sched.c 195 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/reciprocal_div.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <asm/tlb.h>
  69. #include <asm/irq_regs.h>
  70. /*
  71. * Scheduler clock - returns current time in nanosec units.
  72. * This is default implementation.
  73. * Architectures and sub-architectures can override this.
  74. */
  75. unsigned long long __attribute__((weak)) sched_clock(void)
  76. {
  77. return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
  78. }
  79. /*
  80. * Convert user-nice values [ -20 ... 0 ... 19 ]
  81. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  82. * and back.
  83. */
  84. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  85. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  86. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  87. /*
  88. * 'User priority' is the nice value converted to something we
  89. * can work with better when scaling various scheduler parameters,
  90. * it's a [ 0 ... 39 ] range.
  91. */
  92. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  93. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  94. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  95. /*
  96. * Helpers for converting nanosecond timing to jiffy resolution
  97. */
  98. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  99. #define NICE_0_LOAD SCHED_LOAD_SCALE
  100. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  101. /*
  102. * These are the 'tuning knobs' of the scheduler:
  103. *
  104. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  105. * Timeslices get refilled after they expire.
  106. */
  107. #define DEF_TIMESLICE (100 * HZ / 1000)
  108. #ifdef CONFIG_SMP
  109. /*
  110. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  111. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  112. */
  113. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  114. {
  115. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  116. }
  117. /*
  118. * Each time a sched group cpu_power is changed,
  119. * we must compute its reciprocal value
  120. */
  121. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  122. {
  123. sg->__cpu_power += val;
  124. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  125. }
  126. #endif
  127. static inline int rt_policy(int policy)
  128. {
  129. if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
  130. return 1;
  131. return 0;
  132. }
  133. static inline int task_has_rt_policy(struct task_struct *p)
  134. {
  135. return rt_policy(p->policy);
  136. }
  137. /*
  138. * This is the priority-queue data structure of the RT scheduling class:
  139. */
  140. struct rt_prio_array {
  141. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  142. struct list_head queue[MAX_RT_PRIO];
  143. };
  144. #ifdef CONFIG_GROUP_SCHED
  145. #include <linux/cgroup.h>
  146. struct cfs_rq;
  147. static LIST_HEAD(task_groups);
  148. /* task group related information */
  149. struct task_group {
  150. #ifdef CONFIG_CGROUP_SCHED
  151. struct cgroup_subsys_state css;
  152. #endif
  153. #ifdef CONFIG_FAIR_GROUP_SCHED
  154. /* schedulable entities of this group on each cpu */
  155. struct sched_entity **se;
  156. /* runqueue "owned" by this group on each cpu */
  157. struct cfs_rq **cfs_rq;
  158. unsigned long shares;
  159. #endif
  160. #ifdef CONFIG_RT_GROUP_SCHED
  161. struct sched_rt_entity **rt_se;
  162. struct rt_rq **rt_rq;
  163. u64 rt_runtime;
  164. #endif
  165. struct rcu_head rcu;
  166. struct list_head list;
  167. };
  168. #ifdef CONFIG_FAIR_GROUP_SCHED
  169. /* Default task group's sched entity on each cpu */
  170. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  171. /* Default task group's cfs_rq on each cpu */
  172. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  173. static struct sched_entity *init_sched_entity_p[NR_CPUS];
  174. static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
  175. #endif
  176. #ifdef CONFIG_RT_GROUP_SCHED
  177. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  178. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  179. static struct sched_rt_entity *init_sched_rt_entity_p[NR_CPUS];
  180. static struct rt_rq *init_rt_rq_p[NR_CPUS];
  181. #endif
  182. /* task_group_lock serializes add/remove of task groups and also changes to
  183. * a task group's cpu shares.
  184. */
  185. static DEFINE_SPINLOCK(task_group_lock);
  186. /* doms_cur_mutex serializes access to doms_cur[] array */
  187. static DEFINE_MUTEX(doms_cur_mutex);
  188. #ifdef CONFIG_FAIR_GROUP_SCHED
  189. #ifdef CONFIG_USER_SCHED
  190. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  191. #else
  192. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  193. #endif
  194. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  195. #endif
  196. /* Default task group.
