sdma_v3_0.c 51 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. * Authors: Alex Deucher
  23. */
  24. #include <linux/firmware.h>
  25. #include <drm/drmP.h>
  26. #include "amdgpu.h"
  27. #include "amdgpu_ucode.h"
  28. #include "amdgpu_trace.h"
  29. #include "vi.h"
  30. #include "vid.h"
  31. #include "oss/oss_3_0_d.h"
  32. #include "oss/oss_3_0_sh_mask.h"
  33. #include "gmc/gmc_8_1_d.h"
  34. #include "gmc/gmc_8_1_sh_mask.h"
  35. #include "gca/gfx_8_0_d.h"
  36. #include "gca/gfx_8_0_enum.h"
  37. #include "gca/gfx_8_0_sh_mask.h"
  38. #include "bif/bif_5_0_d.h"
  39. #include "bif/bif_5_0_sh_mask.h"
  40. #include "tonga_sdma_pkt_open.h"
  41. static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev);
  42. static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev);
  43. static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev);
  44. static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev);
  45. MODULE_FIRMWARE("amdgpu/tonga_sdma.bin");
  46. MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin");
  47. MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin");
  48. MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin");
  49. MODULE_FIRMWARE("amdgpu/fiji_sdma.bin");
  50. MODULE_FIRMWARE("amdgpu/fiji_sdma1.bin");
  51. MODULE_FIRMWARE("amdgpu/stoney_sdma.bin");
  52. MODULE_FIRMWARE("amdgpu/polaris10_sdma.bin");
  53. MODULE_FIRMWARE("amdgpu/polaris10_sdma1.bin");
  54. MODULE_FIRMWARE("amdgpu/polaris11_sdma.bin");
  55. MODULE_FIRMWARE("amdgpu/polaris11_sdma1.bin");
  56. MODULE_FIRMWARE("amdgpu/polaris12_sdma.bin");
  57. MODULE_FIRMWARE("amdgpu/polaris12_sdma1.bin");
  58. static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
  59. {
  60. SDMA0_REGISTER_OFFSET,
  61. SDMA1_REGISTER_OFFSET
  62. };
  63. static const u32 golden_settings_tonga_a11[] =
  64. {
  65. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  66. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  67. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  68. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  69. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  70. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  71. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  72. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  73. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  74. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  75. };
  76. static const u32 tonga_mgcg_cgcg_init[] =
  77. {
  78. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  79. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  80. };
  81. static const u32 golden_settings_fiji_a10[] =
  82. {
  83. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  84. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  85. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  86. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  87. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  88. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  89. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  90. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  91. };
  92. static const u32 fiji_mgcg_cgcg_init[] =
  93. {
  94. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  95. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  96. };
  97. static const u32 golden_settings_polaris11_a11[] =
  98. {
  99. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  100. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  101. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  102. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  103. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  104. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  105. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  106. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  107. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  108. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  109. };
  110. static const u32 golden_settings_polaris10_a11[] =
  111. {
  112. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  113. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  114. mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  115. mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  116. mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  117. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  118. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  119. mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
  120. mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
  121. mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
  122. };
  123. static const u32 cz_golden_settings_a11[] =
  124. {
  125. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  126. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  127. mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
  128. mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
  129. mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  130. mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  131. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  132. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  133. mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100,
  134. mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800,
  135. mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  136. mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  137. };
  138. static const u32 cz_mgcg_cgcg_init[] =
  139. {
  140. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  141. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  142. };
  143. static const u32 stoney_golden_settings_a11[] =
  144. {
  145. mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
  146. mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
  147. mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
  148. mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
  149. };
  150. static const u32 stoney_mgcg_cgcg_init[] =
  151. {
  152. mmSDMA0_CLK_CTRL, 0xffffffff, 0x00000100,
  153. };
  154. /*
  155. * sDMA - System DMA
  156. * Starting with CIK, the GPU has new asynchronous
  157. * DMA engines. These engines are used for compute
  158. * and gfx. There are two DMA engines (SDMA0, SDMA1)
  159. * and each one supports 1 ring buffer used for gfx
  160. * and 2 queues used for compute.
  161. *
  162. * The programming model is very similar to the CP
  163. * (ring buffer, IBs, etc.), but sDMA has it's own
  164. * packet format that is different from the PM4 format
  165. * used by the CP. sDMA supports copying data, writing
  166. * embedded data, solid fills, and a number of other
  167. * things. It also has support for tiling/detiling of
  168. * buffers.
  169. */
  170. static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev)
  171. {
  172. switch (adev->asic_type) {
  173. case CHIP_FIJI:
  174. amdgpu_program_register_sequence(adev,
  175. fiji_mgcg_cgcg_init,
  176. ARRAY_SIZE(fiji_mgcg_cgcg_init));
  177. amdgpu_program_register_sequence(adev,
  178. golden_settings_fiji_a10,
  179. ARRAY_SIZE(golden_settings_fiji_a10));
  180. break;
  181. case CHIP_TONGA:
  182. amdgpu_program_register_sequence(adev,
  183. tonga_mgcg_cgcg_init,
  184. ARRAY_SIZE(tonga_mgcg_cgcg_init));
  185. amdgpu_program_register_sequence(adev,
  186. golden_settings_tonga_a11,
  187. ARRAY_SIZE(golden_settings_tonga_a11));
  188. break;
  189. case CHIP_POLARIS11:
  190. case CHIP_POLARIS12:
  191. amdgpu_program_register_sequence(adev,
  192. golden_settings_polaris11_a11,
  193. ARRAY_SIZE(golden_settings_polaris11_a11));
  194. break;
  195. case CHIP_POLARIS10:
  196. amdgpu_program_register_sequence(adev,
  197. golden_settings_polaris10_a11,
  198. ARRAY_SIZE(golden_settings_polaris10_a11));
  199. break;
  200. case CHIP_CARRIZO:
  201. amdgpu_program_register_sequence(adev,
  202. cz_mgcg_cgcg_init,
  203. ARRAY_SIZE(cz_mgcg_cgcg_init));
  204. amdgpu_program_register_sequence(adev,
  205. cz_golden_settings_a11,
  206. ARRAY_SIZE(cz_golden_settings_a11));
  207. break;
  208. case CHIP_STONEY:
  209. amdgpu_program_register_sequence(adev,
  210. stoney_mgcg_cgcg_init,
  211. ARRAY_SIZE(stoney_mgcg_cgcg_init));
  212. amdgpu_program_register_sequence(adev,
  213. stoney_golden_settings_a11,
  214. ARRAY_SIZE(stoney_golden_settings_a11));
  215. break;
  216. default:
  217. break;
  218. }
  219. }
  220. static void sdma_v3_0_free_microcode(struct amdgpu_device *adev)
  221. {
  222. int i;
  223. for (i = 0; i < adev->sdma.num_instances; i++) {
  224. release_firmware(adev->sdma.instance[i].fw);
  225. adev->sdma.instance[i].fw = NULL;
  226. }
  227. }
  228. /**
  229. * sdma_v3_0_init_microcode - load ucode images from disk
  230. *
  231. * @adev: amdgpu_device pointer
  232. *
  233. * Use the firmware interface to load the ucode images into
  234. * the driver (not loaded into hw).
