memory.c 102 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828
  1. /*
  2. * linux/mm/memory.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. */
  6. /*
  7. * demand-loading started 01.12.91 - seems it is high on the list of
  8. * things wanted, and it should be easy to implement. - Linus
  9. */
  10. /*
  11. * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  12. * pages started 02.12.91, seems to work. - Linus.
  13. *
  14. * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  15. * would have taken more than the 6M I have free, but it worked well as
  16. * far as I could see.
  17. *
  18. * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  19. */
  20. /*
  21. * Real VM (paging to/from disk) started 18.12.91. Much more work and
  22. * thought has to go into this. Oh, well..
  23. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
  24. * Found it. Everything seems to work now.
  25. * 20.12.91 - Ok, making the swap-device changeable like the root.
  26. */
  27. /*
  28. * 05.04.94 - Multi-page memory management added for v1.1.
  29. * Idea by Alex Bligh (alex@cconcepts.co.uk)
  30. *
  31. * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
  32. * (Gerhard.Wichert@pdb.siemens.de)
  33. *
  34. * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  35. */
  36. #include <linux/kernel_stat.h>
  37. #include <linux/mm.h>
  38. #include <linux/hugetlb.h>
  39. #include <linux/mman.h>
  40. #include <linux/swap.h>
  41. #include <linux/highmem.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/ksm.h>
  44. #include <linux/rmap.h>
  45. #include <linux/export.h>
  46. #include <linux/delayacct.h>
  47. #include <linux/init.h>
  48. #include <linux/writeback.h>
  49. #include <linux/memcontrol.h>
  50. #include <linux/mmu_notifier.h>
  51. #include <linux/kallsyms.h>
  52. #include <linux/swapops.h>
  53. #include <linux/elf.h>
  54. #include <linux/gfp.h>
  55. #include <linux/migrate.h>
  56. #include <linux/string.h>
  57. #include <linux/dma-debug.h>
  58. #include <linux/debugfs.h>
  59. #include <asm/io.h>
  60. #include <asm/pgalloc.h>
  61. #include <asm/uaccess.h>
  62. #include <asm/tlb.h>
  63. #include <asm/tlbflush.h>
  64. #include <asm/pgtable.h>
  65. #include "internal.h"
  66. #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
  67. #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
  68. #endif
  69. #ifndef CONFIG_NEED_MULTIPLE_NODES
  70. /* use the per-pgdat data instead for discontigmem - mbligh */
  71. unsigned long max_mapnr;
  72. struct page *mem_map;
  73. EXPORT_SYMBOL(max_mapnr);
  74. EXPORT_SYMBOL(mem_map);
  75. #endif
  76. /*
  77. * A number of key systems in x86 including ioremap() rely on the assumption
  78. * that high_memory defines the upper bound on direct map memory, then end
  79. * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
  80. * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  81. * and ZONE_HIGHMEM.
  82. */
  83. void * high_memory;
  84. EXPORT_SYMBOL(high_memory);
  85. /*
  86. * Randomize the address space (stacks, mmaps, brk, etc.).
  87. *
  88. * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
  89. * as ancient (libc5 based) binaries can segfault. )
  90. */
  91. int randomize_va_space __read_mostly =
  92. #ifdef CONFIG_COMPAT_BRK
  93. 1;
  94. #else
  95. 2;
  96. #endif
  97. static int __init disable_randmaps(char *s)
  98. {
  99. randomize_va_space = 0;
  100. return 1;
  101. }
  102. __setup("norandmaps", disable_randmaps);
  103. unsigned long zero_pfn __read_mostly;
  104. unsigned long highest_memmap_pfn __read_mostly;
  105. /*
  106. * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
  107. */
  108. static int __init init_zero_pfn(void)
  109. {
  110. zero_pfn = page_to_pfn(ZERO_PAGE(0));
  111. return 0;
  112. }
  113. core_initcall(init_zero_pfn);
  114. #if defined(SPLIT_RSS_COUNTING)
  115. void sync_mm_rss(struct mm_struct *mm)
  116. {
  117. int i;
  118. for (i = 0; i < NR_MM_COUNTERS; i++) {
  119. if (current->rss_stat.count[i]) {
  120. add_mm_counter(mm, i, current->rss_stat.count[i]);
  121. current->rss_stat.count[i] = 0;
  122. }
  123. }
  124. current->rss_stat.events = 0;
  125. }
  126. static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
  127. {
  128. struct task_struct *task = current;
  129. if (likely(task->mm == mm))
  130. task->rss_stat.count[member] += val;
  131. else
  132. add_mm_counter(mm, member, val);
  133. }
  134. #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
  135. #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
  136. /* sync counter once per 64 page faults */
  137. #define TASK_RSS_EVENTS_THRESH (64)
  138. static void check_sync_rss_stat(struct task_struct *task)
  139. {
  140. if (unlikely(task != current))
  141. return;
  142. if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
  143. sync_mm_rss(task->mm);
  144. }
  145. #else /* SPLIT_RSS_COUNTING */
  146. #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
  147. #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
  148. static void check_sync_rss_stat(struct task_struct *task)
  149. {
  150. }
  151. #endif /* SPLIT_RSS_COUNTING */
  152. #ifdef HAVE_GENERIC_MMU_GATHER
  153. static int tlb_next_batch(struct mmu_gather *tlb)
  154. {
  155. struct mmu_gather_batch *batch;
  156. batch = tlb->active;
  157. if (batch->next) {
  158. tlb->active = batch->next;
  159. return 1;
  160. }
  161. if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
  162. return 0;
  163. batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
  164. if (!batch)
  165. return 0;
  166. tlb->batch_count++;
  167. batch->next = NULL;
  168. batch->nr = 0;
  169. batch->max = MAX_GATHER_BATCH;
  170. tlb->active->next = batch;
  171. tlb->active = batch;
  172. return 1;
  173. }
  174. /* tlb_gather_mmu
  175. * Called to initialize an (on-stack) mmu_gather structure for page-table
  176. * tear-down from @mm. The @fullmm argument is used when @mm is without
  177. * users and we're going to destroy the full address space (exit/execve).
  178. */
  179. void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
  180. {
  181. tlb->mm = mm;
  182. /* Is it from 0 to ~0? */
  183. tlb->fullmm = !(start | (end+1));
  184. tlb->need_flush_all = 0;
  185. tlb->start = start;
  186. tlb->end = end;
  187. tlb->need_flush = 0;
  188. tlb->local.next = NULL;
  189. tlb->local.nr = 0;
  190. tlb->local.max = ARRAY_SIZE(tlb->__pages);
  191. tlb->active = &tlb->local;
  192. tlb->batch_count = 0;
  193. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  194. tlb->batch = NULL;
  195. #endif
  196. }
  197. static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
  198. {
  199. tlb->need_flush = 0;
  200. tlb_flush(tlb);
  201. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  202. tlb_table_flush(tlb);
  203. #endif
  204. }
  205. static void tlb_flush_mmu_free(struct mmu_gather *tlb)
  206. {
  207. struct mmu_gather_batch *batch;
  208. for (batch = &tlb->local; batch; batch = batch->next) {
  209. free_pages_and_swap_cache(batch->pages, batch->nr);
  210. batch->nr = 0;
  211. }
  212. tlb->active = &tlb->local;
  213. }
  214. void tlb_flush_mmu(struct mmu_gather *tlb)
  215. {
  216. if (!tlb->need_flush)
  217. return;
  218. tlb_flush_mmu_tlbonly(tlb);
  219. tlb_flush_mmu_free(tlb);
  220. }
  221. /* tlb_finish_mmu
  222. * Called at the end of the shootdown operation to free up any resources
  223. * that were required.
  224. */
  225. void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
  226. {
  227. struct mmu_gather_batch *batch, *next;
  228. tlb_flush_mmu(tlb);
  229. /* keep the page table cache within bounds */
  230. check_pgt_cache();
  231. for (batch = tlb->local.next; batch; batch = next) {
  232. next = batch->next;
  233. free_pages((unsigned long)batch, 0);
  234. }
  235. tlb->local.next = NULL;
  236. }
  237. /* __tlb_remove_page
  238. * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
  239. * handling the additional races in SMP caused by other CPUs caching valid
  240. * mappings in their TLBs. Returns the number of free page slots left.
  241. * When out of page slots we must call tlb_flush_mmu().
  242. */
  243. int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
  244. {
  245. struct mmu_gather_batch *batch;
  246. VM_BUG_ON(!tlb->need_flush);
  247. batch = tlb->active;
  248. batch->pages[batch->nr++] = page;
  249. if (batch->nr == batch->max) {
  250. if (!tlb_next_batch(tlb))
  251. return 0;
  252. batch = tlb->active;
  253. }
  254. VM_BUG_ON_PAGE(batch->nr > batch->max, page);
  255. return batch->max - batch->nr;
  256. }
  257. #endif /* HAVE_GENERIC_MMU_GATHER */
  258. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  259. /*
  260. * See the comment near struct mmu_table_batch.
  261. */
  262. static void tlb_remove_table_smp_sync(void *arg)
  263. {
  264. /* Simply deliver the interrupt */
  265. }
  266. static void tlb_remove_table_one(void *table)
  267. {
  268. /*
  269. * This isn't an RCU grace period and hence the page-tables cannot be
  270. * assumed to be actually RCU-freed.
  271. *
  272. * It is however sufficient for software page-table walkers that rely on
  273. * IRQ disabling. See the comment near struct mmu_table_batch.
  274. */
  275. smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
  276. __tlb_remove_table(table);
  277. }
  278. static void tlb_remove_table_rcu(struct rcu_head *head)
  279. {
  280. struct mmu_table_batch *batch;
  281. int i;
  282. batch = container_of(head, struct mmu_table_batch, rcu);
  283. for (i = 0; i < batch->nr; i++)
  284. __tlb_remove_table(batch->tables[i]);
  285. free_page((unsigned long)batch);
  286. }
  287. void tlb_table_flush(struct mmu_gather *tlb)
  288. {
  289. struct mmu_table_batch **batch = &tlb->batch;
  290. if (*batch) {
  291. call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
  292. *batch = NULL;
  293. }
  294. }
  295. void tlb_remove_table(struct mmu_gather *tlb, void *table)
  296. {
  297. struct mmu_table_batch **batch = &tlb->batch;
  298. tlb->need_flush = 1;
  299. /*
  300. * When there's less then two users of this mm there cannot be a
  301. * concurrent page-table walk.
  302. */
  303. if (atomic_read(&tlb->mm->mm_users) < 2) {
  304. __tlb_remove_table(table);
  305. return;
  306. }
  307. if (*batch == NULL) {
  308. *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
  309. if (*batch == NULL) {
  310. tlb_remove_table_one(table);
  311. return;
  312. }
  313. (*batch)->nr = 0;
  314. }
  315. (*batch)->tables[(*batch)->nr++] = table;
  316. if ((*batch)->nr == MAX_TABLE_BATCH)
  317. tlb_table_flush(tlb);
  318. }
  319. #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
  320. /*
  321. * Note: this doesn't free the actual pages themselves. That
  322. * has been handled earlier when unmapping all the memory regions.
  323. */
  324. static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
  325. unsigned long addr)
  326. {
  327. pgtable_t token = pmd_pgtable(*pmd);
  328. pmd_clear(pmd);
  329. pte_free_tlb(tlb, token, addr);
  330. atomic_long_dec(&tlb->mm->nr_ptes);
  331. }
  332. static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  333. unsigned long addr, unsigned long end,
  334. unsigned long floor, unsigned long ceiling)
  335. {
  336. pmd_t *pmd;
  337. unsigned long next;
  338. unsigned long start;
  339. start = addr;
  340. pmd = pmd_offset(pud, addr);
  341. do {
  342. next = pmd_addr_end(addr, end);
  343. if (pmd_none_or_clear_bad(pmd))
  344. continue;
  345. free_pte_range(tlb, pmd, addr);
  346. } while (pmd++, addr = next, addr != end);
  347. start &= PUD_MASK;
  348. if (start < floor)
  349. return;
  350. if (ceiling) {
  351. ceiling &= PUD_MASK;
  352. if (!ceiling)
  353. return;
  354. }
  355. if (end - 1 > ceiling - 1)
  356. return;
  357. pmd = pmd_offset(pud, start);
  358. pud_clear(pud);
  359. pmd_free_tlb(tlb, pmd, start);
  360. }
  361. static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  362. unsigned long addr, unsigned long end,
  363. unsigned long floor, unsigned long ceiling)
  364. {
  365. pud_t *pud;
  366. unsigned long next;
  367. unsigned long start;
  368. start = addr;
  369. pud = pud_offset(pgd, addr);
  370. do {
  371. next = pud_addr_end(addr, end);
  372. if (pud_none_or_clear_bad(pud))
  373. continue;
  374. free_pmd_range(tlb, pud, addr, next, floor, ceiling);
  375. } while (pud++, addr = next, addr != end);
  376. start &= PGDIR_MASK;
  377. if (start < floor)
  378. return;
  379. if (ceiling) {
  380. ceiling &= PGDIR_MASK;
  381. if (!ceiling)
  382. return;
  383. }
  384. if (end - 1 > ceiling - 1)
  385. return;
  386. pud = pud_offset(pgd, start);
  387. pgd_clear(pgd);
  388. pud_free_tlb(tlb, pud, start);
  389. }
  390. /*
  391. * This function frees user-level page tables of a process.
  392. */
  393. void free_pgd_range(struct mmu_gather *tlb,
  394. unsigned long addr, unsigned long end,
  395. unsigned long floor, unsigned long ceiling)
  396. {
  397. pgd_t *pgd;
  398. unsigned long next;
  399. /*
  400. * The next few lines have given us lots of grief...
  401. *
  402. * Why are we testing PMD* at this top level? Because often
  403. * there will be no work to do at all, and we'd prefer not to
  404. * go all the way down to the bottom just to discover that.
  405. *
  406. * Why all these "- 1"s? Because 0 represents both the bottom
  407. * of the address space and the top of it (using -1 for the
  408. * top wouldn't help much: the masks would do the wrong thing).
  409. * The rule is that addr 0 and floor 0 refer to the bottom of
  410. * the address space, but end 0 and ceiling 0 refer to the top
  411. * Comparisons need to use "end - 1" and "ceiling - 1" (though
  412. * that end 0 case should be mythical).
  413. *
  414. * Wherever addr is brought up or ceiling brought down, we must
  415. * be careful to reject "the opposite 0" before it confuses the
  416. * subsequent tests. But what about where end is brought down
  417. * by PMD_SIZE below? no, end can't go down to 0 there.
  418. *
  419. * Whereas we round start (addr) and ceiling down, by different
  420. * masks at different levels, in order to test whether a table
  421. * now has no other vmas using it, so can be freed, we don't
  422. * bother to round floor or end up - the tests don't need that.