  197. * Every task in system belong to this group at bootup.
  198. */
  199. struct task_group init_task_group = {
  200. #ifdef CONFIG_FAIR_GROUP_SCHED
  201. .se = init_sched_entity_p,
  202. .cfs_rq = init_cfs_rq_p,
  203. #endif
  204. #ifdef CONFIG_RT_GROUP_SCHED
  205. .rt_se = init_sched_rt_entity_p,
  206. .rt_rq = init_rt_rq_p,
  207. #endif
  208. };
  209. /* return group to which a task belongs */
  210. static inline struct task_group *task_group(struct task_struct *p)
  211. {
  212. struct task_group *tg;
  213. #ifdef CONFIG_USER_SCHED
  214. tg = p->user->tg;
  215. #elif defined(CONFIG_CGROUP_SCHED)
  216. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  217. struct task_group, css);
  218. #else
  219. tg = &init_task_group;
  220. #endif
  221. return tg;
  222. }
  223. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  224. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  225. {
  226. #ifdef CONFIG_FAIR_GROUP_SCHED
  227. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  228. p->se.parent = task_group(p)->se[cpu];
  229. #endif
  230. #ifdef CONFIG_RT_GROUP_SCHED
  231. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  232. p->rt.parent = task_group(p)->rt_se[cpu];
  233. #endif
  234. }
  235. static inline void lock_doms_cur(void)
  236. {
  237. mutex_lock(&doms_cur_mutex);
  238. }
  239. static inline void unlock_doms_cur(void)
  240. {
  241. mutex_unlock(&doms_cur_mutex);
  242. }
  243. #else
  244. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  245. static inline void lock_doms_cur(void) { }
  246. static inline void unlock_doms_cur(void) { }
  247. #endif /* CONFIG_GROUP_SCHED */
  248. /* CFS-related fields in a runqueue */
  249. struct cfs_rq {
  250. struct load_weight load;
  251. unsigned long nr_running;
  252. u64 exec_clock;
  253. u64 min_vruntime;
  254. struct rb_root tasks_timeline;
  255. struct rb_node *rb_leftmost;
  256. struct rb_node *rb_load_balance_curr;
  257. /* 'curr' points to currently running entity on this cfs_rq.
  258. * It is set to NULL otherwise (i.e when none are currently running).
  259. */
  260. struct sched_entity *curr, *next;
  261. unsigned long nr_spread_over;
  262. #ifdef CONFIG_FAIR_GROUP_SCHED
  263. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  264. /*
  265. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  266. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  267. * (like users, containers etc.)
  268. *
  269. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  270. * list is used during load balance.
  271. */
  272. struct list_head leaf_cfs_rq_list;
  273. struct task_group *tg; /* group that "owns" this runqueue */
  274. #endif
  275. };
  276. /* Real-Time classes' related field in a runqueue: */
  277. struct rt_rq {
  278. struct rt_prio_array active;
  279. unsigned long rt_nr_running;
  280. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  281. int highest_prio; /* highest queued rt task prio */
  282. #endif
  283. #ifdef CONFIG_SMP
  284. unsigned long rt_nr_migratory;
  285. int overloaded;
  286. #endif
  287. int rt_throttled;
  288. u64 rt_time;
  289. #ifdef CONFIG_RT_GROUP_SCHED
  290. unsigned long rt_nr_boosted;
  291. struct rq *rq;
  292. struct list_head leaf_rt_rq_list;
  293. struct task_group *tg;
  294. struct sched_rt_entity *rt_se;
  295. #endif
  296. };
  297. #ifdef CONFIG_SMP
  298. /*
  299. * We add the notion of a root-domain which will be used to define per-domain
  300. * variables. Each exclusive cpuset essentially defines an island domain by
  301. * fully partitioning the member cpus from any other cpuset. Whenever a new
  302. * exclusive cpuset is created, we also create and attach a new root-domain
  303. * object.