  235. * Returns 0 on success, error on failure.
  236. */
  237. static int sdma_v3_0_init_microcode(struct amdgpu_device *adev)
  238. {
  239. const char *chip_name;
  240. char fw_name[30];
  241. int err = 0, i;
  242. struct amdgpu_firmware_info *info = NULL;
  243. const struct common_firmware_header *header = NULL;
  244. const struct sdma_firmware_header_v1_0 *hdr;
  245. DRM_DEBUG("\n");
  246. switch (adev->asic_type) {
  247. case CHIP_TONGA:
  248. chip_name = "tonga";
  249. break;
  250. case CHIP_FIJI:
  251. chip_name = "fiji";
  252. break;
  253. case CHIP_POLARIS11:
  254. chip_name = "polaris11";
  255. break;
  256. case CHIP_POLARIS10:
  257. chip_name = "polaris10";
  258. break;
  259. case CHIP_POLARIS12:
  260. chip_name = "polaris12";
  261. break;
  262. case CHIP_CARRIZO:
  263. chip_name = "carrizo";
  264. break;
  265. case CHIP_STONEY:
  266. chip_name = "stoney";
  267. break;
  268. default: BUG();
  269. }
  270. for (i = 0; i < adev->sdma.num_instances; i++) {
  271. if (i == 0)
  272. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
  273. else
  274. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
  275. err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
  276. if (err)
  277. goto out;
  278. err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
  279. if (err)
  280. goto out;
  281. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  282. adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
  283. adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
  284. if (adev->sdma.instance[i].feature_version >= 20)
  285. adev->sdma.instance[i].burst_nop = true;
  286. if (adev->firmware.load_type == AMDGPU_FW_LOAD_SMU) {
  287. info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
  288. info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
  289. info->fw = adev->sdma.instance[i].fw;
  290. header = (const struct common_firmware_header *)info->fw->data;
  291. adev->firmware.fw_size +=
  292. ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
  293. }
  294. }
  295. out:
  296. if (err) {
  297. pr_err("sdma_v3_0: Failed to load firmware \"%s\"\n", fw_name);
  298. for (i = 0; i < adev->sdma.num_instances; i++) {
  299. release_firmware(adev->sdma.instance[i].fw);
  300. adev->sdma.instance[i].fw = NULL;
  301. }
  302. }
  303. return err;
  304. }
  305. /**
  306. * sdma_v3_0_ring_get_rptr - get the current read pointer
  307. *
  308. * @ring: amdgpu ring pointer
  309. *
  310. * Get the current rptr from the hardware (VI+).
  311. */
  312. static uint64_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring)
  313. {
  314. /* XXX check if swapping is necessary on BE */
  315. return ring->adev->wb.wb[ring->rptr_offs] >> 2;
  316. }
  317. /**
  318. * sdma_v3_0_ring_get_wptr - get the current write pointer
  319. *
  320. * @ring: amdgpu ring pointer
  321. *
  322. * Get the current wptr from the hardware (VI+).
  323. */
  324. static uint64_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring)
  325. {
  326. struct amdgpu_device *adev = ring->adev;
  327. u32 wptr;
  328. if (ring->use_doorbell || ring->use_pollmem) {
  329. /* XXX check if swapping is necessary on BE */
  330. wptr = ring->adev->wb.wb[ring->wptr_offs] >> 2;
  331. } else {
  332. int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
  333. wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me]) >> 2;
  334. }
  335. return wptr;
  336. }
  337. /**
  338. * sdma_v3_0_ring_set_wptr - commit the write pointer
  339. *
  340. * @ring: amdgpu ring pointer
  341. *
  342. * Write the wptr back to the hardware (VI+).
  343. */
  344. static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring)
  345. {
  346. struct amdgpu_device *adev = ring->adev;
  347. if (ring->use_doorbell) {
  348. u32 *wb = (u32 *)&adev->wb.wb[ring->wptr_offs];
  349. /* XXX check if swapping is necessary on BE */
  350. WRITE_ONCE(*wb, (lower_32_bits(ring->wptr) << 2));
  351. WDOORBELL32(ring->doorbell_index, lower_32_bits(ring->wptr) << 2);
  352. } else if (ring->use_pollmem) {
  353. u32 *wb = (u32 *)&adev->wb.wb[ring->wptr_offs];
  354. WRITE_ONCE(*wb, (lower_32_bits(ring->wptr) << 2));
  355. } else {
  356. int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
  357. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me], lower_32_bits(ring->wptr) << 2);
  358. }
  359. }
  360. static void sdma_v3_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
  361. {
  362. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  363. int i;
  364. for (i = 0; i < count; i++)
  365. if (sdma && sdma->burst_nop && (i == 0))
  366. amdgpu_ring_write(ring, ring->funcs->nop |
  367. SDMA_PKT_NOP_HEADER_COUNT(count - 1));
  368. else
  369. amdgpu_ring_write(ring, ring->funcs->nop);
  370. }
  371. /**
  372. * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine
  373. *
  374. * @ring: amdgpu ring pointer
  375. * @ib: IB object to schedule
  376. *
  377. * Schedule an IB in the DMA ring (VI).
  378. */
  379. static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring,
  380. struct amdgpu_ib *ib,
  381. unsigned vm_id, bool ctx_switch)
  382. {
  383. u32 vmid = vm_id & 0xf;
  384. /* IB packet must end on a 8 DW boundary */
  385. sdma_v3_0_ring_insert_nop(ring, (10 - (lower_32_bits(ring->wptr) & 7)) % 8);
  386. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
  387. SDMA_PKT_INDIRECT_HEADER_VMID(vmid));
  388. /* base must be 32 byte aligned */
  389. amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
  390. amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
  391. amdgpu_ring_write(ring, ib->length_dw);
  392. amdgpu_ring_write(ring, 0);
  393. amdgpu_ring_write(ring, 0);
  394. }
  395. /**
  396. * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
  397. *
  398. * @ring: amdgpu ring pointer
  399. *
  400. * Emit an hdp flush packet on the requested DMA ring.
  401. */
  402. static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
  403. {
  404. u32 ref_and_mask = 0;
  405. if (ring == &ring->adev->sdma.instance[0].ring)
  406. ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
  407. else
  408. ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
  409. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  410. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
  411. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
  412. amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
  413. amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
  414. amdgpu_ring_write(ring, ref_and_mask); /* reference */
  415. amdgpu_ring_write(ring, ref_and_mask); /* mask */
  416. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  417. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  418. }
  419. static void sdma_v3_0_ring_emit_hdp_invalidate(struct amdgpu_ring *ring)
  420. {
  421. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  422. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  423. amdgpu_ring_write(ring, mmHDP_DEBUG0);
  424. amdgpu_ring_write(ring, 1);
  425. }
  426. /**
  427. * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring
  428. *
  429. * @ring: amdgpu ring pointer
  430. * @fence: amdgpu fence object
  431. *
  432. * Add a DMA fence packet to the ring to write
  433. * the fence seq number and DMA trap packet to generate
  434. * an interrupt if needed (VI).
