  2152. * @q: futex_q (contains pi_state and access to the rt_mutex)
  2153. * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
  2154. *
  2155. * After attempting to lock an rt_mutex, this function is called to cleanup
  2156. * the pi_state owner as well as handle race conditions that may allow us to
  2157. * acquire the lock. Must be called with the hb lock held.
  2158. *
  2159. * Return:
  2160. * - 1 - success, lock taken;
  2161. * - 0 - success, lock not taken;
  2162. * - <0 - on error (-EFAULT)
  2163. */
  2164. static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
  2165. {
  2166. int ret = 0;
  2167. if (locked) {
  2168. /*
  2169. * Got the lock. We might not be the anticipated owner if we
  2170. * did a lock-steal - fix up the PI-state in that case:
  2171. *
  2172. * Speculative pi_state->owner read (we don't hold wait_lock);
  2173. * since we own the lock pi_state->owner == current is the
  2174. * stable state, anything else needs more attention.
  2175. */
  2176. if (q->pi_state->owner != current)
  2177. ret = fixup_pi_state_owner(uaddr, q, current);
  2178. goto out;
  2179. }
  2180. /*
  2181. * If we didn't get the lock; check if anybody stole it from us. In
  2182. * that case, we need to fix up the uval to point to them instead of
  2183. * us, otherwise bad things happen. [10]
  2184. *
  2185. * Another speculative read; pi_state->owner == current is unstable
  2186. * but needs our attention.
  2187. */
  2188. if (q->pi_state->owner == current) {
  2189. ret = fixup_pi_state_owner(uaddr, q, NULL);
  2190. goto out;
  2191. }
  2192. /*
  2193. * Paranoia check. If we did not take the lock, then we should not be
  2194. * the owner of the rt_mutex.
  2195. */
  2196. if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
  2197. printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
  2198. "pi-state %p\n", ret,
  2199. q->pi_state->pi_mutex.owner,
  2200. q->pi_state->owner);
  2201. }
  2202. out:
  2203. return ret ? ret : locked;
  2204. }
  2205. /**
  2206. * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
  2207. * @hb: the futex hash bucket, must be locked by the caller
  2208. * @q: the futex_q to queue up on
  2209. * @timeout: the prepared hrtimer_sleeper, or null for no timeout
  2210. */
  2211. static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
  2212. struct hrtimer_sleeper *timeout)
  2213. {
  2214. /*
  2215. * The task state is guaranteed to be set before another task can
  2216. * wake it. set_current_state() is implemented using smp_store_mb() and
  2217. * queue_me() calls spin_unlock() upon completion, both serializing
  2218. * access to the hash list and forcing another memory barrier.
  2219. */
  2220. set_current_state(TASK_INTERRUPTIBLE);
  2221. queue_me(q, hb);
  2222. /* Arm the timer */
  2223. if (timeout)
  2224. hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
  2225. /*
  2226. * If we have been removed from the hash list, then another task
  2227. * has tried to wake us, and we can skip the call to schedule().
  2228. */
  2229. if (likely(!plist_node_empty(&q->list))) {
  2230. /*
  2231. * If the timer has already expired, current will already be
  2232. * flagged for rescheduling. Only call schedule if there
  2233. * is no timeout, or if it has yet to expire.
  2234. */
  2235. if (!timeout || timeout->task)
  2236. freezable_schedule();
  2237. }
  2238. __set_current_state(TASK_RUNNING);
  2239. }
  2240. /**
  2241. * futex_wait_setup() - Prepare to wait on a futex
  2242. * @uaddr: the futex userspace address
  2243. * @val: the expected value
  2244. * @flags: futex flags (FLAGS_SHARED, etc.)
  2245. * @q: the associated futex_q
  2246. * @hb: storage for hash_bucket pointer to be returned to caller
  2247. *
  2248. * Setup the futex_q and locate the hash_bucket. Get the futex value and
  2249. * compare it with the expected value. Handle atomic faults internally.
  2250. * Return with the hb lock held and a q.key reference on success, and unlocked
  2251. * with no q.key reference on failure.
  2252. *
  2253. * Return:
  2254. * - 0 - uaddr contains val and hb has been locked;
  2255. * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
  2256. */
  2257. static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
  2258. struct futex_q *q, struct futex_hash_bucket **hb)
  2259. {
  2260. u32 uval;
  2261. int ret;
  2262. /*
  2263. * Access the page AFTER the hash-bucket is locked.
  2264. * Order is important:
  2265. *
  2266. * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
  2267. * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
  2268. *
  2269. * The basic logical guarantee of a futex is that it blocks ONLY
  2270. * if cond(var) is known to be true at the time of blocking, for
  2271. * any cond. If we locked the hash-bucket after testing *uaddr, that
  2272. * would open a race condition where we could block indefinitely with
  2273. * cond(var) false, which would violate the guarantee.
  2274. *
  2275. * On the other hand, we insert q and release the hash-bucket only
  2276. * after testing *uaddr. This guarantees that futex_wait() will NOT
  2277. * absorb a wakeup if *uaddr does not match the desired values
  2278. * while the syscall executes.
