futex.c 94 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505
  1. /*
  2. * Fast Userspace Mutexes (which I call "Futexes!").
  3. * (C) Rusty Russell, IBM 2002
  4. *
  5. * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
  6. * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
  7. *
  8. * Removed page pinning, fix privately mapped COW pages and other cleanups
  9. * (C) Copyright 2003, 2004 Jamie Lokier
  10. *
  11. * Robust futex support started by Ingo Molnar
  12. * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
  13. * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
  14. *
  15. * PI-futex support started by Ingo Molnar and Thomas Gleixner
  16. * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  17. * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
  18. *
  19. * PRIVATE futexes by Eric Dumazet
  20. * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
  21. *
  22. * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
  23. * Copyright (C) IBM Corporation, 2009
  24. * Thanks to Thomas Gleixner for conceptual design and careful reviews.
  25. *
  26. * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
  27. * enough at me, Linus for the original (flawed) idea, Matthew
  28. * Kirkwood for proof-of-concept implementation.
  29. *
  30. * "The futexes are also cursed."
  31. * "But they come in a choice of three flavours!"
  32. *
  33. * This program is free software; you can redistribute it and/or modify
  34. * it under the terms of the GNU General Public License as published by
  35. * the Free Software Foundation; either version 2 of the License, or
  36. * (at your option) any later version.
  37. *
  38. * This program is distributed in the hope that it will be useful,
  39. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  40. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  41. * GNU General Public License for more details.
  42. *
  43. * You should have received a copy of the GNU General Public License
  44. * along with this program; if not, write to the Free Software
  45. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  46. */
  47. #include <linux/slab.h>
  48. #include <linux/poll.h>
  49. #include <linux/fs.h>
  50. #include <linux/file.h>
  51. #include <linux/jhash.h>
  52. #include <linux/init.h>
  53. #include <linux/futex.h>
  54. #include <linux/mount.h>
  55. #include <linux/pagemap.h>
  56. #include <linux/syscalls.h>
  57. #include <linux/signal.h>
  58. #include <linux/export.h>
  59. #include <linux/magic.h>
  60. #include <linux/pid.h>
  61. #include <linux/nsproxy.h>
  62. #include <linux/ptrace.h>
  63. #include <linux/sched/rt.h>
  64. #include <linux/sched/wake_q.h>
  65. #include <linux/sched/mm.h>
  66. #include <linux/hugetlb.h>
  67. #include <linux/freezer.h>
  68. #include <linux/bootmem.h>
  69. #include <linux/fault-inject.h>
  70. #include <asm/futex.h>
  71. #include "locking/rtmutex_common.h"
  72. /*
  73. * READ this before attempting to hack on futexes!
  74. *
  75. * Basic futex operation and ordering guarantees
  76. * =============================================
  77. *
  78. * The waiter reads the futex value in user space and calls
  79. * futex_wait(). This function computes the hash bucket and acquires
  80. * the hash bucket lock. After that it reads the futex user space value
  81. * again and verifies that the data has not changed. If it has not changed
  82. * it enqueues itself into the hash bucket, releases the hash bucket lock
  83. * and schedules.
  84. *
  85. * The waker side modifies the user space value of the futex and calls
  86. * futex_wake(). This function computes the hash bucket and acquires the
  87. * hash bucket lock. Then it looks for waiters on that futex in the hash
  88. * bucket and wakes them.
  89. *
  90. * In futex wake up scenarios where no tasks are blocked on a futex, taking
  91. * the hb spinlock can be avoided and simply return. In order for this
  92. * optimization to work, ordering guarantees must exist so that the waiter
  93. * being added to the list is acknowledged when the list is concurrently being
  94. * checked by the waker, avoiding scenarios like the following:
  95. *
  96. * CPU 0 CPU 1
  97. * val = *futex;
  98. * sys_futex(WAIT, futex, val);
  99. * futex_wait(futex, val);
  100. * uval = *futex;
  101. * *futex = newval;
  102. * sys_futex(WAKE, futex);
  103. * futex_wake(futex);
  104. * if (queue_empty())
  105. * return;
  106. * if (uval == val)
  107. * lock(hash_bucket(futex));
  108. * queue();
  109. * unlock(hash_bucket(futex));
  110. * schedule();
  111. *
  112. * This would cause the waiter on CPU 0 to wait forever because it
  113. * missed the transition of the user space value from val to newval
  114. * and the waker did not find the waiter in the hash bucket queue.
  115. *
  116. * The correct serialization ensures that a waiter either observes
  117. * the changed user space value before blocking or is woken by a
  118. * concurrent waker:
  119. *
  120. * CPU 0 CPU 1
  121. * val = *futex;
  122. * sys_futex(WAIT, futex, val);
  123. * futex_wait(futex, val);
  124. *
  125. * waiters++; (a)
  126. * smp_mb(); (A) <-- paired with -.
  127. * |
  128. * lock(hash_bucket(futex)); |
  129. * |
  130. * uval = *futex; |
  131. * | *futex = newval;
  132. * | sys_futex(WAKE, futex);
  133. * | futex_wake(futex);
  134. * |
  135. * `--------> smp_mb(); (B)
  136. * if (uval == val)
  137. * queue();
  138. * unlock(hash_bucket(futex));
  139. * schedule(); if (waiters)
  140. * lock(hash_bucket(futex));
  141. * else wake_waiters(futex);
  142. * waiters--; (b) unlock(hash_bucket(futex));
  143. *
  144. * Where (A) orders the waiters increment and the futex value read through
  145. * atomic operations (see hb_waiters_inc) and where (B) orders the write
  146. * to futex and the waiters read -- this is done by the barriers for both
  147. * shared and private futexes in get_futex_key_refs().
  148. *
  149. * This yields the following case (where X:=waiters, Y:=futex):
  150. *
  151. * X = Y = 0
  152. *
  153. * w[X]=1 w[Y]=1
  154. * MB MB
  155. * r[Y]=y r[X]=x
  156. *
  157. * Which guarantees that x==0 && y==0 is impossible; which translates back into
  158. * the guarantee that we cannot both miss the futex variable change and the
  159. * enqueue.
  160. *
  161. * Note that a new waiter is accounted for in (a) even when it is possible that
  162. * the wait call can return error, in which case we backtrack from it in (b).
  163. * Refer to the comment in queue_lock().
  164. *
  165. * Similarly, in order to account for waiters being requeued on another
  166. * address we always increment the waiters for the destination bucket before
  167. * acquiring the lock. It then decrements them again after releasing it -
  168. * the code that actually moves the futex(es) between hash buckets (requeue_futex)
  169. * will do the additional required waiter count housekeeping. This is done for
  170. * double_lock_hb() and double_unlock_hb(), respectively.
  171. */
  172. #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
  173. int __read_mostly futex_cmpxchg_enabled;
  174. #endif
  175. /*
  176. * Futex flags used to encode options to functions and preserve them across
  177. * restarts.
  178. */
  179. #ifdef CONFIG_MMU
  180. # define FLAGS_SHARED 0x01
  181. #else
  182. /*
  183. * NOMMU does not have per process address space. Let the compiler optimize
  184. * code away.
  185. */
  186. # define FLAGS_SHARED 0x00
  187. #endif
  188. #define FLAGS_CLOCKRT 0x02
  189. #define FLAGS_HAS_TIMEOUT 0x04
  190. /*
  191. * Priority Inheritance state:
  192. */
  193. struct futex_pi_state {
  194. /*
  195. * list of 'owned' pi_state instances - these have to be
  196. * cleaned up in do_exit() if the task exits prematurely:
  197. */
  198. struct list_head list;
  199. /*
  200. * The PI object:
  201. */
  202. struct rt_mutex pi_mutex;
  203. struct task_struct *owner;
  204. atomic_t refcount;
  205. union futex_key key;
  206. } __randomize_layout;
  207. /**
  208. * struct futex_q - The hashed futex queue entry, one per waiting task
  209. * @list: priority-sorted list of tasks waiting on this futex
  210. * @task: the task waiting on the futex
  211. * @lock_ptr: the hash bucket lock
  212. * @key: the key the futex is hashed on
  213. * @pi_state: optional priority inheritance state
  214. * @rt_waiter: rt_waiter storage for use with requeue_pi
  215. * @requeue_pi_key: the requeue_pi target futex key
  216. * @bitset: bitset for the optional bitmasked wakeup
  217. *
  218. * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
  219. * we can wake only the relevant ones (hashed queues may be shared).
  220. *
  221. * A futex_q has a woken state, just like tasks have TASK_RUNNING.
  222. * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
  223. * The order of wakeup is always to make the first condition true, then
  224. * the second.
  225. *
  226. * PI futexes are typically woken before they are removed from the hash list via
  227. * the rt_mutex code. See unqueue_me_pi().
  228. */
  229. struct futex_q {
  230. struct plist_node list;
  231. struct task_struct *task;
  232. spinlock_t *lock_ptr;
  233. union futex_key key;
  234. struct futex_pi_state *pi_state;
  235. struct rt_mutex_waiter *rt_waiter;
  236. union futex_key *requeue_pi_key;
  237. u32 bitset;
  238. } __randomize_layout;
  239. static const struct futex_q futex_q_init = {
  240. /* list gets initialized in queue_me()*/
  241. .key = FUTEX_KEY_INIT,
  242. .bitset = FUTEX_BITSET_MATCH_ANY
  243. };
  244. /*
  245. * Hash buckets are shared by all the futex_keys that hash to the same
  246. * location. Each key may have multiple futex_q structures, one for each task
  247. * waiting on a futex.
  248. */
  249. struct futex_hash_bucket {
  250. atomic_t waiters;
  251. spinlock_t lock;
  252. struct plist_head chain;
  253. } ____cacheline_aligned_in_smp;
  254. /*
  255. * The base of the bucket array and its size are always used together
  256. * (after initialization only in hash_futex()), so ensure that they
  257. * reside in the same cacheline.
  258. */
  259. static struct {
  260. struct futex_hash_bucket *queues;
  261. unsigned long hashsize;
  262. } __futex_data __read_mostly __aligned(2*sizeof(long));
  263. #define futex_queues (__futex_data.queues)
  264. #define futex_hashsize (__futex_data.hashsize)
  265. /*
  266. * Fault injections for futexes.
  267. */
  268. #ifdef CONFIG_FAIL_FUTEX
  269. static struct {
  270. struct fault_attr attr;
  271. bool ignore_private;
  272. } fail_futex = {
  273. .attr = FAULT_ATTR_INITIALIZER,
  274. .ignore_private = false,
  275. };
  276. static int __init setup_fail_futex(char *str)
  277. {
  278. return setup_fault_attr(&fail_futex.attr, str);
  279. }
  280. __setup("fail_futex=", setup_fail_futex);
  281. static bool should_fail_futex(bool fshared)
  282. {
  283. if (fail_futex.ignore_private && !fshared)
  284. return false;
  285. return should_fail(&fail_futex.attr, 1);
  286. }
  287. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  288. static int __init fail_futex_debugfs(void)
  289. {
  290. umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  291. struct dentry *dir;
  292. dir = fault_create_debugfs_attr("fail_futex", NULL,
  293. &fail_futex.attr);
  294. if (IS_ERR(dir))
  295. return PTR_ERR(dir);
  296. if (!debugfs_create_bool("ignore-private", mode, dir,
  297. &fail_futex.ignore_private)) {
  298. debugfs_remove_recursive(dir);
  299. return -ENOMEM;
  300. }
  301. return 0;
  302. }
  303. late_initcall(fail_futex_debugfs);
  304. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  305. #else
  306. static inline bool should_fail_futex(bool fshared)
  307. {
  308. return false;
  309. }
  310. #endif /* CONFIG_FAIL_FUTEX */
  311. static inline void futex_get_mm(union futex_key *key)
  312. {
  313. mmgrab(key->private.mm);
  314. /*
  315. * Ensure futex_get_mm() implies a full barrier such that
  316. * get_futex_key() implies a full barrier. This is relied upon
  317. * as smp_mb(); (B), see the ordering comment above.
  318. */
  319. smp_mb__after_atomic();
  320. }
  321. /*
  322. * Reflects a new waiter being added to the waitqueue.
  323. */
  324. static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
  325. {
  326. #ifdef CONFIG_SMP
  327. atomic_inc(&hb->waiters);
  328. /*
  329. * Full barrier (A), see the ordering comment above.
  330. */
  331. smp_mb__after_atomic();
  332. #endif
  333. }
  334. /*
  335. * Reflects a waiter being removed from the waitqueue by wakeup
  336. * paths.
  337. */
  338. static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
  339. {
  340. #ifdef CONFIG_SMP
  341. atomic_dec(&hb->waiters);
  342. #endif
  343. }
  344. static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
  345. {
  346. #ifdef CONFIG_SMP
  347. return atomic_read(&hb->waiters);
  348. #else
  349. return 1;
  350. #endif
  351. }
  352. /**
  353. * hash_futex - Return the hash bucket in the global hash
  354. * @key: Pointer to the futex key for which the hash is calculated
  355. *
  356. * We hash on the keys returned from get_futex_key (see below) and return the
  357. * corresponding hash bucket in the global hash.
  358. */
  359. static struct futex_hash_bucket *hash_futex(union futex_key *key)
  360. {
  361. u32 hash = jhash2((u32*)&key->both.word,
  362. (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
  363. key->both.offset);
  364. return &futex_queues[hash & (futex_hashsize - 1)];
  365. }
  366. /**
  367. * match_futex - Check whether two futex keys are equal
  368. * @key1: Pointer to key1
  369. * @key2: Pointer to key2
  370. *
  371. * Return 1 if two futex_keys are equal, 0 otherwise.
  372. */
  373. static inline int match_futex(union futex_key *key1, union futex_key *key2)
  374. {
  375. return (key1 && key2
  376. && key1->both.word == key2->both.word
  377. && key1->both.ptr == key2->both.ptr
  378. && key1->both.offset == key2->both.offset);
  379. }
  380. /*
  381. * Take a reference to the resource addressed by a key.
  382. * Can be called while holding spinlocks.
  383. *
  384. */
  385. static void get_futex_key_refs(union futex_key *key)
  386. {
  387. if (!key->both.ptr)
  388. return;
  389. /*
  390. * On MMU less systems futexes are always "private" as there is no per
  391. * process address space. We need the smp wmb nevertheless - yes,
  392. * arch/blackfin has MMU less SMP ...