  435. */
  436. static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
  437. unsigned flags)
  438. {
  439. bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
  440. /* write the fence */
  441. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  442. amdgpu_ring_write(ring, lower_32_bits(addr));
  443. amdgpu_ring_write(ring, upper_32_bits(addr));
  444. amdgpu_ring_write(ring, lower_32_bits(seq));
  445. /* optionally write high bits as well */
  446. if (write64bit) {
  447. addr += 4;
  448. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  449. amdgpu_ring_write(ring, lower_32_bits(addr));
  450. amdgpu_ring_write(ring, upper_32_bits(addr));
  451. amdgpu_ring_write(ring, upper_32_bits(seq));
  452. }
  453. /* generate an interrupt */
  454. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
  455. amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
  456. }
  457. /**
  458. * sdma_v3_0_gfx_stop - stop the gfx async dma engines
  459. *
  460. * @adev: amdgpu_device pointer
  461. *
  462. * Stop the gfx async dma ring buffers (VI).
  463. */
  464. static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev)
  465. {
  466. struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
  467. struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
  468. u32 rb_cntl, ib_cntl;
  469. int i;
  470. if ((adev->mman.buffer_funcs_ring == sdma0) ||
  471. (adev->mman.buffer_funcs_ring == sdma1))
  472. amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
  473. for (i = 0; i < adev->sdma.num_instances; i++) {
  474. rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
  475. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
  476. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  477. ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
  478. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
  479. WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
  480. }
  481. sdma0->ready = false;
  482. sdma1->ready = false;
  483. }
  484. /**
  485. * sdma_v3_0_rlc_stop - stop the compute async dma engines
  486. *
  487. * @adev: amdgpu_device pointer
  488. *
  489. * Stop the compute async dma queues (VI).
  490. */
  491. static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev)
  492. {
  493. /* XXX todo */
  494. }
  495. /**
  496. * sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch
  497. *
  498. * @adev: amdgpu_device pointer
  499. * @enable: enable/disable the DMA MEs context switch.
  500. *
  501. * Halt or unhalt the async dma engines context switch (VI).
  502. */
  503. static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
  504. {
  505. u32 f32_cntl, phase_quantum = 0;
  506. int i;
  507. if (amdgpu_sdma_phase_quantum) {
  508. unsigned value = amdgpu_sdma_phase_quantum;
  509. unsigned unit = 0;
  510. while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
  511. SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
  512. value = (value + 1) >> 1;
  513. unit++;
  514. }
  515. if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
  516. SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
  517. value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
  518. SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
  519. unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
  520. SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
  521. WARN_ONCE(1,
  522. "clamping sdma_phase_quantum to %uK clock cycles\n",
  523. value << unit);
  524. }
  525. phase_quantum =
  526. value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
  527. unit << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
  528. }
  529. for (i = 0; i < adev->sdma.num_instances; i++) {
  530. f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]);
  531. if (enable) {
  532. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  533. AUTO_CTXSW_ENABLE, 1);
  534. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  535. ATC_L1_ENABLE, 1);
  536. if (amdgpu_sdma_phase_quantum) {
  537. WREG32(mmSDMA0_PHASE0_QUANTUM + sdma_offsets[i],
  538. phase_quantum);
  539. WREG32(mmSDMA0_PHASE1_QUANTUM + sdma_offsets[i],
  540. phase_quantum);
  541. }
  542. } else {
  543. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  544. AUTO_CTXSW_ENABLE, 0);
  545. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
  546. ATC_L1_ENABLE, 1);
  547. }
  548. WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl);
  549. }
  550. }
  551. /**
  552. * sdma_v3_0_enable - stop the async dma engines
  553. *
  554. * @adev: amdgpu_device pointer
  555. * @enable: enable/disable the DMA MEs.
  556. *
  557. * Halt or unhalt the async dma engines (VI).
  558. */
  559. static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable)
  560. {
  561. u32 f32_cntl;
  562. int i;
  563. if (!enable) {
  564. sdma_v3_0_gfx_stop(adev);
  565. sdma_v3_0_rlc_stop(adev);
  566. }
  567. for (i = 0; i < adev->sdma.num_instances; i++) {
  568. f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
  569. if (enable)
  570. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
  571. else
  572. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
  573. WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
  574. }
  575. }
  576. /**
  577. * sdma_v3_0_gfx_resume - setup and start the async dma engines
  578. *
  579. * @adev: amdgpu_device pointer
  580. *
  581. * Set up the gfx DMA ring buffers and enable them (VI).
  582. * Returns 0 for success, error for failure.
  583. */
  584. static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev)
  585. {
  586. struct amdgpu_ring *ring;
  587. u32 rb_cntl, ib_cntl, wptr_poll_cntl;
  588. u32 rb_bufsz;
  589. u32 wb_offset;
  590. u32 doorbell;
  591. u64 wptr_gpu_addr;
  592. int i, j, r;
  593. for (i = 0; i < adev->sdma.num_instances; i++) {
  594. ring = &adev->sdma.instance[i].ring;
  595. amdgpu_ring_clear_ring(ring);
  596. wb_offset = (ring->rptr_offs * 4);
  597. mutex_lock(&adev->srbm_mutex);
  598. for (j = 0; j < 16; j++) {
  599. vi_srbm_select(adev, 0, 0, 0, j);
  600. /* SDMA GFX */
  601. WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
  602. WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
  603. }
  604. vi_srbm_select(adev, 0, 0, 0, 0);
  605. mutex_unlock(&adev->srbm_mutex);
  606. WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i],
  607. adev->gfx.config.gb_addr_config & 0x70);
  608. WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
  609. /* Set ring buffer size in dwords */
  610. rb_bufsz = order_base_2(ring->ring_size / 4);
  611. rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
  612. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
  613. #ifdef __BIG_ENDIAN
  614. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
  615. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
  616. RPTR_WRITEBACK_SWAP_ENABLE, 1);
  617. #endif
  618. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  619. /* Initialize the ring buffer's read and write pointers */
  620. ring->wptr = 0;
  621. WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
  622. sdma_v3_0_ring_set_wptr(ring);
  623. WREG32(mmSDMA0_GFX_IB_RPTR + sdma_offsets[i], 0);
  624. WREG32(mmSDMA0_GFX_IB_OFFSET + sdma_offsets[i], 0);
  625. /* set the wb address whether it's enabled or not */
  626. WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
  627. upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
  628. WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
  629. lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
  630. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
  631. WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
  632. WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
  633. doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]);
  634. if (ring->use_doorbell) {
  635. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL,
  636. OFFSET, ring->doorbell_index);
  637. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
  638. } else {
  639. doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
  640. }
  641. WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell);
  642. /* setup the wptr shadow polling */
  643. wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
  644. WREG32(mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO + sdma_offsets[i],
  645. lower_32_bits(wptr_gpu_addr));
  646. WREG32(mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI + sdma_offsets[i],
  647. upper_32_bits(wptr_gpu_addr));
  648. wptr_poll_cntl = RREG32(mmSDMA0_GFX_RB_WPTR_POLL_CNTL + sdma_offsets[i]);
  649. if (ring->use_pollmem)
  650. wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
  651. SDMA0_GFX_RB_WPTR_POLL_CNTL,
  652. ENABLE, 1);
  653. else
  654. wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
  655. SDMA0_GFX_RB_WPTR_POLL_CNTL,
  656. ENABLE, 0);
  657. WREG32(mmSDMA0_GFX_RB_WPTR_POLL_CNTL + sdma_offsets[i], wptr_poll_cntl);
  658. /* enable DMA RB */
  659. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
  660. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  661. ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
  662. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
  663. #ifdef __BIG_ENDIAN
  664. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
  665. #endif
  666. /* enable DMA IBs */
  667. WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
  668. ring->ready = true;
  669. }
  670. /* unhalt the MEs */
  671. sdma_v3_0_enable(adev, true);
  672. /* enable sdma ring preemption */
  673. sdma_v3_0_ctx_switch_enable(adev, true);
  674. for (i = 0; i < adev->sdma.num_instances; i++) {
  675. ring = &adev->sdma.instance[i].ring;
  676. r = amdgpu_ring_test_ring(ring);
  677. if (r) {
  678. ring->ready = false;
  679. return r;
  680. }
  681. if (adev->mman.buffer_funcs_ring == ring)
  682. amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
  683. }
  684. return 0;
  685. }
  686. /**
  687. * sdma_v3_0_rlc_resume - setup and start the async dma engines
  688. *
  689. * @adev: amdgpu_device pointer
  690. *
  691. * Set up the compute DMA queues and enable them (VI).