  304. *
  305. */
  306. struct root_domain {
  307. atomic_t refcount;
  308. cpumask_t span;
  309. cpumask_t online;
  310. /*
  311. * The "RT overload" flag: it gets set if a CPU has more than
  312. * one runnable RT task.
  313. */
  314. cpumask_t rto_mask;
  315. atomic_t rto_count;
  316. };
  317. /*
  318. * By default the system creates a single root-domain with all cpus as
  319. * members (mimicking the global state we have today).
  320. */
  321. static struct root_domain def_root_domain;
  322. #endif
  323. /*
  324. * This is the main, per-CPU runqueue data structure.
  325. *
  326. * Locking rule: those places that want to lock multiple runqueues
  327. * (such as the load balancing or the thread migration code), lock
  328. * acquire operations must be ordered by ascending &runqueue.
  329. */
  330. struct rq {
  331. /* runqueue lock: */
  332. spinlock_t lock;
  333. /*
  334. * nr_running and cpu_load should be in the same cacheline because
  335. * remote CPUs use both these fields when doing load calculation.
  336. */
  337. unsigned long nr_running;
  338. #define CPU_LOAD_IDX_MAX 5
  339. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  340. unsigned char idle_at_tick;
  341. #ifdef CONFIG_NO_HZ
  342. unsigned char in_nohz_recently;
  343. #endif
  344. /* capture load from *all* tasks on this cpu: */
  345. struct load_weight load;
  346. unsigned long nr_load_updates;
  347. u64 nr_switches;
  348. struct cfs_rq cfs;
  349. struct rt_rq rt;
  350. u64 rt_period_expire;
  351. int rt_throttled;
  352. #ifdef CONFIG_FAIR_GROUP_SCHED
  353. /* list of leaf cfs_rq on this cpu: */
  354. struct list_head leaf_cfs_rq_list;
  355. #endif
  356. #ifdef CONFIG_RT_GROUP_SCHED
  357. struct list_head leaf_rt_rq_list;
  358. #endif
  359. /*
  360. * This is part of a global counter where only the total sum
  361. * over all CPUs matters. A task can increase this counter on
  362. * one CPU and if it got migrated afterwards it may decrease
  363. * it on another CPU. Always updated under the runqueue lock:
  364. */
  365. unsigned long nr_uninterruptible;
  366. struct task_struct *curr, *idle;
  367. unsigned long next_balance;
  368. struct mm_struct *prev_mm;
  369. u64 clock, prev_clock_raw;
  370. s64 clock_max_delta;
  371. unsigned int clock_warps, clock_overflows, clock_underflows;
  372. u64 idle_clock;
  373. unsigned int clock_deep_idle_events;
  374. u64 tick_timestamp;
  375. atomic_t nr_iowait;
  376. #ifdef CONFIG_SMP
  377. struct root_domain *rd;
  378. struct sched_domain *sd;
  379. /* For active balancing */
  380. int active_balance;
  381. int push_cpu;
  382. /* cpu of this runqueue: */
  383. int cpu;
  384. struct task_struct *migration_thread;
  385. struct list_head migration_queue;
  386. #endif
  387. #ifdef CONFIG_SCHED_HRTICK
  388. unsigned long hrtick_flags;
  389. ktime_t hrtick_expire;
  390. struct hrtimer hrtick_timer;
  391. #endif
  392. #ifdef CONFIG_SCHEDSTATS
  393. /* latency stats */
  394. struct sched_info rq_sched_info;
  395. /* sys_sched_yield() stats */
  396. unsigned int yld_exp_empty;
  397. unsigned int yld_act_empty;
  398. unsigned int yld_both_empty;
  399. unsigned int yld_count;
  400. /* schedule() stats */
  401. unsigned int sched_switch;
  402. unsigned int sched_count;
  403. unsigned int sched_goidle;
  404. /* try_to_wake_up() stats */
  405. unsigned int ttwu_count;
  406. unsigned int ttwu_local;
  407. /* BKL stats */
  408. unsigned int bkl_count;
  409. #endif
  410. struct lock_class_key rq_lock_key;
  411. };