  423. */
  424. addr &= PMD_MASK;
  425. if (addr < floor) {
  426. addr += PMD_SIZE;
  427. if (!addr)
  428. return;
  429. }
  430. if (ceiling) {
  431. ceiling &= PMD_MASK;
  432. if (!ceiling)
  433. return;
  434. }
  435. if (end - 1 > ceiling - 1)
  436. end -= PMD_SIZE;
  437. if (addr > end - 1)
  438. return;
  439. pgd = pgd_offset(tlb->mm, addr);
  440. do {
  441. next = pgd_addr_end(addr, end);
  442. if (pgd_none_or_clear_bad(pgd))
  443. continue;
  444. free_pud_range(tlb, pgd, addr, next, floor, ceiling);
  445. } while (pgd++, addr = next, addr != end);
  446. }
  447. void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
  448. unsigned long floor, unsigned long ceiling)
  449. {
  450. while (vma) {
  451. struct vm_area_struct *next = vma->vm_next;
  452. unsigned long addr = vma->vm_start;
  453. /*
  454. * Hide vma from rmap and truncate_pagecache before freeing
  455. * pgtables
  456. */
  457. unlink_anon_vmas(vma);
  458. unlink_file_vma(vma);
  459. if (is_vm_hugetlb_page(vma)) {
  460. hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
  461. floor, next? next->vm_start: ceiling);
  462. } else {
  463. /*
  464. * Optimization: gather nearby vmas into one call down
  465. */
  466. while (next && next->vm_start <= vma->vm_end + PMD_SIZE
  467. && !is_vm_hugetlb_page(next)) {
  468. vma = next;
  469. next = vma->vm_next;
  470. unlink_anon_vmas(vma);
  471. unlink_file_vma(vma);
  472. }
  473. free_pgd_range(tlb, addr, vma->vm_end,
  474. floor, next? next->vm_start: ceiling);
  475. }
  476. vma = next;
  477. }
  478. }
  479. int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
  480. pmd_t *pmd, unsigned long address)
  481. {
  482. spinlock_t *ptl;
  483. pgtable_t new = pte_alloc_one(mm, address);
  484. int wait_split_huge_page;
  485. if (!new)
  486. return -ENOMEM;
  487. /*
  488. * Ensure all pte setup (eg. pte page lock and page clearing) are
  489. * visible before the pte is made visible to other CPUs by being
  490. * put into page tables.
  491. *
  492. * The other side of the story is the pointer chasing in the page
  493. * table walking code (when walking the page table without locking;
  494. * ie. most of the time). Fortunately, these data accesses consist
  495. * of a chain of data-dependent loads, meaning most CPUs (alpha
  496. * being the notable exception) will already guarantee loads are
  497. * seen in-order. See the alpha page table accessors for the
  498. * smp_read_barrier_depends() barriers in page table walking code.
  499. */
  500. smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
  501. ptl = pmd_lock(mm, pmd);
  502. wait_split_huge_page = 0;
  503. if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
  504. atomic_long_inc(&mm->nr_ptes);
  505. pmd_populate(mm, pmd, new);
  506. new = NULL;
  507. } else if (unlikely(pmd_trans_splitting(*pmd)))
  508. wait_split_huge_page = 1;
  509. spin_unlock(ptl);
  510. if (new)
  511. pte_free(mm, new);
  512. if (wait_split_huge_page)
  513. wait_split_huge_page(vma->anon_vma, pmd);
  514. return 0;
  515. }
  516. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
  517. {
  518. pte_t *new = pte_alloc_one_kernel(&init_mm, address);
  519. if (!new)
  520. return -ENOMEM;
  521. smp_wmb(); /* See comment in __pte_alloc */
  522. spin_lock(&init_mm.page_table_lock);
  523. if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
  524. pmd_populate_kernel(&init_mm, pmd, new);
  525. new = NULL;
  526. } else
  527. VM_BUG_ON(pmd_trans_splitting(*pmd));
  528. spin_unlock(&init_mm.page_table_lock);
  529. if (new)
  530. pte_free_kernel(&init_mm, new);
  531. return 0;
  532. }
  533. static inline void init_rss_vec(int *rss)
  534. {
  535. memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
  536. }
  537. static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
  538. {
  539. int i;
  540. if (current->mm == mm)
  541. sync_mm_rss(mm);
  542. for (i = 0; i < NR_MM_COUNTERS; i++)
  543. if (rss[i])
  544. add_mm_counter(mm, i, rss[i]);
  545. }
  546. /*
  547. * This function is called to print an error when a bad pte
  548. * is found. For example, we might have a PFN-mapped pte in
  549. * a region that doesn't allow it.
  550. *
  551. * The calling function must still handle the error.
  552. */
  553. static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
  554. pte_t pte, struct page *page)
  555. {
  556. pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
  557. pud_t *pud = pud_offset(pgd, addr);
  558. pmd_t *pmd = pmd_offset(pud, addr);
  559. struct address_space *mapping;
  560. pgoff_t index;
  561. static unsigned long resume;
  562. static unsigned long nr_shown;
  563. static unsigned long nr_unshown;
  564. /*
  565. * Allow a burst of 60 reports, then keep quiet for that minute;
  566. * or allow a steady drip of one report per second.
  567. */
  568. if (nr_shown == 60) {
  569. if (time_before(jiffies, resume)) {
  570. nr_unshown++;
  571. return;
  572. }
  573. if (nr_unshown) {
  574. printk(KERN_ALERT
  575. "BUG: Bad page map: %lu messages suppressed\n",
  576. nr_unshown);
  577. nr_unshown = 0;
  578. }
  579. nr_shown = 0;
  580. }
  581. if (nr_shown++ == 0)
  582. resume = jiffies + 60 * HZ;
  583. mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
  584. index = linear_page_index(vma, addr);
  585. printk(KERN_ALERT
  586. "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
  587. current->comm,
  588. (long long)pte_val(pte), (long long)pmd_val(*pmd));
  589. if (page)
  590. dump_page(page, "bad pte");
  591. printk(KERN_ALERT
  592. "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
  593. (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
  594. /*
  595. * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
  596. */
  597. if (vma->vm_ops)
  598. printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
  599. vma->vm_ops->fault);
  600. if (vma->vm_file)
  601. printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
  602. vma->vm_file->f_op->mmap);
  603. dump_stack();
  604. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  605. }
  606. /*
  607. * vm_normal_page -- This function gets the "struct page" associated with a pte.
  608. *
  609. * "Special" mappings do not wish to be associated with a "struct page" (either
  610. * it doesn't exist, or it exists but they don't want to touch it). In this
  611. * case, NULL is returned here. "Normal" mappings do have a struct page.
  612. *
  613. * There are 2 broad cases. Firstly, an architecture may define a pte_special()
  614. * pte bit, in which case this function is trivial. Secondly, an architecture
  615. * may not have a spare pte bit, which requires a more complicated scheme,
  616. * described below.
  617. *
  618. * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
  619. * special mapping (even if there are underlying and valid "struct pages").
  620. * COWed pages of a VM_PFNMAP are always normal.
  621. *
  622. * The way we recognize COWed pages within VM_PFNMAP mappings is through the
  623. * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
  624. * set, and the vm_pgoff will point to the first PFN mapped: thus every special
  625. * mapping will always honor the rule
  626. *
  627. * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
  628. *
  629. * And for normal mappings this is false.
  630. *
  631. * This restricts such mappings to be a linear translation from virtual address
  632. * to pfn. To get around this restriction, we allow arbitrary mappings so long
  633. * as the vma is not a COW mapping; in that case, we know that all ptes are
  634. * special (because none can have been COWed).
  635. *
  636. *
  637. * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
  638. *
  639. * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
  640. * page" backing, however the difference is that _all_ pages with a struct
  641. * page (that is, those where pfn_valid is true) are refcounted and considered
  642. * normal pages by the VM. The disadvantage is that pages are refcounted
  643. * (which can be slower and simply not an option for some PFNMAP users). The
  644. * advantage is that we don't have to follow the strict linearity rule of
  645. * PFNMAP mappings in order to support COWable mappings.
  646. *
  647. */
  648. #ifdef __HAVE_ARCH_PTE_SPECIAL
  649. # define HAVE_PTE_SPECIAL 1
  650. #else
  651. # define HAVE_PTE_SPECIAL 0
  652. #endif
  653. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  654. pte_t pte)
  655. {
  656. unsigned long pfn = pte_pfn(pte);
  657. if (HAVE_PTE_SPECIAL) {
  658. if (likely(!pte_special(pte) || pte_numa(pte)))
  659. goto check_pfn;
  660. if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
  661. return NULL;
  662. if (!is_zero_pfn(pfn))
  663. print_bad_pte(vma, addr, pte, NULL);
  664. return NULL;
  665. }
  666. /* !HAVE_PTE_SPECIAL case follows: */
  667. if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
  668. if (vma->vm_flags & VM_MIXEDMAP) {
  669. if (!pfn_valid(pfn))
  670. return NULL;
  671. goto out;
  672. } else {
  673. unsigned long off;
  674. off = (addr - vma->vm_start) >> PAGE_SHIFT;
  675. if (pfn == vma->vm_pgoff + off)
  676. return NULL;
  677. if (!is_cow_mapping(vma->vm_flags))
  678. return NULL;
  679. }
  680. }
  681. check_pfn:
  682. if (unlikely(pfn > highest_memmap_pfn)) {
  683. print_bad_pte(vma, addr, pte, NULL);
  684. return NULL;
  685. }
  686. if (is_zero_pfn(pfn))
  687. return NULL;
  688. /*
  689. * NOTE! We still have PageReserved() pages in the page tables.
  690. * eg. VDSO mappings can cause them to exist.
  691. */
  692. out:
  693. return pfn_to_page(pfn);
  694. }
  695. /*
  696. * copy one vm_area from one task to the other. Assumes the page tables
  697. * already present in the new task to be cleared in the whole range
  698. * covered by this vma.
  699. */
  700. static inline unsigned long
  701. copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  702. pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
  703. unsigned long addr, int *rss)
  704. {
  705. unsigned long vm_flags = vma->vm_flags;
  706. pte_t pte = *src_pte;
  707. struct page *page;
  708. /* pte contains position in swap or file, so copy. */
  709. if (unlikely(!pte_present(pte))) {
  710. if (!pte_file(pte)) {
  711. swp_entry_t entry = pte_to_swp_entry(pte);
  712. if (swap_duplicate(entry) < 0)
  713. return entry.val;
  714. /* make sure dst_mm is on swapoff's mmlist. */
  715. if (unlikely(list_empty(&dst_mm->mmlist))) {
  716. spin_lock(&mmlist_lock);
  717. if (list_empty(&dst_mm->mmlist))
  718. list_add(&dst_mm->mmlist,
  719. &src_mm->mmlist);
  720. spin_unlock(&mmlist_lock);
  721. }
  722. if (likely(!non_swap_entry(entry)))
  723. rss[MM_SWAPENTS]++;
  724. else if (is_migration_entry(entry)) {
  725. page = migration_entry_to_page(entry);
  726. if (PageAnon(page))
  727. rss[MM_ANONPAGES]++;
  728. else
  729. rss[MM_FILEPAGES]++;
  730. if (is_write_migration_entry(entry) &&
  731. is_cow_mapping(vm_flags)) {
  732. /*
  733. * COW mappings require pages in both
  734. * parent and child to be set to read.
  735. */
  736. make_migration_entry_read(&entry);
  737. pte = swp_entry_to_pte(entry);
  738. if (pte_swp_soft_dirty(*src_pte))
  739. pte = pte_swp_mksoft_dirty(pte);
  740. set_pte_at(src_mm, addr, src_pte, pte);
  741. }
  742. }
  743. }
  744. goto out_set_pte;
  745. }
  746. /*
  747. * If it's a COW mapping, write protect it both
  748. * in the parent and the child
  749. */
  750. if (is_cow_mapping(vm_flags)) {
  751. ptep_set_wrprotect(src_mm, addr, src_pte);
  752. pte = pte_wrprotect(pte);
  753. }
  754. /*
  755. * If it's a shared mapping, mark it clean in
  756. * the child
  757. */
  758. if (vm_flags & VM_SHARED)
  759. pte = pte_mkclean(pte);
  760. pte = pte_mkold(pte);
  761. page = vm_normal_page(vma, addr, pte);
  762. if (page) {
  763. get_page(page);
  764. page_dup_rmap(page);
  765. if (PageAnon(page))
  766. rss[MM_ANONPAGES]++;
  767. else
  768. rss[MM_FILEPAGES]++;
  769. }
  770. out_set_pte:
  771. set_pte_at(dst_mm, addr, dst_pte, pte);
  772. return 0;
  773. }
  774. int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  775. pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
  776. unsigned long addr, unsigned long end)
  777. {
  778. pte_t *orig_src_pte, *orig_dst_pte;
  779. pte_t *src_pte, *dst_pte;
  780. spinlock_t *src_ptl, *dst_ptl;
  781. int progress = 0;
  782. int rss[NR_MM_COUNTERS];
  783. swp_entry_t entry = (swp_entry_t){0};
  784. again:
  785. init_rss_vec(rss);
  786. dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
  787. if (!dst_pte)
  788. return -ENOMEM;
  789. src_pte = pte_offset_map(src_pmd, addr);
  790. src_ptl = pte_lockptr(src_mm, src_pmd);
  791. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  792. orig_src_pte = src_pte;
  793. orig_dst_pte = dst_pte;
  794. arch_enter_lazy_mmu_mode();
  795. do {
  796. /*
  797. * We are holding two locks at this point - either of them
  798. * could generate latencies in another task on another CPU.
  799. */
  800. if (progress >= 32) {
  801. progress = 0;
  802. if (need_resched() ||
  803. spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
  804. break;
  805. }
  806. if (pte_none(*src_pte)) {
  807. progress++;
  808. continue;
  809. }
  810. entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
  811. vma, addr, rss);
  812. if (entry.val)
  813. break;
  814. progress += 8;
  815. } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
  816. arch_leave_lazy_mmu_mode();
  817. spin_unlock(src_ptl);
  818. pte_unmap(orig_src_pte);
  819. add_mm_rss_vec(dst_mm, rss);
  820. pte_unmap_unlock(orig_dst_pte, dst_ptl);
  821. cond_resched();
  822. if (entry.val) {
  823. if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
  824. return -ENOMEM;
  825. progress = 0;
  826. }
  827. if (addr != end)
  828. goto again;
  829. return 0;
  830. }
  831. static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  832. pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
  833. unsigned long addr, unsigned long end)
  834. {
  835. pmd_t *src_pmd, *dst_pmd;
  836. unsigned long next;
  837. dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
  838. if (!dst_pmd)
  839. return -ENOMEM;
  840. src_pmd = pmd_offset(src_pud, addr);
  841. do {
  842. next = pmd_addr_end(addr, end);
  843. if (pmd_trans_huge(*src_pmd)) {
  844. int err;
  845. VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
  846. err = copy_huge_pmd(dst_mm, src_mm,
  847. dst_pmd, src_pmd, addr, vma);
  848. if (err == -ENOMEM)
  849. return -ENOMEM;
  850. if (!err)
  851. continue;
  852. /* fall through */
  853. }
  854. if (pmd_none_or_clear_bad(src_pmd))
  855. continue;
  856. if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
  857. vma, addr, next))
  858. return -ENOMEM;
  859. } while (dst_pmd++, src_pmd++, addr = next, addr != end);
  860. return 0;
  861. }
  862. static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  863. pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
  864. unsigned long addr, unsigned long end)
  865. {
  866. pud_t *src_pud, *dst_pud;
  867. unsigned long next;
  868. dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
  869. if (!dst_pud)
  870. return -ENOMEM;
  871. src_pud = pud_offset(src_pgd, addr);
  872. do {
  873. next = pud_addr_end(addr, end);
  874. if (pud_none_or_clear_bad(src_pud))
  875. continue;
  876. if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
  877. vma, addr, next))
  878. return -ENOMEM;
  879. } while (dst_pud++, src_pud++, addr = next, addr != end);
  880. return 0;
  881. }
  882. int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  883. struct vm_area_struct *vma)
  884. {
  885. pgd_t *src_pgd, *dst_pgd;
  886. unsigned long next;
  887. unsigned long addr = vma->vm_start;
  888. unsigned long end = vma->vm_end;
  889. unsigned long mmun_start; /* For mmu_notifiers */
  890. unsigned long mmun_end; /* For mmu_notifiers */
  891. bool is_cow;
  892. int ret;
  893. /*
  894. * Don't copy ptes where a page fault will fill them correctly.
  895. * Fork becomes much lighter when there are big shared or private
  896. * readonly mappings. The tradeoff is that copy_page_range is more
  897. * efficient than faulting.