  692. * Returns 0 for success, error for failure.
  693. */
  694. static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev)
  695. {
  696. /* XXX todo */
  697. return 0;
  698. }
  699. /**
  700. * sdma_v3_0_load_microcode - load the sDMA ME ucode
  701. *
  702. * @adev: amdgpu_device pointer
  703. *
  704. * Loads the sDMA0/1 ucode.
  705. * Returns 0 for success, -EINVAL if the ucode is not available.
  706. */
  707. static int sdma_v3_0_load_microcode(struct amdgpu_device *adev)
  708. {
  709. const struct sdma_firmware_header_v1_0 *hdr;
  710. const __le32 *fw_data;
  711. u32 fw_size;
  712. int i, j;
  713. /* halt the MEs */
  714. sdma_v3_0_enable(adev, false);
  715. for (i = 0; i < adev->sdma.num_instances; i++) {
  716. if (!adev->sdma.instance[i].fw)
  717. return -EINVAL;
  718. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  719. amdgpu_ucode_print_sdma_hdr(&hdr->header);
  720. fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
  721. fw_data = (const __le32 *)
  722. (adev->sdma.instance[i].fw->data +
  723. le32_to_cpu(hdr->header.ucode_array_offset_bytes));
  724. WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0);
  725. for (j = 0; j < fw_size; j++)
  726. WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++));
  727. WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma.instance[i].fw_version);
  728. }
  729. return 0;
  730. }
  731. /**
  732. * sdma_v3_0_start - setup and start the async dma engines
  733. *
  734. * @adev: amdgpu_device pointer
  735. *
  736. * Set up the DMA engines and enable them (VI).
  737. * Returns 0 for success, error for failure.
  738. */
  739. static int sdma_v3_0_start(struct amdgpu_device *adev)
  740. {
  741. int r;
  742. if (adev->firmware.load_type == AMDGPU_FW_LOAD_DIRECT) {
  743. r = sdma_v3_0_load_microcode(adev);
  744. if (r)
  745. return r;
  746. }
  747. /* disable sdma engine before programing it */
  748. sdma_v3_0_ctx_switch_enable(adev, false);
  749. sdma_v3_0_enable(adev, false);
  750. /* start the gfx rings and rlc compute queues */
  751. r = sdma_v3_0_gfx_resume(adev);
  752. if (r)
  753. return r;
  754. r = sdma_v3_0_rlc_resume(adev);
  755. if (r)
  756. return r;
  757. return 0;
  758. }
  759. /**
  760. * sdma_v3_0_ring_test_ring - simple async dma engine test
  761. *
  762. * @ring: amdgpu_ring structure holding ring information
  763. *
  764. * Test the DMA engine by writing using it to write an
  765. * value to memory. (VI).
  766. * Returns 0 for success, error for failure.
  767. */
  768. static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring)
  769. {
  770. struct amdgpu_device *adev = ring->adev;
  771. unsigned i;
  772. unsigned index;
  773. int r;
  774. u32 tmp;
  775. u64 gpu_addr;
  776. r = amdgpu_wb_get(adev, &index);
  777. if (r) {
  778. dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
  779. return r;
  780. }
  781. gpu_addr = adev->wb.gpu_addr + (index * 4);
  782. tmp = 0xCAFEDEAD;
  783. adev->wb.wb[index] = cpu_to_le32(tmp);
  784. r = amdgpu_ring_alloc(ring, 5);
  785. if (r) {
  786. DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
  787. amdgpu_wb_free(adev, index);
  788. return r;
  789. }
  790. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  791. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
  792. amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
  793. amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
  794. amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
  795. amdgpu_ring_write(ring, 0xDEADBEEF);
  796. amdgpu_ring_commit(ring);
  797. for (i = 0; i < adev->usec_timeout; i++) {
  798. tmp = le32_to_cpu(adev->wb.wb[index]);
  799. if (tmp == 0xDEADBEEF)
  800. break;
  801. DRM_UDELAY(1);
  802. }
  803. if (i < adev->usec_timeout) {
  804. DRM_DEBUG("ring test on %d succeeded in %d usecs\n", ring->idx, i);
  805. } else {
  806. DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
  807. ring->idx, tmp);
  808. r = -EINVAL;
  809. }
  810. amdgpu_wb_free(adev, index);
  811. return r;
  812. }
  813. /**
  814. * sdma_v3_0_ring_test_ib - test an IB on the DMA engine
  815. *
  816. * @ring: amdgpu_ring structure holding ring information
  817. *
  818. * Test a simple IB in the DMA ring (VI).
  819. * Returns 0 on success, error on failure.