  393. */
  394. if (!IS_ENABLED(CONFIG_MMU)) {
  395. smp_mb(); /* explicit smp_mb(); (B) */
  396. return;
  397. }
  398. switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
  399. case FUT_OFF_INODE:
  400. ihold(key->shared.inode); /* implies smp_mb(); (B) */
  401. break;
  402. case FUT_OFF_MMSHARED:
  403. futex_get_mm(key); /* implies smp_mb(); (B) */
  404. break;
  405. default:
  406. /*
  407. * Private futexes do not hold reference on an inode or
  408. * mm, therefore the only purpose of calling get_futex_key_refs
  409. * is because we need the barrier for the lockless waiter check.
  410. */
  411. smp_mb(); /* explicit smp_mb(); (B) */
  412. }
  413. }
  414. /*
  415. * Drop a reference to the resource addressed by a key.
  416. * The hash bucket spinlock must not be held. This is
  417. * a no-op for private futexes, see comment in the get
  418. * counterpart.
  419. */
  420. static void drop_futex_key_refs(union futex_key *key)
  421. {
  422. if (!key->both.ptr) {
  423. /* If we're here then we tried to put a key we failed to get */
  424. WARN_ON_ONCE(1);
  425. return;
  426. }
  427. if (!IS_ENABLED(CONFIG_MMU))
  428. return;
  429. switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
  430. case FUT_OFF_INODE:
  431. iput(key->shared.inode);
  432. break;
  433. case FUT_OFF_MMSHARED:
  434. mmdrop(key->private.mm);
  435. break;
  436. }
  437. }
  438. /**
  439. * get_futex_key() - Get parameters which are the keys for a futex
  440. * @uaddr: virtual address of the futex
  441. * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
  442. * @key: address where result is stored.
  443. * @rw: mapping needs to be read/write (values: VERIFY_READ,
  444. * VERIFY_WRITE)
  445. *
  446. * Return: a negative error code or 0
  447. *
  448. * The key words are stored in @key on success.
  449. *
  450. * For shared mappings, it's (page->index, file_inode(vma->vm_file),
  451. * offset_within_page). For private mappings, it's (uaddr, current->mm).
  452. * We can usually work out the index without swapping in the page.
  453. *
  454. * lock_page() might sleep, the caller should not hold a spinlock.
  455. */
  456. static int
  457. get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
  458. {
  459. unsigned long address = (unsigned long)uaddr;
  460. struct mm_struct *mm = current->mm;
  461. struct page *page, *tail;
  462. struct address_space *mapping;
  463. int err, ro = 0;
  464. /*
  465. * The futex address must be "naturally" aligned.
  466. */
  467. key->both.offset = address % PAGE_SIZE;
  468. if (unlikely((address % sizeof(u32)) != 0))
  469. return -EINVAL;
  470. address -= key->both.offset;
  471. if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
  472. return -EFAULT;
  473. if (unlikely(should_fail_futex(fshared)))
  474. return -EFAULT;
  475. /*
  476. * PROCESS_PRIVATE futexes are fast.
  477. * As the mm cannot disappear under us and the 'key' only needs
  478. * virtual address, we dont even have to find the underlying vma.
  479. * Note : We do have to check 'uaddr' is a valid user address,
  480. * but access_ok() should be faster than find_vma()
  481. */
  482. if (!fshared) {
  483. key->private.mm = mm;
  484. key->private.address = address;
  485. get_futex_key_refs(key); /* implies smp_mb(); (B) */
  486. return 0;
  487. }
  488. again:
  489. /* Ignore any VERIFY_READ mapping (futex common case) */
  490. if (unlikely(should_fail_futex(fshared)))
  491. return -EFAULT;
  492. err = get_user_pages_fast(address, 1, 1, &page);
  493. /*
  494. * If write access is not required (eg. FUTEX_WAIT), try
  495. * and get read-only access.
  496. */
  497. if (err == -EFAULT && rw == VERIFY_READ) {
  498. err = get_user_pages_fast(address, 1, 0, &page);
  499. ro = 1;
  500. }
  501. if (err < 0)
  502. return err;
  503. else
  504. err = 0;
  505. /*
  506. * The treatment of mapping from this point on is critical. The page
  507. * lock protects many things but in this context the page lock
  508. * stabilizes mapping, prevents inode freeing in the shared
  509. * file-backed region case and guards against movement to swap cache.
  510. *
  511. * Strictly speaking the page lock is not needed in all cases being
  512. * considered here and page lock forces unnecessarily serialization
  513. * From this point on, mapping will be re-verified if necessary and
  514. * page lock will be acquired only if it is unavoidable
  515. *
  516. * Mapping checks require the head page for any compound page so the
  517. * head page and mapping is looked up now. For anonymous pages, it
  518. * does not matter if the page splits in the future as the key is
  519. * based on the address. For filesystem-backed pages, the tail is
  520. * required as the index of the page determines the key. For
  521. * base pages, there is no tail page and tail == page.
  522. */
  523. tail = page;
  524. page = compound_head(page);
  525. mapping = READ_ONCE(page->mapping);
  526. /*
  527. * If page->mapping is NULL, then it cannot be a PageAnon
  528. * page; but it might be the ZERO_PAGE or in the gate area or
  529. * in a special mapping (all cases which we are happy to fail);
  530. * or it may have been a good file page when get_user_pages_fast
  531. * found it, but truncated or holepunched or subjected to
  532. * invalidate_complete_page2 before we got the page lock (also
  533. * cases which we are happy to fail). And we hold a reference,
  534. * so refcount care in invalidate_complete_page's remove_mapping
  535. * prevents drop_caches from setting mapping to NULL beneath us.
  536. *
  537. * The case we do have to guard against is when memory pressure made
  538. * shmem_writepage move it from filecache to swapcache beneath us:
  539. * an unlikely race, but we do need to retry for page->mapping.
  540. */
  541. if (unlikely(!mapping)) {
  542. int shmem_swizzled;
  543. /*
  544. * Page lock is required to identify which special case above
  545. * applies. If this is really a shmem page then the page lock
  546. * will prevent unexpected transitions.
  547. */
  548. lock_page(page);
  549. shmem_swizzled = PageSwapCache(page) || page->mapping;
  550. unlock_page(page);
  551. put_page(page);
  552. if (shmem_swizzled)
  553. goto again;
  554. return -EFAULT;
  555. }
  556. /*
  557. * Private mappings are handled in a simple way.
  558. *
  559. * If the futex key is stored on an anonymous page, then the associated
  560. * object is the mm which is implicitly pinned by the calling process.
  561. *
  562. * NOTE: When userspace waits on a MAP_SHARED mapping, even if
  563. * it's a read-only handle, it's expected that futexes attach to
  564. * the object not the particular process.
  565. */
  566. if (PageAnon(page)) {
  567. /*
  568. * A RO anonymous page will never change and thus doesn't make
  569. * sense for futex operations.
  570. */
  571. if (unlikely(should_fail_futex(fshared)) || ro) {
  572. err = -EFAULT;
  573. goto out;
  574. }
  575. key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
  576. key->private.mm = mm;
  577. key->private.address = address;
  578. get_futex_key_refs(key); /* implies smp_mb(); (B) */
  579. } else {
  580. struct inode *inode;
  581. /*
  582. * The associated futex object in this case is the inode and
  583. * the page->mapping must be traversed. Ordinarily this should
  584. * be stabilised under page lock but it's not strictly
  585. * necessary in this case as we just want to pin the inode, not
  586. * update the radix tree or anything like that.
  587. *
  588. * The RCU read lock is taken as the inode is finally freed
  589. * under RCU. If the mapping still matches expectations then the
  590. * mapping->host can be safely accessed as being a valid inode.
  591. */
  592. rcu_read_lock();
  593. if (READ_ONCE(page->mapping) != mapping) {
  594. rcu_read_unlock();
  595. put_page(page);
  596. goto again;
  597. }
  598. inode = READ_ONCE(mapping->host);
  599. if (!inode) {
  600. rcu_read_unlock();
  601. put_page(page);
  602. goto again;
  603. }
  604. /*
  605. * Take a reference unless it is about to be freed. Previously
  606. * this reference was taken by ihold under the page lock
  607. * pinning the inode in place so i_lock was unnecessary. The
  608. * only way for this check to fail is if the inode was
  609. * truncated in parallel which is almost certainly an
  610. * application bug. In such a case, just retry.
  611. *
  612. * We are not calling into get_futex_key_refs() in file-backed
  613. * cases, therefore a successful atomic_inc return below will
  614. * guarantee that get_futex_key() will still imply smp_mb(); (B).
  615. */
  616. if (!atomic_inc_not_zero(&inode->i_count)) {
  617. rcu_read_unlock();
  618. put_page(page);
  619. goto again;
  620. }
  621. /* Should be impossible but lets be paranoid for now */
  622. if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
  623. err = -EFAULT;
  624. rcu_read_unlock();
  625. iput(inode);
  626. goto out;
  627. }
  628. key->both.offset |= FUT_OFF_INODE; /* inode-based key */
  629. key->shared.inode = inode;
  630. key->shared.pgoff = basepage_index(tail);
  631. rcu_read_unlock();
  632. }
  633. out:
  634. put_page(page);
  635. return err;
  636. }
  637. static inline void put_futex_key(union futex_key *key)
  638. {
  639. drop_futex_key_refs(key);
  640. }
  641. /**
  642. * fault_in_user_writeable() - Fault in user address and verify RW access
  643. * @uaddr: pointer to faulting user space address
  644. *
  645. * Slow path to fixup the fault we just took in the atomic write
  646. * access to @uaddr.
  647. *
  648. * We have no generic implementation of a non-destructive write to the
  649. * user address. We know that we faulted in the atomic pagefault
  650. * disabled section so we can as well avoid the #PF overhead by
  651. * calling get_user_pages() right away.
  652. */
  653. static int fault_in_user_writeable(u32 __user *uaddr)
  654. {
  655. struct mm_struct *mm = current->mm;
  656. int ret;
  657. down_read(&mm->mmap_sem);
  658. ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
  659. FAULT_FLAG_WRITE, NULL);
  660. up_read(&mm->mmap_sem);
  661. return ret < 0 ? ret : 0;
  662. }
  663. /**
  664. * futex_top_waiter() - Return the highest priority waiter on a futex
  665. * @hb: the hash bucket the futex_q's reside in
  666. * @key: the futex key (to distinguish it from other futex futex_q's)
  667. *
  668. * Must be called with the hb lock held.
  669. */
  670. static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
  671. union futex_key *key)
  672. {
  673. struct futex_q *this;
  674. plist_for_each_entry(this, &hb->chain, list) {
  675. if (match_futex(&this->key, key))
  676. return this;
  677. }
  678. return NULL;
  679. }
  680. static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
  681. u32 uval, u32 newval)
  682. {
  683. int ret;
  684. pagefault_disable();
  685. ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
  686. pagefault_enable();
  687. return ret;
  688. }
  689. static int get_futex_value_locked(u32 *dest, u32 __user *from)
  690. {
  691. int ret;
  692. pagefault_disable();
  693. ret = __get_user(*dest, from);
  694. pagefault_enable();
  695. return ret ? -EFAULT : 0;
  696. }
  697. /*
  698. * PI code:
  699. */
  700. static int refill_pi_state_cache(void)
  701. {
  702. struct futex_pi_state *pi_state;
  703. if (likely(current->pi_state_cache))
  704. return 0;
  705. pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
  706. if (!pi_state)
  707. return -ENOMEM;
  708. INIT_LIST_HEAD(&pi_state->list);
  709. /* pi_mutex gets initialized later */
  710. pi_state->owner = NULL;
  711. atomic_set(&pi_state->refcount, 1);
  712. pi_state->key = FUTEX_KEY_INIT;
  713. current->pi_state_cache = pi_state;
  714. return 0;
  715. }
  716. static struct futex_pi_state *alloc_pi_state(void)
  717. {
  718. struct futex_pi_state *pi_state = current->pi_state_cache;
  719. WARN_ON(!pi_state);
  720. current->pi_state_cache = NULL;
  721. return pi_state;
  722. }
  723. static void get_pi_state(struct futex_pi_state *pi_state)
  724. {
  725. WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
  726. }
  727. /*
  728. * Drops a reference to the pi_state object and frees or caches it
  729. * when the last reference is gone.
  730. *
  731. * Must be called with the hb lock held.
  732. */
  733. static void put_pi_state(struct futex_pi_state *pi_state)
  734. {
  735. if (!pi_state)
  736. return;
  737. if (!atomic_dec_and_test(&pi_state->refcount))
  738. return;
  739. /*
  740. * If pi_state->owner is NULL, the owner is most probably dying
  741. * and has cleaned up the pi_state already
  742. */
  743. if (pi_state->owner) {
  744. raw_spin_lock_irq(&pi_state->owner->pi_lock);
  745. list_del_init(&pi_state->list);
  746. raw_spin_unlock_irq(&pi_state->owner->pi_lock);
  747. rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
  748. }
  749. if (current->pi_state_cache)
  750. kfree(pi_state);
  751. else {
  752. /*
  753. * pi_state->list is already empty.
  754. * clear pi_state->owner.
  755. * refcount is at 0 - put it back to 1.
  756. */
  757. pi_state->owner = NULL;
  758. atomic_set(&pi_state->refcount, 1);
  759. current->pi_state_cache = pi_state;
  760. }
  761. }
  762. /*
  763. * Look up the task based on what TID userspace gave us.
  764. * We dont trust it.
  765. */
  766. static struct task_struct *futex_find_get_task(pid_t pid)
  767. {
  768. struct task_struct *p;
  769. rcu_read_lock();
  770. p = find_task_by_vpid(pid);
  771. if (p)
  772. get_task_struct(p);
  773. rcu_read_unlock();
  774. return p;
  775. }
  776. /*
  777. * This task is holding PI mutexes at exit time => bad.
  778. * Kernel cleans up PI-state, but userspace is likely hosed.
  779. * (Robust-futex cleanup is separate and might save the day for userspace.)