  898. */
  899. if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
  900. VM_PFNMAP | VM_MIXEDMAP))) {
  901. if (!vma->anon_vma)
  902. return 0;
  903. }
  904. if (is_vm_hugetlb_page(vma))
  905. return copy_hugetlb_page_range(dst_mm, src_mm, vma);
  906. if (unlikely(vma->vm_flags & VM_PFNMAP)) {
  907. /*
  908. * We do not free on error cases below as remove_vma
  909. * gets called on error from higher level routine
  910. */
  911. ret = track_pfn_copy(vma);
  912. if (ret)
  913. return ret;
  914. }
  915. /*
  916. * We need to invalidate the secondary MMU mappings only when
  917. * there could be a permission downgrade on the ptes of the
  918. * parent mm. And a permission downgrade will only happen if
  919. * is_cow_mapping() returns true.
  920. */
  921. is_cow = is_cow_mapping(vma->vm_flags);
  922. mmun_start = addr;
  923. mmun_end = end;
  924. if (is_cow)
  925. mmu_notifier_invalidate_range_start(src_mm, mmun_start,
  926. mmun_end);
  927. ret = 0;
  928. dst_pgd = pgd_offset(dst_mm, addr);
  929. src_pgd = pgd_offset(src_mm, addr);
  930. do {
  931. next = pgd_addr_end(addr, end);
  932. if (pgd_none_or_clear_bad(src_pgd))
  933. continue;
  934. if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
  935. vma, addr, next))) {
  936. ret = -ENOMEM;
  937. break;
  938. }
  939. } while (dst_pgd++, src_pgd++, addr = next, addr != end);
  940. if (is_cow)
  941. mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
  942. return ret;
  943. }
  944. static unsigned long zap_pte_range(struct mmu_gather *tlb,
  945. struct vm_area_struct *vma, pmd_t *pmd,
  946. unsigned long addr, unsigned long end,
  947. struct zap_details *details)
  948. {
  949. struct mm_struct *mm = tlb->mm;
  950. int force_flush = 0;
  951. int rss[NR_MM_COUNTERS];
  952. spinlock_t *ptl;
  953. pte_t *start_pte;
  954. pte_t *pte;
  955. again:
  956. init_rss_vec(rss);
  957. start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
  958. pte = start_pte;
  959. arch_enter_lazy_mmu_mode();
  960. do {
  961. pte_t ptent = *pte;
  962. if (pte_none(ptent)) {
  963. continue;
  964. }
  965. if (pte_present(ptent)) {
  966. struct page *page;
  967. page = vm_normal_page(vma, addr, ptent);
  968. if (unlikely(details) && page) {
  969. /*
  970. * unmap_shared_mapping_pages() wants to
  971. * invalidate cache without truncating:
  972. * unmap shared but keep private pages.
  973. */
  974. if (details->check_mapping &&
  975. details->check_mapping != page->mapping)
  976. continue;
  977. /*
  978. * Each page->index must be checked when
  979. * invalidating or truncating nonlinear.
  980. */
  981. if (details->nonlinear_vma &&
  982. (page->index < details->first_index ||
  983. page->index > details->last_index))
  984. continue;
  985. }
  986. ptent = ptep_get_and_clear_full(mm, addr, pte,
  987. tlb->fullmm);
  988. tlb_remove_tlb_entry(tlb, pte, addr);
  989. if (unlikely(!page))
  990. continue;
  991. if (unlikely(details) && details->nonlinear_vma
  992. && linear_page_index(details->nonlinear_vma,
  993. addr) != page->index) {
  994. pte_t ptfile = pgoff_to_pte(page->index);
  995. if (pte_soft_dirty(ptent))
  996. pte_file_mksoft_dirty(ptfile);
  997. set_pte_at(mm, addr, pte, ptfile);
  998. }
  999. if (PageAnon(page))
  1000. rss[MM_ANONPAGES]--;
  1001. else {
  1002. if (pte_dirty(ptent)) {
  1003. force_flush = 1;
  1004. set_page_dirty(page);
  1005. }
  1006. if (pte_young(ptent) &&
  1007. likely(!(vma->vm_flags & VM_SEQ_READ)))
  1008. mark_page_accessed(page);
  1009. rss[MM_FILEPAGES]--;
  1010. }
  1011. page_remove_rmap(page);
  1012. if (unlikely(page_mapcount(page) < 0))
  1013. print_bad_pte(vma, addr, ptent, page);
  1014. if (unlikely(!__tlb_remove_page(tlb, page))) {
  1015. force_flush = 1;
  1016. break;
  1017. }
  1018. continue;
  1019. }
  1020. /*
  1021. * If details->check_mapping, we leave swap entries;
  1022. * if details->nonlinear_vma, we leave file entries.
  1023. */
  1024. if (unlikely(details))
  1025. continue;
  1026. if (pte_file(ptent)) {
  1027. if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
  1028. print_bad_pte(vma, addr, ptent, NULL);
  1029. } else {
  1030. swp_entry_t entry = pte_to_swp_entry(ptent);
  1031. if (!non_swap_entry(entry))
  1032. rss[MM_SWAPENTS]--;
  1033. else if (is_migration_entry(entry)) {
  1034. struct page *page;
  1035. page = migration_entry_to_page(entry);
  1036. if (PageAnon(page))
  1037. rss[MM_ANONPAGES]--;
  1038. else
  1039. rss[MM_FILEPAGES]--;
  1040. }
  1041. if (unlikely(!free_swap_and_cache(entry)))
  1042. print_bad_pte(vma, addr, ptent, NULL);
  1043. }
  1044. pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
  1045. } while (pte++, addr += PAGE_SIZE, addr != end);
  1046. add_mm_rss_vec(mm, rss);
  1047. arch_leave_lazy_mmu_mode();
  1048. /* Do the actual TLB flush before dropping ptl */
  1049. if (force_flush) {
  1050. unsigned long old_end;
  1051. /*
  1052. * Flush the TLB just for the previous segment,
  1053. * then update the range to be the remaining
  1054. * TLB range.
  1055. */
  1056. old_end = tlb->end;
  1057. tlb->end = addr;
  1058. tlb_flush_mmu_tlbonly(tlb);
  1059. tlb->start = addr;
  1060. tlb->end = old_end;
  1061. }
  1062. pte_unmap_unlock(start_pte, ptl);
  1063. /*
  1064. * If we forced a TLB flush (either due to running out of
  1065. * batch buffers or because we needed to flush dirty TLB
  1066. * entries before releasing the ptl), free the batched
  1067. * memory too. Restart if we didn't do everything.
  1068. */
  1069. if (force_flush) {
  1070. force_flush = 0;
  1071. tlb_flush_mmu_free(tlb);
  1072. if (addr != end)
  1073. goto again;
  1074. }
  1075. return addr;
  1076. }
  1077. static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
  1078. struct vm_area_struct *vma, pud_t *pud,
  1079. unsigned long addr, unsigned long end,
  1080. struct zap_details *details)
  1081. {
  1082. pmd_t *pmd;
  1083. unsigned long next;
  1084. pmd = pmd_offset(pud, addr);
  1085. do {
  1086. next = pmd_addr_end(addr, end);
  1087. if (pmd_trans_huge(*pmd)) {
  1088. if (next - addr != HPAGE_PMD_SIZE) {
  1089. #ifdef CONFIG_DEBUG_VM
  1090. if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
  1091. pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
  1092. __func__, addr, end,
  1093. vma->vm_start,
  1094. vma->vm_end);
  1095. BUG();
  1096. }
  1097. #endif
  1098. split_huge_page_pmd(vma, addr, pmd);
  1099. } else if (zap_huge_pmd(tlb, vma, pmd, addr))
  1100. goto next;
  1101. /* fall through */
  1102. }
  1103. /*
  1104. * Here there can be other concurrent MADV_DONTNEED or
  1105. * trans huge page faults running, and if the pmd is
  1106. * none or trans huge it can change under us. This is
  1107. * because MADV_DONTNEED holds the mmap_sem in read
  1108. * mode.
  1109. */
  1110. if (pmd_none_or_trans_huge_or_clear_bad(pmd))
  1111. goto next;
  1112. next = zap_pte_range(tlb, vma, pmd, addr, next, details);
  1113. next:
  1114. cond_resched();
  1115. } while (pmd++, addr = next, addr != end);
  1116. return addr;
  1117. }
  1118. static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
  1119. struct vm_area_struct *vma, pgd_t *pgd,
  1120. unsigned long addr, unsigned long end,
  1121. struct zap_details *details)
  1122. {
  1123. pud_t *pud;
  1124. unsigned long next;
  1125. pud = pud_offset(pgd, addr);
  1126. do {
  1127. next = pud_addr_end(addr, end);
  1128. if (pud_none_or_clear_bad(pud))
  1129. continue;
  1130. next = zap_pmd_range(tlb, vma, pud, addr, next, details);
  1131. } while (pud++, addr = next, addr != end);
  1132. return addr;
  1133. }
  1134. static void unmap_page_range(struct mmu_gather *tlb,
  1135. struct vm_area_struct *vma,
  1136. unsigned long addr, unsigned long end,
  1137. struct zap_details *details)
  1138. {
  1139. pgd_t *pgd;
  1140. unsigned long next;
  1141. if (details && !details->check_mapping && !details->nonlinear_vma)
  1142. details = NULL;
  1143. BUG_ON(addr >= end);
  1144. mem_cgroup_uncharge_start();
  1145. tlb_start_vma(tlb, vma);
  1146. pgd = pgd_offset(vma->vm_mm, addr);
  1147. do {
  1148. next = pgd_addr_end(addr, end);
  1149. if (pgd_none_or_clear_bad(pgd))
  1150. continue;
  1151. next = zap_pud_range(tlb, vma, pgd, addr, next, details);
  1152. } while (pgd++, addr = next, addr != end);
  1153. tlb_end_vma(tlb, vma);
  1154. mem_cgroup_uncharge_end();
  1155. }
  1156. static void unmap_single_vma(struct mmu_gather *tlb,
  1157. struct vm_area_struct *vma, unsigned long start_addr,
  1158. unsigned long end_addr,
  1159. struct zap_details *details)
  1160. {
  1161. unsigned long start = max(vma->vm_start, start_addr);
  1162. unsigned long end;
  1163. if (start >= vma->vm_end)
  1164. return;
  1165. end = min(vma->vm_end, end_addr);
  1166. if (end <= vma->vm_start)
  1167. return;
  1168. if (vma->vm_file)
  1169. uprobe_munmap(vma, start, end);
  1170. if (unlikely(vma->vm_flags & VM_PFNMAP))
  1171. untrack_pfn(vma, 0, 0);
  1172. if (start != end) {
  1173. if (unlikely(is_vm_hugetlb_page(vma))) {
  1174. /*
  1175. * It is undesirable to test vma->vm_file as it
  1176. * should be non-null for valid hugetlb area.
  1177. * However, vm_file will be NULL in the error
  1178. * cleanup path of mmap_region. When
  1179. * hugetlbfs ->mmap method fails,
  1180. * mmap_region() nullifies vma->vm_file
  1181. * before calling this function to clean up.
  1182. * Since no pte has actually been setup, it is
  1183. * safe to do nothing in this case.
  1184. */
  1185. if (vma->vm_file) {
  1186. mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
  1187. __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
  1188. mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
  1189. }
  1190. } else
  1191. unmap_page_range(tlb, vma, start, end, details);
  1192. }
  1193. }
  1194. /**
  1195. * unmap_vmas - unmap a range of memory covered by a list of vma's
  1196. * @tlb: address of the caller's struct mmu_gather
  1197. * @vma: the starting vma
  1198. * @start_addr: virtual address at which to start unmapping
  1199. * @end_addr: virtual address at which to end unmapping
  1200. *
  1201. * Unmap all pages in the vma list.
  1202. *
  1203. * Only addresses between `start' and `end' will be unmapped.
  1204. *
  1205. * The VMA list must be sorted in ascending virtual address order.
  1206. *
  1207. * unmap_vmas() assumes that the caller will flush the whole unmapped address
  1208. * range after unmap_vmas() returns. So the only responsibility here is to
  1209. * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
  1210. * drops the lock and schedules.
  1211. */
  1212. void unmap_vmas(struct mmu_gather *tlb,
  1213. struct vm_area_struct *vma, unsigned long start_addr,
  1214. unsigned long end_addr)
  1215. {
  1216. struct mm_struct *mm = vma->vm_mm;
  1217. mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
  1218. for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
  1219. unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
  1220. mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
  1221. }
  1222. /**
  1223. * zap_page_range - remove user pages in a given range
  1224. * @vma: vm_area_struct holding the applicable pages
  1225. * @start: starting address of pages to zap
  1226. * @size: number of bytes to zap
  1227. * @details: details of nonlinear truncation or shared cache invalidation
  1228. *
  1229. * Caller must protect the VMA list
  1230. */
  1231. void zap_page_range(struct vm_area_struct *vma, unsigned long start,
  1232. unsigned long size, struct zap_details *details)
  1233. {
  1234. struct mm_struct *mm = vma->vm_mm;
  1235. struct mmu_gather tlb;
  1236. unsigned long end = start + size;
  1237. lru_add_drain();
  1238. tlb_gather_mmu(&tlb, mm, start, end);
  1239. update_hiwater_rss(mm);
  1240. mmu_notifier_invalidate_range_start(mm, start, end);
  1241. for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
  1242. unmap_single_vma(&tlb, vma, start, end, details);
  1243. mmu_notifier_invalidate_range_end(mm, start, end);
  1244. tlb_finish_mmu(&tlb, start, end);
  1245. }
  1246. /**
  1247. * zap_page_range_single - remove user pages in a given range
  1248. * @vma: vm_area_struct holding the applicable pages
  1249. * @address: starting address of pages to zap
  1250. * @size: number of bytes to zap
  1251. * @details: details of nonlinear truncation or shared cache invalidation
  1252. *
  1253. * The range must fit into one VMA.
  1254. */
  1255. static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
  1256. unsigned long size, struct zap_details *details)
  1257. {
  1258. struct mm_struct *mm = vma->vm_mm;
  1259. struct mmu_gather tlb;
  1260. unsigned long end = address + size;
  1261. lru_add_drain();
  1262. tlb_gather_mmu(&tlb, mm, address, end);
  1263. update_hiwater_rss(mm);
  1264. mmu_notifier_invalidate_range_start(mm, address, end);
  1265. unmap_single_vma(&tlb, vma, address, end, details);
  1266. mmu_notifier_invalidate_range_end(mm, address, end);
  1267. tlb_finish_mmu(&tlb, address, end);
  1268. }
  1269. /**
  1270. * zap_vma_ptes - remove ptes mapping the vma
  1271. * @vma: vm_area_struct holding ptes to be zapped
  1272. * @address: starting address of pages to zap
  1273. * @size: number of bytes to zap
  1274. *
  1275. * This function only unmaps ptes assigned to VM_PFNMAP vmas.
  1276. *
  1277. * The entire address range must be fully contained within the vma.
  1278. *
  1279. * Returns 0 if successful.
  1280. */
  1281. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  1282. unsigned long size)
  1283. {
  1284. if (address < vma->vm_start || address + size > vma->vm_end ||
  1285. !(vma->vm_flags & VM_PFNMAP))
  1286. return -1;
  1287. zap_page_range_single(vma, address, size, NULL);
  1288. return 0;
  1289. }
  1290. EXPORT_SYMBOL_GPL(zap_vma_ptes);
  1291. pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1292. spinlock_t **ptl)
  1293. {
  1294. pgd_t * pgd = pgd_offset(mm, addr);
  1295. pud_t * pud = pud_alloc(mm, pgd, addr);
  1296. if (pud) {
  1297. pmd_t * pmd = pmd_alloc(mm, pud, addr);
  1298. if (pmd) {
  1299. VM_BUG_ON(pmd_trans_huge(*pmd));
  1300. return pte_alloc_map_lock(mm, pmd, addr, ptl);
  1301. }
  1302. }
  1303. return NULL;
  1304. }
  1305. /*
  1306. * This is the old fallback for page remapping.
  1307. *
  1308. * For historical reasons, it only allows reserved pages. Only
  1309. * old drivers should use this, and they needed to mark their
  1310. * pages reserved for the old functions anyway.