  820. */
  821. static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
  822. {
  823. struct amdgpu_device *adev = ring->adev;
  824. struct amdgpu_ib ib;
  825. struct dma_fence *f = NULL;
  826. unsigned index;
  827. u32 tmp = 0;
  828. u64 gpu_addr;
  829. long r;
  830. r = amdgpu_wb_get(adev, &index);
  831. if (r) {
  832. dev_err(adev->dev, "(%ld) failed to allocate wb slot\n", r);
  833. return r;
  834. }
  835. gpu_addr = adev->wb.gpu_addr + (index * 4);
  836. tmp = 0xCAFEDEAD;
  837. adev->wb.wb[index] = cpu_to_le32(tmp);
  838. memset(&ib, 0, sizeof(ib));
  839. r = amdgpu_ib_get(adev, NULL, 256, &ib);
  840. if (r) {
  841. DRM_ERROR("amdgpu: failed to get ib (%ld).\n", r);
  842. goto err0;
  843. }
  844. ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  845. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
  846. ib.ptr[1] = lower_32_bits(gpu_addr);
  847. ib.ptr[2] = upper_32_bits(gpu_addr);
  848. ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
  849. ib.ptr[4] = 0xDEADBEEF;
  850. ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  851. ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  852. ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
  853. ib.length_dw = 8;
  854. r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
  855. if (r)
  856. goto err1;
  857. r = dma_fence_wait_timeout(f, false, timeout);
  858. if (r == 0) {
  859. DRM_ERROR("amdgpu: IB test timed out\n");
  860. r = -ETIMEDOUT;
  861. goto err1;
  862. } else if (r < 0) {
  863. DRM_ERROR("amdgpu: fence wait failed (%ld).\n", r);
  864. goto err1;
  865. }
  866. tmp = le32_to_cpu(adev->wb.wb[index]);
  867. if (tmp == 0xDEADBEEF) {
  868. DRM_DEBUG("ib test on ring %d succeeded\n", ring->idx);
  869. r = 0;
  870. } else {
  871. DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
  872. r = -EINVAL;
  873. }
  874. err1:
  875. amdgpu_ib_free(adev, &ib, NULL);
  876. dma_fence_put(f);
  877. err0:
  878. amdgpu_wb_free(adev, index);
  879. return r;
  880. }
  881. /**
  882. * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART
  883. *
  884. * @ib: indirect buffer to fill with commands
  885. * @pe: addr of the page entry
  886. * @src: src addr to copy from
  887. * @count: number of page entries to update
  888. *
  889. * Update PTEs by copying them from the GART using sDMA (CIK).
  890. */
  891. static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib,
  892. uint64_t pe, uint64_t src,
  893. unsigned count)
  894. {
  895. unsigned bytes = count * 8;
  896. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  897. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  898. ib->ptr[ib->length_dw++] = bytes;
  899. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  900. ib->ptr[ib->length_dw++] = lower_32_bits(src);
  901. ib->ptr[ib->length_dw++] = upper_32_bits(src);
  902. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  903. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  904. }
  905. /**
  906. * sdma_v3_0_vm_write_pte - update PTEs by writing them manually
  907. *
  908. * @ib: indirect buffer to fill with commands
  909. * @pe: addr of the page entry
  910. * @value: dst addr to write into pe
  911. * @count: number of page entries to update
  912. * @incr: increase next addr by incr bytes
  913. *
  914. * Update PTEs by writing them manually using sDMA (CIK).
  915. */
  916. static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
  917. uint64_t value, unsigned count,
  918. uint32_t incr)
  919. {
  920. unsigned ndw = count * 2;
  921. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  922. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
  923. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  924. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  925. ib->ptr[ib->length_dw++] = ndw;
  926. for (; ndw > 0; ndw -= 2) {
  927. ib->ptr[ib->length_dw++] = lower_32_bits(value);
  928. ib->ptr[ib->length_dw++] = upper_32_bits(value);
  929. value += incr;
  930. }
  931. }
  932. /**
  933. * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA
  934. *
  935. * @ib: indirect buffer to fill with commands
  936. * @pe: addr of the page entry
  937. * @addr: dst addr to write into pe
  938. * @count: number of page entries to update
  939. * @incr: increase next addr by incr bytes
  940. * @flags: access flags
  941. *
  942. * Update the page tables using sDMA (CIK).
  943. */
  944. static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib, uint64_t pe,
  945. uint64_t addr, unsigned count,
  946. uint32_t incr, uint64_t flags)
  947. {
  948. /* for physically contiguous pages (vram) */
  949. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
  950. ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
  951. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  952. ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
  953. ib->ptr[ib->length_dw++] = upper_32_bits(flags);
  954. ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
  955. ib->ptr[ib->length_dw++] = upper_32_bits(addr);
  956. ib->ptr[ib->length_dw++] = incr; /* increment size */
  957. ib->ptr[ib->length_dw++] = 0;
  958. ib->ptr[ib->length_dw++] = count; /* number of entries */
  959. }
  960. /**
  961. * sdma_v3_0_ring_pad_ib - pad the IB to the required number of dw
  962. *
  963. * @ib: indirect buffer to fill with padding
  964. *
  965. */
  966. static void sdma_v3_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
  967. {
  968. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  969. u32 pad_count;
  970. int i;
  971. pad_count = (8 - (ib->length_dw & 0x7)) % 8;
  972. for (i = 0; i < pad_count; i++)
  973. if (sdma && sdma->burst_nop && (i == 0))
  974. ib->ptr[ib->length_dw++] =
  975. SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
  976. SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
  977. else
  978. ib->ptr[ib->length_dw++] =
  979. SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
  980. }
  981. /**
  982. * sdma_v3_0_ring_emit_pipeline_sync - sync the pipeline
  983. *
  984. * @ring: amdgpu_ring pointer
  985. *
  986. * Make sure all previous operations are completed (CIK).
  987. */
  988. static void sdma_v3_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
  989. {
  990. uint32_t seq = ring->fence_drv.sync_seq;
  991. uint64_t addr = ring->fence_drv.gpu_addr;
  992. /* wait for idle */
  993. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  994. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  995. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
  996. SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
  997. amdgpu_ring_write(ring, addr & 0xfffffffc);
  998. amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
  999. amdgpu_ring_write(ring, seq); /* reference */
  1000. amdgpu_ring_write(ring, 0xfffffff); /* mask */
  1001. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  1002. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
  1003. }
  1004. /**
  1005. * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA
  1006. *
  1007. * @ring: amdgpu_ring pointer
  1008. * @vm: amdgpu_vm pointer
  1009. *
  1010. * Update the page table base and flush the VM TLB
  1011. * using sDMA (VI).