  780. */
  781. void exit_pi_state_list(struct task_struct *curr)
  782. {
  783. struct list_head *next, *head = &curr->pi_state_list;
  784. struct futex_pi_state *pi_state;
  785. struct futex_hash_bucket *hb;
  786. union futex_key key = FUTEX_KEY_INIT;
  787. if (!futex_cmpxchg_enabled)
  788. return;
  789. /*
  790. * We are a ZOMBIE and nobody can enqueue itself on
  791. * pi_state_list anymore, but we have to be careful
  792. * versus waiters unqueueing themselves:
  793. */
  794. raw_spin_lock_irq(&curr->pi_lock);
  795. while (!list_empty(head)) {
  796. next = head->next;
  797. pi_state = list_entry(next, struct futex_pi_state, list);
  798. key = pi_state->key;
  799. hb = hash_futex(&key);
  800. raw_spin_unlock_irq(&curr->pi_lock);
  801. spin_lock(&hb->lock);
  802. raw_spin_lock_irq(&curr->pi_lock);
  803. /*
  804. * We dropped the pi-lock, so re-check whether this
  805. * task still owns the PI-state:
  806. */
  807. if (head->next != next) {
  808. spin_unlock(&hb->lock);
  809. continue;
  810. }
  811. WARN_ON(pi_state->owner != curr);
  812. WARN_ON(list_empty(&pi_state->list));
  813. list_del_init(&pi_state->list);
  814. pi_state->owner = NULL;
  815. raw_spin_unlock_irq(&curr->pi_lock);
  816. get_pi_state(pi_state);
  817. spin_unlock(&hb->lock);
  818. rt_mutex_futex_unlock(&pi_state->pi_mutex);
  819. put_pi_state(pi_state);
  820. raw_spin_lock_irq(&curr->pi_lock);
  821. }
  822. raw_spin_unlock_irq(&curr->pi_lock);
  823. }
  824. /*
  825. * We need to check the following states:
  826. *
  827. * Waiter | pi_state | pi->owner | uTID | uODIED | ?
  828. *
  829. * [1] NULL | --- | --- | 0 | 0/1 | Valid
  830. * [2] NULL | --- | --- | >0 | 0/1 | Valid
  831. *
  832. * [3] Found | NULL | -- | Any | 0/1 | Invalid
  833. *
  834. * [4] Found | Found | NULL | 0 | 1 | Valid
  835. * [5] Found | Found | NULL | >0 | 1 | Invalid
  836. *
  837. * [6] Found | Found | task | 0 | 1 | Valid
  838. *
  839. * [7] Found | Found | NULL | Any | 0 | Invalid
  840. *
  841. * [8] Found | Found | task | ==taskTID | 0/1 | Valid
  842. * [9] Found | Found | task | 0 | 0 | Invalid
  843. * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
  844. *
  845. * [1] Indicates that the kernel can acquire the futex atomically. We
  846. * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
  847. *
  848. * [2] Valid, if TID does not belong to a kernel thread. If no matching
  849. * thread is found then it indicates that the owner TID has died.
  850. *
  851. * [3] Invalid. The waiter is queued on a non PI futex
  852. *
  853. * [4] Valid state after exit_robust_list(), which sets the user space
  854. * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
  855. *
  856. * [5] The user space value got manipulated between exit_robust_list()
  857. * and exit_pi_state_list()
  858. *
  859. * [6] Valid state after exit_pi_state_list() which sets the new owner in
  860. * the pi_state but cannot access the user space value.
  861. *
  862. * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
  863. *
  864. * [8] Owner and user space value match
  865. *
  866. * [9] There is no transient state which sets the user space TID to 0
  867. * except exit_robust_list(), but this is indicated by the
  868. * FUTEX_OWNER_DIED bit. See [4]
  869. *
  870. * [10] There is no transient state which leaves owner and user space
  871. * TID out of sync.
  872. *
  873. *
  874. * Serialization and lifetime rules:
  875. *
  876. * hb->lock:
  877. *
  878. * hb -> futex_q, relation
  879. * futex_q -> pi_state, relation
  880. *
  881. * (cannot be raw because hb can contain arbitrary amount
  882. * of futex_q's)
  883. *
  884. * pi_mutex->wait_lock:
  885. *
  886. * {uval, pi_state}
  887. *
  888. * (and pi_mutex 'obviously')
  889. *
  890. * p->pi_lock:
  891. *
  892. * p->pi_state_list -> pi_state->list, relation
  893. *
  894. * pi_state->refcount:
  895. *
  896. * pi_state lifetime
  897. *
  898. *
  899. * Lock order:
  900. *
  901. * hb->lock
  902. * pi_mutex->wait_lock
  903. * p->pi_lock
  904. *
  905. */
  906. /*
  907. * Validate that the existing waiter has a pi_state and sanity check
  908. * the pi_state against the user space value. If correct, attach to
  909. * it.
  910. */
  911. static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
  912. struct futex_pi_state *pi_state,
  913. struct futex_pi_state **ps)
  914. {
  915. pid_t pid = uval & FUTEX_TID_MASK;
  916. u32 uval2;
  917. int ret;
  918. /*
  919. * Userspace might have messed up non-PI and PI futexes [3]
  920. */
  921. if (unlikely(!pi_state))
  922. return -EINVAL;
  923. /*
  924. * We get here with hb->lock held, and having found a
  925. * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
  926. * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
  927. * which in turn means that futex_lock_pi() still has a reference on
  928. * our pi_state.
  929. *
  930. * The waiter holding a reference on @pi_state also protects against
  931. * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
  932. * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
  933. * free pi_state before we can take a reference ourselves.
  934. */
  935. WARN_ON(!atomic_read(&pi_state->refcount));
  936. /*
  937. * Now that we have a pi_state, we can acquire wait_lock
  938. * and do the state validation.
  939. */
  940. raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
  941. /*
  942. * Since {uval, pi_state} is serialized by wait_lock, and our current
  943. * uval was read without holding it, it can have changed. Verify it
  944. * still is what we expect it to be, otherwise retry the entire
  945. * operation.
  946. */
  947. if (get_futex_value_locked(&uval2, uaddr))
  948. goto out_efault;
  949. if (uval != uval2)
  950. goto out_eagain;
  951. /*
  952. * Handle the owner died case:
  953. */
  954. if (uval & FUTEX_OWNER_DIED) {
  955. /*
  956. * exit_pi_state_list sets owner to NULL and wakes the
  957. * topmost waiter. The task which acquires the
  958. * pi_state->rt_mutex will fixup owner.
  959. */
  960. if (!pi_state->owner) {
  961. /*
  962. * No pi state owner, but the user space TID
  963. * is not 0. Inconsistent state. [5]
  964. */
  965. if (pid)
  966. goto out_einval;
  967. /*
  968. * Take a ref on the state and return success. [4]
  969. */
  970. goto out_attach;
  971. }
  972. /*
  973. * If TID is 0, then either the dying owner has not
  974. * yet executed exit_pi_state_list() or some waiter
  975. * acquired the rtmutex in the pi state, but did not
  976. * yet fixup the TID in user space.
  977. *
  978. * Take a ref on the state and return success. [6]
  979. */
  980. if (!pid)
  981. goto out_attach;
  982. } else {
  983. /*
  984. * If the owner died bit is not set, then the pi_state
  985. * must have an owner. [7]
  986. */
  987. if (!pi_state->owner)
  988. goto out_einval;
  989. }
  990. /*
  991. * Bail out if user space manipulated the futex value. If pi
  992. * state exists then the owner TID must be the same as the
  993. * user space TID. [9/10]
  994. */
  995. if (pid != task_pid_vnr(pi_state->owner))
  996. goto out_einval;
  997. out_attach:
  998. get_pi_state(pi_state);
  999. raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
  1000. *ps = pi_state;
  1001. return 0;
  1002. out_einval:
  1003. ret = -EINVAL;
  1004. goto out_error;
  1005. out_eagain:
  1006. ret = -EAGAIN;
  1007. goto out_error;
  1008. out_efault:
  1009. ret = -EFAULT;
  1010. goto out_error;
  1011. out_error:
  1012. raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
  1013. return ret;
  1014. }
  1015. /*
  1016. * Lookup the task for the TID provided from user space and attach to
  1017. * it after doing proper sanity checks.
  1018. */
  1019. static int attach_to_pi_owner(u32 uval, union futex_key *key,
  1020. struct futex_pi_state **ps)
  1021. {
  1022. pid_t pid = uval & FUTEX_TID_MASK;
  1023. struct futex_pi_state *pi_state;
  1024. struct task_struct *p;
  1025. /*
  1026. * We are the first waiter - try to look up the real owner and attach
  1027. * the new pi_state to it, but bail out when TID = 0 [1]
  1028. */
  1029. if (!pid)
  1030. return -ESRCH;
  1031. p = futex_find_get_task(pid);
  1032. if (!p)
  1033. return -ESRCH;
  1034. if (unlikely(p->flags & PF_KTHREAD)) {
  1035. put_task_struct(p);
  1036. return -EPERM;
  1037. }
  1038. /*
  1039. * We need to look at the task state flags to figure out,
  1040. * whether the task is exiting. To protect against the do_exit
  1041. * change of the task flags, we do this protected by
  1042. * p->pi_lock:
  1043. */
  1044. raw_spin_lock_irq(&p->pi_lock);
  1045. if (unlikely(p->flags & PF_EXITING)) {
  1046. /*
  1047. * The task is on the way out. When PF_EXITPIDONE is
  1048. * set, we know that the task has finished the
  1049. * cleanup:
  1050. */
  1051. int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
  1052. raw_spin_unlock_irq(&p->pi_lock);
  1053. put_task_struct(p);
  1054. return ret;
  1055. }
  1056. /*
  1057. * No existing pi state. First waiter. [2]
  1058. *
  1059. * This creates pi_state, we have hb->lock held, this means nothing can
  1060. * observe this state, wait_lock is irrelevant.
  1061. */
  1062. pi_state = alloc_pi_state();
  1063. /*
  1064. * Initialize the pi_mutex in locked state and make @p
  1065. * the owner of it:
  1066. */
  1067. rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
  1068. /* Store the key for possible exit cleanups: */
  1069. pi_state->key = *key;
  1070. WARN_ON(!list_empty(&pi_state->list));
  1071. list_add(&pi_state->list, &p->pi_state_list);
  1072. pi_state->owner = p;
  1073. raw_spin_unlock_irq(&p->pi_lock);
  1074. put_task_struct(p);
  1075. *ps = pi_state;
  1076. return 0;
  1077. }
  1078. static int lookup_pi_state(u32 __user *uaddr, u32 uval,
  1079. struct futex_hash_bucket *hb,
  1080. union futex_key *key, struct futex_pi_state **ps)
  1081. {
  1082. struct futex_q *top_waiter = futex_top_waiter(hb, key);
  1083. /*
  1084. * If there is a waiter on that futex, validate it and
  1085. * attach to the pi_state when the validation succeeds.
  1086. */
  1087. if (top_waiter)
  1088. return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
  1089. /*
  1090. * We are the first waiter - try to look up the owner based on
  1091. * @uval and attach to it.
  1092. */
  1093. return attach_to_pi_owner(uval, key, ps);
  1094. }
  1095. static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
  1096. {
  1097. u32 uninitialized_var(curval);
  1098. if (unlikely(should_fail_futex(true)))
  1099. return -EFAULT;
  1100. if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
  1101. return -EFAULT;
  1102. /* If user space value changed, let the caller retry */
  1103. return curval != uval ? -EAGAIN : 0;
  1104. }
  1105. /**
  1106. * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
  1107. * @uaddr: the pi futex user address
  1108. * @hb: the pi futex hash bucket
  1109. * @key: the futex key associated with uaddr and hb
  1110. * @ps: the pi_state pointer where we store the result of the
  1111. * lookup
  1112. * @task: the task to perform the atomic lock work for. This will
  1113. * be "current" except in the case of requeue pi.
  1114. * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
  1115. *
  1116. * Return:
  1117. * - 0 - ready to wait;
  1118. * - 1 - acquired the lock;
  1119. * - <0 - error
  1120. *
  1121. * The hb->lock and futex_key refs shall be held by the caller.
  1122. */
  1123. static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
  1124. union futex_key *key,
  1125. struct futex_pi_state **ps,
  1126. struct task_struct *task, int set_waiters)
  1127. {
  1128. u32 uval, newval, vpid = task_pid_vnr(task);
  1129. struct futex_q *top_waiter;
  1130. int ret;
  1131. /*
  1132. * Read the user space value first so we can validate a few
  1133. * things before proceeding further.
  1134. */
  1135. if (get_futex_value_locked(&uval, uaddr))
  1136. return -EFAULT;
  1137. if (unlikely(should_fail_futex(true)))
  1138. return -EFAULT;
  1139. /*
  1140. * Detect deadlocks.
  1141. */
  1142. if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
  1143. return -EDEADLK;
  1144. if ((unlikely(should_fail_futex(true))))
  1145. return -EDEADLK;
  1146. /*
  1147. * Lookup existing state first. If it exists, try to attach to
  1148. * its pi_state.
  1149. */
  1150. top_waiter = futex_top_waiter(hb, key);
  1151. if (top_waiter)
  1152. return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
  1153. /*
  1154. * No waiter and user TID is 0. We are here because the
  1155. * waiters or the owner died bit is set or called from
  1156. * requeue_cmp_pi or for whatever reason something took the
  1157. * syscall.
  1158. */
  1159. if (!(uval & FUTEX_TID_MASK)) {
  1160. /*
  1161. * We take over the futex. No other waiters and the user space
  1162. * TID is 0. We preserve the owner died bit.
  1163. */
  1164. newval = uval & FUTEX_OWNER_DIED;
  1165. newval |= vpid;
  1166. /* The futex requeue_pi code can enforce the waiters bit */
  1167. if (set_waiters)
  1168. newval |= FUTEX_WAITERS;
  1169. ret = lock_pi_update_atomic(uaddr, uval, newval);
  1170. /* If the take over worked, return 1 */
  1171. return ret < 0 ? ret : 1;
  1172. }
  1173. /*
  1174. * First waiter. Set the waiters bit before attaching ourself to
  1175. * the owner. If owner tries to unlock, it will be forced into
  1176. * the kernel and blocked on hb->lock.
  1177. */
  1178. newval = uval | FUTEX_WAITERS;
  1179. ret = lock_pi_update_atomic(uaddr, uval, newval);
  1180. if (ret)
  1181. return ret;
  1182. /*
  1183. * If the update of the user space value succeeded, we try to
  1184. * attach to the owner. If that fails, no harm done, we only
  1185. * set the FUTEX_WAITERS bit in the user space variable.
  1186. */
  1187. return attach_to_pi_owner(uval, key, ps);
  1188. }
  1189. /**
  1190. * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
  1191. * @q: The futex_q to unqueue
  1192. *
  1193. * The q->lock_ptr must not be NULL and must be held by the caller.