  1311. */
  1312. static int insert_page(struct vm_area_struct *vma, unsigned long addr,
  1313. struct page *page, pgprot_t prot)
  1314. {
  1315. struct mm_struct *mm = vma->vm_mm;
  1316. int retval;
  1317. pte_t *pte;
  1318. spinlock_t *ptl;
  1319. retval = -EINVAL;
  1320. if (PageAnon(page))
  1321. goto out;
  1322. retval = -ENOMEM;
  1323. flush_dcache_page(page);
  1324. pte = get_locked_pte(mm, addr, &ptl);
  1325. if (!pte)
  1326. goto out;
  1327. retval = -EBUSY;
  1328. if (!pte_none(*pte))
  1329. goto out_unlock;
  1330. /* Ok, finally just insert the thing.. */
  1331. get_page(page);
  1332. inc_mm_counter_fast(mm, MM_FILEPAGES);
  1333. page_add_file_rmap(page);
  1334. set_pte_at(mm, addr, pte, mk_pte(page, prot));
  1335. retval = 0;
  1336. pte_unmap_unlock(pte, ptl);
  1337. return retval;
  1338. out_unlock:
  1339. pte_unmap_unlock(pte, ptl);
  1340. out:
  1341. return retval;
  1342. }
  1343. /**
  1344. * vm_insert_page - insert single page into user vma
  1345. * @vma: user vma to map to
  1346. * @addr: target user address of this page
  1347. * @page: source kernel page
  1348. *
  1349. * This allows drivers to insert individual pages they've allocated
  1350. * into a user vma.
  1351. *
  1352. * The page has to be a nice clean _individual_ kernel allocation.
  1353. * If you allocate a compound page, you need to have marked it as
  1354. * such (__GFP_COMP), or manually just split the page up yourself
  1355. * (see split_page()).
  1356. *
  1357. * NOTE! Traditionally this was done with "remap_pfn_range()" which
  1358. * took an arbitrary page protection parameter. This doesn't allow
  1359. * that. Your vma protection will have to be set up correctly, which
  1360. * means that if you want a shared writable mapping, you'd better
  1361. * ask for a shared writable mapping!
  1362. *
  1363. * The page does not need to be reserved.
  1364. *
  1365. * Usually this function is called from f_op->mmap() handler
  1366. * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
  1367. * Caller must set VM_MIXEDMAP on vma if it wants to call this
  1368. * function from other places, for example from page-fault handler.
  1369. */
  1370. int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
  1371. struct page *page)
  1372. {
  1373. if (addr < vma->vm_start || addr >= vma->vm_end)
  1374. return -EFAULT;
  1375. if (!page_count(page))
  1376. return -EINVAL;
  1377. if (!(vma->vm_flags & VM_MIXEDMAP)) {
  1378. BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
  1379. BUG_ON(vma->vm_flags & VM_PFNMAP);
  1380. vma->vm_flags |= VM_MIXEDMAP;
  1381. }
  1382. return insert_page(vma, addr, page, vma->vm_page_prot);
  1383. }
  1384. EXPORT_SYMBOL(vm_insert_page);
  1385. static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1386. unsigned long pfn, pgprot_t prot)
  1387. {
  1388. struct mm_struct *mm = vma->vm_mm;
  1389. int retval;
  1390. pte_t *pte, entry;
  1391. spinlock_t *ptl;
  1392. retval = -ENOMEM;
  1393. pte = get_locked_pte(mm, addr, &ptl);
  1394. if (!pte)
  1395. goto out;
  1396. retval = -EBUSY;
  1397. if (!pte_none(*pte))
  1398. goto out_unlock;
  1399. /* Ok, finally just insert the thing.. */
  1400. entry = pte_mkspecial(pfn_pte(pfn, prot));
  1401. set_pte_at(mm, addr, pte, entry);
  1402. update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
  1403. retval = 0;
  1404. out_unlock:
  1405. pte_unmap_unlock(pte, ptl);
  1406. out:
  1407. return retval;
  1408. }
  1409. /**
  1410. * vm_insert_pfn - insert single pfn into user vma
  1411. * @vma: user vma to map to
  1412. * @addr: target user address of this page
  1413. * @pfn: source kernel pfn
  1414. *
  1415. * Similar to vm_insert_page, this allows drivers to insert individual pages
  1416. * they've allocated into a user vma. Same comments apply.
  1417. *
  1418. * This function should only be called from a vm_ops->fault handler, and
  1419. * in that case the handler should return NULL.
  1420. *
  1421. * vma cannot be a COW mapping.
  1422. *
  1423. * As this is called only for pages that do not currently exist, we
  1424. * do not need to flush old virtual caches or the TLB.
  1425. */
  1426. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1427. unsigned long pfn)
  1428. {
  1429. int ret;
  1430. pgprot_t pgprot = vma->vm_page_prot;
  1431. /*
  1432. * Technically, architectures with pte_special can avoid all these
  1433. * restrictions (same for remap_pfn_range). However we would like
  1434. * consistency in testing and feature parity among all, so we should
  1435. * try to keep these invariants in place for everybody.
  1436. */
  1437. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  1438. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  1439. (VM_PFNMAP|VM_MIXEDMAP));
  1440. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  1441. BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
  1442. if (addr < vma->vm_start || addr >= vma->vm_end)
  1443. return -EFAULT;
  1444. if (track_pfn_insert(vma, &pgprot, pfn))
  1445. return -EINVAL;
  1446. ret = insert_pfn(vma, addr, pfn, pgprot);
  1447. return ret;
  1448. }
  1449. EXPORT_SYMBOL(vm_insert_pfn);
  1450. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1451. unsigned long pfn)
  1452. {
  1453. BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
  1454. if (addr < vma->vm_start || addr >= vma->vm_end)
  1455. return -EFAULT;
  1456. /*
  1457. * If we don't have pte special, then we have to use the pfn_valid()
  1458. * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
  1459. * refcount the page if pfn_valid is true (hence insert_page rather
  1460. * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
  1461. * without pte special, it would there be refcounted as a normal page.
  1462. */
  1463. if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
  1464. struct page *page;
  1465. page = pfn_to_page(pfn);
  1466. return insert_page(vma, addr, page, vma->vm_page_prot);
  1467. }
  1468. return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
  1469. }
  1470. EXPORT_SYMBOL(vm_insert_mixed);
  1471. /*
  1472. * maps a range of physical memory into the requested pages. the old
  1473. * mappings are removed. any references to nonexistent pages results
  1474. * in null mappings (currently treated as "copy-on-access")
  1475. */
  1476. static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1477. unsigned long addr, unsigned long end,
  1478. unsigned long pfn, pgprot_t prot)
  1479. {
  1480. pte_t *pte;
  1481. spinlock_t *ptl;
  1482. pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1483. if (!pte)
  1484. return -ENOMEM;
  1485. arch_enter_lazy_mmu_mode();
  1486. do {
  1487. BUG_ON(!pte_none(*pte));
  1488. set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
  1489. pfn++;
  1490. } while (pte++, addr += PAGE_SIZE, addr != end);
  1491. arch_leave_lazy_mmu_mode();
  1492. pte_unmap_unlock(pte - 1, ptl);
  1493. return 0;
  1494. }
  1495. static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
  1496. unsigned long addr, unsigned long end,
  1497. unsigned long pfn, pgprot_t prot)
  1498. {
  1499. pmd_t *pmd;
  1500. unsigned long next;
  1501. pfn -= addr >> PAGE_SHIFT;
  1502. pmd = pmd_alloc(mm, pud, addr);
  1503. if (!pmd)
  1504. return -ENOMEM;
  1505. VM_BUG_ON(pmd_trans_huge(*pmd));
  1506. do {
  1507. next = pmd_addr_end(addr, end);
  1508. if (remap_pte_range(mm, pmd, addr, next,
  1509. pfn + (addr >> PAGE_SHIFT), prot))
  1510. return -ENOMEM;
  1511. } while (pmd++, addr = next, addr != end);
  1512. return 0;
  1513. }
  1514. static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1515. unsigned long addr, unsigned long end,
  1516. unsigned long pfn, pgprot_t prot)
  1517. {
  1518. pud_t *pud;
  1519. unsigned long next;
  1520. pfn -= addr >> PAGE_SHIFT;
  1521. pud = pud_alloc(mm, pgd, addr);
  1522. if (!pud)
  1523. return -ENOMEM;
  1524. do {
  1525. next = pud_addr_end(addr, end);
  1526. if (remap_pmd_range(mm, pud, addr, next,
  1527. pfn + (addr >> PAGE_SHIFT), prot))
  1528. return -ENOMEM;
  1529. } while (pud++, addr = next, addr != end);
  1530. return 0;
  1531. }
  1532. /**
  1533. * remap_pfn_range - remap kernel memory to userspace
  1534. * @vma: user vma to map to
  1535. * @addr: target user address to start at
  1536. * @pfn: physical address of kernel memory
  1537. * @size: size of map area
  1538. * @prot: page protection flags for this mapping
  1539. *
  1540. * Note: this is only safe if the mm semaphore is held when called.
  1541. */
  1542. int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
  1543. unsigned long pfn, unsigned long size, pgprot_t prot)
  1544. {
  1545. pgd_t *pgd;
  1546. unsigned long next;
  1547. unsigned long end = addr + PAGE_ALIGN(size);
  1548. struct mm_struct *mm = vma->vm_mm;
  1549. int err;
  1550. /*
  1551. * Physically remapped pages are special. Tell the
  1552. * rest of the world about it:
  1553. * VM_IO tells people not to look at these pages
  1554. * (accesses can have side effects).
  1555. * VM_PFNMAP tells the core MM that the base pages are just
  1556. * raw PFN mappings, and do not have a "struct page" associated
  1557. * with them.
  1558. * VM_DONTEXPAND
  1559. * Disable vma merging and expanding with mremap().
  1560. * VM_DONTDUMP
  1561. * Omit vma from core dump, even when VM_IO turned off.
  1562. *
  1563. * There's a horrible special case to handle copy-on-write
  1564. * behaviour that some programs depend on. We mark the "original"
  1565. * un-COW'ed pages by matching them up with "vma->vm_pgoff".
  1566. * See vm_normal_page() for details.
  1567. */
  1568. if (is_cow_mapping(vma->vm_flags)) {
  1569. if (addr != vma->vm_start || end != vma->vm_end)
  1570. return -EINVAL;
  1571. vma->vm_pgoff = pfn;
  1572. }
  1573. err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
  1574. if (err)
  1575. return -EINVAL;
  1576. vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
  1577. BUG_ON(addr >= end);
  1578. pfn -= addr >> PAGE_SHIFT;
  1579. pgd = pgd_offset(mm, addr);
  1580. flush_cache_range(vma, addr, end);
  1581. do {
  1582. next = pgd_addr_end(addr, end);
  1583. err = remap_pud_range(mm, pgd, addr, next,
  1584. pfn + (addr >> PAGE_SHIFT), prot);
  1585. if (err)
  1586. break;
  1587. } while (pgd++, addr = next, addr != end);
  1588. if (err)
  1589. untrack_pfn(vma, pfn, PAGE_ALIGN(size));
  1590. return err;
  1591. }
  1592. EXPORT_SYMBOL(remap_pfn_range);
  1593. /**
  1594. * vm_iomap_memory - remap memory to userspace
  1595. * @vma: user vma to map to
  1596. * @start: start of area
  1597. * @len: size of area
  1598. *
  1599. * This is a simplified io_remap_pfn_range() for common driver use. The
  1600. * driver just needs to give us the physical memory range to be mapped,
  1601. * we'll figure out the rest from the vma information.
  1602. *
  1603. * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
  1604. * whatever write-combining details or similar.
  1605. */
  1606. int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
  1607. {
  1608. unsigned long vm_len, pfn, pages;
  1609. /* Check that the physical memory area passed in looks valid */
  1610. if (start + len < start)
  1611. return -EINVAL;
  1612. /*
  1613. * You *really* shouldn't map things that aren't page-aligned,
  1614. * but we've historically allowed it because IO memory might
  1615. * just have smaller alignment.
  1616. */
  1617. len += start & ~PAGE_MASK;
  1618. pfn = start >> PAGE_SHIFT;
  1619. pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
  1620. if (pfn + pages < pfn)
  1621. return -EINVAL;
  1622. /* We start the mapping 'vm_pgoff' pages into the area */
  1623. if (vma->vm_pgoff > pages)
  1624. return -EINVAL;
  1625. pfn += vma->vm_pgoff;
  1626. pages -= vma->vm_pgoff;
  1627. /* Can we fit all of the mapping? */
  1628. vm_len = vma->vm_end - vma->vm_start;
  1629. if (vm_len >> PAGE_SHIFT > pages)
  1630. return -EINVAL;
  1631. /* Ok, let it rip */
  1632. return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
  1633. }
  1634. EXPORT_SYMBOL(vm_iomap_memory);
  1635. static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1636. unsigned long addr, unsigned long end,
  1637. pte_fn_t fn, void *data)
  1638. {
  1639. pte_t *pte;
  1640. int err;
  1641. pgtable_t token;
  1642. spinlock_t *uninitialized_var(ptl);
  1643. pte = (mm == &init_mm) ?
  1644. pte_alloc_kernel(pmd, addr) :
  1645. pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1646. if (!pte)
  1647. return -ENOMEM;
  1648. BUG_ON(pmd_huge(*pmd));
  1649. arch_enter_lazy_mmu_mode();
  1650. token = pmd_pgtable(*pmd);
  1651. do {
  1652. err = fn(pte++, token, addr, data);
  1653. if (err)
  1654. break;
  1655. } while (addr += PAGE_SIZE, addr != end);
  1656. arch_leave_lazy_mmu_mode();
  1657. if (mm != &init_mm)
  1658. pte_unmap_unlock(pte-1, ptl);
  1659. return err;
  1660. }
  1661. static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
  1662. unsigned long addr, unsigned long end,
  1663. pte_fn_t fn, void *data)
  1664. {
  1665. pmd_t *pmd;
  1666. unsigned long next;
  1667. int err;
  1668. BUG_ON(pud_huge(*pud));
  1669. pmd = pmd_alloc(mm, pud, addr);
  1670. if (!pmd)
  1671. return -ENOMEM;
  1672. do {
  1673. next = pmd_addr_end(addr, end);
  1674. err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
  1675. if (err)
  1676. break;
  1677. } while (pmd++, addr = next, addr != end);
  1678. return err;
  1679. }
  1680. static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1681. unsigned long addr, unsigned long end,
  1682. pte_fn_t fn, void *data)
  1683. {
  1684. pud_t *pud;
  1685. unsigned long next;
  1686. int err;
  1687. pud = pud_alloc(mm, pgd, addr);
  1688. if (!pud)
  1689. return -ENOMEM;
  1690. do {
  1691. next = pud_addr_end(addr, end);
  1692. err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
  1693. if (err)
  1694. break;
  1695. } while (pud++, addr = next, addr != end);
  1696. return err;
  1697. }
  1698. /*
  1699. * Scan a region of virtual memory, filling in page tables as necessary
  1700. * and calling a provided function on each leaf page table.
  1701. */
  1702. int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
  1703. unsigned long size, pte_fn_t fn, void *data)
  1704. {
  1705. pgd_t *pgd;
  1706. unsigned long next;
  1707. unsigned long end = addr + size;
  1708. int err;
  1709. BUG_ON(addr >= end);
  1710. pgd = pgd_offset(mm, addr);
  1711. do {
  1712. next = pgd_addr_end(addr, end);
  1713. err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
  1714. if (err)
  1715. break;
  1716. } while (pgd++, addr = next, addr != end);
  1717. return err;
  1718. }
  1719. EXPORT_SYMBOL_GPL(apply_to_page_range);
  1720. /*
  1721. * handle_pte_fault chooses page fault handler according to an entry
  1722. * which was read non-atomically. Before making any commitment, on
  1723. * those architectures or configurations (e.g. i386 with PAE) which
  1724. * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
  1725. * must check under lock before unmapping the pte and proceeding
  1726. * (but do_wp_page is only called after already making such a check;
  1727. * and do_anonymous_page can safely check later on).