  1012. */
  1013. static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
  1014. unsigned vm_id, uint64_t pd_addr)
  1015. {
  1016. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  1017. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  1018. if (vm_id < 8) {
  1019. amdgpu_ring_write(ring, (mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + vm_id));
  1020. } else {
  1021. amdgpu_ring_write(ring, (mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vm_id - 8));
  1022. }
  1023. amdgpu_ring_write(ring, pd_addr >> 12);
  1024. /* flush TLB */
  1025. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  1026. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  1027. amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST);
  1028. amdgpu_ring_write(ring, 1 << vm_id);
  1029. /* wait for flush */
  1030. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  1031. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  1032. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
  1033. amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
  1034. amdgpu_ring_write(ring, 0);
  1035. amdgpu_ring_write(ring, 0); /* reference */
  1036. amdgpu_ring_write(ring, 0); /* mask */
  1037. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  1038. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  1039. }
  1040. static int sdma_v3_0_early_init(void *handle)
  1041. {
  1042. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1043. switch (adev->asic_type) {
  1044. case CHIP_STONEY:
  1045. adev->sdma.num_instances = 1;
  1046. break;
  1047. default:
  1048. adev->sdma.num_instances = SDMA_MAX_INSTANCE;
  1049. break;
  1050. }
  1051. sdma_v3_0_set_ring_funcs(adev);
  1052. sdma_v3_0_set_buffer_funcs(adev);
  1053. sdma_v3_0_set_vm_pte_funcs(adev);
  1054. sdma_v3_0_set_irq_funcs(adev);
  1055. return 0;
  1056. }
  1057. static int sdma_v3_0_sw_init(void *handle)
  1058. {
  1059. struct amdgpu_ring *ring;
  1060. int r, i;
  1061. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1062. /* SDMA trap event */
  1063. r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 224,
  1064. &adev->sdma.trap_irq);
  1065. if (r)
  1066. return r;
  1067. /* SDMA Privileged inst */
  1068. r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 241,
  1069. &adev->sdma.illegal_inst_irq);
  1070. if (r)
  1071. return r;
  1072. /* SDMA Privileged inst */
  1073. r = amdgpu_irq_add_id(adev, AMDGPU_IH_CLIENTID_LEGACY, 247,
  1074. &adev->sdma.illegal_inst_irq);
  1075. if (r)
  1076. return r;
  1077. r = sdma_v3_0_init_microcode(adev);
  1078. if (r) {
  1079. DRM_ERROR("Failed to load sdma firmware!\n");
  1080. return r;
  1081. }
  1082. for (i = 0; i < adev->sdma.num_instances; i++) {
  1083. ring = &adev->sdma.instance[i].ring;
  1084. ring->ring_obj = NULL;
  1085. if (!amdgpu_sriov_vf(adev)) {
  1086. ring->use_doorbell = true;
  1087. ring->doorbell_index = (i == 0) ?
  1088. AMDGPU_DOORBELL_sDMA_ENGINE0 : AMDGPU_DOORBELL_sDMA_ENGINE1;
  1089. } else {
  1090. ring->use_pollmem = true;
  1091. }
  1092. sprintf(ring->name, "sdma%d", i);
  1093. r = amdgpu_ring_init(adev, ring, 1024,
  1094. &adev->sdma.trap_irq,
  1095. (i == 0) ?
  1096. AMDGPU_SDMA_IRQ_TRAP0 :
  1097. AMDGPU_SDMA_IRQ_TRAP1);
  1098. if (r)
  1099. return r;
  1100. }
  1101. return r;
  1102. }
  1103. static int sdma_v3_0_sw_fini(void *handle)
  1104. {
  1105. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1106. int i;
  1107. for (i = 0; i < adev->sdma.num_instances; i++)
  1108. amdgpu_ring_fini(&adev->sdma.instance[i].ring);
  1109. sdma_v3_0_free_microcode(adev);
  1110. return 0;
  1111. }
  1112. static int sdma_v3_0_hw_init(void *handle)
  1113. {
  1114. int r;
  1115. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1116. sdma_v3_0_init_golden_registers(adev);
  1117. r = sdma_v3_0_start(adev);
  1118. if (r)
  1119. return r;
  1120. return r;
  1121. }
  1122. static int sdma_v3_0_hw_fini(void *handle)
  1123. {
  1124. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1125. sdma_v3_0_ctx_switch_enable(adev, false);
  1126. sdma_v3_0_enable(adev, false);
  1127. return 0;
  1128. }
  1129. static int sdma_v3_0_suspend(void *handle)
  1130. {
  1131. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1132. return sdma_v3_0_hw_fini(adev);
  1133. }
  1134. static int sdma_v3_0_resume(void *handle)
  1135. {
  1136. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1137. return sdma_v3_0_hw_init(adev);
  1138. }
  1139. static bool sdma_v3_0_is_idle(void *handle)
  1140. {
  1141. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1142. u32 tmp = RREG32(mmSRBM_STATUS2);
  1143. if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
  1144. SRBM_STATUS2__SDMA1_BUSY_MASK))
  1145. return false;
  1146. return true;
  1147. }
  1148. static int sdma_v3_0_wait_for_idle(void *handle)
  1149. {
  1150. unsigned i;
  1151. u32 tmp;
  1152. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1153. for (i = 0; i < adev->usec_timeout; i++) {
  1154. tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
  1155. SRBM_STATUS2__SDMA1_BUSY_MASK);
  1156. if (!tmp)
  1157. return 0;
  1158. udelay(1);
  1159. }
  1160. return -ETIMEDOUT;
  1161. }
  1162. static bool sdma_v3_0_check_soft_reset(void *handle)
  1163. {
  1164. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1165. u32 srbm_soft_reset = 0;
  1166. u32 tmp = RREG32(mmSRBM_STATUS2);
  1167. if ((tmp & SRBM_STATUS2__SDMA_BUSY_MASK) ||
  1168. (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK)) {
  1169. srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
  1170. srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
  1171. }
  1172. if (srbm_soft_reset) {
  1173. adev->sdma.srbm_soft_reset = srbm_soft_reset;
  1174. return true;
  1175. } else {
  1176. adev->sdma.srbm_soft_reset = 0;
  1177. return false;
  1178. }
  1179. }
  1180. static int sdma_v3_0_pre_soft_reset(void *handle)
  1181. {
  1182. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1183. u32 srbm_soft_reset = 0;
  1184. if (!adev->sdma.srbm_soft_reset)
  1185. return 0;
  1186. srbm_soft_reset = adev->sdma.srbm_soft_reset;
  1187. if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
  1188. REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
  1189. sdma_v3_0_ctx_switch_enable(adev, false);
  1190. sdma_v3_0_enable(adev, false);
  1191. }
  1192. return 0;
  1193. }
  1194. static int sdma_v3_0_post_soft_reset(void *handle)
  1195. {
  1196. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1197. u32 srbm_soft_reset = 0;
  1198. if (!adev->sdma.srbm_soft_reset)
  1199. return 0;
  1200. srbm_soft_reset = adev->sdma.srbm_soft_reset;
  1201. if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
  1202. REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
  1203. sdma_v3_0_gfx_resume(adev);
  1204. sdma_v3_0_rlc_resume(adev);
  1205. }
  1206. return 0;
  1207. }
  1208. static int sdma_v3_0_soft_reset(void *handle)
  1209. {
  1210. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1211. u32 srbm_soft_reset = 0;
  1212. u32 tmp;