  412. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  413. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  414. {
  415. rq->curr->sched_class->check_preempt_curr(rq, p);
  416. }
  417. static inline int cpu_of(struct rq *rq)
  418. {
  419. #ifdef CONFIG_SMP
  420. return rq->cpu;
  421. #else
  422. return 0;
  423. #endif
  424. }
  425. /*
  426. * Update the per-runqueue clock, as finegrained as the platform can give
  427. * us, but without assuming monotonicity, etc.:
  428. */
  429. static void __update_rq_clock(struct rq *rq)
  430. {
  431. u64 prev_raw = rq->prev_clock_raw;
  432. u64 now = sched_clock();
  433. s64 delta = now - prev_raw;
  434. u64 clock = rq->clock;
  435. #ifdef CONFIG_SCHED_DEBUG
  436. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  437. #endif
  438. /*
  439. * Protect against sched_clock() occasionally going backwards:
  440. */
  441. if (unlikely(delta < 0)) {
  442. clock++;
  443. rq->clock_warps++;
  444. } else {
  445. /*
  446. * Catch too large forward jumps too:
  447. */
  448. if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
  449. if (clock < rq->tick_timestamp + TICK_NSEC)
  450. clock = rq->tick_timestamp + TICK_NSEC;
  451. else
  452. clock++;
  453. rq->clock_overflows++;
  454. } else {
  455. if (unlikely(delta > rq->clock_max_delta))
  456. rq->clock_max_delta = delta;
  457. clock += delta;
  458. }
  459. }
  460. rq->prev_clock_raw = now;
  461. rq->clock = clock;
  462. }
  463. static void update_rq_clock(struct rq *rq)
  464. {
  465. if (likely(smp_processor_id() == cpu_of(rq)))
  466. __update_rq_clock(rq);
  467. }
  468. /*
  469. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  470. * See detach_destroy_domains: synchronize_sched for details.
  471. *
  472. * The domain tree of any CPU may only be accessed from within
  473. * preempt-disabled sections.
  474. */
  475. #define for_each_domain(cpu, __sd) \
  476. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  477. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  478. #define this_rq() (&__get_cpu_var(runqueues))
  479. #define task_rq(p) cpu_rq(task_cpu(p))
  480. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  481. unsigned long rt_needs_cpu(int cpu)
  482. {
  483. struct rq *rq = cpu_rq(cpu);
  484. u64 delta;
  485. if (!rq->rt_throttled)
  486. return 0;
  487. if (rq->clock > rq->rt_period_expire)
  488. return 1;
  489. delta = rq->rt_period_expire - rq->clock;
  490. do_div(delta, NSEC_PER_SEC / HZ);
  491. return (unsigned long)delta;
  492. }
  493. /*
  494. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  495. */
  496. #ifdef CONFIG_SCHED_DEBUG
  497. # define const_debug __read_mostly
  498. #else
  499. # define const_debug static const
  500. #endif
  501. /*
  502. * Debugging: various feature bits
  503. */
  504. enum {
  505. SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
  506. SCHED_FEAT_WAKEUP_PREEMPT = 2,
  507. SCHED_FEAT_START_DEBIT = 4,
  508. SCHED_FEAT_TREE_AVG = 8,
  509. SCHED_FEAT_APPROX_AVG = 16,
  510. SCHED_FEAT_HRTICK = 32,
  511. SCHED_FEAT_DOUBLE_TICK = 64,
  512. };
  513. const_debug unsigned int sysctl_sched_features =
  514. SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
  515. SCHED_FEAT_WAKEUP_PREEMPT * 1 |
  516. SCHED_FEAT_START_DEBIT * 1 |
  517. SCHED_FEAT_TREE_AVG * 0 |
  518. SCHED_FEAT_APPROX_AVG * 0 |
  519. SCHED_FEAT_HRTICK * 1 |
  520. SCHED_FEAT_DOUBLE_TICK * 0;
  521. #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
  522. /*
  523. * Number of tasks to iterate in a single balance run.