  2279. */
  2280. retry:
  2281. ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
  2282. if (unlikely(ret != 0))
  2283. return ret;
  2284. retry_private:
  2285. *hb = queue_lock(q);
  2286. ret = get_futex_value_locked(&uval, uaddr);
  2287. if (ret) {
  2288. queue_unlock(*hb);
  2289. ret = get_user(uval, uaddr);
  2290. if (ret)
  2291. goto out;
  2292. if (!(flags & FLAGS_SHARED))
  2293. goto retry_private;
  2294. put_futex_key(&q->key);
  2295. goto retry;
  2296. }
  2297. if (uval != val) {
  2298. queue_unlock(*hb);
  2299. ret = -EWOULDBLOCK;
  2300. }
  2301. out:
  2302. if (ret)
  2303. put_futex_key(&q->key);
  2304. return ret;
  2305. }
  2306. static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
  2307. ktime_t *abs_time, u32 bitset)
  2308. {
  2309. struct hrtimer_sleeper timeout, *to = NULL;
  2310. struct restart_block *restart;
  2311. struct futex_hash_bucket *hb;
  2312. struct futex_q q = futex_q_init;
  2313. int ret;
  2314. if (!bitset)
  2315. return -EINVAL;
  2316. q.bitset = bitset;
  2317. if (abs_time) {
  2318. to = &timeout;
  2319. hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
  2320. CLOCK_REALTIME : CLOCK_MONOTONIC,
  2321. HRTIMER_MODE_ABS);
  2322. hrtimer_init_sleeper(to, current);
  2323. hrtimer_set_expires_range_ns(&to->timer, *abs_time,
  2324. current->timer_slack_ns);
  2325. }
  2326. retry:
  2327. /*
  2328. * Prepare to wait on uaddr. On success, holds hb lock and increments
  2329. * q.key refs.
  2330. */
  2331. ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
  2332. if (ret)
  2333. goto out;
  2334. /* queue_me and wait for wakeup, timeout, or a signal. */
  2335. futex_wait_queue_me(hb, &q, to);
  2336. /* If we were woken (and unqueued), we succeeded, whatever. */
  2337. ret = 0;
  2338. /* unqueue_me() drops q.key ref */
  2339. if (!unqueue_me(&q))
  2340. goto out;
  2341. ret = -ETIMEDOUT;
  2342. if (to && !to->task)
  2343. goto out;
  2344. /*
  2345. * We expect signal_pending(current), but we might be the
  2346. * victim of a spurious wakeup as well.
  2347. */
  2348. if (!signal_pending(current))
  2349. goto retry;
  2350. ret = -ERESTARTSYS;
  2351. if (!abs_time)
  2352. goto out;
  2353. restart = &current->restart_block;
  2354. restart->fn = futex_wait_restart;
  2355. restart->futex.uaddr = uaddr;
  2356. restart->futex.val = val;
  2357. restart->futex.time = *abs_time;
  2358. restart->futex.bitset = bitset;
  2359. restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
  2360. ret = -ERESTART_RESTARTBLOCK;
  2361. out:
  2362. if (to) {
  2363. hrtimer_cancel(&to->timer);
  2364. destroy_hrtimer_on_stack(&to->timer);
  2365. }
  2366. return ret;
  2367. }
  2368. static long futex_wait_restart(struct restart_block *restart)
  2369. {
  2370. u32 __user *uaddr = restart->futex.uaddr;
  2371. ktime_t t, *tp = NULL;
  2372. if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
  2373. t = restart->futex.time;
  2374. tp = &t;
  2375. }
  2376. restart->fn = do_no_restart_syscall;
  2377. return (long)futex_wait(uaddr, restart->futex.flags,
  2378. restart->futex.val, tp, restart->futex.bitset);
  2379. }
  2380. /*
  2381. * Userspace tried a 0 -> TID atomic transition of the futex value
  2382. * and failed. The kernel side here does the whole locking operation:
  2383. * if there are waiters then it will block as a consequence of relying
  2384. * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
  2385. * a 0 value of the futex too.).
  2386. *
  2387. * Also serves as futex trylock_pi()'ing, and due semantics.
  2388. */
  2389. static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
  2390. ktime_t *time, int trylock)
  2391. {
  2392. struct hrtimer_sleeper timeout, *to = NULL;
  2393. struct futex_pi_state *pi_state = NULL;
  2394. struct rt_mutex_waiter rt_waiter;
  2395. struct futex_hash_bucket *hb;
  2396. struct futex_q q = futex_q_init;
  2397. int res, ret;
  2398. if (!IS_ENABLED(CONFIG_FUTEX_PI))
  2399. return -ENOSYS;
  2400. if (refill_pi_state_cache())
  2401. return -ENOMEM;
  2402. if (time) {
  2403. to = &timeout;
  2404. hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
  2405. HRTIMER_MODE_ABS);
  2406. hrtimer_init_sleeper(to, current);
  2407. hrtimer_set_expires(&to->timer, *time);
  2408. }
  2409. retry:
  2410. ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
  2411. if (unlikely(ret != 0))
  2412. goto out;
  2413. retry_private:
  2414. hb = queue_lock(&q);
  2415. ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
  2416. if (unlikely(ret)) {
  2417. /*
  2418. * Atomic work succeeded and we got the lock,
  2419. * or failed. Either way, we do _not_ block.