  1194. */
  1195. static void __unqueue_futex(struct futex_q *q)
  1196. {
  1197. struct futex_hash_bucket *hb;
  1198. if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
  1199. || WARN_ON(plist_node_empty(&q->list)))
  1200. return;
  1201. hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
  1202. plist_del(&q->list, &hb->chain);
  1203. hb_waiters_dec(hb);
  1204. }
  1205. /*
  1206. * The hash bucket lock must be held when this is called.
  1207. * Afterwards, the futex_q must not be accessed. Callers
  1208. * must ensure to later call wake_up_q() for the actual
  1209. * wakeups to occur.
  1210. */
  1211. static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
  1212. {
  1213. struct task_struct *p = q->task;
  1214. if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
  1215. return;
  1216. /*
  1217. * Queue the task for later wakeup for after we've released
  1218. * the hb->lock. wake_q_add() grabs reference to p.
  1219. */
  1220. wake_q_add(wake_q, p);
  1221. __unqueue_futex(q);
  1222. /*
  1223. * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
  1224. * is written, without taking any locks. This is possible in the event
  1225. * of a spurious wakeup, for example. A memory barrier is required here
  1226. * to prevent the following store to lock_ptr from getting ahead of the
  1227. * plist_del in __unqueue_futex().
  1228. */
  1229. smp_store_release(&q->lock_ptr, NULL);
  1230. }
  1231. /*
  1232. * Caller must hold a reference on @pi_state.
  1233. */
  1234. static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
  1235. {
  1236. u32 uninitialized_var(curval), newval;
  1237. struct task_struct *new_owner;
  1238. bool postunlock = false;
  1239. DEFINE_WAKE_Q(wake_q);
  1240. int ret = 0;
  1241. new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
  1242. if (WARN_ON_ONCE(!new_owner)) {
  1243. /*
  1244. * As per the comment in futex_unlock_pi() this should not happen.
  1245. *
  1246. * When this happens, give up our locks and try again, giving
  1247. * the futex_lock_pi() instance time to complete, either by
  1248. * waiting on the rtmutex or removing itself from the futex
  1249. * queue.
  1250. */
  1251. ret = -EAGAIN;
  1252. goto out_unlock;
  1253. }
  1254. /*
  1255. * We pass it to the next owner. The WAITERS bit is always kept
  1256. * enabled while there is PI state around. We cleanup the owner
  1257. * died bit, because we are the owner.
  1258. */
  1259. newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
  1260. if (unlikely(should_fail_futex(true)))
  1261. ret = -EFAULT;
  1262. if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
  1263. ret = -EFAULT;
  1264. } else if (curval != uval) {
  1265. /*
  1266. * If a unconditional UNLOCK_PI operation (user space did not
  1267. * try the TID->0 transition) raced with a waiter setting the
  1268. * FUTEX_WAITERS flag between get_user() and locking the hash
  1269. * bucket lock, retry the operation.
  1270. */
  1271. if ((FUTEX_TID_MASK & curval) == uval)
  1272. ret = -EAGAIN;
  1273. else
  1274. ret = -EINVAL;
  1275. }
  1276. if (ret)
  1277. goto out_unlock;
  1278. /*
  1279. * This is a point of no return; once we modify the uval there is no
  1280. * going back and subsequent operations must not fail.
  1281. */
  1282. raw_spin_lock(&pi_state->owner->pi_lock);
  1283. WARN_ON(list_empty(&pi_state->list));
  1284. list_del_init(&pi_state->list);
  1285. raw_spin_unlock(&pi_state->owner->pi_lock);
  1286. raw_spin_lock(&new_owner->pi_lock);
  1287. WARN_ON(!list_empty(&pi_state->list));
  1288. list_add(&pi_state->list, &new_owner->pi_state_list);
  1289. pi_state->owner = new_owner;
  1290. raw_spin_unlock(&new_owner->pi_lock);
  1291. postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
  1292. out_unlock:
  1293. raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
  1294. if (postunlock)
  1295. rt_mutex_postunlock(&wake_q);
  1296. return ret;
  1297. }
  1298. /*
  1299. * Express the locking dependencies for lockdep:
  1300. */
  1301. static inline void
  1302. double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
  1303. {
  1304. if (hb1 <= hb2) {
  1305. spin_lock(&hb1->lock);
  1306. if (hb1 < hb2)
  1307. spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
  1308. } else { /* hb1 > hb2 */
  1309. spin_lock(&hb2->lock);
  1310. spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
  1311. }
  1312. }
  1313. static inline void
  1314. double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
  1315. {
  1316. spin_unlock(&hb1->lock);
  1317. if (hb1 != hb2)
  1318. spin_unlock(&hb2->lock);
  1319. }
  1320. /*
  1321. * Wake up waiters matching bitset queued on this futex (uaddr).
  1322. */
  1323. static int
  1324. futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
  1325. {
  1326. struct futex_hash_bucket *hb;
  1327. struct futex_q *this, *next;
  1328. union futex_key key = FUTEX_KEY_INIT;
  1329. int ret;
  1330. DEFINE_WAKE_Q(wake_q);
  1331. if (!bitset)
  1332. return -EINVAL;
  1333. ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
  1334. if (unlikely(ret != 0))
  1335. goto out;
  1336. hb = hash_futex(&key);
  1337. /* Make sure we really have tasks to wakeup */
  1338. if (!hb_waiters_pending(hb))
  1339. goto out_put_key;
  1340. spin_lock(&hb->lock);
  1341. plist_for_each_entry_safe(this, next, &hb->chain, list) {
  1342. if (match_futex (&this->key, &key)) {
  1343. if (this->pi_state || this->rt_waiter) {
  1344. ret = -EINVAL;
  1345. break;
  1346. }
  1347. /* Check if one of the bits is set in both bitsets */
  1348. if (!(this->bitset & bitset))
  1349. continue;
  1350. mark_wake_futex(&wake_q, this);
  1351. if (++ret >= nr_wake)
  1352. break;
  1353. }
  1354. }
  1355. spin_unlock(&hb->lock);
  1356. wake_up_q(&wake_q);
  1357. out_put_key:
  1358. put_futex_key(&key);
  1359. out:
  1360. return ret;
  1361. }
  1362. /*
  1363. * Wake up all waiters hashed on the physical page that is mapped
  1364. * to this virtual address:
  1365. */
  1366. static int
  1367. futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
  1368. int nr_wake, int nr_wake2, int op)
  1369. {
  1370. union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
  1371. struct futex_hash_bucket *hb1, *hb2;
  1372. struct futex_q *this, *next;
  1373. int ret, op_ret;
  1374. DEFINE_WAKE_Q(wake_q);
  1375. retry:
  1376. ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
  1377. if (unlikely(ret != 0))
  1378. goto out;
  1379. ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
  1380. if (unlikely(ret != 0))
  1381. goto out_put_key1;
  1382. hb1 = hash_futex(&key1);
  1383. hb2 = hash_futex(&key2);
  1384. retry_private:
  1385. double_lock_hb(hb1, hb2);
  1386. op_ret = futex_atomic_op_inuser(op, uaddr2);
  1387. if (unlikely(op_ret < 0)) {
  1388. double_unlock_hb(hb1, hb2);
  1389. #ifndef CONFIG_MMU
  1390. /*
  1391. * we don't get EFAULT from MMU faults if we don't have an MMU,
  1392. * but we might get them from range checking
  1393. */
  1394. ret = op_ret;
  1395. goto out_put_keys;
  1396. #endif
  1397. if (unlikely(op_ret != -EFAULT)) {
  1398. ret = op_ret;
  1399. goto out_put_keys;
  1400. }
  1401. ret = fault_in_user_writeable(uaddr2);
  1402. if (ret)
  1403. goto out_put_keys;
  1404. if (!(flags & FLAGS_SHARED))
  1405. goto retry_private;
  1406. put_futex_key(&key2);
  1407. put_futex_key(&key1);
  1408. goto retry;
  1409. }
  1410. plist_for_each_entry_safe(this, next, &hb1->chain, list) {
  1411. if (match_futex (&this->key, &key1)) {
  1412. if (this->pi_state || this->rt_waiter) {
  1413. ret = -EINVAL;
  1414. goto out_unlock;
  1415. }
  1416. mark_wake_futex(&wake_q, this);
  1417. if (++ret >= nr_wake)
  1418. break;
  1419. }
  1420. }
  1421. if (op_ret > 0) {
  1422. op_ret = 0;
  1423. plist_for_each_entry_safe(this, next, &hb2->chain, list) {
  1424. if (match_futex (&this->key, &key2)) {
  1425. if (this->pi_state || this->rt_waiter) {
  1426. ret = -EINVAL;
  1427. goto out_unlock;
  1428. }
  1429. mark_wake_futex(&wake_q, this);
  1430. if (++op_ret >= nr_wake2)
  1431. break;
  1432. }
  1433. }
  1434. ret += op_ret;
  1435. }
  1436. out_unlock:
  1437. double_unlock_hb(hb1, hb2);
  1438. wake_up_q(&wake_q);
  1439. out_put_keys:
  1440. put_futex_key(&key2);
  1441. out_put_key1:
  1442. put_futex_key(&key1);
  1443. out:
  1444. return ret;
  1445. }
  1446. /**
  1447. * requeue_futex() - Requeue a futex_q from one hb to another
  1448. * @q: the futex_q to requeue
  1449. * @hb1: the source hash_bucket
  1450. * @hb2: the target hash_bucket
  1451. * @key2: the new key for the requeued futex_q
  1452. */
  1453. static inline
  1454. void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
  1455. struct futex_hash_bucket *hb2, union futex_key *key2)
  1456. {
  1457. /*
  1458. * If key1 and key2 hash to the same bucket, no need to
  1459. * requeue.
  1460. */
  1461. if (likely(&hb1->chain != &hb2->chain)) {
  1462. plist_del(&q->list, &hb1->chain);
  1463. hb_waiters_dec(hb1);
  1464. hb_waiters_inc(hb2);
  1465. plist_add(&q->list, &hb2->chain);
  1466. q->lock_ptr = &hb2->lock;
  1467. }
  1468. get_futex_key_refs(key2);
  1469. q->key = *key2;
  1470. }
  1471. /**
  1472. * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
  1473. * @q: the futex_q
  1474. * @key: the key of the requeue target futex
  1475. * @hb: the hash_bucket of the requeue target futex
  1476. *
  1477. * During futex_requeue, with requeue_pi=1, it is possible to acquire the
  1478. * target futex if it is uncontended or via a lock steal. Set the futex_q key
  1479. * to the requeue target futex so the waiter can detect the wakeup on the right
  1480. * futex, but remove it from the hb and NULL the rt_waiter so it can detect
  1481. * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
  1482. * to protect access to the pi_state to fixup the owner later. Must be called
  1483. * with both q->lock_ptr and hb->lock held.
  1484. */
  1485. static inline
  1486. void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
  1487. struct futex_hash_bucket *hb)
  1488. {
  1489. get_futex_key_refs(key);
  1490. q->key = *key;
  1491. __unqueue_futex(q);
  1492. WARN_ON(!q->rt_waiter);
  1493. q->rt_waiter = NULL;
  1494. q->lock_ptr = &hb->lock;
  1495. wake_up_state(q->task, TASK_NORMAL);
  1496. }
  1497. /**
  1498. * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
  1499. * @pifutex: the user address of the to futex
  1500. * @hb1: the from futex hash bucket, must be locked by the caller
  1501. * @hb2: the to futex hash bucket, must be locked by the caller
  1502. * @key1: the from futex key
  1503. * @key2: the to futex key
  1504. * @ps: address to store the pi_state pointer
  1505. * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
  1506. *
  1507. * Try and get the lock on behalf of the top waiter if we can do it atomically.
  1508. * Wake the top waiter if we succeed. If the caller specified set_waiters,
  1509. * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
  1510. * hb1 and hb2 must be held by the caller.
  1511. *
  1512. * Return:
  1513. * - 0 - failed to acquire the lock atomically;
  1514. * - >0 - acquired the lock, return value is vpid of the top_waiter
  1515. * - <0 - error
  1516. */
  1517. static int futex_proxy_trylock_atomic(u32 __user *pifutex,
  1518. struct futex_hash_bucket *hb1,
  1519. struct futex_hash_bucket *hb2,
  1520. union futex_key *key1, union futex_key *key2,
  1521. struct futex_pi_state **ps, int set_waiters)
  1522. {
  1523. struct futex_q *top_waiter = NULL;
  1524. u32 curval;
  1525. int ret, vpid;
  1526. if (get_futex_value_locked(&curval, pifutex))
  1527. return -EFAULT;
  1528. if (unlikely(should_fail_futex(true)))
  1529. return -EFAULT;
  1530. /*
  1531. * Find the top_waiter and determine if there are additional waiters.
  1532. * If the caller intends to requeue more than 1 waiter to pifutex,
  1533. * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
  1534. * as we have means to handle the possible fault. If not, don't set
  1535. * the bit unecessarily as it will force the subsequent unlock to enter
  1536. * the kernel.
  1537. */
  1538. top_waiter = futex_top_waiter(hb1, key1);
  1539. /* There are no waiters, nothing for us to do. */
  1540. if (!top_waiter)
  1541. return 0;
  1542. /* Ensure we requeue to the expected futex. */
  1543. if (!match_futex(top_waiter->requeue_pi_key, key2))
  1544. return -EINVAL;
  1545. /*
  1546. * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
  1547. * the contended case or if set_waiters is 1. The pi_state is returned
  1548. * in ps in contended cases.
  1549. */
  1550. vpid = task_pid_vnr(top_waiter->task);
  1551. ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
  1552. set_waiters);
  1553. if (ret == 1) {
  1554. requeue_pi_wake_futex(top_waiter, key2, hb2);
  1555. return vpid;
  1556. }
  1557. return ret;
  1558. }
  1559. /**
  1560. * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
  1561. * @uaddr1: source futex user address
  1562. * @flags: futex flags (FLAGS_SHARED, etc.)
  1563. * @uaddr2: target futex user address
  1564. * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
  1565. * @nr_requeue: number of waiters to requeue (0-INT_MAX)
  1566. * @cmpval: @uaddr1 expected value (or %NULL)
  1567. * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
  1568. * pi futex (pi to pi requeue is not supported)
  1569. *
  1570. * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
  1571. * uaddr2 atomically on behalf of the top waiter.