  1728. */
  1729. static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
  1730. pte_t *page_table, pte_t orig_pte)
  1731. {
  1732. int same = 1;
  1733. #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
  1734. if (sizeof(pte_t) > sizeof(unsigned long)) {
  1735. spinlock_t *ptl = pte_lockptr(mm, pmd);
  1736. spin_lock(ptl);
  1737. same = pte_same(*page_table, orig_pte);
  1738. spin_unlock(ptl);
  1739. }
  1740. #endif
  1741. pte_unmap(page_table);
  1742. return same;
  1743. }
  1744. static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
  1745. {
  1746. debug_dma_assert_idle(src);
  1747. /*
  1748. * If the source page was a PFN mapping, we don't have
  1749. * a "struct page" for it. We do a best-effort copy by
  1750. * just copying from the original user address. If that
  1751. * fails, we just zero-fill it. Live with it.
  1752. */
  1753. if (unlikely(!src)) {
  1754. void *kaddr = kmap_atomic(dst);
  1755. void __user *uaddr = (void __user *)(va & PAGE_MASK);
  1756. /*
  1757. * This really shouldn't fail, because the page is there
  1758. * in the page tables. But it might just be unreadable,
  1759. * in which case we just give up and fill the result with
  1760. * zeroes.
  1761. */
  1762. if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
  1763. clear_page(kaddr);
  1764. kunmap_atomic(kaddr);
  1765. flush_dcache_page(dst);
  1766. } else
  1767. copy_user_highpage(dst, src, va, vma);
  1768. }
  1769. /*
  1770. * Notify the address space that the page is about to become writable so that
  1771. * it can prohibit this or wait for the page to get into an appropriate state.
  1772. *
  1773. * We do this without the lock held, so that it can sleep if it needs to.
  1774. */
  1775. static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
  1776. unsigned long address)
  1777. {
  1778. struct vm_fault vmf;
  1779. int ret;
  1780. vmf.virtual_address = (void __user *)(address & PAGE_MASK);
  1781. vmf.pgoff = page->index;
  1782. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  1783. vmf.page = page;
  1784. ret = vma->vm_ops->page_mkwrite(vma, &vmf);
  1785. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
  1786. return ret;
  1787. if (unlikely(!(ret & VM_FAULT_LOCKED))) {
  1788. lock_page(page);
  1789. if (!page->mapping) {
  1790. unlock_page(page);
  1791. return 0; /* retry */
  1792. }
  1793. ret |= VM_FAULT_LOCKED;
  1794. } else
  1795. VM_BUG_ON_PAGE(!PageLocked(page), page);
  1796. return ret;
  1797. }
  1798. /*
  1799. * This routine handles present pages, when users try to write
  1800. * to a shared page. It is done by copying the page to a new address
  1801. * and decrementing the shared-page counter for the old page.
  1802. *
  1803. * Note that this routine assumes that the protection checks have been
  1804. * done by the caller (the low-level page fault routine in most cases).
  1805. * Thus we can safely just mark it writable once we've done any necessary
  1806. * COW.
  1807. *
  1808. * We also mark the page dirty at this point even though the page will
  1809. * change only once the write actually happens. This avoids a few races,
  1810. * and potentially makes it more efficient.
  1811. *
  1812. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  1813. * but allow concurrent faults), with pte both mapped and locked.
  1814. * We return with mmap_sem still held, but pte unmapped and unlocked.
  1815. */
  1816. static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1817. unsigned long address, pte_t *page_table, pmd_t *pmd,
  1818. spinlock_t *ptl, pte_t orig_pte)
  1819. __releases(ptl)
  1820. {
  1821. struct page *old_page, *new_page = NULL;
  1822. pte_t entry;
  1823. int ret = 0;
  1824. int page_mkwrite = 0;
  1825. struct page *dirty_page = NULL;
  1826. unsigned long mmun_start = 0; /* For mmu_notifiers */
  1827. unsigned long mmun_end = 0; /* For mmu_notifiers */
  1828. old_page = vm_normal_page(vma, address, orig_pte);
  1829. if (!old_page) {
  1830. /*
  1831. * VM_MIXEDMAP !pfn_valid() case
  1832. *
  1833. * We should not cow pages in a shared writeable mapping.
  1834. * Just mark the pages writable as we can't do any dirty
  1835. * accounting on raw pfn maps.
  1836. */
  1837. if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  1838. (VM_WRITE|VM_SHARED))
  1839. goto reuse;
  1840. goto gotten;
  1841. }
  1842. /*
  1843. * Take out anonymous pages first, anonymous shared vmas are
  1844. * not dirty accountable.
  1845. */
  1846. if (PageAnon(old_page) && !PageKsm(old_page)) {
  1847. if (!trylock_page(old_page)) {
  1848. page_cache_get(old_page);
  1849. pte_unmap_unlock(page_table, ptl);
  1850. lock_page(old_page);
  1851. page_table = pte_offset_map_lock(mm, pmd, address,
  1852. &ptl);
  1853. if (!pte_same(*page_table, orig_pte)) {
  1854. unlock_page(old_page);
  1855. goto unlock;
  1856. }
  1857. page_cache_release(old_page);
  1858. }
  1859. if (reuse_swap_page(old_page)) {
  1860. /*
  1861. * The page is all ours. Move it to our anon_vma so
  1862. * the rmap code will not search our parent or siblings.
  1863. * Protected against the rmap code by the page lock.
  1864. */
  1865. page_move_anon_rmap(old_page, vma, address);
  1866. unlock_page(old_page);
  1867. goto reuse;
  1868. }
  1869. unlock_page(old_page);
  1870. } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  1871. (VM_WRITE|VM_SHARED))) {
  1872. /*
  1873. * Only catch write-faults on shared writable pages,
  1874. * read-only shared pages can get COWed by
  1875. * get_user_pages(.write=1, .force=1).
  1876. */
  1877. if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
  1878. int tmp;
  1879. page_cache_get(old_page);
  1880. pte_unmap_unlock(page_table, ptl);
  1881. tmp = do_page_mkwrite(vma, old_page, address);
  1882. if (unlikely(!tmp || (tmp &
  1883. (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
  1884. page_cache_release(old_page);
  1885. return tmp;
  1886. }
  1887. /*
  1888. * Since we dropped the lock we need to revalidate
  1889. * the PTE as someone else may have changed it. If
  1890. * they did, we just return, as we can count on the
  1891. * MMU to tell us if they didn't also make it writable.
  1892. */
  1893. page_table = pte_offset_map_lock(mm, pmd, address,
  1894. &ptl);
  1895. if (!pte_same(*page_table, orig_pte)) {
  1896. unlock_page(old_page);
  1897. goto unlock;
  1898. }
  1899. page_mkwrite = 1;
  1900. }
  1901. dirty_page = old_page;
  1902. get_page(dirty_page);
  1903. reuse:
  1904. /*
  1905. * Clear the pages cpupid information as the existing
  1906. * information potentially belongs to a now completely
  1907. * unrelated process.
  1908. */
  1909. if (old_page)
  1910. page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1);
  1911. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1912. entry = pte_mkyoung(orig_pte);
  1913. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1914. if (ptep_set_access_flags(vma, address, page_table, entry,1))
  1915. update_mmu_cache(vma, address, page_table);
  1916. pte_unmap_unlock(page_table, ptl);
  1917. ret |= VM_FAULT_WRITE;
  1918. if (!dirty_page)
  1919. return ret;
  1920. /*
  1921. * Yes, Virginia, this is actually required to prevent a race
  1922. * with clear_page_dirty_for_io() from clearing the page dirty
  1923. * bit after it clear all dirty ptes, but before a racing
  1924. * do_wp_page installs a dirty pte.
  1925. *
  1926. * do_shared_fault is protected similarly.
  1927. */
  1928. if (!page_mkwrite) {
  1929. wait_on_page_locked(dirty_page);
  1930. set_page_dirty_balance(dirty_page);
  1931. /* file_update_time outside page_lock */
  1932. if (vma->vm_file)
  1933. file_update_time(vma->vm_file);
  1934. }
  1935. put_page(dirty_page);
  1936. if (page_mkwrite) {
  1937. struct address_space *mapping = dirty_page->mapping;
  1938. set_page_dirty(dirty_page);
  1939. unlock_page(dirty_page);
  1940. page_cache_release(dirty_page);
  1941. if (mapping) {
  1942. /*
  1943. * Some device drivers do not set page.mapping
  1944. * but still dirty their pages
  1945. */
  1946. balance_dirty_pages_ratelimited(mapping);
  1947. }
  1948. }
  1949. return ret;
  1950. }
  1951. /*
  1952. * Ok, we need to copy. Oh, well..
  1953. */
  1954. page_cache_get(old_page);
  1955. gotten:
  1956. pte_unmap_unlock(page_table, ptl);
  1957. if (unlikely(anon_vma_prepare(vma)))
  1958. goto oom;
  1959. if (is_zero_pfn(pte_pfn(orig_pte))) {
  1960. new_page = alloc_zeroed_user_highpage_movable(vma, address);
  1961. if (!new_page)
  1962. goto oom;
  1963. } else {
  1964. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  1965. if (!new_page)
  1966. goto oom;
  1967. cow_user_page(new_page, old_page, address, vma);
  1968. }
  1969. __SetPageUptodate(new_page);
  1970. if (mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL))
  1971. goto oom_free_new;
  1972. mmun_start = address & PAGE_MASK;
  1973. mmun_end = mmun_start + PAGE_SIZE;
  1974. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1975. /*
  1976. * Re-check the pte - we dropped the lock
  1977. */
  1978. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  1979. if (likely(pte_same(*page_table, orig_pte))) {
  1980. if (old_page) {
  1981. if (!PageAnon(old_page)) {
  1982. dec_mm_counter_fast(mm, MM_FILEPAGES);
  1983. inc_mm_counter_fast(mm, MM_ANONPAGES);
  1984. }
  1985. } else
  1986. inc_mm_counter_fast(mm, MM_ANONPAGES);
  1987. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1988. entry = mk_pte(new_page, vma->vm_page_prot);
  1989. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1990. /*
  1991. * Clear the pte entry and flush it first, before updating the
  1992. * pte with the new entry. This will avoid a race condition
  1993. * seen in the presence of one thread doing SMC and another
  1994. * thread doing COW.
  1995. */
  1996. ptep_clear_flush(vma, address, page_table);
  1997. page_add_new_anon_rmap(new_page, vma, address);
  1998. /*
  1999. * We call the notify macro here because, when using secondary
  2000. * mmu page tables (such as kvm shadow page tables), we want the
  2001. * new page to be mapped directly into the secondary page table.
  2002. */
  2003. set_pte_at_notify(mm, address, page_table, entry);
  2004. update_mmu_cache(vma, address, page_table);
  2005. if (old_page) {
  2006. /*
  2007. * Only after switching the pte to the new page may
  2008. * we remove the mapcount here. Otherwise another
  2009. * process may come and find the rmap count decremented
  2010. * before the pte is switched to the new page, and
  2011. * "reuse" the old page writing into it while our pte
  2012. * here still points into it and can be read by other
  2013. * threads.
  2014. *
  2015. * The critical issue is to order this
  2016. * page_remove_rmap with the ptp_clear_flush above.
  2017. * Those stores are ordered by (if nothing else,)
  2018. * the barrier present in the atomic_add_negative
  2019. * in page_remove_rmap.
  2020. *
  2021. * Then the TLB flush in ptep_clear_flush ensures that
  2022. * no process can access the old page before the
  2023. * decremented mapcount is visible. And the old page
  2024. * cannot be reused until after the decremented
  2025. * mapcount is visible. So transitively, TLBs to
  2026. * old page will be flushed before it can be reused.
  2027. */
  2028. page_remove_rmap(old_page);
  2029. }
  2030. /* Free the old page.. */
  2031. new_page = old_page;
  2032. ret |= VM_FAULT_WRITE;
  2033. } else
  2034. mem_cgroup_uncharge_page(new_page);
  2035. if (new_page)
  2036. page_cache_release(new_page);
  2037. unlock:
  2038. pte_unmap_unlock(page_table, ptl);
  2039. if (mmun_end > mmun_start)
  2040. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2041. if (old_page) {
  2042. /*
  2043. * Don't let another task, with possibly unlocked vma,
  2044. * keep the mlocked page.
  2045. */
  2046. if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
  2047. lock_page(old_page); /* LRU manipulation */
  2048. munlock_vma_page(old_page);
  2049. unlock_page(old_page);
  2050. }
  2051. page_cache_release(old_page);
  2052. }
  2053. return ret;
  2054. oom_free_new:
  2055. page_cache_release(new_page);
  2056. oom:
  2057. if (old_page)
  2058. page_cache_release(old_page);
  2059. return VM_FAULT_OOM;
  2060. }
  2061. static void unmap_mapping_range_vma(struct vm_area_struct *vma,
  2062. unsigned long start_addr, unsigned long end_addr,
  2063. struct zap_details *details)
  2064. {
  2065. zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
  2066. }
  2067. static inline void unmap_mapping_range_tree(struct rb_root *root,
  2068. struct zap_details *details)
  2069. {
  2070. struct vm_area_struct *vma;
  2071. pgoff_t vba, vea, zba, zea;
  2072. vma_interval_tree_foreach(vma, root,
  2073. details->first_index, details->last_index) {
  2074. vba = vma->vm_pgoff;
  2075. vea = vba + vma_pages(vma) - 1;
  2076. /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
  2077. zba = details->first_index;
  2078. if (zba < vba)
  2079. zba = vba;
  2080. zea = details->last_index;
  2081. if (zea > vea)
  2082. zea = vea;
  2083. unmap_mapping_range_vma(vma,
  2084. ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
  2085. ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
  2086. details);
  2087. }
  2088. }
  2089. static inline void unmap_mapping_range_list(struct list_head *head,
  2090. struct zap_details *details)
  2091. {
  2092. struct vm_area_struct *vma;
  2093. /*
  2094. * In nonlinear VMAs there is no correspondence between virtual address
  2095. * offset and file offset. So we must perform an exhaustive search
  2096. * across *all* the pages in each nonlinear VMA, not just the pages
  2097. * whose virtual address lies outside the file truncation point.
  2098. */
  2099. list_for_each_entry(vma, head, shared.nonlinear) {
  2100. details->nonlinear_vma = vma;
  2101. unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
  2102. }
  2103. }
  2104. /**
  2105. * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
  2106. * @mapping: the address space containing mmaps to be unmapped.
  2107. * @holebegin: byte in first page to unmap, relative to the start of
  2108. * the underlying file. This will be rounded down to a PAGE_SIZE
  2109. * boundary. Note that this is different from truncate_pagecache(), which
  2110. * must keep the partial page. In contrast, we must get rid of
  2111. * partial pages.
  2112. * @holelen: size of prospective hole in bytes. This will be rounded
  2113. * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
  2114. * end of the file.
  2115. * @even_cows: 1 when truncating a file, unmap even private COWed pages;
  2116. * but 0 when invalidating pagecache, don't throw away private data.
  2117. */
  2118. void unmap_mapping_range(struct address_space *mapping,
  2119. loff_t const holebegin, loff_t const holelen, int even_cows)
  2120. {
  2121. struct zap_details details;
  2122. pgoff_t hba = holebegin >> PAGE_SHIFT;
  2123. pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2124. /* Check for overflow. */
  2125. if (sizeof(holelen) > sizeof(hlen)) {
  2126. long long holeend =
  2127. (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2128. if (holeend & ~(long long)ULONG_MAX)
  2129. hlen = ULONG_MAX - hba + 1;
  2130. }
  2131. details.check_mapping = even_cows? NULL: mapping;
  2132. details.nonlinear_vma = NULL;
  2133. details.first_index = hba;
  2134. details.last_index = hba + hlen - 1;
  2135. if (details.last_index < details.first_index)
  2136. details.last_index = ULONG_MAX;
  2137. mutex_lock(&mapping->i_mmap_mutex);
  2138. if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
  2139. unmap_mapping_range_tree(&mapping->i_mmap, &details);
  2140. if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
  2141. unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
  2142. mutex_unlock(&mapping->i_mmap_mutex);
  2143. }
  2144. EXPORT_SYMBOL(unmap_mapping_range);
  2145. /*
  2146. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2147. * but allow concurrent faults), and pte mapped but not yet locked.