  524. * Limited because this is done with IRQs disabled.
  525. */
  526. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  527. /*
  528. * period over which we measure -rt task cpu usage in us.
  529. * default: 1s
  530. */
  531. unsigned int sysctl_sched_rt_period = 1000000;
  532. static __read_mostly int scheduler_running;
  533. /*
  534. * part of the period that we allow rt tasks to run in us.
  535. * default: 0.95s
  536. */
  537. int sysctl_sched_rt_runtime = 950000;
  538. /*
  539. * single value that denotes runtime == period, ie unlimited time.
  540. */
  541. #define RUNTIME_INF ((u64)~0ULL)
  542. /*
  543. * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
  544. * clock constructed from sched_clock():
  545. */
  546. unsigned long long cpu_clock(int cpu)
  547. {
  548. unsigned long long now;
  549. unsigned long flags;
  550. struct rq *rq;
  551. /*
  552. * Only call sched_clock() if the scheduler has already been
  553. * initialized (some code might call cpu_clock() very early):
  554. */
  555. if (unlikely(!scheduler_running))
  556. return 0;
  557. local_irq_save(flags);
  558. rq = cpu_rq(cpu);
  559. update_rq_clock(rq);
  560. now = rq->clock;
  561. local_irq_restore(flags);
  562. return now;
  563. }
  564. EXPORT_SYMBOL_GPL(cpu_clock);
  565. #ifndef prepare_arch_switch
  566. # define prepare_arch_switch(next) do { } while (0)
  567. #endif
  568. #ifndef finish_arch_switch
  569. # define finish_arch_switch(prev) do { } while (0)
  570. #endif
  571. static inline int task_current(struct rq *rq, struct task_struct *p)
  572. {
  573. return rq->curr == p;
  574. }
  575. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  576. static inline int task_running(struct rq *rq, struct task_struct *p)
  577. {
  578. return task_current(rq, p);
  579. }
  580. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  581. {
  582. }
  583. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  584. {
  585. #ifdef CONFIG_DEBUG_SPINLOCK
  586. /* this is a valid case when another task releases the spinlock */
  587. rq->lock.owner = current;
  588. #endif
  589. /*
  590. * If we are tracking spinlock dependencies then we have to
  591. * fix up the runqueue lock - which gets 'carried over' from
  592. * prev into current:
  593. */
  594. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  595. spin_unlock_irq(&rq->lock);
  596. }
  597. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  598. static inline int task_running(struct rq *rq, struct task_struct *p)
  599. {
  600. #ifdef CONFIG_SMP
  601. return p->oncpu;
  602. #else
  603. return task_current(rq, p);
  604. #endif
  605. }
  606. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  607. {
  608. #ifdef CONFIG_SMP
  609. /*
  610. * We can optimise this out completely for !SMP, because the
  611. * SMP rebalancing from interrupt is the only thing that cares
  612. * here.
  613. */
  614. next->oncpu = 1;
  615. #endif
  616. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  617. spin_unlock_irq(&rq->lock);
  618. #else
  619. spin_unlock(&rq->lock);
  620. #endif
  621. }
  622. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  623. {
  624. #ifdef CONFIG_SMP
  625. /*
  626. * After ->oncpu is cleared, the task can be moved to a different CPU.
  627. * We must ensure this doesn't happen until the switch is completely
  628. * finished.
  629. */
  630. smp_wmb();
  631. prev->oncpu = 0;
  632. #endif
  633. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  634. local_irq_enable();
  635. #endif
  636. }
  637. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  638. /*
  639. * __task_rq_lock - lock the runqueue a given task resides on.
  640. * Must be called interrupts disabled.