  2420. */
  2421. switch (ret) {
  2422. case 1:
  2423. /* We got the lock. */
  2424. ret = 0;
  2425. goto out_unlock_put_key;
  2426. case -EFAULT:
  2427. goto uaddr_faulted;
  2428. case -EAGAIN:
  2429. /*
  2430. * Two reasons for this:
  2431. * - Task is exiting and we just wait for the
  2432. * exit to complete.
  2433. * - The user space value changed.
  2434. */
  2435. queue_unlock(hb);
  2436. put_futex_key(&q.key);
  2437. cond_resched();
  2438. goto retry;
  2439. default:
  2440. goto out_unlock_put_key;
  2441. }
  2442. }
  2443. WARN_ON(!q.pi_state);
  2444. /*
  2445. * Only actually queue now that the atomic ops are done:
  2446. */
  2447. __queue_me(&q, hb);
  2448. if (trylock) {
  2449. ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
  2450. /* Fixup the trylock return value: */
  2451. ret = ret ? 0 : -EWOULDBLOCK;
  2452. goto no_block;
  2453. }
  2454. rt_mutex_init_waiter(&rt_waiter);
  2455. /*
  2456. * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
  2457. * hold it while doing rt_mutex_start_proxy(), because then it will
  2458. * include hb->lock in the blocking chain, even through we'll not in
  2459. * fact hold it while blocking. This will lead it to report -EDEADLK
  2460. * and BUG when futex_unlock_pi() interleaves with this.
  2461. *
  2462. * Therefore acquire wait_lock while holding hb->lock, but drop the
  2463. * latter before calling rt_mutex_start_proxy_lock(). This still fully
  2464. * serializes against futex_unlock_pi() as that does the exact same
  2465. * lock handoff sequence.
  2466. */
  2467. raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
  2468. spin_unlock(q.lock_ptr);
  2469. ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
  2470. raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
  2471. if (ret) {
  2472. if (ret == 1)
  2473. ret = 0;
  2474. spin_lock(q.lock_ptr);
  2475. goto no_block;
  2476. }
  2477. if (unlikely(to))
  2478. hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);
  2479. ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
  2480. spin_lock(q.lock_ptr);
  2481. /*
  2482. * If we failed to acquire the lock (signal/timeout), we must
  2483. * first acquire the hb->lock before removing the lock from the
  2484. * rt_mutex waitqueue, such that we can keep the hb and rt_mutex
  2485. * wait lists consistent.
  2486. *
  2487. * In particular; it is important that futex_unlock_pi() can not
  2488. * observe this inconsistency.
  2489. */
  2490. if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
  2491. ret = 0;
  2492. no_block:
  2493. /*
  2494. * Fixup the pi_state owner and possibly acquire the lock if we
  2495. * haven't already.
  2496. */
  2497. res = fixup_owner(uaddr, &q, !ret);
  2498. /*
  2499. * If fixup_owner() returned an error, proprogate that. If it acquired
  2500. * the lock, clear our -ETIMEDOUT or -EINTR.
  2501. */
  2502. if (res)
  2503. ret = (res < 0) ? res : 0;
  2504. /*
  2505. * If fixup_owner() faulted and was unable to handle the fault, unlock
  2506. * it and return the fault to userspace.
  2507. */
  2508. if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
  2509. pi_state = q.pi_state;
  2510. get_pi_state(pi_state);
  2511. }
  2512. /* Unqueue and drop the lock */
  2513. unqueue_me_pi(&q);
  2514. if (pi_state) {
  2515. rt_mutex_futex_unlock(&pi_state->pi_mutex);
  2516. put_pi_state(pi_state);
  2517. }
  2518. goto out_put_key;
  2519. out_unlock_put_key:
  2520. queue_unlock(hb);
  2521. out_put_key:
  2522. put_futex_key(&q.key);
  2523. out:
  2524. if (to) {
  2525. hrtimer_cancel(&to->timer);
  2526. destroy_hrtimer_on_stack(&to->timer);
  2527. }
  2528. return ret != -EINTR ? ret : -ERESTARTNOINTR;
  2529. uaddr_faulted:
  2530. queue_unlock(hb);
  2531. ret = fault_in_user_writeable(uaddr);
  2532. if (ret)
  2533. goto out_put_key;
  2534. if (!(flags & FLAGS_SHARED))
  2535. goto retry_private;
  2536. put_futex_key(&q.key);
  2537. goto retry;
  2538. }
  2539. /*
  2540. * Userspace attempted a TID -> 0 atomic transition, and failed.
  2541. * This is the in-kernel slowpath: we look up the PI state (if any),
  2542. * and do the rt-mutex unlock.