  1213. if (!adev->sdma.srbm_soft_reset)
  1214. return 0;
  1215. srbm_soft_reset = adev->sdma.srbm_soft_reset;
  1216. if (srbm_soft_reset) {
  1217. tmp = RREG32(mmSRBM_SOFT_RESET);
  1218. tmp |= srbm_soft_reset;
  1219. dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
  1220. WREG32(mmSRBM_SOFT_RESET, tmp);
  1221. tmp = RREG32(mmSRBM_SOFT_RESET);
  1222. udelay(50);
  1223. tmp &= ~srbm_soft_reset;
  1224. WREG32(mmSRBM_SOFT_RESET, tmp);
  1225. tmp = RREG32(mmSRBM_SOFT_RESET);
  1226. /* Wait a little for things to settle down */
  1227. udelay(50);
  1228. }
  1229. return 0;
  1230. }
  1231. static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev,
  1232. struct amdgpu_irq_src *source,
  1233. unsigned type,
  1234. enum amdgpu_interrupt_state state)
  1235. {
  1236. u32 sdma_cntl;
  1237. switch (type) {
  1238. case AMDGPU_SDMA_IRQ_TRAP0:
  1239. switch (state) {
  1240. case AMDGPU_IRQ_STATE_DISABLE:
  1241. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
  1242. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
  1243. WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
  1244. break;
  1245. case AMDGPU_IRQ_STATE_ENABLE:
  1246. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
  1247. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
  1248. WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
  1249. break;
  1250. default:
  1251. break;
  1252. }
  1253. break;
  1254. case AMDGPU_SDMA_IRQ_TRAP1:
  1255. switch (state) {
  1256. case AMDGPU_IRQ_STATE_DISABLE:
  1257. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
  1258. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
  1259. WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
  1260. break;
  1261. case AMDGPU_IRQ_STATE_ENABLE:
  1262. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
  1263. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
  1264. WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
  1265. break;
  1266. default:
  1267. break;
  1268. }
  1269. break;
  1270. default:
  1271. break;
  1272. }
  1273. return 0;
  1274. }
  1275. static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev,
  1276. struct amdgpu_irq_src *source,
  1277. struct amdgpu_iv_entry *entry)
  1278. {
  1279. u8 instance_id, queue_id;
  1280. instance_id = (entry->ring_id & 0x3) >> 0;
  1281. queue_id = (entry->ring_id & 0xc) >> 2;
  1282. DRM_DEBUG("IH: SDMA trap\n");
  1283. switch (instance_id) {
  1284. case 0:
  1285. switch (queue_id) {
  1286. case 0:
  1287. amdgpu_fence_process(&adev->sdma.instance[0].ring);
  1288. break;
  1289. case 1:
  1290. /* XXX compute */
  1291. break;
  1292. case 2:
  1293. /* XXX compute */
  1294. break;
  1295. }
  1296. break;
  1297. case 1:
  1298. switch (queue_id) {
  1299. case 0:
  1300. amdgpu_fence_process(&adev->sdma.instance[1].ring);
  1301. break;
  1302. case 1:
  1303. /* XXX compute */
  1304. break;
  1305. case 2:
  1306. /* XXX compute */
  1307. break;
  1308. }
  1309. break;
  1310. }
  1311. return 0;
  1312. }
  1313. static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev,
  1314. struct amdgpu_irq_src *source,
  1315. struct amdgpu_iv_entry *entry)
  1316. {
  1317. DRM_ERROR("Illegal instruction in SDMA command stream\n");
  1318. schedule_work(&adev->reset_work);
  1319. return 0;
  1320. }
  1321. static void sdma_v3_0_update_sdma_medium_grain_clock_gating(
  1322. struct amdgpu_device *adev,
  1323. bool enable)
  1324. {
  1325. uint32_t temp, data;
  1326. int i;
  1327. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
  1328. for (i = 0; i < adev->sdma.num_instances; i++) {
  1329. temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
  1330. data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1331. SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1332. SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1333. SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1334. SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1335. SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1336. SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1337. SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
  1338. if (data != temp)
  1339. WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
  1340. }
  1341. } else {
  1342. for (i = 0; i < adev->sdma.num_instances; i++) {
  1343. temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
  1344. data |= SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
  1345. SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
  1346. SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
  1347. SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
  1348. SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
  1349. SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
  1350. SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
  1351. SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK;
  1352. if (data != temp)
  1353. WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
  1354. }
  1355. }
  1356. }
  1357. static void sdma_v3_0_update_sdma_medium_grain_light_sleep(
  1358. struct amdgpu_device *adev,
  1359. bool enable)
  1360. {
  1361. uint32_t temp, data;
  1362. int i;
  1363. if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
  1364. for (i = 0; i < adev->sdma.num_instances; i++) {
  1365. temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
  1366. data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1367. if (temp != data)
  1368. WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
  1369. }
  1370. } else {
  1371. for (i = 0; i < adev->sdma.num_instances; i++) {
  1372. temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
  1373. data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
  1374. if (temp != data)
  1375. WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
  1376. }
  1377. }
  1378. }
  1379. static int sdma_v3_0_set_clockgating_state(void *handle,
  1380. enum amd_clockgating_state state)
  1381. {
  1382. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1383. if (amdgpu_sriov_vf(adev))
  1384. return 0;
  1385. switch (adev->asic_type) {
  1386. case CHIP_FIJI:
  1387. case CHIP_CARRIZO:
  1388. case CHIP_STONEY:
  1389. sdma_v3_0_update_sdma_medium_grain_clock_gating(adev,
  1390. state == AMD_CG_STATE_GATE);
  1391. sdma_v3_0_update_sdma_medium_grain_light_sleep(adev,
  1392. state == AMD_CG_STATE_GATE);
  1393. break;
  1394. default:
  1395. break;
  1396. }
  1397. return 0;
  1398. }
  1399. static int sdma_v3_0_set_powergating_state(void *handle,
  1400. enum amd_powergating_state state)
  1401. {
  1402. return 0;
  1403. }
  1404. static void sdma_v3_0_get_clockgating_state(void *handle, u32 *flags)
  1405. {
  1406. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  1407. int data;
  1408. if (amdgpu_sriov_vf(adev))
  1409. *flags = 0;
  1410. /* AMD_CG_SUPPORT_SDMA_MGCG */
  1411. data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[0]);
  1412. if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK))
  1413. *flags |= AMD_CG_SUPPORT_SDMA_MGCG;