  641. */
  642. static inline struct rq *__task_rq_lock(struct task_struct *p)
  643. __acquires(rq->lock)
  644. {
  645. for (;;) {
  646. struct rq *rq = task_rq(p);
  647. spin_lock(&rq->lock);
  648. if (likely(rq == task_rq(p)))
  649. return rq;
  650. spin_unlock(&rq->lock);
  651. }
  652. }
  653. /*
  654. * task_rq_lock - lock the runqueue a given task resides on and disable
  655. * interrupts. Note the ordering: we can safely lookup the task_rq without
  656. * explicitly disabling preemption.
  657. */
  658. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  659. __acquires(rq->lock)
  660. {
  661. struct rq *rq;
  662. for (;;) {
  663. local_irq_save(*flags);
  664. rq = task_rq(p);
  665. spin_lock(&rq->lock);
  666. if (likely(rq == task_rq(p)))
  667. return rq;
  668. spin_unlock_irqrestore(&rq->lock, *flags);
  669. }
  670. }
  671. static void __task_rq_unlock(struct rq *rq)
  672. __releases(rq->lock)
  673. {
  674. spin_unlock(&rq->lock);
  675. }
  676. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  677. __releases(rq->lock)
  678. {
  679. spin_unlock_irqrestore(&rq->lock, *flags);
  680. }
  681. /*
  682. * this_rq_lock - lock this runqueue and disable interrupts.
  683. */
  684. static struct rq *this_rq_lock(void)
  685. __acquires(rq->lock)
  686. {
  687. struct rq *rq;
  688. local_irq_disable();
  689. rq = this_rq();
  690. spin_lock(&rq->lock);
  691. return rq;
  692. }
  693. /*
  694. * We are going deep-idle (irqs are disabled):
  695. */
  696. void sched_clock_idle_sleep_event(void)
  697. {
  698. struct rq *rq = cpu_rq(smp_processor_id());
  699. spin_lock(&rq->lock);
  700. __update_rq_clock(rq);
  701. spin_unlock(&rq->lock);
  702. rq->clock_deep_idle_events++;
  703. }
  704. EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
  705. /*
  706. * We just idled delta nanoseconds (called with irqs disabled):
  707. */
  708. void sched_clock_idle_wakeup_event(u64 delta_ns)
  709. {
  710. struct rq *rq = cpu_rq(smp_processor_id());
  711. u64 now = sched_clock();
  712. rq->idle_clock += delta_ns;
  713. /*
  714. * Override the previous timestamp and ignore all
  715. * sched_clock() deltas that occured while we idled,
  716. * and use the PM-provided delta_ns to advance the
  717. * rq clock:
  718. */
  719. spin_lock(&rq->lock);
  720. rq->prev_clock_raw = now;
  721. rq->clock += delta_ns;
  722. spin_unlock(&rq->lock);
  723. touch_softlockup_watchdog();
  724. }
  725. EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
  726. static void __resched_task(struct task_struct *p, int tif_bit);
  727. static inline void resched_task(struct task_struct *p)
  728. {
  729. __resched_task(p, TIF_NEED_RESCHED);
  730. }
  731. #ifdef CONFIG_SCHED_HRTICK
  732. /*
  733. * Use HR-timers to deliver accurate preemption points.
  734. *
  735. * Its all a bit involved since we cannot program an hrt while holding the
  736. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  737. * reschedule event.
  738. *
  739. * When we get rescheduled we reprogram the hrtick_timer outside of the
  740. * rq->lock.
  741. */
  742. static inline void resched_hrt(struct task_struct *p)
  743. {
  744. __resched_task(p, TIF_HRTICK_RESCHED);
  745. }
  746. static inline void resched_rq(struct rq *rq)
  747. {
  748. unsigned long flags;
  749. spin_lock_irqsave(&rq->lock, flags);
  750. resched_task(rq->curr);
  751. spin_unlock_irqrestore(&rq->lock, flags);
  752. }
  753. enum {
  754. HRTICK_SET, /* re-programm hrtick_timer */
  755. HRTICK_RESET, /* not a new slice */
  756. };
  757. /*
  758. * Use hrtick when:
  759. * - enabled by features
  760. * - hrtimer is actually high res
  761. */
  762. static inline int hrtick_enabled(struct rq *rq)
  763. {
  764. if (!sched_feat(HRTICK))
  765. return 0;
  766. return hrtimer_is_hres_active(&rq->hrtick_timer);
  767. }
  768. /*
  769. * Called to set the hrtick timer state.