  2543. */
  2544. static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
  2545. {
  2546. u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
  2547. union futex_key key = FUTEX_KEY_INIT;
  2548. struct futex_hash_bucket *hb;
  2549. struct futex_q *top_waiter;
  2550. int ret;
  2551. if (!IS_ENABLED(CONFIG_FUTEX_PI))
  2552. return -ENOSYS;
  2553. retry:
  2554. if (get_user(uval, uaddr))
  2555. return -EFAULT;
  2556. /*
  2557. * We release only a lock we actually own:
  2558. */
  2559. if ((uval & FUTEX_TID_MASK) != vpid)
  2560. return -EPERM;
  2561. ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
  2562. if (ret)
  2563. return ret;
  2564. hb = hash_futex(&key);
  2565. spin_lock(&hb->lock);
  2566. /*
  2567. * Check waiters first. We do not trust user space values at
  2568. * all and we at least want to know if user space fiddled
  2569. * with the futex value instead of blindly unlocking.
  2570. */
  2571. top_waiter = futex_top_waiter(hb, &key);
  2572. if (top_waiter) {
  2573. struct futex_pi_state *pi_state = top_waiter->pi_state;
  2574. ret = -EINVAL;
  2575. if (!pi_state)
  2576. goto out_unlock;
  2577. /*
  2578. * If current does not own the pi_state then the futex is
  2579. * inconsistent and user space fiddled with the futex value.
  2580. */
  2581. if (pi_state->owner != current)
  2582. goto out_unlock;
  2583. get_pi_state(pi_state);
  2584. /*
  2585. * By taking wait_lock while still holding hb->lock, we ensure
  2586. * there is no point where we hold neither; and therefore
  2587. * wake_futex_pi() must observe a state consistent with what we
  2588. * observed.
  2589. */
  2590. raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
  2591. spin_unlock(&hb->lock);
  2592. /* drops pi_state->pi_mutex.wait_lock */
  2593. ret = wake_futex_pi(uaddr, uval, pi_state);
  2594. put_pi_state(pi_state);
  2595. /*
  2596. * Success, we're done! No tricky corner cases.
  2597. */
  2598. if (!ret)
  2599. goto out_putkey;
  2600. /*
  2601. * The atomic access to the futex value generated a
  2602. * pagefault, so retry the user-access and the wakeup:
  2603. */
  2604. if (ret == -EFAULT)
  2605. goto pi_faulted;
  2606. /*
  2607. * A unconditional UNLOCK_PI op raced against a waiter
  2608. * setting the FUTEX_WAITERS bit. Try again.
  2609. */
  2610. if (ret == -EAGAIN) {
  2611. put_futex_key(&key);
  2612. goto retry;
  2613. }
  2614. /*
  2615. * wake_futex_pi has detected invalid state. Tell user
  2616. * space.
  2617. */
  2618. goto out_putkey;
  2619. }
  2620. /*
  2621. * We have no kernel internal state, i.e. no waiters in the
  2622. * kernel. Waiters which are about to queue themselves are stuck
  2623. * on hb->lock. So we can safely ignore them. We do neither
  2624. * preserve the WAITERS bit not the OWNER_DIED one. We are the
  2625. * owner.
  2626. */
  2627. if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0)) {
  2628. spin_unlock(&hb->lock);
  2629. goto pi_faulted;
  2630. }
  2631. /*
  2632. * If uval has changed, let user space handle it.
  2633. */
  2634. ret = (curval == uval) ? 0 : -EAGAIN;
  2635. out_unlock:
  2636. spin_unlock(&hb->lock);
  2637. out_putkey:
  2638. put_futex_key(&key);
  2639. return ret;
  2640. pi_faulted:
  2641. put_futex_key(&key);
  2642. ret = fault_in_user_writeable(uaddr);
  2643. if (!ret)
  2644. goto retry;
  2645. return ret;
  2646. }
  2647. /**
  2648. * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
  2649. * @hb: the hash_bucket futex_q was original enqueued on
  2650. * @q: the futex_q woken while waiting to be requeued
  2651. * @key2: the futex_key of the requeue target futex
  2652. * @timeout: the timeout associated with the wait (NULL if none)
  2653. *
  2654. * Detect if the task was woken on the initial futex as opposed to the requeue
  2655. * target futex. If so, determine if it was a timeout or a signal that caused
  2656. * the wakeup and return the appropriate error code to the caller. Must be
  2657. * called with the hb lock held.
  2658. *
  2659. * Return:
  2660. * - 0 = no early wakeup detected;
  2661. * - <0 = -ETIMEDOUT or -ERESTARTNOINTR
  2662. */
  2663. static inline
  2664. int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
  2665. struct futex_q *q, union futex_key *key2,
  2666. struct hrtimer_sleeper *timeout)
  2667. {
  2668. int ret = 0;
  2669. /*
  2670. * With the hb lock held, we avoid races while we process the wakeup.
  2671. * We only need to hold hb (and not hb2) to ensure atomicity as the
  2672. * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
  2673. * It can't be requeued from uaddr2 to something else since we don't
  2674. * support a PI aware source futex for requeue.
  2675. */
  2676. if (!match_futex(&q->key, key2)) {
  2677. WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
  2678. /*
  2679. * We were woken prior to requeue by a timeout or a signal.