  2148. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2149. */
  2150. static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2151. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2152. unsigned int flags, pte_t orig_pte)
  2153. {
  2154. spinlock_t *ptl;
  2155. struct page *page, *swapcache;
  2156. swp_entry_t entry;
  2157. pte_t pte;
  2158. int locked;
  2159. struct mem_cgroup *ptr;
  2160. int exclusive = 0;
  2161. int ret = 0;
  2162. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2163. goto out;
  2164. entry = pte_to_swp_entry(orig_pte);
  2165. if (unlikely(non_swap_entry(entry))) {
  2166. if (is_migration_entry(entry)) {
  2167. migration_entry_wait(mm, pmd, address);
  2168. } else if (is_hwpoison_entry(entry)) {
  2169. ret = VM_FAULT_HWPOISON;
  2170. } else {
  2171. print_bad_pte(vma, address, orig_pte, NULL);
  2172. ret = VM_FAULT_SIGBUS;
  2173. }
  2174. goto out;
  2175. }
  2176. delayacct_set_flag(DELAYACCT_PF_SWAPIN);
  2177. page = lookup_swap_cache(entry);
  2178. if (!page) {
  2179. page = swapin_readahead(entry,
  2180. GFP_HIGHUSER_MOVABLE, vma, address);
  2181. if (!page) {
  2182. /*
  2183. * Back out if somebody else faulted in this pte
  2184. * while we released the pte lock.
  2185. */
  2186. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2187. if (likely(pte_same(*page_table, orig_pte)))
  2188. ret = VM_FAULT_OOM;
  2189. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2190. goto unlock;
  2191. }
  2192. /* Had to read the page from swap area: Major fault */
  2193. ret = VM_FAULT_MAJOR;
  2194. count_vm_event(PGMAJFAULT);
  2195. mem_cgroup_count_vm_event(mm, PGMAJFAULT);
  2196. } else if (PageHWPoison(page)) {
  2197. /*
  2198. * hwpoisoned dirty swapcache pages are kept for killing
  2199. * owner processes (which may be unknown at hwpoison time)
  2200. */
  2201. ret = VM_FAULT_HWPOISON;
  2202. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2203. swapcache = page;
  2204. goto out_release;
  2205. }
  2206. swapcache = page;
  2207. locked = lock_page_or_retry(page, mm, flags);
  2208. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2209. if (!locked) {
  2210. ret |= VM_FAULT_RETRY;
  2211. goto out_release;
  2212. }
  2213. /*
  2214. * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
  2215. * release the swapcache from under us. The page pin, and pte_same
  2216. * test below, are not enough to exclude that. Even if it is still
  2217. * swapcache, we need to check that the page's swap has not changed.
  2218. */
  2219. if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
  2220. goto out_page;
  2221. page = ksm_might_need_to_copy(page, vma, address);
  2222. if (unlikely(!page)) {
  2223. ret = VM_FAULT_OOM;
  2224. page = swapcache;
  2225. goto out_page;
  2226. }
  2227. if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
  2228. ret = VM_FAULT_OOM;
  2229. goto out_page;
  2230. }
  2231. /*
  2232. * Back out if somebody else already faulted in this pte.
  2233. */
  2234. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2235. if (unlikely(!pte_same(*page_table, orig_pte)))
  2236. goto out_nomap;
  2237. if (unlikely(!PageUptodate(page))) {
  2238. ret = VM_FAULT_SIGBUS;
  2239. goto out_nomap;
  2240. }
  2241. /*
  2242. * The page isn't present yet, go ahead with the fault.
  2243. *
  2244. * Be careful about the sequence of operations here.
  2245. * To get its accounting right, reuse_swap_page() must be called
  2246. * while the page is counted on swap but not yet in mapcount i.e.
  2247. * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
  2248. * must be called after the swap_free(), or it will never succeed.
  2249. * Because delete_from_swap_page() may be called by reuse_swap_page(),
  2250. * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
  2251. * in page->private. In this case, a record in swap_cgroup is silently
  2252. * discarded at swap_free().
  2253. */
  2254. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2255. dec_mm_counter_fast(mm, MM_SWAPENTS);
  2256. pte = mk_pte(page, vma->vm_page_prot);
  2257. if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
  2258. pte = maybe_mkwrite(pte_mkdirty(pte), vma);
  2259. flags &= ~FAULT_FLAG_WRITE;
  2260. ret |= VM_FAULT_WRITE;
  2261. exclusive = 1;
  2262. }
  2263. flush_icache_page(vma, page);
  2264. if (pte_swp_soft_dirty(orig_pte))
  2265. pte = pte_mksoft_dirty(pte);
  2266. set_pte_at(mm, address, page_table, pte);
  2267. if (page == swapcache)
  2268. do_page_add_anon_rmap(page, vma, address, exclusive);
  2269. else /* ksm created a completely new copy */
  2270. page_add_new_anon_rmap(page, vma, address);
  2271. /* It's better to call commit-charge after rmap is established */
  2272. mem_cgroup_commit_charge_swapin(page, ptr);
  2273. swap_free(entry);
  2274. if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
  2275. try_to_free_swap(page);
  2276. unlock_page(page);
  2277. if (page != swapcache) {
  2278. /*
  2279. * Hold the lock to avoid the swap entry to be reused
  2280. * until we take the PT lock for the pte_same() check
  2281. * (to avoid false positives from pte_same). For
  2282. * further safety release the lock after the swap_free
  2283. * so that the swap count won't change under a
  2284. * parallel locked swapcache.
  2285. */
  2286. unlock_page(swapcache);
  2287. page_cache_release(swapcache);
  2288. }
  2289. if (flags & FAULT_FLAG_WRITE) {
  2290. ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
  2291. if (ret & VM_FAULT_ERROR)
  2292. ret &= VM_FAULT_ERROR;
  2293. goto out;
  2294. }
  2295. /* No need to invalidate - it was non-present before */
  2296. update_mmu_cache(vma, address, page_table);
  2297. unlock:
  2298. pte_unmap_unlock(page_table, ptl);
  2299. out:
  2300. return ret;
  2301. out_nomap:
  2302. mem_cgroup_cancel_charge_swapin(ptr);
  2303. pte_unmap_unlock(page_table, ptl);
  2304. out_page:
  2305. unlock_page(page);
  2306. out_release:
  2307. page_cache_release(page);
  2308. if (page != swapcache) {
  2309. unlock_page(swapcache);
  2310. page_cache_release(swapcache);
  2311. }
  2312. return ret;
  2313. }
  2314. /*
  2315. * This is like a special single-page "expand_{down|up}wards()",
  2316. * except we must first make sure that 'address{-|+}PAGE_SIZE'
  2317. * doesn't hit another vma.
  2318. */
  2319. static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
  2320. {
  2321. address &= PAGE_MASK;
  2322. if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
  2323. struct vm_area_struct *prev = vma->vm_prev;
  2324. /*
  2325. * Is there a mapping abutting this one below?
  2326. *
  2327. * That's only ok if it's the same stack mapping
  2328. * that has gotten split..
  2329. */
  2330. if (prev && prev->vm_end == address)
  2331. return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
  2332. expand_downwards(vma, address - PAGE_SIZE);
  2333. }
  2334. if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
  2335. struct vm_area_struct *next = vma->vm_next;
  2336. /* As VM_GROWSDOWN but s/below/above/ */
  2337. if (next && next->vm_start == address + PAGE_SIZE)
  2338. return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
  2339. expand_upwards(vma, address + PAGE_SIZE);
  2340. }
  2341. return 0;
  2342. }
  2343. /*
  2344. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2345. * but allow concurrent faults), and pte mapped but not yet locked.
  2346. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2347. */
  2348. static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2349. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2350. unsigned int flags)
  2351. {
  2352. struct page *page;
  2353. spinlock_t *ptl;
  2354. pte_t entry;
  2355. pte_unmap(page_table);
  2356. /* Check if we need to add a guard page to the stack */
  2357. if (check_stack_guard_page(vma, address) < 0)
  2358. return VM_FAULT_SIGBUS;
  2359. /* Use the zero-page for reads */
  2360. if (!(flags & FAULT_FLAG_WRITE)) {
  2361. entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
  2362. vma->vm_page_prot));
  2363. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2364. if (!pte_none(*page_table))
  2365. goto unlock;
  2366. goto setpte;
  2367. }
  2368. /* Allocate our own private page. */
  2369. if (unlikely(anon_vma_prepare(vma)))
  2370. goto oom;
  2371. page = alloc_zeroed_user_highpage_movable(vma, address);
  2372. if (!page)
  2373. goto oom;
  2374. /*
  2375. * The memory barrier inside __SetPageUptodate makes sure that
  2376. * preceeding stores to the page contents become visible before
  2377. * the set_pte_at() write.
  2378. */
  2379. __SetPageUptodate(page);
  2380. if (mem_cgroup_charge_anon(page, mm, GFP_KERNEL))
  2381. goto oom_free_page;
  2382. entry = mk_pte(page, vma->vm_page_prot);
  2383. if (vma->vm_flags & VM_WRITE)
  2384. entry = pte_mkwrite(pte_mkdirty(entry));
  2385. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2386. if (!pte_none(*page_table))
  2387. goto release;
  2388. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2389. page_add_new_anon_rmap(page, vma, address);
  2390. setpte:
  2391. set_pte_at(mm, address, page_table, entry);
  2392. /* No need to invalidate - it was non-present before */
  2393. update_mmu_cache(vma, address, page_table);
  2394. unlock:
  2395. pte_unmap_unlock(page_table, ptl);
  2396. return 0;
  2397. release:
  2398. mem_cgroup_uncharge_page(page);
  2399. page_cache_release(page);
  2400. goto unlock;
  2401. oom_free_page:
  2402. page_cache_release(page);
  2403. oom:
  2404. return VM_FAULT_OOM;
  2405. }
  2406. static int __do_fault(struct vm_area_struct *vma, unsigned long address,
  2407. pgoff_t pgoff, unsigned int flags, struct page **page)
  2408. {
  2409. struct vm_fault vmf;
  2410. int ret;
  2411. vmf.virtual_address = (void __user *)(address & PAGE_MASK);
  2412. vmf.pgoff = pgoff;
  2413. vmf.flags = flags;
  2414. vmf.page = NULL;
  2415. ret = vma->vm_ops->fault(vma, &vmf);
  2416. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
  2417. return ret;
  2418. if (unlikely(PageHWPoison(vmf.page))) {
  2419. if (ret & VM_FAULT_LOCKED)
  2420. unlock_page(vmf.page);
  2421. page_cache_release(vmf.page);
  2422. return VM_FAULT_HWPOISON;
  2423. }
  2424. if (unlikely(!(ret & VM_FAULT_LOCKED)))
  2425. lock_page(vmf.page);
  2426. else
  2427. VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
  2428. *page = vmf.page;
  2429. return ret;
  2430. }
  2431. /**
  2432. * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
  2433. *
  2434. * @vma: virtual memory area
  2435. * @address: user virtual address
  2436. * @page: page to map
  2437. * @pte: pointer to target page table entry
  2438. * @write: true, if new entry is writable
  2439. * @anon: true, if it's anonymous page
  2440. *
  2441. * Caller must hold page table lock relevant for @pte.
  2442. *
  2443. * Target users are page handler itself and implementations of
  2444. * vm_ops->map_pages.
  2445. */
  2446. void do_set_pte(struct vm_area_struct *vma, unsigned long address,
  2447. struct page *page, pte_t *pte, bool write, bool anon)
  2448. {
  2449. pte_t entry;
  2450. flush_icache_page(vma, page);
  2451. entry = mk_pte(page, vma->vm_page_prot);
  2452. if (write)
  2453. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2454. else if (pte_file(*pte) && pte_file_soft_dirty(*pte))
  2455. pte_mksoft_dirty(entry);
  2456. if (anon) {
  2457. inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
  2458. page_add_new_anon_rmap(page, vma, address);
  2459. } else {
  2460. inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
  2461. page_add_file_rmap(page);
  2462. }
  2463. set_pte_at(vma->vm_mm, address, pte, entry);
  2464. /* no need to invalidate: a not-present page won't be cached */
  2465. update_mmu_cache(vma, address, pte);
  2466. }
  2467. static unsigned long fault_around_bytes = 65536;
  2468. /*
  2469. * fault_around_pages() and fault_around_mask() round down fault_around_bytes
  2470. * to nearest page order. It's what do_fault_around() expects to see.
  2471. */
  2472. static inline unsigned long fault_around_pages(void)
  2473. {
  2474. return rounddown_pow_of_two(fault_around_bytes) / PAGE_SIZE;
  2475. }
  2476. static inline unsigned long fault_around_mask(void)
  2477. {
  2478. return ~(rounddown_pow_of_two(fault_around_bytes) - 1) & PAGE_MASK;
  2479. }
  2480. #ifdef CONFIG_DEBUG_FS
  2481. static int fault_around_bytes_get(void *data, u64 *val)
  2482. {
  2483. *val = fault_around_bytes;
  2484. return 0;
  2485. }
  2486. static int fault_around_bytes_set(void *data, u64 val)
  2487. {
  2488. if (val / PAGE_SIZE > PTRS_PER_PTE)
  2489. return -EINVAL;
  2490. fault_around_bytes = val;
  2491. return 0;
  2492. }
  2493. DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
  2494. fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
  2495. static int __init fault_around_debugfs(void)
  2496. {
  2497. void *ret;
  2498. ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
  2499. &fault_around_bytes_fops);
  2500. if (!ret)
  2501. pr_warn("Failed to create fault_around_bytes in debugfs");
  2502. return 0;
  2503. }
  2504. late_initcall(fault_around_debugfs);
  2505. #endif
  2506. /*
  2507. * do_fault_around() tries to map few pages around the fault address. The hope
  2508. * is that the pages will be needed soon and this will lower the number of
  2509. * faults to handle.
  2510. *
  2511. * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
  2512. * not ready to be mapped: not up-to-date, locked, etc.
  2513. *
  2514. * This function is called with the page table lock taken. In the split ptlock
  2515. * case the page table lock only protects only those entries which belong to
  2516. * the page table corresponding to the fault address.
  2517. *
  2518. * This function doesn't cross the VMA boundaries, in order to call map_pages()
  2519. * only once.
  2520. *
  2521. * fault_around_pages() defines how many pages we'll try to map.
  2522. * do_fault_around() expects it to return a power of two less than or equal to
  2523. * PTRS_PER_PTE.
  2524. *
  2525. * The virtual address of the area that we map is naturally aligned to the
  2526. * fault_around_pages() value (and therefore to page order). This way it's
  2527. * easier to guarantee that we don't cross page table boundaries.
  2528. */
  2529. static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
  2530. pte_t *pte, pgoff_t pgoff, unsigned int flags)
  2531. {
  2532. unsigned long start_addr;
  2533. pgoff_t max_pgoff;
  2534. struct vm_fault vmf;
  2535. int off;
  2536. start_addr = max(address & fault_around_mask(), vma->vm_start);
  2537. off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
  2538. pte -= off;
  2539. pgoff -= off;
  2540. /*
  2541. * max_pgoff is either end of page table or end of vma
  2542. * or fault_around_pages() from pgoff, depending what is nearest.