  770. *
  771. * called with rq->lock held and irqs disabled
  772. */
  773. static void hrtick_start(struct rq *rq, u64 delay, int reset)
  774. {
  775. assert_spin_locked(&rq->lock);
  776. /*
  777. * preempt at: now + delay
  778. */
  779. rq->hrtick_expire =
  780. ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
  781. /*
  782. * indicate we need to program the timer
  783. */
  784. __set_bit(HRTICK_SET, &rq->hrtick_flags);
  785. if (reset)
  786. __set_bit(HRTICK_RESET, &rq->hrtick_flags);
  787. /*
  788. * New slices are called from the schedule path and don't need a
  789. * forced reschedule.
  790. */
  791. if (reset)
  792. resched_hrt(rq->curr);
  793. }
  794. static void hrtick_clear(struct rq *rq)
  795. {
  796. if (hrtimer_active(&rq->hrtick_timer))
  797. hrtimer_cancel(&rq->hrtick_timer);
  798. }
  799. /*
  800. * Update the timer from the possible pending state.
  801. */
  802. static void hrtick_set(struct rq *rq)
  803. {
  804. ktime_t time;
  805. int set, reset;
  806. unsigned long flags;
  807. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  808. spin_lock_irqsave(&rq->lock, flags);
  809. set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
  810. reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
  811. time = rq->hrtick_expire;
  812. clear_thread_flag(TIF_HRTICK_RESCHED);
  813. spin_unlock_irqrestore(&rq->lock, flags);
  814. if (set) {
  815. hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
  816. if (reset && !hrtimer_active(&rq->hrtick_timer))
  817. resched_rq(rq);
  818. } else
  819. hrtick_clear(rq);
  820. }
  821. /*
  822. * High-resolution timer tick.
  823. * Runs from hardirq context with interrupts disabled.
  824. */
  825. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  826. {
  827. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  828. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  829. spin_lock(&rq->lock);
  830. __update_rq_clock(rq);
  831. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  832. spin_unlock(&rq->lock);
  833. return HRTIMER_NORESTART;
  834. }
  835. static inline void init_rq_hrtick(struct rq *rq)
  836. {
  837. rq->hrtick_flags = 0;
  838. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  839. rq->hrtick_timer.function = hrtick;
  840. rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  841. }
  842. void hrtick_resched(void)
  843. {
  844. struct rq *rq;
  845. unsigned long flags;
  846. if (!test_thread_flag(TIF_HRTICK_RESCHED))
  847. return;
  848. local_irq_save(flags);
  849. rq = cpu_rq(smp_processor_id());
  850. hrtick_set(rq);
  851. local_irq_restore(flags);
  852. }
  853. #else
  854. static inline void hrtick_clear(struct rq *rq)
  855. {
  856. }
  857. static inline void hrtick_set(struct rq *rq)
  858. {
  859. }
  860. static inline void init_rq_hrtick(struct rq *rq)
  861. {
  862. }
  863. void hrtick_resched(void)
  864. {
  865. }
  866. #endif
  867. /*
  868. * resched_task - mark a task 'to be rescheduled now'.
  869. *
  870. * On UP this means the setting of the need_resched flag, on SMP it
  871. * might also involve a cross-CPU call to trigger the scheduler on
  872. * the target CPU.