  2680. * Unqueue the futex_q and determine which it was.
  2681. */
  2682. plist_del(&q->list, &hb->chain);
  2683. hb_waiters_dec(hb);
  2684. /* Handle spurious wakeups gracefully */
  2685. ret = -EWOULDBLOCK;
  2686. if (timeout && !timeout->task)
  2687. ret = -ETIMEDOUT;
  2688. else if (signal_pending(current))
  2689. ret = -ERESTARTNOINTR;
  2690. }
  2691. return ret;
  2692. }
  2693. /**
  2694. * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
  2695. * @uaddr: the futex we initially wait on (non-pi)
  2696. * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
  2697. * the same type, no requeueing from private to shared, etc.
  2698. * @val: the expected value of uaddr
  2699. * @abs_time: absolute timeout
  2700. * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
  2701. * @uaddr2: the pi futex we will take prior to returning to user-space
  2702. *
  2703. * The caller will wait on uaddr and will be requeued by futex_requeue() to
  2704. * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
  2705. * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
  2706. * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
  2707. * without one, the pi logic would not know which task to boost/deboost, if
  2708. * there was a need to.
  2709. *
  2710. * We call schedule in futex_wait_queue_me() when we enqueue and return there
  2711. * via the following--
  2712. * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
  2713. * 2) wakeup on uaddr2 after a requeue
  2714. * 3) signal
  2715. * 4) timeout
  2716. *
  2717. * If 3, cleanup and return -ERESTARTNOINTR.
  2718. *
  2719. * If 2, we may then block on trying to take the rt_mutex and return via:
  2720. * 5) successful lock
  2721. * 6) signal
  2722. * 7) timeout
  2723. * 8) other lock acquisition failure
  2724. *
  2725. * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
  2726. *
  2727. * If 4 or 7, we cleanup and return with -ETIMEDOUT.
  2728. *
  2729. * Return:
  2730. * - 0 - On success;
  2731. * - <0 - On error
  2732. */
  2733. static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
  2734. u32 val, ktime_t *abs_time, u32 bitset,
  2735. u32 __user *uaddr2)
  2736. {
  2737. struct hrtimer_sleeper timeout, *to = NULL;
  2738. struct futex_pi_state *pi_state = NULL;
  2739. struct rt_mutex_waiter rt_waiter;
  2740. struct futex_hash_bucket *hb;
  2741. union futex_key key2 = FUTEX_KEY_INIT;
  2742. struct futex_q q = futex_q_init;
  2743. int res, ret;
  2744. if (!IS_ENABLED(CONFIG_FUTEX_PI))
  2745. return -ENOSYS;
  2746. if (uaddr == uaddr2)
  2747. return -EINVAL;
  2748. if (!bitset)
  2749. return -EINVAL;
  2750. if (abs_time) {
  2751. to = &timeout;
  2752. hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
  2753. CLOCK_REALTIME : CLOCK_MONOTONIC,
  2754. HRTIMER_MODE_ABS);
  2755. hrtimer_init_sleeper(to, current);
  2756. hrtimer_set_expires_range_ns(&to->timer, *abs_time,
  2757. current->timer_slack_ns);
  2758. }
  2759. /*
  2760. * The waiter is allocated on our stack, manipulated by the requeue
  2761. * code while we sleep on uaddr.
  2762. */
  2763. rt_mutex_init_waiter(&rt_waiter);
  2764. ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
  2765. if (unlikely(ret != 0))
  2766. goto out;
  2767. q.bitset = bitset;
  2768. q.rt_waiter = &rt_waiter;
  2769. q.requeue_pi_key = &key2;
  2770. /*
  2771. * Prepare to wait on uaddr. On success, increments q.key (key1) ref
  2772. * count.
  2773. */
  2774. ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
  2775. if (ret)
  2776. goto out_key2;
  2777. /*
  2778. * The check above which compares uaddrs is not sufficient for
  2779. * shared futexes. We need to compare the keys:
  2780. */
  2781. if (match_futex(&q.key, &key2)) {
  2782. queue_unlock(hb);
  2783. ret = -EINVAL;
  2784. goto out_put_keys;
  2785. }
  2786. /* Queue the futex_q, drop the hb lock, wait for wakeup. */
  2787. futex_wait_queue_me(hb, &q, to);
  2788. spin_lock(&hb->lock);
  2789. ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
  2790. spin_unlock(&hb->lock);
  2791. if (ret)
  2792. goto out_put_keys;
  2793. /*
  2794. * In order for us to be here, we know our q.key == key2, and since
  2795. * we took the hb->lock above, we also know that futex_requeue() has
  2796. * completed and we no longer have to concern ourselves with a wakeup
  2797. * race with the atomic proxy lock acquisition by the requeue code. The
  2798. * futex_requeue dropped our key1 reference and incremented our key2
  2799. * reference count.
  2800. */
  2801. /* Check if the requeue code acquired the second futex for us. */
  2802. if (!q.rt_waiter) {
  2803. /*
  2804. * Got the lock. We might not be the anticipated owner if we
  2805. * did a lock-steal - fix up the PI-state in that case.