  1572. *
  1573. * Return:
  1574. * - >=0 - on success, the number of tasks requeued or woken;
  1575. * - <0 - on error
  1576. */
  1577. static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
  1578. u32 __user *uaddr2, int nr_wake, int nr_requeue,
  1579. u32 *cmpval, int requeue_pi)
  1580. {
  1581. union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
  1582. int drop_count = 0, task_count = 0, ret;
  1583. struct futex_pi_state *pi_state = NULL;
  1584. struct futex_hash_bucket *hb1, *hb2;
  1585. struct futex_q *this, *next;
  1586. DEFINE_WAKE_Q(wake_q);
  1587. if (requeue_pi) {
  1588. /*
  1589. * Requeue PI only works on two distinct uaddrs. This
  1590. * check is only valid for private futexes. See below.
  1591. */
  1592. if (uaddr1 == uaddr2)
  1593. return -EINVAL;
  1594. /*
  1595. * requeue_pi requires a pi_state, try to allocate it now
  1596. * without any locks in case it fails.
  1597. */
  1598. if (refill_pi_state_cache())
  1599. return -ENOMEM;
  1600. /*
  1601. * requeue_pi must wake as many tasks as it can, up to nr_wake
  1602. * + nr_requeue, since it acquires the rt_mutex prior to
  1603. * returning to userspace, so as to not leave the rt_mutex with
  1604. * waiters and no owner. However, second and third wake-ups
  1605. * cannot be predicted as they involve race conditions with the
  1606. * first wake and a fault while looking up the pi_state. Both
  1607. * pthread_cond_signal() and pthread_cond_broadcast() should
  1608. * use nr_wake=1.
  1609. */
  1610. if (nr_wake != 1)
  1611. return -EINVAL;
  1612. }
  1613. retry:
  1614. ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
  1615. if (unlikely(ret != 0))
  1616. goto out;
  1617. ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
  1618. requeue_pi ? VERIFY_WRITE : VERIFY_READ);
  1619. if (unlikely(ret != 0))
  1620. goto out_put_key1;
  1621. /*
  1622. * The check above which compares uaddrs is not sufficient for
  1623. * shared futexes. We need to compare the keys:
  1624. */
  1625. if (requeue_pi && match_futex(&key1, &key2)) {
  1626. ret = -EINVAL;
  1627. goto out_put_keys;
  1628. }
  1629. hb1 = hash_futex(&key1);
  1630. hb2 = hash_futex(&key2);
  1631. retry_private:
  1632. hb_waiters_inc(hb2);
  1633. double_lock_hb(hb1, hb2);
  1634. if (likely(cmpval != NULL)) {
  1635. u32 curval;
  1636. ret = get_futex_value_locked(&curval, uaddr1);
  1637. if (unlikely(ret)) {
  1638. double_unlock_hb(hb1, hb2);
  1639. hb_waiters_dec(hb2);
  1640. ret = get_user(curval, uaddr1);
  1641. if (ret)
  1642. goto out_put_keys;
  1643. if (!(flags & FLAGS_SHARED))
  1644. goto retry_private;
  1645. put_futex_key(&key2);
  1646. put_futex_key(&key1);
  1647. goto retry;
  1648. }
  1649. if (curval != *cmpval) {
  1650. ret = -EAGAIN;
  1651. goto out_unlock;
  1652. }
  1653. }
  1654. if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
  1655. /*
  1656. * Attempt to acquire uaddr2 and wake the top waiter. If we
  1657. * intend to requeue waiters, force setting the FUTEX_WAITERS
  1658. * bit. We force this here where we are able to easily handle
  1659. * faults rather in the requeue loop below.
  1660. */
  1661. ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
  1662. &key2, &pi_state, nr_requeue);
  1663. /*
  1664. * At this point the top_waiter has either taken uaddr2 or is
  1665. * waiting on it. If the former, then the pi_state will not
  1666. * exist yet, look it up one more time to ensure we have a
  1667. * reference to it. If the lock was taken, ret contains the
  1668. * vpid of the top waiter task.
  1669. * If the lock was not taken, we have pi_state and an initial
  1670. * refcount on it. In case of an error we have nothing.
  1671. */
  1672. if (ret > 0) {
  1673. WARN_ON(pi_state);
  1674. drop_count++;
  1675. task_count++;
  1676. /*
  1677. * If we acquired the lock, then the user space value
  1678. * of uaddr2 should be vpid. It cannot be changed by
  1679. * the top waiter as it is blocked on hb2 lock if it
  1680. * tries to do so. If something fiddled with it behind
  1681. * our back the pi state lookup might unearth it. So
  1682. * we rather use the known value than rereading and
  1683. * handing potential crap to lookup_pi_state.
  1684. *
  1685. * If that call succeeds then we have pi_state and an
  1686. * initial refcount on it.
  1687. */
  1688. ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
  1689. }
  1690. switch (ret) {
  1691. case 0:
  1692. /* We hold a reference on the pi state. */
  1693. break;
  1694. /* If the above failed, then pi_state is NULL */
  1695. case -EFAULT:
  1696. double_unlock_hb(hb1, hb2);
  1697. hb_waiters_dec(hb2);
  1698. put_futex_key(&key2);
  1699. put_futex_key(&key1);
  1700. ret = fault_in_user_writeable(uaddr2);
  1701. if (!ret)
  1702. goto retry;
  1703. goto out;
  1704. case -EAGAIN:
  1705. /*
  1706. * Two reasons for this:
  1707. * - Owner is exiting and we just wait for the
  1708. * exit to complete.
  1709. * - The user space value changed.
  1710. */
  1711. double_unlock_hb(hb1, hb2);
  1712. hb_waiters_dec(hb2);
  1713. put_futex_key(&key2);
  1714. put_futex_key(&key1);
  1715. cond_resched();
  1716. goto retry;
  1717. default:
  1718. goto out_unlock;
  1719. }
  1720. }
  1721. plist_for_each_entry_safe(this, next, &hb1->chain, list) {
  1722. if (task_count - nr_wake >= nr_requeue)
  1723. break;
  1724. if (!match_futex(&this->key, &key1))
  1725. continue;
  1726. /*
  1727. * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
  1728. * be paired with each other and no other futex ops.
  1729. *
  1730. * We should never be requeueing a futex_q with a pi_state,
  1731. * which is awaiting a futex_unlock_pi().
  1732. */
  1733. if ((requeue_pi && !this->rt_waiter) ||
  1734. (!requeue_pi && this->rt_waiter) ||
  1735. this->pi_state) {
  1736. ret = -EINVAL;
  1737. break;
  1738. }
  1739. /*
  1740. * Wake nr_wake waiters. For requeue_pi, if we acquired the
  1741. * lock, we already woke the top_waiter. If not, it will be
  1742. * woken by futex_unlock_pi().
  1743. */
  1744. if (++task_count <= nr_wake && !requeue_pi) {
  1745. mark_wake_futex(&wake_q, this);
  1746. continue;
  1747. }
  1748. /* Ensure we requeue to the expected futex for requeue_pi. */
  1749. if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
  1750. ret = -EINVAL;
  1751. break;
  1752. }
  1753. /*
  1754. * Requeue nr_requeue waiters and possibly one more in the case
  1755. * of requeue_pi if we couldn't acquire the lock atomically.
  1756. */
  1757. if (requeue_pi) {
  1758. /*
  1759. * Prepare the waiter to take the rt_mutex. Take a
  1760. * refcount on the pi_state and store the pointer in
  1761. * the futex_q object of the waiter.
  1762. */
  1763. get_pi_state(pi_state);
  1764. this->pi_state = pi_state;
  1765. ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
  1766. this->rt_waiter,
  1767. this->task);
  1768. if (ret == 1) {
  1769. /*
  1770. * We got the lock. We do neither drop the
  1771. * refcount on pi_state nor clear
  1772. * this->pi_state because the waiter needs the
  1773. * pi_state for cleaning up the user space
  1774. * value. It will drop the refcount after
  1775. * doing so.
  1776. */
  1777. requeue_pi_wake_futex(this, &key2, hb2);
  1778. drop_count++;
  1779. continue;
  1780. } else if (ret) {
  1781. /*
  1782. * rt_mutex_start_proxy_lock() detected a
  1783. * potential deadlock when we tried to queue
  1784. * that waiter. Drop the pi_state reference
  1785. * which we took above and remove the pointer
  1786. * to the state from the waiters futex_q
  1787. * object.
  1788. */
  1789. this->pi_state = NULL;
  1790. put_pi_state(pi_state);
  1791. /*
  1792. * We stop queueing more waiters and let user
  1793. * space deal with the mess.
  1794. */
  1795. break;
  1796. }
  1797. }
  1798. requeue_futex(this, hb1, hb2, &key2);
  1799. drop_count++;
  1800. }
  1801. /*
  1802. * We took an extra initial reference to the pi_state either
  1803. * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
  1804. * need to drop it here again.
  1805. */
  1806. put_pi_state(pi_state);
  1807. out_unlock:
  1808. double_unlock_hb(hb1, hb2);
  1809. wake_up_q(&wake_q);
  1810. hb_waiters_dec(hb2);
  1811. /*
  1812. * drop_futex_key_refs() must be called outside the spinlocks. During
  1813. * the requeue we moved futex_q's from the hash bucket at key1 to the
  1814. * one at key2 and updated their key pointer. We no longer need to
  1815. * hold the references to key1.
  1816. */
  1817. while (--drop_count >= 0)
  1818. drop_futex_key_refs(&key1);
  1819. out_put_keys:
  1820. put_futex_key(&key2);
  1821. out_put_key1:
  1822. put_futex_key(&key1);
  1823. out:
  1824. return ret ? ret : task_count;
  1825. }
  1826. /* The key must be already stored in q->key. */
  1827. static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
  1828. __acquires(&hb->lock)
  1829. {
  1830. struct futex_hash_bucket *hb;
  1831. hb = hash_futex(&q->key);
  1832. /*
  1833. * Increment the counter before taking the lock so that
  1834. * a potential waker won't miss a to-be-slept task that is
  1835. * waiting for the spinlock. This is safe as all queue_lock()
  1836. * users end up calling queue_me(). Similarly, for housekeeping,
  1837. * decrement the counter at queue_unlock() when some error has
  1838. * occurred and we don't end up adding the task to the list.
  1839. */
  1840. hb_waiters_inc(hb);
  1841. q->lock_ptr = &hb->lock;
  1842. spin_lock(&hb->lock); /* implies smp_mb(); (A) */
  1843. return hb;
  1844. }
  1845. static inline void
  1846. queue_unlock(struct futex_hash_bucket *hb)
  1847. __releases(&hb->lock)
  1848. {
  1849. spin_unlock(&hb->lock);
  1850. hb_waiters_dec(hb);
  1851. }
  1852. static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
  1853. {
  1854. int prio;
  1855. /*
  1856. * The priority used to register this element is
  1857. * - either the real thread-priority for the real-time threads
  1858. * (i.e. threads with a priority lower than MAX_RT_PRIO)
  1859. * - or MAX_RT_PRIO for non-RT threads.
  1860. * Thus, all RT-threads are woken first in priority order, and
  1861. * the others are woken last, in FIFO order.
  1862. */
  1863. prio = min(current->normal_prio, MAX_RT_PRIO);
  1864. plist_node_init(&q->list, prio);
  1865. plist_add(&q->list, &hb->chain);
  1866. q->task = current;
  1867. }
  1868. /**
  1869. * queue_me() - Enqueue the futex_q on the futex_hash_bucket
  1870. * @q: The futex_q to enqueue
  1871. * @hb: The destination hash bucket
  1872. *
  1873. * The hb->lock must be held by the caller, and is released here. A call to
  1874. * queue_me() is typically paired with exactly one call to unqueue_me(). The
  1875. * exceptions involve the PI related operations, which may use unqueue_me_pi()
  1876. * or nothing if the unqueue is done as part of the wake process and the unqueue
  1877. * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
  1878. * an example).
  1879. */
  1880. static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
  1881. __releases(&hb->lock)
  1882. {
  1883. __queue_me(q, hb);
  1884. spin_unlock(&hb->lock);
  1885. }
  1886. /**
  1887. * unqueue_me() - Remove the futex_q from its futex_hash_bucket
  1888. * @q: The futex_q to unqueue
  1889. *
  1890. * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
  1891. * be paired with exactly one earlier call to queue_me().
  1892. *
  1893. * Return:
  1894. * - 1 - if the futex_q was still queued (and we removed unqueued it);
  1895. * - 0 - if the futex_q was already removed by the waking thread
  1896. */
  1897. static int unqueue_me(struct futex_q *q)
  1898. {
  1899. spinlock_t *lock_ptr;
  1900. int ret = 0;
  1901. /* In the common case we don't take the spinlock, which is nice. */
  1902. retry:
  1903. /*
  1904. * q->lock_ptr can change between this read and the following spin_lock.
  1905. * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
  1906. * optimizing lock_ptr out of the logic below.
  1907. */
  1908. lock_ptr = READ_ONCE(q->lock_ptr);
  1909. if (lock_ptr != NULL) {
  1910. spin_lock(lock_ptr);
  1911. /*
  1912. * q->lock_ptr can change between reading it and
  1913. * spin_lock(), causing us to take the wrong lock. This
  1914. * corrects the race condition.
  1915. *
  1916. * Reasoning goes like this: if we have the wrong lock,
  1917. * q->lock_ptr must have changed (maybe several times)
  1918. * between reading it and the spin_lock(). It can
  1919. * change again after the spin_lock() but only if it was
  1920. * already changed before the spin_lock(). It cannot,
  1921. * however, change back to the original value. Therefore
  1922. * we can detect whether we acquired the correct lock.
  1923. */
  1924. if (unlikely(lock_ptr != q->lock_ptr)) {
  1925. spin_unlock(lock_ptr);
  1926. goto retry;
  1927. }
  1928. __unqueue_futex(q);
  1929. BUG_ON(q->pi_state);
  1930. spin_unlock(lock_ptr);
  1931. ret = 1;
  1932. }
  1933. drop_futex_key_refs(&q->key);
  1934. return ret;
  1935. }
  1936. /*
  1937. * PI futexes can not be requeued and must remove themself from the
  1938. * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
  1939. * and dropped here.