  2543. */
  2544. max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
  2545. PTRS_PER_PTE - 1;
  2546. max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
  2547. pgoff + fault_around_pages() - 1);
  2548. /* Check if it makes any sense to call ->map_pages */
  2549. while (!pte_none(*pte)) {
  2550. if (++pgoff > max_pgoff)
  2551. return;
  2552. start_addr += PAGE_SIZE;
  2553. if (start_addr >= vma->vm_end)
  2554. return;
  2555. pte++;
  2556. }
  2557. vmf.virtual_address = (void __user *) start_addr;
  2558. vmf.pte = pte;
  2559. vmf.pgoff = pgoff;
  2560. vmf.max_pgoff = max_pgoff;
  2561. vmf.flags = flags;
  2562. vma->vm_ops->map_pages(vma, &vmf);
  2563. }
  2564. static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2565. unsigned long address, pmd_t *pmd,
  2566. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2567. {
  2568. struct page *fault_page;
  2569. spinlock_t *ptl;
  2570. pte_t *pte;
  2571. int ret = 0;
  2572. /*
  2573. * Let's call ->map_pages() first and use ->fault() as fallback
  2574. * if page by the offset is not ready to be mapped (cold cache or
  2575. * something).
  2576. */
  2577. if (vma->vm_ops->map_pages && fault_around_pages() > 1) {
  2578. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2579. do_fault_around(vma, address, pte, pgoff, flags);
  2580. if (!pte_same(*pte, orig_pte))
  2581. goto unlock_out;
  2582. pte_unmap_unlock(pte, ptl);
  2583. }
  2584. ret = __do_fault(vma, address, pgoff, flags, &fault_page);
  2585. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
  2586. return ret;
  2587. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2588. if (unlikely(!pte_same(*pte, orig_pte))) {
  2589. pte_unmap_unlock(pte, ptl);
  2590. unlock_page(fault_page);
  2591. page_cache_release(fault_page);
  2592. return ret;
  2593. }
  2594. do_set_pte(vma, address, fault_page, pte, false, false);
  2595. unlock_page(fault_page);
  2596. unlock_out:
  2597. pte_unmap_unlock(pte, ptl);
  2598. return ret;
  2599. }
  2600. static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2601. unsigned long address, pmd_t *pmd,
  2602. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2603. {
  2604. struct page *fault_page, *new_page;
  2605. spinlock_t *ptl;
  2606. pte_t *pte;
  2607. int ret;
  2608. if (unlikely(anon_vma_prepare(vma)))
  2609. return VM_FAULT_OOM;
  2610. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  2611. if (!new_page)
  2612. return VM_FAULT_OOM;
  2613. if (mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL)) {
  2614. page_cache_release(new_page);
  2615. return VM_FAULT_OOM;
  2616. }
  2617. ret = __do_fault(vma, address, pgoff, flags, &fault_page);
  2618. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
  2619. goto uncharge_out;
  2620. copy_user_highpage(new_page, fault_page, address, vma);
  2621. __SetPageUptodate(new_page);
  2622. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2623. if (unlikely(!pte_same(*pte, orig_pte))) {
  2624. pte_unmap_unlock(pte, ptl);
  2625. unlock_page(fault_page);
  2626. page_cache_release(fault_page);
  2627. goto uncharge_out;
  2628. }
  2629. do_set_pte(vma, address, new_page, pte, true, true);
  2630. pte_unmap_unlock(pte, ptl);
  2631. unlock_page(fault_page);
  2632. page_cache_release(fault_page);
  2633. return ret;
  2634. uncharge_out:
  2635. mem_cgroup_uncharge_page(new_page);
  2636. page_cache_release(new_page);
  2637. return ret;
  2638. }
  2639. static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2640. unsigned long address, pmd_t *pmd,
  2641. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2642. {
  2643. struct page *fault_page;
  2644. struct address_space *mapping;
  2645. spinlock_t *ptl;
  2646. pte_t *pte;
  2647. int dirtied = 0;
  2648. int ret, tmp;
  2649. ret = __do_fault(vma, address, pgoff, flags, &fault_page);
  2650. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
  2651. return ret;
  2652. /*
  2653. * Check if the backing address space wants to know that the page is
  2654. * about to become writable
  2655. */
  2656. if (vma->vm_ops->page_mkwrite) {
  2657. unlock_page(fault_page);
  2658. tmp = do_page_mkwrite(vma, fault_page, address);
  2659. if (unlikely(!tmp ||
  2660. (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
  2661. page_cache_release(fault_page);
  2662. return tmp;
  2663. }
  2664. }
  2665. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2666. if (unlikely(!pte_same(*pte, orig_pte))) {
  2667. pte_unmap_unlock(pte, ptl);
  2668. unlock_page(fault_page);
  2669. page_cache_release(fault_page);
  2670. return ret;
  2671. }
  2672. do_set_pte(vma, address, fault_page, pte, true, false);
  2673. pte_unmap_unlock(pte, ptl);
  2674. if (set_page_dirty(fault_page))
  2675. dirtied = 1;
  2676. mapping = fault_page->mapping;
  2677. unlock_page(fault_page);
  2678. if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
  2679. /*
  2680. * Some device drivers do not set page.mapping but still
  2681. * dirty their pages
  2682. */
  2683. balance_dirty_pages_ratelimited(mapping);
  2684. }
  2685. /* file_update_time outside page_lock */
  2686. if (vma->vm_file && !vma->vm_ops->page_mkwrite)
  2687. file_update_time(vma->vm_file);
  2688. return ret;
  2689. }
  2690. static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2691. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2692. unsigned int flags, pte_t orig_pte)
  2693. {
  2694. pgoff_t pgoff = (((address & PAGE_MASK)
  2695. - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2696. pte_unmap(page_table);
  2697. if (!(flags & FAULT_FLAG_WRITE))
  2698. return do_read_fault(mm, vma, address, pmd, pgoff, flags,
  2699. orig_pte);
  2700. if (!(vma->vm_flags & VM_SHARED))
  2701. return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
  2702. orig_pte);
  2703. return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2704. }
  2705. /*
  2706. * Fault of a previously existing named mapping. Repopulate the pte
  2707. * from the encoded file_pte if possible. This enables swappable
  2708. * nonlinear vmas.
  2709. *
  2710. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2711. * but allow concurrent faults), and pte mapped but not yet locked.
  2712. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2713. */
  2714. static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2715. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2716. unsigned int flags, pte_t orig_pte)
  2717. {
  2718. pgoff_t pgoff;
  2719. flags |= FAULT_FLAG_NONLINEAR;
  2720. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2721. return 0;
  2722. if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
  2723. /*
  2724. * Page table corrupted: show pte and kill process.
  2725. */
  2726. print_bad_pte(vma, address, orig_pte, NULL);
  2727. return VM_FAULT_SIGBUS;
  2728. }
  2729. pgoff = pte_to_pgoff(orig_pte);
  2730. if (!(flags & FAULT_FLAG_WRITE))
  2731. return do_read_fault(mm, vma, address, pmd, pgoff, flags,
  2732. orig_pte);
  2733. if (!(vma->vm_flags & VM_SHARED))
  2734. return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
  2735. orig_pte);
  2736. return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2737. }
  2738. static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
  2739. unsigned long addr, int page_nid,
  2740. int *flags)
  2741. {
  2742. get_page(page);
  2743. count_vm_numa_event(NUMA_HINT_FAULTS);
  2744. if (page_nid == numa_node_id()) {
  2745. count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
  2746. *flags |= TNF_FAULT_LOCAL;
  2747. }
  2748. return mpol_misplaced(page, vma, addr);
  2749. }
  2750. static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2751. unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
  2752. {
  2753. struct page *page = NULL;
  2754. spinlock_t *ptl;
  2755. int page_nid = -1;
  2756. int last_cpupid;
  2757. int target_nid;
  2758. bool migrated = false;
  2759. int flags = 0;
  2760. /*
  2761. * The "pte" at this point cannot be used safely without
  2762. * validation through pte_unmap_same(). It's of NUMA type but
  2763. * the pfn may be screwed if the read is non atomic.
  2764. *
  2765. * ptep_modify_prot_start is not called as this is clearing
  2766. * the _PAGE_NUMA bit and it is not really expected that there
  2767. * would be concurrent hardware modifications to the PTE.
  2768. */
  2769. ptl = pte_lockptr(mm, pmd);
  2770. spin_lock(ptl);
  2771. if (unlikely(!pte_same(*ptep, pte))) {
  2772. pte_unmap_unlock(ptep, ptl);
  2773. goto out;
  2774. }
  2775. pte = pte_mknonnuma(pte);
  2776. set_pte_at(mm, addr, ptep, pte);
  2777. update_mmu_cache(vma, addr, ptep);
  2778. page = vm_normal_page(vma, addr, pte);
  2779. if (!page) {
  2780. pte_unmap_unlock(ptep, ptl);
  2781. return 0;
  2782. }
  2783. BUG_ON(is_zero_pfn(page_to_pfn(page)));
  2784. /*
  2785. * Avoid grouping on DSO/COW pages in specific and RO pages
  2786. * in general, RO pages shouldn't hurt as much anyway since
  2787. * they can be in shared cache state.
  2788. */
  2789. if (!pte_write(pte))
  2790. flags |= TNF_NO_GROUP;
  2791. /*
  2792. * Flag if the page is shared between multiple address spaces. This
  2793. * is later used when determining whether to group tasks together
  2794. */
  2795. if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
  2796. flags |= TNF_SHARED;
  2797. last_cpupid = page_cpupid_last(page);
  2798. page_nid = page_to_nid(page);
  2799. target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
  2800. pte_unmap_unlock(ptep, ptl);
  2801. if (target_nid == -1) {
  2802. put_page(page);
  2803. goto out;
  2804. }
  2805. /* Migrate to the requested node */
  2806. migrated = migrate_misplaced_page(page, vma, target_nid);
  2807. if (migrated) {
  2808. page_nid = target_nid;
  2809. flags |= TNF_MIGRATED;
  2810. }
  2811. out:
  2812. if (page_nid != -1)
  2813. task_numa_fault(last_cpupid, page_nid, 1, flags);
  2814. return 0;
  2815. }
  2816. /*
  2817. * These routines also need to handle stuff like marking pages dirty
  2818. * and/or accessed for architectures that don't do it in hardware (most
  2819. * RISC architectures). The early dirtying is also good on the i386.
  2820. *
  2821. * There is also a hook called "update_mmu_cache()" that architectures
  2822. * with external mmu caches can use to update those (ie the Sparc or
  2823. * PowerPC hashed page tables that act as extended TLBs).
  2824. *
  2825. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2826. * but allow concurrent faults), and pte mapped but not yet locked.
  2827. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2828. */
  2829. static int handle_pte_fault(struct mm_struct *mm,
  2830. struct vm_area_struct *vma, unsigned long address,
  2831. pte_t *pte, pmd_t *pmd, unsigned int flags)
  2832. {
  2833. pte_t entry;
  2834. spinlock_t *ptl;
  2835. entry = *pte;
  2836. if (!pte_present(entry)) {
  2837. if (pte_none(entry)) {
  2838. if (vma->vm_ops) {
  2839. if (likely(vma->vm_ops->fault))
  2840. return do_linear_fault(mm, vma, address,
  2841. pte, pmd, flags, entry);
  2842. }
  2843. return do_anonymous_page(mm, vma, address,
  2844. pte, pmd, flags);
  2845. }
  2846. if (pte_file(entry))
  2847. return do_nonlinear_fault(mm, vma, address,
  2848. pte, pmd, flags, entry);
  2849. return do_swap_page(mm, vma, address,
  2850. pte, pmd, flags, entry);
  2851. }
  2852. if (pte_numa(entry))
  2853. return do_numa_page(mm, vma, address, entry, pte, pmd);
  2854. ptl = pte_lockptr(mm, pmd);
  2855. spin_lock(ptl);
  2856. if (unlikely(!pte_same(*pte, entry)))
  2857. goto unlock;
  2858. if (flags & FAULT_FLAG_WRITE) {
  2859. if (!pte_write(entry))
  2860. return do_wp_page(mm, vma, address,
  2861. pte, pmd, ptl, entry);
  2862. entry = pte_mkdirty(entry);
  2863. }
  2864. entry = pte_mkyoung(entry);
  2865. if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
  2866. update_mmu_cache(vma, address, pte);
  2867. } else {
  2868. /*
  2869. * This is needed only for protection faults but the arch code
  2870. * is not yet telling us if this is a protection fault or not.
  2871. * This still avoids useless tlb flushes for .text page faults
  2872. * with threads.
  2873. */
  2874. if (flags & FAULT_FLAG_WRITE)
  2875. flush_tlb_fix_spurious_fault(vma, address);
  2876. }
  2877. unlock:
  2878. pte_unmap_unlock(pte, ptl);
  2879. return 0;
  2880. }
  2881. /*
  2882. * By the time we get here, we already hold the mm semaphore
  2883. */
  2884. static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2885. unsigned long address, unsigned int flags)
  2886. {
  2887. pgd_t *pgd;
  2888. pud_t *pud;
  2889. pmd_t *pmd;
  2890. pte_t *pte;
  2891. if (unlikely(is_vm_hugetlb_page(vma)))
  2892. return hugetlb_fault(mm, vma, address, flags);
  2893. pgd = pgd_offset(mm, address);
  2894. pud = pud_alloc(mm, pgd, address);
  2895. if (!pud)
  2896. return VM_FAULT_OOM;
  2897. pmd = pmd_alloc(mm, pud, address);
  2898. if (!pmd)
  2899. return VM_FAULT_OOM;
  2900. if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
  2901. int ret = VM_FAULT_FALLBACK;
  2902. if (!vma->vm_ops)
  2903. ret = do_huge_pmd_anonymous_page(mm, vma, address,
  2904. pmd, flags);
  2905. if (!(ret & VM_FAULT_FALLBACK))
  2906. return ret;
  2907. } else {
  2908. pmd_t orig_pmd = *pmd;
  2909. int ret;
  2910. barrier();
  2911. if (pmd_trans_huge(orig_pmd)) {
  2912. unsigned int dirty = flags & FAULT_FLAG_WRITE;
  2913. /*
  2914. * If the pmd is splitting, return and retry the
  2915. * the fault. Alternative: wait until the split
  2916. * is done, and goto retry.
  2917. */
  2918. if (pmd_trans_splitting(orig_pmd))
  2919. return 0;
  2920. if (pmd_numa(orig_pmd))
  2921. return do_huge_pmd_numa_page(mm, vma, address,
  2922. orig_pmd, pmd);
  2923. if (dirty && !pmd_write(orig_pmd)) {
  2924. ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
  2925. orig_pmd);
  2926. if (!(ret & VM_FAULT_FALLBACK))
  2927. return ret;
  2928. } else {
  2929. huge_pmd_set_accessed(mm, vma, address, pmd,
  2930. orig_pmd, dirty);
  2931. return 0;
  2932. }
  2933. }
  2934. }
  2935. /*
  2936. * Use __pte_alloc instead of pte_alloc_map, because we can't
  2937. * run pte_offset_map on the pmd, if an huge pmd could
  2938. * materialize from under us from a different thread.
  2939. */
  2940. if (unlikely(pmd_none(*pmd)) &&
  2941. unlikely(__pte_alloc(mm, vma, pmd, address)))
  2942. return VM_FAULT_OOM;
  2943. /* if an huge pmd materialized from under us just retry later */
  2944. if (unlikely(pmd_trans_huge(*pmd)))
  2945. return 0;
  2946. /*
  2947. * A regular pmd is established and it can't morph into a huge pmd
  2948. * from under us anymore at this point because we hold the mmap_sem
  2949. * read mode and khugepaged takes it in write mode. So now it's
  2950. * safe to run pte_offset_map().
  2951. */
  2952. pte = pte_offset_map(pmd, address);
  2953. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  2954. }
  2955. int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2956. unsigned long address, unsigned int flags)
  2957. {
  2958. int ret;
  2959. __set_current_state(TASK_RUNNING);
  2960. count_vm_event(PGFAULT);
  2961. mem_cgroup_count_vm_event(mm, PGFAULT);
  2962. /* do counter updates before entering really critical section. */
  2963. check_sync_rss_stat(current);
  2964. /*
  2965. * Enable the memcg OOM handling for faults triggered in user
  2966. * space. Kernel faults are handled more gracefully.