  2806. */
  2807. if (q.pi_state && (q.pi_state->owner != current)) {
  2808. spin_lock(q.lock_ptr);
  2809. ret = fixup_pi_state_owner(uaddr2, &q, current);
  2810. if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
  2811. pi_state = q.pi_state;
  2812. get_pi_state(pi_state);
  2813. }
  2814. /*
  2815. * Drop the reference to the pi state which
  2816. * the requeue_pi() code acquired for us.
  2817. */
  2818. put_pi_state(q.pi_state);
  2819. spin_unlock(q.lock_ptr);
  2820. }
  2821. } else {
  2822. struct rt_mutex *pi_mutex;
  2823. /*
  2824. * We have been woken up by futex_unlock_pi(), a timeout, or a
  2825. * signal. futex_unlock_pi() will not destroy the lock_ptr nor
  2826. * the pi_state.
  2827. */
  2828. WARN_ON(!q.pi_state);
  2829. pi_mutex = &q.pi_state->pi_mutex;
  2830. ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
  2831. spin_lock(q.lock_ptr);
  2832. if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
  2833. ret = 0;
  2834. debug_rt_mutex_free_waiter(&rt_waiter);
  2835. /*
  2836. * Fixup the pi_state owner and possibly acquire the lock if we
  2837. * haven't already.
  2838. */
  2839. res = fixup_owner(uaddr2, &q, !ret);
  2840. /*
  2841. * If fixup_owner() returned an error, proprogate that. If it
  2842. * acquired the lock, clear -ETIMEDOUT or -EINTR.
  2843. */
  2844. if (res)
  2845. ret = (res < 0) ? res : 0;
  2846. /*
  2847. * If fixup_pi_state_owner() faulted and was unable to handle
  2848. * the fault, unlock the rt_mutex and return the fault to
  2849. * userspace.
  2850. */
  2851. if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
  2852. pi_state = q.pi_state;
  2853. get_pi_state(pi_state);
  2854. }
  2855. /* Unqueue and drop the lock. */
  2856. unqueue_me_pi(&q);
  2857. }
  2858. if (pi_state) {
  2859. rt_mutex_futex_unlock(&pi_state->pi_mutex);
  2860. put_pi_state(pi_state);
  2861. }
  2862. if (ret == -EINTR) {
  2863. /*
  2864. * We've already been requeued, but cannot restart by calling
  2865. * futex_lock_pi() directly. We could restart this syscall, but
  2866. * it would detect that the user space "val" changed and return
  2867. * -EWOULDBLOCK. Save the overhead of the restart and return
  2868. * -EWOULDBLOCK directly.
  2869. */
  2870. ret = -EWOULDBLOCK;
  2871. }
  2872. out_put_keys:
  2873. put_futex_key(&q.key);
  2874. out_key2:
  2875. put_futex_key(&key2);
  2876. out:
  2877. if (to) {
  2878. hrtimer_cancel(&to->timer);
  2879. destroy_hrtimer_on_stack(&to->timer);
  2880. }
  2881. return ret;
  2882. }
  2883. /*
  2884. * Support for robust futexes: the kernel cleans up held futexes at
  2885. * thread exit time.
  2886. *
  2887. * Implementation: user-space maintains a per-thread list of locks it
  2888. * is holding. Upon do_exit(), the kernel carefully walks this list,
  2889. * and marks all locks that are owned by this thread with the
  2890. * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
  2891. * always manipulated with the lock held, so the list is private and
  2892. * per-thread. Userspace also maintains a per-thread 'list_op_pending'
  2893. * field, to allow the kernel to clean up if the thread dies after
  2894. * acquiring the lock, but just before it could have added itself to
  2895. * the list. There can only be one such pending lock.
  2896. */
  2897. /**
  2898. * sys_set_robust_list() - Set the robust-futex list head of a task
  2899. * @head: pointer to the list-head
  2900. * @len: length of the list-head, as userspace expects
  2901. */
  2902. SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
  2903. size_t, len)
  2904. {
  2905. if (!futex_cmpxchg_enabled)
  2906. return -ENOSYS;
  2907. /*
  2908. * The kernel knows only one size for now:
  2909. */
  2910. if (unlikely(len != sizeof(*head)))
  2911. return -EINVAL;
  2912. current->robust_list = head;
  2913. return 0;
  2914. }
  2915. /**
  2916. * sys_get_robust_list() - Get the robust-futex list head of a task
  2917. * @pid: pid of the process [zero for current task]
  2918. * @head_ptr: pointer to a list-head pointer, the kernel fills it in
  2919. * @len_ptr: pointer to a length field, the kernel fills in the header size
  2920. */
  2921. SYSCALL_DEFINE3(get_robust_list, int, pid,
  2922. struct robust_list_head __user * __user *, head_ptr,
  2923. size_t __user *, len_ptr)
  2924. {
  2925. struct robust_list_head __user *head;
  2926. unsigned long ret;
  2927. struct task_struct *p;
  2928. if (!futex_cmpxchg_enabled)
  2929. return -ENOSYS;
  2930. rcu_read_lock();
  2931. ret = -ESRCH;
  2932. if (!pid)
  2933. p = current;
  2934. else {
  2935. p = find_task_by_vpid(pid);
  2936. if (!p)
  2937. goto err_unlock;
  2938. }
  2939. ret = -EPERM;
  2940. if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
  2941. goto err_unlock;
  2942. head = p->robust_list;
  2943. rcu_read_unlock();
  2944. if (put_user(sizeof(*head), len_ptr))
  2945. return -EFAULT;
  2946. return put_user(head, head_ptr);
  2947. err_unlock:
  2948. rcu_read_unlock();
  2949. return ret;
  2950. }
  2951. /*
  2952. * Process a futex-list entry, check whether it's owned by the
  2953. * dying task, and do notification if so:
  2954. */
  2955. int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
  2956. {
  2957. u32 uval, uninitialized_var(nval), mval;
  2958. retry:
  2959. if (get_user(uval, uaddr))
  2960. return -1;
  2961. if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
  2962. /*
  2963. * Ok, this dying thread is truly holding a futex
  2964. * of interest. Set the OWNER_DIED bit atomically
  2965. * via cmpxchg, and if the value had FUTEX_WAITERS
  2966. * set, wake up a waiter (if any). (We have to do a
  2967. * futex_wake() even if OWNER_DIED is already set -
  2968. * to handle the rare but possible case of recursive
  2969. * thread-death.) The rest of the cleanup is done in
  2970. * userspace.