  1940. */
  1941. static void unqueue_me_pi(struct futex_q *q)
  1942. __releases(q->lock_ptr)
  1943. {
  1944. __unqueue_futex(q);
  1945. BUG_ON(!q->pi_state);
  1946. put_pi_state(q->pi_state);
  1947. q->pi_state = NULL;
  1948. spin_unlock(q->lock_ptr);
  1949. }
  1950. /*
  1951. * Fixup the pi_state owner with the new owner.
  1952. *
  1953. * Must be called with hash bucket lock held and mm->sem held for non
  1954. * private futexes.
  1955. */
  1956. static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
  1957. struct task_struct *newowner)
  1958. {
  1959. u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
  1960. struct futex_pi_state *pi_state = q->pi_state;
  1961. u32 uval, uninitialized_var(curval), newval;
  1962. struct task_struct *oldowner;
  1963. int ret;
  1964. raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
  1965. oldowner = pi_state->owner;
  1966. /* Owner died? */
  1967. if (!pi_state->owner)
  1968. newtid |= FUTEX_OWNER_DIED;
  1969. /*
  1970. * We are here either because we stole the rtmutex from the
  1971. * previous highest priority waiter or we are the highest priority
  1972. * waiter but have failed to get the rtmutex the first time.
  1973. *
  1974. * We have to replace the newowner TID in the user space variable.
  1975. * This must be atomic as we have to preserve the owner died bit here.
  1976. *
  1977. * Note: We write the user space value _before_ changing the pi_state
  1978. * because we can fault here. Imagine swapped out pages or a fork
  1979. * that marked all the anonymous memory readonly for cow.
  1980. *
  1981. * Modifying pi_state _before_ the user space value would leave the
  1982. * pi_state in an inconsistent state when we fault here, because we
  1983. * need to drop the locks to handle the fault. This might be observed
  1984. * in the PID check in lookup_pi_state.
  1985. */
  1986. retry:
  1987. if (get_futex_value_locked(&uval, uaddr))
  1988. goto handle_fault;
  1989. for (;;) {
  1990. newval = (uval & FUTEX_OWNER_DIED) | newtid;
  1991. if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
  1992. goto handle_fault;
  1993. if (curval == uval)
  1994. break;
  1995. uval = curval;
  1996. }
  1997. /*
  1998. * We fixed up user space. Now we need to fix the pi_state
  1999. * itself.
  2000. */
  2001. if (pi_state->owner != NULL) {
  2002. raw_spin_lock(&pi_state->owner->pi_lock);
  2003. WARN_ON(list_empty(&pi_state->list));
  2004. list_del_init(&pi_state->list);
  2005. raw_spin_unlock(&pi_state->owner->pi_lock);
  2006. }
  2007. pi_state->owner = newowner;
  2008. raw_spin_lock(&newowner->pi_lock);
  2009. WARN_ON(!list_empty(&pi_state->list));
  2010. list_add(&pi_state->list, &newowner->pi_state_list);
  2011. raw_spin_unlock(&newowner->pi_lock);
  2012. raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
  2013. return 0;
  2014. /*
  2015. * To handle the page fault we need to drop the locks here. That gives
  2016. * the other task (either the highest priority waiter itself or the
  2017. * task which stole the rtmutex) the chance to try the fixup of the
  2018. * pi_state. So once we are back from handling the fault we need to
  2019. * check the pi_state after reacquiring the locks and before trying to
  2020. * do another fixup. When the fixup has been done already we simply
  2021. * return.
  2022. *
  2023. * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
  2024. * drop hb->lock since the caller owns the hb -> futex_q relation.
  2025. * Dropping the pi_mutex->wait_lock requires the state revalidate.
  2026. */
  2027. handle_fault:
  2028. raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
  2029. spin_unlock(q->lock_ptr);
  2030. ret = fault_in_user_writeable(uaddr);
  2031. spin_lock(q->lock_ptr);
  2032. raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
  2033. /*
  2034. * Check if someone else fixed it for us:
  2035. */
  2036. if (pi_state->owner != oldowner) {
  2037. ret = 0;
  2038. goto out_unlock;
  2039. }
  2040. if (ret)
  2041. goto out_unlock;
  2042. goto retry;
  2043. out_unlock:
  2044. raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
  2045. return ret;
  2046. }
  2047. static long futex_wait_restart(struct restart_block *restart);
  2048. /**
  2049. * fixup_owner() - Post lock pi_state and corner case management
  2050. * @uaddr: user address of the futex
  2051. * @q: futex_q (contains pi_state and access to the rt_mutex)
  2052. * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
  2053. *
  2054. * After attempting to lock an rt_mutex, this function is called to cleanup
  2055. * the pi_state owner as well as handle race conditions that may allow us to
  2056. * acquire the lock. Must be called with the hb lock held.
  2057. *
  2058. * Return:
  2059. * - 1 - success, lock taken;
  2060. * - 0 - success, lock not taken;
  2061. * - <0 - on error (-EFAULT)
  2062. */
  2063. static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
  2064. {
  2065. int ret = 0;
  2066. if (locked) {
  2067. /*
  2068. * Got the lock. We might not be the anticipated owner if we
  2069. * did a lock-steal - fix up the PI-state in that case:
  2070. *
  2071. * We can safely read pi_state->owner without holding wait_lock
  2072. * because we now own the rt_mutex, only the owner will attempt
  2073. * to change it.
  2074. */
  2075. if (q->pi_state->owner != current)
  2076. ret = fixup_pi_state_owner(uaddr, q, current);
  2077. goto out;
  2078. }
  2079. /*
  2080. * Paranoia check. If we did not take the lock, then we should not be
  2081. * the owner of the rt_mutex.
  2082. */
  2083. if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
  2084. printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
  2085. "pi-state %p\n", ret,
  2086. q->pi_state->pi_mutex.owner,
  2087. q->pi_state->owner);
  2088. }
  2089. out:
  2090. return ret ? ret : locked;
  2091. }
  2092. /**
  2093. * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
  2094. * @hb: the futex hash bucket, must be locked by the caller
  2095. * @q: the futex_q to queue up on
  2096. * @timeout: the prepared hrtimer_sleeper, or null for no timeout
  2097. */
  2098. static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
  2099. struct hrtimer_sleeper *timeout)
  2100. {
  2101. /*
  2102. * The task state is guaranteed to be set before another task can
  2103. * wake it. set_current_state() is implemented using smp_store_mb() and
  2104. * queue_me() calls spin_unlock() upon completion, both serializing
  2105. * access to the hash list and forcing another memory barrier.
  2106. */
  2107. set_current_state(TASK_INTERRUPTIBLE);
  2108. queue_me(q, hb);
  2109. /* Arm the timer */
  2110. if (timeout)
  2111. hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
  2112. /*
  2113. * If we have been removed from the hash list, then another task
  2114. * has tried to wake us, and we can skip the call to schedule().
  2115. */
  2116. if (likely(!plist_node_empty(&q->list))) {
  2117. /*
  2118. * If the timer has already expired, current will already be
  2119. * flagged for rescheduling. Only call schedule if there
  2120. * is no timeout, or if it has yet to expire.
  2121. */
  2122. if (!timeout || timeout->task)
  2123. freezable_schedule();
  2124. }
  2125. __set_current_state(TASK_RUNNING);
  2126. }
  2127. /**
  2128. * futex_wait_setup() - Prepare to wait on a futex
  2129. * @uaddr: the futex userspace address
  2130. * @val: the expected value
  2131. * @flags: futex flags (FLAGS_SHARED, etc.)
  2132. * @q: the associated futex_q
  2133. * @hb: storage for hash_bucket pointer to be returned to caller
  2134. *
  2135. * Setup the futex_q and locate the hash_bucket. Get the futex value and
  2136. * compare it with the expected value. Handle atomic faults internally.
  2137. * Return with the hb lock held and a q.key reference on success, and unlocked
  2138. * with no q.key reference on failure.
  2139. *
  2140. * Return:
  2141. * - 0 - uaddr contains val and hb has been locked;
  2142. * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
  2143. */
  2144. static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
  2145. struct futex_q *q, struct futex_hash_bucket **hb)
  2146. {
  2147. u32 uval;
  2148. int ret;
  2149. /*
  2150. * Access the page AFTER the hash-bucket is locked.
  2151. * Order is important:
  2152. *
  2153. * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
  2154. * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
  2155. *
  2156. * The basic logical guarantee of a futex is that it blocks ONLY
  2157. * if cond(var) is known to be true at the time of blocking, for
  2158. * any cond. If we locked the hash-bucket after testing *uaddr, that
  2159. * would open a race condition where we could block indefinitely with
  2160. * cond(var) false, which would violate the guarantee.
  2161. *
  2162. * On the other hand, we insert q and release the hash-bucket only
  2163. * after testing *uaddr. This guarantees that futex_wait() will NOT
  2164. * absorb a wakeup if *uaddr does not match the desired values
  2165. * while the syscall executes.
  2166. */
  2167. retry:
  2168. ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
  2169. if (unlikely(ret != 0))
  2170. return ret;
  2171. retry_private:
  2172. *hb = queue_lock(q);
  2173. ret = get_futex_value_locked(&uval, uaddr);
  2174. if (ret) {
  2175. queue_unlock(*hb);
  2176. ret = get_user(uval, uaddr);
  2177. if (ret)
  2178. goto out;
  2179. if (!(flags & FLAGS_SHARED))
  2180. goto retry_private;
  2181. put_futex_key(&q->key);
  2182. goto retry;
  2183. }
  2184. if (uval != val) {
  2185. queue_unlock(*hb);
  2186. ret = -EWOULDBLOCK;
  2187. }
  2188. out:
  2189. if (ret)
  2190. put_futex_key(&q->key);
  2191. return ret;
  2192. }
  2193. static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
  2194. ktime_t *abs_time, u32 bitset)
  2195. {
  2196. struct hrtimer_sleeper timeout, *to = NULL;
  2197. struct restart_block *restart;
  2198. struct futex_hash_bucket *hb;
  2199. struct futex_q q = futex_q_init;
  2200. int ret;
  2201. if (!bitset)
  2202. return -EINVAL;
  2203. q.bitset = bitset;
  2204. if (abs_time) {
  2205. to = &timeout;
  2206. hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
  2207. CLOCK_REALTIME : CLOCK_MONOTONIC,
  2208. HRTIMER_MODE_ABS);
  2209. hrtimer_init_sleeper(to, current);
  2210. hrtimer_set_expires_range_ns(&to->timer, *abs_time,
  2211. current->timer_slack_ns);
  2212. }
  2213. retry:
  2214. /*
  2215. * Prepare to wait on uaddr. On success, holds hb lock and increments
  2216. * q.key refs.
  2217. */
  2218. ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
  2219. if (ret)
  2220. goto out;
  2221. /* queue_me and wait for wakeup, timeout, or a signal. */
  2222. futex_wait_queue_me(hb, &q, to);
  2223. /* If we were woken (and unqueued), we succeeded, whatever. */
  2224. ret = 0;
  2225. /* unqueue_me() drops q.key ref */
  2226. if (!unqueue_me(&q))
  2227. goto out;
  2228. ret = -ETIMEDOUT;
  2229. if (to && !to->task)
  2230. goto out;
  2231. /*
  2232. * We expect signal_pending(current), but we might be the
  2233. * victim of a spurious wakeup as well.
  2234. */
  2235. if (!signal_pending(current))
  2236. goto retry;
  2237. ret = -ERESTARTSYS;
  2238. if (!abs_time)
  2239. goto out;
  2240. restart = &current->restart_block;
  2241. restart->fn = futex_wait_restart;
  2242. restart->futex.uaddr = uaddr;
  2243. restart->futex.val = val;
  2244. restart->futex.time = *abs_time;
  2245. restart->futex.bitset = bitset;
  2246. restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
  2247. ret = -ERESTART_RESTARTBLOCK;
  2248. out:
  2249. if (to) {
  2250. hrtimer_cancel(&to->timer);
  2251. destroy_hrtimer_on_stack(&to->timer);
  2252. }
  2253. return ret;
  2254. }
  2255. static long futex_wait_restart(struct restart_block *restart)
  2256. {
  2257. u32 __user *uaddr = restart->futex.uaddr;
  2258. ktime_t t, *tp = NULL;
  2259. if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
  2260. t = restart->futex.time;
  2261. tp = &t;
  2262. }
  2263. restart->fn = do_no_restart_syscall;
  2264. return (long)futex_wait(uaddr, restart->futex.flags,
  2265. restart->futex.val, tp, restart->futex.bitset);
  2266. }
  2267. /*
  2268. * Userspace tried a 0 -> TID atomic transition of the futex value
  2269. * and failed. The kernel side here does the whole locking operation:
  2270. * if there are waiters then it will block as a consequence of relying
  2271. * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
  2272. * a 0 value of the futex too.).
  2273. *
  2274. * Also serves as futex trylock_pi()'ing, and due semantics.
  2275. */
  2276. static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
  2277. ktime_t *time, int trylock)
  2278. {
  2279. struct hrtimer_sleeper timeout, *to = NULL;
  2280. struct futex_pi_state *pi_state = NULL;
  2281. struct rt_mutex_waiter rt_waiter;
  2282. struct futex_hash_bucket *hb;
  2283. struct futex_q q = futex_q_init;
  2284. int res, ret;
  2285. if (refill_pi_state_cache())
  2286. return -ENOMEM;
  2287. if (time) {
  2288. to = &timeout;
  2289. hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
  2290. HRTIMER_MODE_ABS);
  2291. hrtimer_init_sleeper(to, current);
  2292. hrtimer_set_expires(&to->timer, *time);
  2293. }
  2294. retry:
  2295. ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
  2296. if (unlikely(ret != 0))
  2297. goto out;
  2298. retry_private:
  2299. hb = queue_lock(&q);
  2300. ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
  2301. if (unlikely(ret)) {
  2302. /*
  2303. * Atomic work succeeded and we got the lock,
  2304. * or failed. Either way, we do _not_ block.
  2305. */
  2306. switch (ret) {
  2307. case 1:
  2308. /* We got the lock. */
  2309. ret = 0;
  2310. goto out_unlock_put_key;
  2311. case -EFAULT:
  2312. goto uaddr_faulted;
  2313. case -EAGAIN:
  2314. /*
  2315. * Two reasons for this:
  2316. * - Task is exiting and we just wait for the
  2317. * exit to complete.
  2318. * - The user space value changed.