  2967. */
  2968. if (flags & FAULT_FLAG_USER)
  2969. mem_cgroup_oom_enable();
  2970. ret = __handle_mm_fault(mm, vma, address, flags);
  2971. if (flags & FAULT_FLAG_USER) {
  2972. mem_cgroup_oom_disable();
  2973. /*
  2974. * The task may have entered a memcg OOM situation but
  2975. * if the allocation error was handled gracefully (no
  2976. * VM_FAULT_OOM), there is no need to kill anything.
  2977. * Just clean up the OOM state peacefully.
  2978. */
  2979. if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
  2980. mem_cgroup_oom_synchronize(false);
  2981. }
  2982. return ret;
  2983. }
  2984. #ifndef __PAGETABLE_PUD_FOLDED
  2985. /*
  2986. * Allocate page upper directory.
  2987. * We've already handled the fast-path in-line.
  2988. */
  2989. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  2990. {
  2991. pud_t *new = pud_alloc_one(mm, address);
  2992. if (!new)
  2993. return -ENOMEM;
  2994. smp_wmb(); /* See comment in __pte_alloc */
  2995. spin_lock(&mm->page_table_lock);
  2996. if (pgd_present(*pgd)) /* Another has populated it */
  2997. pud_free(mm, new);
  2998. else
  2999. pgd_populate(mm, pgd, new);
  3000. spin_unlock(&mm->page_table_lock);
  3001. return 0;
  3002. }
  3003. #endif /* __PAGETABLE_PUD_FOLDED */
  3004. #ifndef __PAGETABLE_PMD_FOLDED
  3005. /*
  3006. * Allocate page middle directory.
  3007. * We've already handled the fast-path in-line.
  3008. */
  3009. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  3010. {
  3011. pmd_t *new = pmd_alloc_one(mm, address);
  3012. if (!new)
  3013. return -ENOMEM;
  3014. smp_wmb(); /* See comment in __pte_alloc */
  3015. spin_lock(&mm->page_table_lock);
  3016. #ifndef __ARCH_HAS_4LEVEL_HACK
  3017. if (pud_present(*pud)) /* Another has populated it */
  3018. pmd_free(mm, new);
  3019. else
  3020. pud_populate(mm, pud, new);
  3021. #else
  3022. if (pgd_present(*pud)) /* Another has populated it */
  3023. pmd_free(mm, new);
  3024. else
  3025. pgd_populate(mm, pud, new);
  3026. #endif /* __ARCH_HAS_4LEVEL_HACK */
  3027. spin_unlock(&mm->page_table_lock);
  3028. return 0;
  3029. }
  3030. #endif /* __PAGETABLE_PMD_FOLDED */
  3031. #if !defined(__HAVE_ARCH_GATE_AREA)
  3032. #if defined(AT_SYSINFO_EHDR)
  3033. static struct vm_area_struct gate_vma;
  3034. static int __init gate_vma_init(void)
  3035. {
  3036. gate_vma.vm_mm = NULL;
  3037. gate_vma.vm_start = FIXADDR_USER_START;
  3038. gate_vma.vm_end = FIXADDR_USER_END;
  3039. gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
  3040. gate_vma.vm_page_prot = __P101;
  3041. return 0;
  3042. }
  3043. __initcall(gate_vma_init);
  3044. #endif
  3045. struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
  3046. {
  3047. #ifdef AT_SYSINFO_EHDR
  3048. return &gate_vma;
  3049. #else
  3050. return NULL;
  3051. #endif
  3052. }
  3053. int in_gate_area_no_mm(unsigned long addr)
  3054. {
  3055. #ifdef AT_SYSINFO_EHDR
  3056. if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
  3057. return 1;
  3058. #endif
  3059. return 0;
  3060. }
  3061. #endif /* __HAVE_ARCH_GATE_AREA */
  3062. static int __follow_pte(struct mm_struct *mm, unsigned long address,
  3063. pte_t **ptepp, spinlock_t **ptlp)
  3064. {
  3065. pgd_t *pgd;
  3066. pud_t *pud;
  3067. pmd_t *pmd;
  3068. pte_t *ptep;
  3069. pgd = pgd_offset(mm, address);
  3070. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  3071. goto out;
  3072. pud = pud_offset(pgd, address);
  3073. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  3074. goto out;
  3075. pmd = pmd_offset(pud, address);
  3076. VM_BUG_ON(pmd_trans_huge(*pmd));
  3077. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  3078. goto out;
  3079. /* We cannot handle huge page PFN maps. Luckily they don't exist. */
  3080. if (pmd_huge(*pmd))
  3081. goto out;
  3082. ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
  3083. if (!ptep)
  3084. goto out;
  3085. if (!pte_present(*ptep))
  3086. goto unlock;
  3087. *ptepp = ptep;
  3088. return 0;
  3089. unlock:
  3090. pte_unmap_unlock(ptep, *ptlp);
  3091. out:
  3092. return -EINVAL;
  3093. }
  3094. static inline int follow_pte(struct mm_struct *mm, unsigned long address,
  3095. pte_t **ptepp, spinlock_t **ptlp)
  3096. {
  3097. int res;
  3098. /* (void) is needed to make gcc happy */
  3099. (void) __cond_lock(*ptlp,
  3100. !(res = __follow_pte(mm, address, ptepp, ptlp)));
  3101. return res;
  3102. }
  3103. /**
  3104. * follow_pfn - look up PFN at a user virtual address
  3105. * @vma: memory mapping
  3106. * @address: user virtual address
  3107. * @pfn: location to store found PFN
  3108. *
  3109. * Only IO mappings and raw PFN mappings are allowed.
  3110. *
  3111. * Returns zero and the pfn at @pfn on success, -ve otherwise.
  3112. */
  3113. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  3114. unsigned long *pfn)
  3115. {
  3116. int ret = -EINVAL;
  3117. spinlock_t *ptl;
  3118. pte_t *ptep;
  3119. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  3120. return ret;
  3121. ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
  3122. if (ret)
  3123. return ret;
  3124. *pfn = pte_pfn(*ptep);
  3125. pte_unmap_unlock(ptep, ptl);
  3126. return 0;
  3127. }
  3128. EXPORT_SYMBOL(follow_pfn);
  3129. #ifdef CONFIG_HAVE_IOREMAP_PROT
  3130. int follow_phys(struct vm_area_struct *vma,
  3131. unsigned long address, unsigned int flags,
  3132. unsigned long *prot, resource_size_t *phys)
  3133. {
  3134. int ret = -EINVAL;
  3135. pte_t *ptep, pte;
  3136. spinlock_t *ptl;
  3137. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  3138. goto out;
  3139. if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
  3140. goto out;
  3141. pte = *ptep;
  3142. if ((flags & FOLL_WRITE) && !pte_write(pte))
  3143. goto unlock;
  3144. *prot = pgprot_val(pte_pgprot(pte));
  3145. *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
  3146. ret = 0;
  3147. unlock:
  3148. pte_unmap_unlock(ptep, ptl);
  3149. out:
  3150. return ret;
  3151. }
  3152. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  3153. void *buf, int len, int write)
  3154. {
  3155. resource_size_t phys_addr;
  3156. unsigned long prot = 0;
  3157. void __iomem *maddr;
  3158. int offset = addr & (PAGE_SIZE-1);
  3159. if (follow_phys(vma, addr, write, &prot, &phys_addr))
  3160. return -EINVAL;
  3161. maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
  3162. if (write)
  3163. memcpy_toio(maddr + offset, buf, len);
  3164. else
  3165. memcpy_fromio(buf, maddr + offset, len);
  3166. iounmap(maddr);
  3167. return len;
  3168. }
  3169. EXPORT_SYMBOL_GPL(generic_access_phys);
  3170. #endif
  3171. /*
  3172. * Access another process' address space as given in mm. If non-NULL, use the
  3173. * given task for page fault accounting.
  3174. */
  3175. static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
  3176. unsigned long addr, void *buf, int len, int write)
  3177. {
  3178. struct vm_area_struct *vma;
  3179. void *old_buf = buf;
  3180. down_read(&mm->mmap_sem);
  3181. /* ignore errors, just check how much was successfully transferred */
  3182. while (len) {
  3183. int bytes, ret, offset;
  3184. void *maddr;
  3185. struct page *page = NULL;
  3186. ret = get_user_pages(tsk, mm, addr, 1,
  3187. write, 1, &page, &vma);
  3188. if (ret <= 0) {
  3189. /*
  3190. * Check if this is a VM_IO | VM_PFNMAP VMA, which
  3191. * we can access using slightly different code.
  3192. */
  3193. #ifdef CONFIG_HAVE_IOREMAP_PROT
  3194. vma = find_vma(mm, addr);
  3195. if (!vma || vma->vm_start > addr)
  3196. break;
  3197. if (vma->vm_ops && vma->vm_ops->access)
  3198. ret = vma->vm_ops->access(vma, addr, buf,
  3199. len, write);
  3200. if (ret <= 0)
  3201. #endif
  3202. break;
  3203. bytes = ret;
  3204. } else {
  3205. bytes = len;
  3206. offset = addr & (PAGE_SIZE-1);
  3207. if (bytes > PAGE_SIZE-offset)
  3208. bytes = PAGE_SIZE-offset;
  3209. maddr = kmap(page);
  3210. if (write) {
  3211. copy_to_user_page(vma, page, addr,
  3212. maddr + offset, buf, bytes);
  3213. set_page_dirty_lock(page);
  3214. } else {
  3215. copy_from_user_page(vma, page, addr,
  3216. buf, maddr + offset, bytes);
  3217. }
  3218. kunmap(page);
  3219. page_cache_release(page);
  3220. }
  3221. len -= bytes;
  3222. buf += bytes;
  3223. addr += bytes;
  3224. }
  3225. up_read(&mm->mmap_sem);
  3226. return buf - old_buf;
  3227. }
  3228. /**
  3229. * access_remote_vm - access another process' address space
  3230. * @mm: the mm_struct of the target address space
  3231. * @addr: start address to access
  3232. * @buf: source or destination buffer
  3233. * @len: number of bytes to transfer
  3234. * @write: whether the access is a write
  3235. *
  3236. * The caller must hold a reference on @mm.
  3237. */
  3238. int access_remote_vm(struct mm_struct *mm, unsigned long addr,
  3239. void *buf, int len, int write)
  3240. {
  3241. return __access_remote_vm(NULL, mm, addr, buf, len, write);
  3242. }
  3243. /*
  3244. * Access another process' address space.
  3245. * Source/target buffer must be kernel space,
  3246. * Do not walk the page table directly, use get_user_pages
  3247. */
  3248. int access_process_vm(struct task_struct *tsk, unsigned long addr,
  3249. void *buf, int len, int write)
  3250. {
  3251. struct mm_struct *mm;
  3252. int ret;
  3253. mm = get_task_mm(tsk);
  3254. if (!mm)
  3255. return 0;
  3256. ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
  3257. mmput(mm);
  3258. return ret;
  3259. }
  3260. /*
  3261. * Print the name of a VMA.
  3262. */
  3263. void print_vma_addr(char *prefix, unsigned long ip)
  3264. {
  3265. struct mm_struct *mm = current->mm;
  3266. struct vm_area_struct *vma;
  3267. /*
  3268. * Do not print if we are in atomic
  3269. * contexts (in exception stacks, etc.):
  3270. */
  3271. if (preempt_count())
  3272. return;
  3273. down_read(&mm->mmap_sem);
  3274. vma = find_vma(mm, ip);
  3275. if (vma && vma->vm_file) {
  3276. struct file *f = vma->vm_file;
  3277. char *buf = (char *)__get_free_page(GFP_KERNEL);
  3278. if (buf) {
  3279. char *p;
  3280. p = d_path(&f->f_path, buf, PAGE_SIZE);
  3281. if (IS_ERR(p))
  3282. p = "?";
  3283. printk("%s%s[%lx+%lx]", prefix, kbasename(p),
  3284. vma->vm_start,
  3285. vma->vm_end - vma->vm_start);
  3286. free_page((unsigned long)buf);
  3287. }
  3288. }
  3289. up_read(&mm->mmap_sem);
  3290. }
  3291. #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
  3292. void might_fault(void)
  3293. {
  3294. /*
  3295. * Some code (nfs/sunrpc) uses socket ops on kernel memory while
  3296. * holding the mmap_sem, this is safe because kernel memory doesn't
  3297. * get paged out, therefore we'll never actually fault, and the
  3298. * below annotations will generate false positives.
  3299. */
  3300. if (segment_eq(get_fs(), KERNEL_DS))
  3301. return;
  3302. /*
  3303. * it would be nicer only to annotate paths which are not under
  3304. * pagefault_disable, however that requires a larger audit and
  3305. * providing helpers like get_user_atomic.
  3306. */
  3307. if (in_atomic())
  3308. return;
  3309. __might_sleep(__FILE__, __LINE__, 0);
  3310. if (current->mm)
  3311. might_lock_read(&current->mm->mmap_sem);
  3312. }
  3313. EXPORT_SYMBOL(might_fault);
  3314. #endif
  3315. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  3316. static void clear_gigantic_page(struct page *page,
  3317. unsigned long addr,
  3318. unsigned int pages_per_huge_page)
  3319. {
  3320. int i;
  3321. struct page *p = page;
  3322. might_sleep();
  3323. for (i = 0; i < pages_per_huge_page;
  3324. i++, p = mem_map_next(p, page, i)) {
  3325. cond_resched();
  3326. clear_user_highpage(p, addr + i * PAGE_SIZE);
  3327. }
  3328. }
  3329. void clear_huge_page(struct page *page,
  3330. unsigned long addr, unsigned int pages_per_huge_page)
  3331. {
  3332. int i;
  3333. if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
  3334. clear_gigantic_page(page, addr, pages_per_huge_page);
  3335. return;
  3336. }
  3337. might_sleep();
  3338. for (i = 0; i < pages_per_huge_page; i++) {
  3339. cond_resched();
  3340. clear_user_highpage(page + i, addr + i * PAGE_SIZE);
  3341. }
  3342. }
  3343. static void copy_user_gigantic_page(struct page *dst, struct page *src,
  3344. unsigned long addr,
  3345. struct vm_area_struct *vma,
  3346. unsigned int pages_per_huge_page)
  3347. {
  3348. int i;
  3349. struct page *dst_base = dst;
  3350. struct page *src_base = src;
  3351. for (i = 0; i < pages_per_huge_page; ) {
  3352. cond_resched();
  3353. copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
  3354. i++;
  3355. dst = mem_map_next(dst, dst_base, i);
  3356. src = mem_map_next(src, src_base, i);
  3357. }
  3358. }
  3359. void copy_user_huge_page(struct page *dst, struct page *src,
  3360. unsigned long addr, struct vm_area_struct *vma,
  3361. unsigned int pages_per_huge_page)
  3362. {
  3363. int i;
  3364. if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
  3365. copy_user_gigantic_page(dst, src, addr, vma,
  3366. pages_per_huge_page);
  3367. return;
  3368. }
  3369. might_sleep();
  3370. for (i = 0; i < pages_per_huge_page; i++) {
  3371. cond_resched();
  3372. copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
  3373. }
  3374. }
  3375. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
  3376. #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
  3377. static struct kmem_cache *page_ptl_cachep;
  3378. void __init ptlock_cache_init(void)
  3379. {
  3380. page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
  3381. SLAB_PANIC, NULL);
  3382. }
  3383. bool ptlock_alloc(struct page *page)
  3384. {
  3385. spinlock_t *ptl;
  3386. ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
  3387. if (!ptl)
  3388. return false;
  3389. page->ptl = ptl;
  3390. return true;
  3391. }
  3392. void ptlock_free(struct page *page)
  3393. {
  3394. kmem_cache_free(page_ptl_cachep, page->ptl);
  3395. }
  3396. #endif