  2971. */
  2972. mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
  2973. /*
  2974. * We are not holding a lock here, but we want to have
  2975. * the pagefault_disable/enable() protection because
  2976. * we want to handle the fault gracefully. If the
  2977. * access fails we try to fault in the futex with R/W
  2978. * verification via get_user_pages. get_user() above
  2979. * does not guarantee R/W access. If that fails we
  2980. * give up and leave the futex locked.
  2981. */
  2982. if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
  2983. if (fault_in_user_writeable(uaddr))
  2984. return -1;
  2985. goto retry;
  2986. }
  2987. if (nval != uval)
  2988. goto retry;
  2989. /*
  2990. * Wake robust non-PI futexes here. The wakeup of
  2991. * PI futexes happens in exit_pi_state():
  2992. */
  2993. if (!pi && (uval & FUTEX_WAITERS))
  2994. futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
  2995. }
  2996. return 0;
  2997. }
  2998. /*
  2999. * Fetch a robust-list pointer. Bit 0 signals PI futexes:
  3000. */
  3001. static inline int fetch_robust_entry(struct robust_list __user **entry,
  3002. struct robust_list __user * __user *head,
  3003. unsigned int *pi)
  3004. {
  3005. unsigned long uentry;
  3006. if (get_user(uentry, (unsigned long __user *)head))
  3007. return -EFAULT;
  3008. *entry = (void __user *)(uentry & ~1UL);
  3009. *pi = uentry & 1;
  3010. return 0;
  3011. }
  3012. /*
  3013. * Walk curr->robust_list (very carefully, it's a userspace list!)
  3014. * and mark any locks found there dead, and notify any waiters.
  3015. *
  3016. * We silently return on any sign of list-walking problem.
  3017. */
  3018. void exit_robust_list(struct task_struct *curr)
  3019. {
  3020. struct robust_list_head __user *head = curr->robust_list;
  3021. struct robust_list __user *entry, *next_entry, *pending;
  3022. unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
  3023. unsigned int uninitialized_var(next_pi);
  3024. unsigned long futex_offset;
  3025. int rc;
  3026. if (!futex_cmpxchg_enabled)
  3027. return;
  3028. /*
  3029. * Fetch the list head (which was registered earlier, via
  3030. * sys_set_robust_list()):
  3031. */
  3032. if (fetch_robust_entry(&entry, &head->list.next, &pi))
  3033. return;
  3034. /*
  3035. * Fetch the relative futex offset:
  3036. */
  3037. if (get_user(futex_offset, &head->futex_offset))
  3038. return;
  3039. /*
  3040. * Fetch any possibly pending lock-add first, and handle it
  3041. * if it exists:
  3042. */
  3043. if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
  3044. return;
  3045. next_entry = NULL; /* avoid warning with gcc */
  3046. while (entry != &head->list) {
  3047. /*
  3048. * Fetch the next entry in the list before calling
  3049. * handle_futex_death:
  3050. */
  3051. rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
  3052. /*
  3053. * A pending lock might already be on the list, so
  3054. * don't process it twice:
  3055. */
  3056. if (entry != pending)
  3057. if (handle_futex_death((void __user *)entry + futex_offset,
  3058. curr, pi))
  3059. return;
  3060. if (rc)
  3061. return;
  3062. entry = next_entry;
  3063. pi = next_pi;
  3064. /*
  3065. * Avoid excessively long or circular lists:
  3066. */
  3067. if (!--limit)
  3068. break;
  3069. cond_resched();
  3070. }
  3071. if (pending)
  3072. handle_futex_death((void __user *)pending + futex_offset,
  3073. curr, pip);
  3074. }
  3075. long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
  3076. u32 __user *uaddr2, u32 val2, u32 val3)
  3077. {
  3078. int cmd = op & FUTEX_CMD_MASK;
  3079. unsigned int flags = 0;
  3080. if (!(op & FUTEX_PRIVATE_FLAG))
  3081. flags |= FLAGS_SHARED;
  3082. if (op & FUTEX_CLOCK_REALTIME) {
  3083. flags |= FLAGS_CLOCKRT;
  3084. if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
  3085. cmd != FUTEX_WAIT_REQUEUE_PI)
  3086. return -ENOSYS;
  3087. }
  3088. switch (cmd) {
  3089. case FUTEX_LOCK_PI:
  3090. case FUTEX_UNLOCK_PI:
  3091. case FUTEX_TRYLOCK_PI:
  3092. case FUTEX_WAIT_REQUEUE_PI:
  3093. case FUTEX_CMP_REQUEUE_PI:
  3094. if (!futex_cmpxchg_enabled)
  3095. return -ENOSYS;
  3096. }
  3097. switch (cmd) {
  3098. case FUTEX_WAIT:
  3099. val3 = FUTEX_BITSET_MATCH_ANY;
  3100. case FUTEX_WAIT_BITSET:
  3101. return futex_wait(uaddr, flags, val, timeout, val3);
  3102. case FUTEX_WAKE:
  3103. val3 = FUTEX_BITSET_MATCH_ANY;
  3104. case FUTEX_WAKE_BITSET:
  3105. return futex_wake(uaddr, flags, val, val3);
  3106. case FUTEX_REQUEUE:
  3107. return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
  3108. case FUTEX_CMP_REQUEUE:
  3109. return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
  3110. case FUTEX_WAKE_OP:
  3111. return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
  3112. case FUTEX_LOCK_PI:
  3113. return futex_lock_pi(uaddr, flags, timeout, 0);
  3114. case FUTEX_UNLOCK_PI:
  3115. return futex_unlock_pi(uaddr, flags);
  3116. case FUTEX_TRYLOCK_PI:
  3117. return futex_lock_pi(uaddr, flags, NULL, 1);
  3118. case FUTEX_WAIT_REQUEUE_PI:
  3119. val3 = FUTEX_BITSET_MATCH_ANY;
  3120. return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
  3121. uaddr2);
  3122. case FUTEX_CMP_REQUEUE_PI:
  3123. return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
  3124. }
  3125. return -ENOSYS;
  3126. }
  3127. SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
  3128. struct timespec __user *, utime, u32 __user *, uaddr2,
  3129. u32, val3)
  3130. {
  3131. struct timespec ts;
  3132. ktime_t t, *tp = NULL;
  3133. u32 val2 = 0;
  3134. int cmd = op & FUTEX_CMD_MASK;
  3135. if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
  3136. cmd == FUTEX_WAIT_BITSET ||
  3137. cmd == FUTEX_WAIT_REQUEUE_PI)) {
  3138. if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
  3139. return -EFAULT;
  3140. if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
  3141. return -EFAULT;
  3142. if (!timespec_valid(&ts))
  3143. return -EINVAL;
  3144. t = timespec_to_ktime(ts);
  3145. if (cmd == FUTEX_WAIT)
  3146. t = ktime_add_safe(ktime_get(), t);
  3147. tp = &t;
  3148. }
  3149. /*
  3150. * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
  3151. * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
  3152. */
  3153. if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
  3154. cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
  3155. val2 = (u32) (unsigned long) utime;
  3156. return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
  3157. }
  3158. static void __init futex_detect_cmpxchg(void)
  3159. {
  3160. #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
  3161. u32 curval;
  3162. /*
  3163. * This will fail and we want it. Some arch implementations do
  3164. * runtime detection of the futex_atomic_cmpxchg_inatomic()
  3165. * functionality. We want to know that before we call in any
  3166. * of the complex code paths. Also we want to prevent
  3167. * registration of robust lists in that case. NULL is
  3168. * guaranteed to fault and we get -EFAULT on functional
  3169. * implementation, the non-functional ones will return
  3170. * -ENOSYS.
  3171. */
  3172. if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
  3173. futex_cmpxchg_enabled = 1;
  3174. #endif
  3175. }
  3176. static int __init futex_init(void)
  3177. {
  3178. unsigned int futex_shift;
  3179. unsigned long i;
  3180. #if CONFIG_BASE_SMALL
  3181. futex_hashsize = 16;
  3182. #else
  3183. futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
  3184. #endif
  3185. futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
  3186. futex_hashsize, 0,
  3187. futex_hashsize < 256 ? HASH_SMALL : 0,
  3188. &futex_shift, NULL,
  3189. futex_hashsize, futex_hashsize);
  3190. futex_hashsize = 1UL << futex_shift;
  3191. futex_detect_cmpxchg();
  3192. for (i = 0; i < futex_hashsize; i++) {
  3193. atomic_set(&futex_queues[i].waiters, 0);
  3194. plist_head_init(&futex_queues[i].chain);
  3195. spin_lock_init(&futex_queues[i].lock);
  3196. }
  3197. return 0;
  3198. }
  3199. core_initcall(futex_init);