  2319. */
  2320. queue_unlock(hb);
  2321. put_futex_key(&q.key);
  2322. cond_resched();
  2323. goto retry;
  2324. default:
  2325. goto out_unlock_put_key;
  2326. }
  2327. }
  2328. WARN_ON(!q.pi_state);
  2329. /*
  2330. * Only actually queue now that the atomic ops are done:
  2331. */
  2332. __queue_me(&q, hb);
  2333. if (trylock) {
  2334. ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
  2335. /* Fixup the trylock return value: */
  2336. ret = ret ? 0 : -EWOULDBLOCK;
  2337. goto no_block;
  2338. }
  2339. rt_mutex_init_waiter(&rt_waiter);
  2340. /*
  2341. * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
  2342. * hold it while doing rt_mutex_start_proxy(), because then it will
  2343. * include hb->lock in the blocking chain, even through we'll not in
  2344. * fact hold it while blocking. This will lead it to report -EDEADLK
  2345. * and BUG when futex_unlock_pi() interleaves with this.
  2346. *
  2347. * Therefore acquire wait_lock while holding hb->lock, but drop the
  2348. * latter before calling rt_mutex_start_proxy_lock(). This still fully
  2349. * serializes against futex_unlock_pi() as that does the exact same
  2350. * lock handoff sequence.
  2351. */
  2352. raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
  2353. spin_unlock(q.lock_ptr);
  2354. ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
  2355. raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
  2356. if (ret) {
  2357. if (ret == 1)
  2358. ret = 0;
  2359. spin_lock(q.lock_ptr);
  2360. goto no_block;
  2361. }
  2362. if (unlikely(to))
  2363. hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);
  2364. ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
  2365. spin_lock(q.lock_ptr);
  2366. /*
  2367. * If we failed to acquire the lock (signal/timeout), we must
  2368. * first acquire the hb->lock before removing the lock from the
  2369. * rt_mutex waitqueue, such that we can keep the hb and rt_mutex
  2370. * wait lists consistent.
  2371. *
  2372. * In particular; it is important that futex_unlock_pi() can not
  2373. * observe this inconsistency.
  2374. */
  2375. if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
  2376. ret = 0;
  2377. no_block:
  2378. /*
  2379. * Fixup the pi_state owner and possibly acquire the lock if we
  2380. * haven't already.
  2381. */
  2382. res = fixup_owner(uaddr, &q, !ret);
  2383. /*
  2384. * If fixup_owner() returned an error, proprogate that. If it acquired
  2385. * the lock, clear our -ETIMEDOUT or -EINTR.
  2386. */
  2387. if (res)
  2388. ret = (res < 0) ? res : 0;
  2389. /*
  2390. * If fixup_owner() faulted and was unable to handle the fault, unlock
  2391. * it and return the fault to userspace.
  2392. */
  2393. if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
  2394. pi_state = q.pi_state;
  2395. get_pi_state(pi_state);
  2396. }
  2397. /* Unqueue and drop the lock */
  2398. unqueue_me_pi(&q);
  2399. if (pi_state) {
  2400. rt_mutex_futex_unlock(&pi_state->pi_mutex);
  2401. put_pi_state(pi_state);
  2402. }
  2403. goto out_put_key;
  2404. out_unlock_put_key:
  2405. queue_unlock(hb);
  2406. out_put_key:
  2407. put_futex_key(&q.key);
  2408. out:
  2409. if (to) {
  2410. hrtimer_cancel(&to->timer);
  2411. destroy_hrtimer_on_stack(&to->timer);
  2412. }
  2413. return ret != -EINTR ? ret : -ERESTARTNOINTR;
  2414. uaddr_faulted:
  2415. queue_unlock(hb);
  2416. ret = fault_in_user_writeable(uaddr);
  2417. if (ret)
  2418. goto out_put_key;
  2419. if (!(flags & FLAGS_SHARED))
  2420. goto retry_private;
  2421. put_futex_key(&q.key);
  2422. goto retry;
  2423. }
  2424. /*
  2425. * Userspace attempted a TID -> 0 atomic transition, and failed.
  2426. * This is the in-kernel slowpath: we look up the PI state (if any),
  2427. * and do the rt-mutex unlock.
  2428. */
  2429. static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
  2430. {
  2431. u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
  2432. union futex_key key = FUTEX_KEY_INIT;
  2433. struct futex_hash_bucket *hb;
  2434. struct futex_q *top_waiter;
  2435. int ret;
  2436. retry:
  2437. if (get_user(uval, uaddr))
  2438. return -EFAULT;
  2439. /*
  2440. * We release only a lock we actually own:
  2441. */
  2442. if ((uval & FUTEX_TID_MASK) != vpid)
  2443. return -EPERM;
  2444. ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
  2445. if (ret)
  2446. return ret;
  2447. hb = hash_futex(&key);
  2448. spin_lock(&hb->lock);
  2449. /*
  2450. * Check waiters first. We do not trust user space values at
  2451. * all and we at least want to know if user space fiddled
  2452. * with the futex value instead of blindly unlocking.
  2453. */
  2454. top_waiter = futex_top_waiter(hb, &key);
  2455. if (top_waiter) {
  2456. struct futex_pi_state *pi_state = top_waiter->pi_state;
  2457. ret = -EINVAL;
  2458. if (!pi_state)
  2459. goto out_unlock;
  2460. /*
  2461. * If current does not own the pi_state then the futex is
  2462. * inconsistent and user space fiddled with the futex value.
  2463. */
  2464. if (pi_state->owner != current)
  2465. goto out_unlock;
  2466. get_pi_state(pi_state);
  2467. /*
  2468. * By taking wait_lock while still holding hb->lock, we ensure
  2469. * there is no point where we hold neither; and therefore
  2470. * wake_futex_pi() must observe a state consistent with what we
  2471. * observed.
  2472. */
  2473. raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
  2474. spin_unlock(&hb->lock);
  2475. ret = wake_futex_pi(uaddr, uval, pi_state);
  2476. put_pi_state(pi_state);
  2477. /*
  2478. * Success, we're done! No tricky corner cases.
  2479. */
  2480. if (!ret)
  2481. goto out_putkey;
  2482. /*
  2483. * The atomic access to the futex value generated a
  2484. * pagefault, so retry the user-access and the wakeup:
  2485. */
  2486. if (ret == -EFAULT)
  2487. goto pi_faulted;
  2488. /*
  2489. * A unconditional UNLOCK_PI op raced against a waiter
  2490. * setting the FUTEX_WAITERS bit. Try again.
  2491. */
  2492. if (ret == -EAGAIN) {
  2493. put_futex_key(&key);
  2494. goto retry;
  2495. }
  2496. /*
  2497. * wake_futex_pi has detected invalid state. Tell user
  2498. * space.
  2499. */
  2500. goto out_putkey;
  2501. }
  2502. /*
  2503. * We have no kernel internal state, i.e. no waiters in the
  2504. * kernel. Waiters which are about to queue themselves are stuck
  2505. * on hb->lock. So we can safely ignore them. We do neither
  2506. * preserve the WAITERS bit not the OWNER_DIED one. We are the
  2507. * owner.
  2508. */
  2509. if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0)) {
  2510. spin_unlock(&hb->lock);
  2511. goto pi_faulted;
  2512. }
  2513. /*
  2514. * If uval has changed, let user space handle it.
  2515. */
  2516. ret = (curval == uval) ? 0 : -EAGAIN;
  2517. out_unlock:
  2518. spin_unlock(&hb->lock);
  2519. out_putkey:
  2520. put_futex_key(&key);
  2521. return ret;
  2522. pi_faulted:
  2523. put_futex_key(&key);
  2524. ret = fault_in_user_writeable(uaddr);
  2525. if (!ret)
  2526. goto retry;
  2527. return ret;
  2528. }
  2529. /**
  2530. * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
  2531. * @hb: the hash_bucket futex_q was original enqueued on
  2532. * @q: the futex_q woken while waiting to be requeued
  2533. * @key2: the futex_key of the requeue target futex
  2534. * @timeout: the timeout associated with the wait (NULL if none)
  2535. *
  2536. * Detect if the task was woken on the initial futex as opposed to the requeue
  2537. * target futex. If so, determine if it was a timeout or a signal that caused
  2538. * the wakeup and return the appropriate error code to the caller. Must be
  2539. * called with the hb lock held.
  2540. *
  2541. * Return:
  2542. * - 0 = no early wakeup detected;
  2543. * - <0 = -ETIMEDOUT or -ERESTARTNOINTR
  2544. */
  2545. static inline
  2546. int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
  2547. struct futex_q *q, union futex_key *key2,
  2548. struct hrtimer_sleeper *timeout)
  2549. {
  2550. int ret = 0;
  2551. /*
  2552. * With the hb lock held, we avoid races while we process the wakeup.
  2553. * We only need to hold hb (and not hb2) to ensure atomicity as the
  2554. * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
  2555. * It can't be requeued from uaddr2 to something else since we don't
  2556. * support a PI aware source futex for requeue.
  2557. */
  2558. if (!match_futex(&q->key, key2)) {
  2559. WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
  2560. /*
  2561. * We were woken prior to requeue by a timeout or a signal.
  2562. * Unqueue the futex_q and determine which it was.
  2563. */
  2564. plist_del(&q->list, &hb->chain);
  2565. hb_waiters_dec(hb);
  2566. /* Handle spurious wakeups gracefully */
  2567. ret = -EWOULDBLOCK;
  2568. if (timeout && !timeout->task)
  2569. ret = -ETIMEDOUT;
  2570. else if (signal_pending(current))
  2571. ret = -ERESTARTNOINTR;
  2572. }
  2573. return ret;
  2574. }
  2575. /**
  2576. * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
  2577. * @uaddr: the futex we initially wait on (non-pi)
  2578. * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
  2579. * the same type, no requeueing from private to shared, etc.
  2580. * @val: the expected value of uaddr
  2581. * @abs_time: absolute timeout
  2582. * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
  2583. * @uaddr2: the pi futex we will take prior to returning to user-space
  2584. *
  2585. * The caller will wait on uaddr and will be requeued by futex_requeue() to
  2586. * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
  2587. * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
  2588. * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
  2589. * without one, the pi logic would not know which task to boost/deboost, if
  2590. * there was a need to.
  2591. *
  2592. * We call schedule in futex_wait_queue_me() when we enqueue and return there
  2593. * via the following--
  2594. * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
  2595. * 2) wakeup on uaddr2 after a requeue
  2596. * 3) signal
  2597. * 4) timeout
  2598. *
  2599. * If 3, cleanup and return -ERESTARTNOINTR.
  2600. *
  2601. * If 2, we may then block on trying to take the rt_mutex and return via:
  2602. * 5) successful lock
  2603. * 6) signal
  2604. * 7) timeout
  2605. * 8) other lock acquisition failure
  2606. *
  2607. * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
  2608. *
  2609. * If 4 or 7, we cleanup and return with -ETIMEDOUT.
  2610. *
  2611. * Return:
  2612. * - 0 - On success;
  2613. * - <0 - On error
  2614. */
  2615. static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
  2616. u32 val, ktime_t *abs_time, u32 bitset,
  2617. u32 __user *uaddr2)
  2618. {
  2619. struct hrtimer_sleeper timeout, *to = NULL;
  2620. struct futex_pi_state *pi_state = NULL;
  2621. struct rt_mutex_waiter rt_waiter;
  2622. struct futex_hash_bucket *hb;
  2623. union futex_key key2 = FUTEX_KEY_INIT;
  2624. struct futex_q q = futex_q_init;
  2625. int res, ret;
  2626. if (uaddr == uaddr2)
  2627. return -EINVAL;
  2628. if (!bitset)
  2629. return -EINVAL;
  2630. if (abs_time) {
  2631. to = &timeout;
  2632. hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
  2633. CLOCK_REALTIME : CLOCK_MONOTONIC,
  2634. HRTIMER_MODE_ABS);
  2635. hrtimer_init_sleeper(to, current);
  2636. hrtimer_set_expires_range_ns(&to->timer, *abs_time,
  2637. current->timer_slack_ns);
  2638. }
  2639. /*
  2640. * The waiter is allocated on our stack, manipulated by the requeue
  2641. * code while we sleep on uaddr.
  2642. */
  2643. rt_mutex_init_waiter(&rt_waiter);
  2644. ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
  2645. if (unlikely(ret != 0))
  2646. goto out;
  2647. q.bitset = bitset;
  2648. q.rt_waiter = &rt_waiter;
  2649. q.requeue_pi_key = &key2;
  2650. /*
  2651. * Prepare to wait on uaddr. On success, increments q.key (key1) ref
  2652. * count.
  2653. */
  2654. ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
  2655. if (ret)
  2656. goto out_key2;
  2657. /*
  2658. * The check above which compares uaddrs is not sufficient for
  2659. * shared futexes. We need to compare the keys:
  2660. */
  2661. if (match_futex(&q.key, &key2)) {
  2662. queue_unlock(hb);
  2663. ret = -EINVAL;
  2664. goto out_put_keys;
  2665. }
  2666. /* Queue the futex_q, drop the hb lock, wait for wakeup. */
  2667. futex_wait_queue_me(hb, &q, to);
  2668. spin_lock(&hb->lock);
  2669. ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
  2670. spin_unlock(&hb->lock);
  2671. if (ret)
  2672. goto out_put_keys;
  2673. /*
  2674. * In order for us to be here, we know our q.key == key2, and since
  2675. * we took the hb->lock above, we also know that futex_requeue() has
  2676. * completed and we no longer have to concern ourselves with a wakeup
  2677. * race with the atomic proxy lock acquisition by the requeue code. The
  2678. * futex_requeue dropped our key1 reference and incremented our key2
  2679. * reference count.
  2680. */
  2681. /* Check if the requeue code acquired the second futex for us. */
  2682. if (!q.rt_waiter) {
  2683. /*
  2684. * Got the lock. We might not be the anticipated owner if we
  2685. * did a lock-steal - fix up the PI-state in that case.
  2686. */
  2687. if (q.pi_state && (q.pi_state->owner != current)) {
  2688. spin_lock(q.lock_ptr);
  2689. ret = fixup_pi_state_owner(uaddr2, &q, current);
  2690. if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
  2691. pi_state = q.pi_state;
  2692. get_pi_state(pi_state);
  2693. }
  2694. /*
  2695. * Drop the reference to the pi state which
  2696. * the requeue_pi() code acquired for us.