  1414. /* AMD_CG_SUPPORT_SDMA_LS */
  1415. data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[0]);
  1416. if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
  1417. *flags |= AMD_CG_SUPPORT_SDMA_LS;
  1418. }
  1419. static const struct amd_ip_funcs sdma_v3_0_ip_funcs = {
  1420. .name = "sdma_v3_0",
  1421. .early_init = sdma_v3_0_early_init,
  1422. .late_init = NULL,
  1423. .sw_init = sdma_v3_0_sw_init,
  1424. .sw_fini = sdma_v3_0_sw_fini,
  1425. .hw_init = sdma_v3_0_hw_init,
  1426. .hw_fini = sdma_v3_0_hw_fini,
  1427. .suspend = sdma_v3_0_suspend,
  1428. .resume = sdma_v3_0_resume,
  1429. .is_idle = sdma_v3_0_is_idle,
  1430. .wait_for_idle = sdma_v3_0_wait_for_idle,
  1431. .check_soft_reset = sdma_v3_0_check_soft_reset,
  1432. .pre_soft_reset = sdma_v3_0_pre_soft_reset,
  1433. .post_soft_reset = sdma_v3_0_post_soft_reset,
  1434. .soft_reset = sdma_v3_0_soft_reset,
  1435. .set_clockgating_state = sdma_v3_0_set_clockgating_state,
  1436. .set_powergating_state = sdma_v3_0_set_powergating_state,
  1437. .get_clockgating_state = sdma_v3_0_get_clockgating_state,
  1438. };
  1439. static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = {
  1440. .type = AMDGPU_RING_TYPE_SDMA,
  1441. .align_mask = 0xf,
  1442. .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
  1443. .support_64bit_ptrs = false,
  1444. .get_rptr = sdma_v3_0_ring_get_rptr,
  1445. .get_wptr = sdma_v3_0_ring_get_wptr,
  1446. .set_wptr = sdma_v3_0_ring_set_wptr,
  1447. .emit_frame_size =
  1448. 6 + /* sdma_v3_0_ring_emit_hdp_flush */
  1449. 3 + /* sdma_v3_0_ring_emit_hdp_invalidate */
  1450. 6 + /* sdma_v3_0_ring_emit_pipeline_sync */
  1451. 12 + /* sdma_v3_0_ring_emit_vm_flush */
  1452. 10 + 10 + 10, /* sdma_v3_0_ring_emit_fence x3 for user fence, vm fence */
  1453. .emit_ib_size = 7 + 6, /* sdma_v3_0_ring_emit_ib */
  1454. .emit_ib = sdma_v3_0_ring_emit_ib,
  1455. .emit_fence = sdma_v3_0_ring_emit_fence,
  1456. .emit_pipeline_sync = sdma_v3_0_ring_emit_pipeline_sync,
  1457. .emit_vm_flush = sdma_v3_0_ring_emit_vm_flush,
  1458. .emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush,
  1459. .emit_hdp_invalidate = sdma_v3_0_ring_emit_hdp_invalidate,
  1460. .test_ring = sdma_v3_0_ring_test_ring,
  1461. .test_ib = sdma_v3_0_ring_test_ib,
  1462. .insert_nop = sdma_v3_0_ring_insert_nop,
  1463. .pad_ib = sdma_v3_0_ring_pad_ib,
  1464. };
  1465. static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev)
  1466. {
  1467. int i;
  1468. for (i = 0; i < adev->sdma.num_instances; i++)
  1469. adev->sdma.instance[i].ring.funcs = &sdma_v3_0_ring_funcs;
  1470. }
  1471. static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = {
  1472. .set = sdma_v3_0_set_trap_irq_state,
  1473. .process = sdma_v3_0_process_trap_irq,
  1474. };
  1475. static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = {
  1476. .process = sdma_v3_0_process_illegal_inst_irq,
  1477. };
  1478. static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev)
  1479. {
  1480. adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
  1481. adev->sdma.trap_irq.funcs = &sdma_v3_0_trap_irq_funcs;
  1482. adev->sdma.illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs;
  1483. }
  1484. /**
  1485. * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine
  1486. *
  1487. * @ring: amdgpu_ring structure holding ring information
  1488. * @src_offset: src GPU address
  1489. * @dst_offset: dst GPU address
  1490. * @byte_count: number of bytes to xfer
  1491. *
  1492. * Copy GPU buffers using the DMA engine (VI).
  1493. * Used by the amdgpu ttm implementation to move pages if
  1494. * registered as the asic copy callback.
  1495. */
  1496. static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ib *ib,
  1497. uint64_t src_offset,
  1498. uint64_t dst_offset,
  1499. uint32_t byte_count)
  1500. {
  1501. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  1502. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  1503. ib->ptr[ib->length_dw++] = byte_count;
  1504. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  1505. ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
  1506. ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
  1507. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1508. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1509. }
  1510. /**
  1511. * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine
  1512. *
  1513. * @ring: amdgpu_ring structure holding ring information
  1514. * @src_data: value to write to buffer
  1515. * @dst_offset: dst GPU address
  1516. * @byte_count: number of bytes to xfer
  1517. *
  1518. * Fill GPU buffers using the DMA engine (VI).
  1519. */
  1520. static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ib *ib,
  1521. uint32_t src_data,
  1522. uint64_t dst_offset,
  1523. uint32_t byte_count)
  1524. {
  1525. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
  1526. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1527. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1528. ib->ptr[ib->length_dw++] = src_data;
  1529. ib->ptr[ib->length_dw++] = byte_count;
  1530. }
  1531. static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = {
  1532. .copy_max_bytes = 0x3fffe0, /* not 0x3fffff due to HW limitation */
  1533. .copy_num_dw = 7,
  1534. .emit_copy_buffer = sdma_v3_0_emit_copy_buffer,
  1535. .fill_max_bytes = 0x3fffe0, /* not 0x3fffff due to HW limitation */
  1536. .fill_num_dw = 5,
  1537. .emit_fill_buffer = sdma_v3_0_emit_fill_buffer,
  1538. };
  1539. static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev)
  1540. {
  1541. if (adev->mman.buffer_funcs == NULL) {
  1542. adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs;
  1543. adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
  1544. }
  1545. }
  1546. static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = {
  1547. .copy_pte_num_dw = 7,
  1548. .copy_pte = sdma_v3_0_vm_copy_pte,
  1549. .write_pte = sdma_v3_0_vm_write_pte,
  1550. /* not 0x3fffff due to HW limitation */
  1551. .set_max_nums_pte_pde = 0x3fffe0 >> 3,
  1552. .set_pte_pde_num_dw = 10,
  1553. .set_pte_pde = sdma_v3_0_vm_set_pte_pde,
  1554. };
  1555. static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev)
  1556. {
  1557. unsigned i;
  1558. if (adev->vm_manager.vm_pte_funcs == NULL) {
  1559. adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs;
  1560. for (i = 0; i < adev->sdma.num_instances; i++)
  1561. adev->vm_manager.vm_pte_rings[i] =
  1562. &adev->sdma.instance[i].ring;
  1563. adev->vm_manager.vm_pte_num_rings = adev->sdma.num_instances;
  1564. }
  1565. }
  1566. const struct amdgpu_ip_block_version sdma_v3_0_ip_block =
  1567. {
  1568. .type = AMD_IP_BLOCK_TYPE_SDMA,
  1569. .major = 3,
  1570. .minor = 0,
  1571. .rev = 0,
  1572. .funcs = &sdma_v3_0_ip_funcs,
  1573. };
  1574. const struct amdgpu_ip_block_version sdma_v3_1_ip_block =
  1575. {
  1576. .type = AMD_IP_BLOCK_TYPE_SDMA,
  1577. .major = 3,
  1578. .minor = 1,
  1579. .rev = 0,
  1580. .funcs = &sdma_v3_0_ip_funcs,
  1581. };