  2697. */
  2698. put_pi_state(q.pi_state);
  2699. spin_unlock(q.lock_ptr);
  2700. }
  2701. } else {
  2702. struct rt_mutex *pi_mutex;
  2703. /*
  2704. * We have been woken up by futex_unlock_pi(), a timeout, or a
  2705. * signal. futex_unlock_pi() will not destroy the lock_ptr nor
  2706. * the pi_state.
  2707. */
  2708. WARN_ON(!q.pi_state);
  2709. pi_mutex = &q.pi_state->pi_mutex;
  2710. ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
  2711. spin_lock(q.lock_ptr);
  2712. if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
  2713. ret = 0;
  2714. debug_rt_mutex_free_waiter(&rt_waiter);
  2715. /*
  2716. * Fixup the pi_state owner and possibly acquire the lock if we
  2717. * haven't already.
  2718. */
  2719. res = fixup_owner(uaddr2, &q, !ret);
  2720. /*
  2721. * If fixup_owner() returned an error, proprogate that. If it
  2722. * acquired the lock, clear -ETIMEDOUT or -EINTR.
  2723. */
  2724. if (res)
  2725. ret = (res < 0) ? res : 0;
  2726. /*
  2727. * If fixup_pi_state_owner() faulted and was unable to handle
  2728. * the fault, unlock the rt_mutex and return the fault to
  2729. * userspace.
  2730. */
  2731. if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
  2732. pi_state = q.pi_state;
  2733. get_pi_state(pi_state);
  2734. }
  2735. /* Unqueue and drop the lock. */
  2736. unqueue_me_pi(&q);
  2737. }
  2738. if (pi_state) {
  2739. rt_mutex_futex_unlock(&pi_state->pi_mutex);
  2740. put_pi_state(pi_state);
  2741. }
  2742. if (ret == -EINTR) {
  2743. /*
  2744. * We've already been requeued, but cannot restart by calling
  2745. * futex_lock_pi() directly. We could restart this syscall, but
  2746. * it would detect that the user space "val" changed and return
  2747. * -EWOULDBLOCK. Save the overhead of the restart and return
  2748. * -EWOULDBLOCK directly.
  2749. */
  2750. ret = -EWOULDBLOCK;
  2751. }
  2752. out_put_keys:
  2753. put_futex_key(&q.key);
  2754. out_key2:
  2755. put_futex_key(&key2);
  2756. out:
  2757. if (to) {
  2758. hrtimer_cancel(&to->timer);
  2759. destroy_hrtimer_on_stack(&to->timer);
  2760. }
  2761. return ret;
  2762. }
  2763. /*
  2764. * Support for robust futexes: the kernel cleans up held futexes at
  2765. * thread exit time.
  2766. *
  2767. * Implementation: user-space maintains a per-thread list of locks it
  2768. * is holding. Upon do_exit(), the kernel carefully walks this list,
  2769. * and marks all locks that are owned by this thread with the
  2770. * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
  2771. * always manipulated with the lock held, so the list is private and
  2772. * per-thread. Userspace also maintains a per-thread 'list_op_pending'
  2773. * field, to allow the kernel to clean up if the thread dies after
  2774. * acquiring the lock, but just before it could have added itself to
  2775. * the list. There can only be one such pending lock.
  2776. */
  2777. /**
  2778. * sys_set_robust_list() - Set the robust-futex list head of a task
  2779. * @head: pointer to the list-head
  2780. * @len: length of the list-head, as userspace expects
  2781. */
  2782. SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
  2783. size_t, len)
  2784. {
  2785. if (!futex_cmpxchg_enabled)
  2786. return -ENOSYS;
  2787. /*
  2788. * The kernel knows only one size for now:
  2789. */
  2790. if (unlikely(len != sizeof(*head)))
  2791. return -EINVAL;
  2792. current->robust_list = head;
  2793. return 0;
  2794. }
  2795. /**
  2796. * sys_get_robust_list() - Get the robust-futex list head of a task
  2797. * @pid: pid of the process [zero for current task]
  2798. * @head_ptr: pointer to a list-head pointer, the kernel fills it in
  2799. * @len_ptr: pointer to a length field, the kernel fills in the header size
  2800. */
  2801. SYSCALL_DEFINE3(get_robust_list, int, pid,
  2802. struct robust_list_head __user * __user *, head_ptr,
  2803. size_t __user *, len_ptr)
  2804. {
  2805. struct robust_list_head __user *head;
  2806. unsigned long ret;
  2807. struct task_struct *p;
  2808. if (!futex_cmpxchg_enabled)
  2809. return -ENOSYS;
  2810. rcu_read_lock();
  2811. ret = -ESRCH;
  2812. if (!pid)
  2813. p = current;
  2814. else {
  2815. p = find_task_by_vpid(pid);
  2816. if (!p)
  2817. goto err_unlock;
  2818. }
  2819. ret = -EPERM;
  2820. if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
  2821. goto err_unlock;
  2822. head = p->robust_list;
  2823. rcu_read_unlock();
  2824. if (put_user(sizeof(*head), len_ptr))
  2825. return -EFAULT;
  2826. return put_user(head, head_ptr);
  2827. err_unlock:
  2828. rcu_read_unlock();
  2829. return ret;
  2830. }
  2831. /*
  2832. * Process a futex-list entry, check whether it's owned by the
  2833. * dying task, and do notification if so:
  2834. */
  2835. int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
  2836. {
  2837. u32 uval, uninitialized_var(nval), mval;
  2838. retry:
  2839. if (get_user(uval, uaddr))
  2840. return -1;
  2841. if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
  2842. /*
  2843. * Ok, this dying thread is truly holding a futex
  2844. * of interest. Set the OWNER_DIED bit atomically
  2845. * via cmpxchg, and if the value had FUTEX_WAITERS
  2846. * set, wake up a waiter (if any). (We have to do a
  2847. * futex_wake() even if OWNER_DIED is already set -
  2848. * to handle the rare but possible case of recursive
  2849. * thread-death.) The rest of the cleanup is done in
  2850. * userspace.
  2851. */
  2852. mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
  2853. /*
  2854. * We are not holding a lock here, but we want to have
  2855. * the pagefault_disable/enable() protection because
  2856. * we want to handle the fault gracefully. If the
  2857. * access fails we try to fault in the futex with R/W
  2858. * verification via get_user_pages. get_user() above
  2859. * does not guarantee R/W access. If that fails we
  2860. * give up and leave the futex locked.
  2861. */
  2862. if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
  2863. if (fault_in_user_writeable(uaddr))
  2864. return -1;
  2865. goto retry;
  2866. }
  2867. if (nval != uval)
  2868. goto retry;
  2869. /*
  2870. * Wake robust non-PI futexes here. The wakeup of
  2871. * PI futexes happens in exit_pi_state():
  2872. */
  2873. if (!pi && (uval & FUTEX_WAITERS))
  2874. futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
  2875. }
  2876. return 0;
  2877. }
  2878. /*
  2879. * Fetch a robust-list pointer. Bit 0 signals PI futexes:
  2880. */
  2881. static inline int fetch_robust_entry(struct robust_list __user **entry,
  2882. struct robust_list __user * __user *head,
  2883. unsigned int *pi)
  2884. {
  2885. unsigned long uentry;
  2886. if (get_user(uentry, (unsigned long __user *)head))
  2887. return -EFAULT;
  2888. *entry = (void __user *)(uentry & ~1UL);
  2889. *pi = uentry & 1;
  2890. return 0;
  2891. }
  2892. /*
  2893. * Walk curr->robust_list (very carefully, it's a userspace list!)
  2894. * and mark any locks found there dead, and notify any waiters.
  2895. *
  2896. * We silently return on any sign of list-walking problem.
  2897. */
  2898. void exit_robust_list(struct task_struct *curr)
  2899. {
  2900. struct robust_list_head __user *head = curr->robust_list;
  2901. struct robust_list __user *entry, *next_entry, *pending;
  2902. unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
  2903. unsigned int uninitialized_var(next_pi);
  2904. unsigned long futex_offset;
  2905. int rc;
  2906. if (!futex_cmpxchg_enabled)
  2907. return;
  2908. /*
  2909. * Fetch the list head (which was registered earlier, via
  2910. * sys_set_robust_list()):
  2911. */
  2912. if (fetch_robust_entry(&entry, &head->list.next, &pi))
  2913. return;
  2914. /*
  2915. * Fetch the relative futex offset:
  2916. */
  2917. if (get_user(futex_offset, &head->futex_offset))
  2918. return;
  2919. /*
  2920. * Fetch any possibly pending lock-add first, and handle it
  2921. * if it exists:
  2922. */
  2923. if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
  2924. return;
  2925. next_entry = NULL; /* avoid warning with gcc */
  2926. while (entry != &head->list) {
  2927. /*
  2928. * Fetch the next entry in the list before calling
  2929. * handle_futex_death:
  2930. */
  2931. rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
  2932. /*
  2933. * A pending lock might already be on the list, so
  2934. * don't process it twice:
  2935. */
  2936. if (entry != pending)
  2937. if (handle_futex_death((void __user *)entry + futex_offset,
  2938. curr, pi))
  2939. return;
  2940. if (rc)
  2941. return;
  2942. entry = next_entry;
  2943. pi = next_pi;
  2944. /*
  2945. * Avoid excessively long or circular lists:
  2946. */
  2947. if (!--limit)
  2948. break;
  2949. cond_resched();
  2950. }
  2951. if (pending)
  2952. handle_futex_death((void __user *)pending + futex_offset,
  2953. curr, pip);
  2954. }
  2955. long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
  2956. u32 __user *uaddr2, u32 val2, u32 val3)
  2957. {
  2958. int cmd = op & FUTEX_CMD_MASK;
  2959. unsigned int flags = 0;
  2960. if (!(op & FUTEX_PRIVATE_FLAG))
  2961. flags |= FLAGS_SHARED;
  2962. if (op & FUTEX_CLOCK_REALTIME) {
  2963. flags |= FLAGS_CLOCKRT;
  2964. if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
  2965. cmd != FUTEX_WAIT_REQUEUE_PI)
  2966. return -ENOSYS;
  2967. }
  2968. switch (cmd) {
  2969. case FUTEX_LOCK_PI:
  2970. case FUTEX_UNLOCK_PI:
  2971. case FUTEX_TRYLOCK_PI:
  2972. case FUTEX_WAIT_REQUEUE_PI:
  2973. case FUTEX_CMP_REQUEUE_PI:
  2974. if (!futex_cmpxchg_enabled)
  2975. return -ENOSYS;
  2976. }
  2977. switch (cmd) {
  2978. case FUTEX_WAIT:
  2979. val3 = FUTEX_BITSET_MATCH_ANY;
  2980. case FUTEX_WAIT_BITSET:
  2981. return futex_wait(uaddr, flags, val, timeout, val3);
  2982. case FUTEX_WAKE:
  2983. val3 = FUTEX_BITSET_MATCH_ANY;
  2984. case FUTEX_WAKE_BITSET:
  2985. return futex_wake(uaddr, flags, val, val3);
  2986. case FUTEX_REQUEUE:
  2987. return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
  2988. case FUTEX_CMP_REQUEUE:
  2989. return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
  2990. case FUTEX_WAKE_OP:
  2991. return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
  2992. case FUTEX_LOCK_PI:
  2993. return futex_lock_pi(uaddr, flags, timeout, 0);
  2994. case FUTEX_UNLOCK_PI:
  2995. return futex_unlock_pi(uaddr, flags);
  2996. case FUTEX_TRYLOCK_PI:
  2997. return futex_lock_pi(uaddr, flags, NULL, 1);
  2998. case FUTEX_WAIT_REQUEUE_PI:
  2999. val3 = FUTEX_BITSET_MATCH_ANY;
  3000. return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
  3001. uaddr2);
  3002. case FUTEX_CMP_REQUEUE_PI:
  3003. return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
  3004. }
  3005. return -ENOSYS;
  3006. }
  3007. SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
  3008. struct timespec __user *, utime, u32 __user *, uaddr2,
  3009. u32, val3)
  3010. {
  3011. struct timespec ts;
  3012. ktime_t t, *tp = NULL;
  3013. u32 val2 = 0;
  3014. int cmd = op & FUTEX_CMD_MASK;
  3015. if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
  3016. cmd == FUTEX_WAIT_BITSET ||
  3017. cmd == FUTEX_WAIT_REQUEUE_PI)) {
  3018. if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
  3019. return -EFAULT;
  3020. if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
  3021. return -EFAULT;
  3022. if (!timespec_valid(&ts))
  3023. return -EINVAL;
  3024. t = timespec_to_ktime(ts);
  3025. if (cmd == FUTEX_WAIT)
  3026. t = ktime_add_safe(ktime_get(), t);
  3027. tp = &t;
  3028. }
  3029. /*
  3030. * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
  3031. * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
  3032. */
  3033. if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
  3034. cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
  3035. val2 = (u32) (unsigned long) utime;
  3036. return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
  3037. }
  3038. static void __init futex_detect_cmpxchg(void)
  3039. {
  3040. #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
  3041. u32 curval;
  3042. /*
  3043. * This will fail and we want it. Some arch implementations do
  3044. * runtime detection of the futex_atomic_cmpxchg_inatomic()
  3045. * functionality. We want to know that before we call in any
  3046. * of the complex code paths. Also we want to prevent
  3047. * registration of robust lists in that case. NULL is
  3048. * guaranteed to fault and we get -EFAULT on functional
  3049. * implementation, the non-functional ones will return
  3050. * -ENOSYS.
  3051. */
  3052. if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
  3053. futex_cmpxchg_enabled = 1;
  3054. #endif
  3055. }
  3056. static int __init futex_init(void)
  3057. {
  3058. unsigned int futex_shift;
  3059. unsigned long i;
  3060. #if CONFIG_BASE_SMALL
  3061. futex_hashsize = 16;
  3062. #else
  3063. futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
  3064. #endif
  3065. futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
  3066. futex_hashsize, 0,
  3067. futex_hashsize < 256 ? HASH_SMALL : 0,
  3068. &futex_shift, NULL,
  3069. futex_hashsize, futex_hashsize);
  3070. futex_hashsize = 1UL << futex_shift;
  3071. futex_detect_cmpxchg();
  3072. for (i = 0; i < futex_hashsize; i++) {
  3073. atomic_set(&futex_queues[i].waiters, 0);
  3074. plist_head_init(&futex_queues[i].chain);
  3075. spin_lock_init(&futex_queues[i].lock);
  3076. }
  3077. return 0;
  3078. }
  3079. core_initcall(futex_init);