  873. */
  874. #ifdef CONFIG_SMP
  875. #ifndef tsk_is_polling
  876. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  877. #endif
  878. static void __resched_task(struct task_struct *p, int tif_bit)
  879. {
  880. int cpu;
  881. assert_spin_locked(&task_rq(p)->lock);
  882. if (unlikely(test_tsk_thread_flag(p, tif_bit)))
  883. return;
  884. set_tsk_thread_flag(p, tif_bit);
  885. cpu = task_cpu(p);
  886. if (cpu == smp_processor_id())
  887. return;
  888. /* NEED_RESCHED must be visible before we test polling */
  889. smp_mb();
  890. if (!tsk_is_polling(p))
  891. smp_send_reschedule(cpu);
  892. }
  893. static void resched_cpu(int cpu)
  894. {
  895. struct rq *rq = cpu_rq(cpu);
  896. unsigned long flags;
  897. if (!spin_trylock_irqsave(&rq->lock, flags))
  898. return;
  899. resched_task(cpu_curr(cpu));
  900. spin_unlock_irqrestore(&rq->lock, flags);
  901. }
  902. #else
  903. static void __resched_task(struct task_struct *p, int tif_bit)
  904. {
  905. assert_spin_locked(&task_rq(p)->lock);
  906. set_tsk_thread_flag(p, tif_bit);
  907. }
  908. #endif
  909. #if BITS_PER_LONG == 32
  910. # define WMULT_CONST (~0UL)
  911. #else
  912. # define WMULT_CONST (1UL << 32)
  913. #endif
  914. #define WMULT_SHIFT 32
  915. /*
  916. * Shift right and round:
  917. */
  918. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  919. static unsigned long
  920. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  921. struct load_weight *lw)
  922. {
  923. u64 tmp;
  924. if (unlikely(!lw->inv_weight))
  925. lw->inv_weight = (WMULT_CONST-lw->weight/2) / (lw->weight+1);
  926. tmp = (u64)delta_exec * weight;
  927. /*
  928. * Check whether we'd overflow the 64-bit multiplication:
  929. */
  930. if (unlikely(tmp > WMULT_CONST))
  931. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  932. WMULT_SHIFT/2);
  933. else
  934. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  935. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  936. }
  937. static inline unsigned long
  938. calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
  939. {
  940. return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
  941. }
  942. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  943. {
  944. lw->weight += inc;
  945. lw->inv_weight = 0;
  946. }
  947. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  948. {
  949. lw->weight -= dec;
  950. lw->inv_weight = 0;
  951. }
  952. /*
  953. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  954. * of tasks with abnormal "nice" values across CPUs the contribution that
  955. * each task makes to its run queue's load is weighted according to its
  956. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  957. * scaled version of the new time slice allocation that they receive on time
  958. * slice expiry etc.
  959. */
  960. #define WEIGHT_IDLEPRIO 2
  961. #define WMULT_IDLEPRIO (1 << 31)
  962. /*
  963. * Nice levels are multiplicative, with a gentle 10% change for every
  964. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  965. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  966. * that remained on nice 0.
  967. *
  968. * The "10% effect" is relative and cumulative: from _any_ nice level,
  969. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  970. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  971. * If a task goes up by ~10% and another task goes down by ~10% then
  972. * the relative distance between them is ~25%.)
  973. */
  974. static const int prio_to_weight[40] = {
  975. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  976. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  977. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  978. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  979. /* 0 */ 1024, 820, 655, 526, 423,
  980. /* 5 */ 335, 272, 215, 172, 137,
  981. /* 10 */ 110, 87, 70, 56, 45,
  982. /* 15 */ 36, 29, 23, 18, 15,
  983. };
  984. /*
  985. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  986. *
  987. * In cases where the weight does not change often, we can use the
  988. * precalculated inverse to speed up arithmetics by turning divisions
  989. * into multiplications:
  990. */
  991. static const u32 prio_to_wmult[40] = {
  992. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  993. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  994. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  995. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  996. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  997. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  998. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  999. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1000. };
  1001. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1002. /*
  1003. * runqueue iterator, to support SMP load-balancing between different
  1004. * scheduling classes, without having to expose their internal data
  1005. * structures to the load-balancing proper:
  1006. */
  1007. struct rq_iterator {
  1008. void *arg;
  1009. struct task_struct *(*start)(void *);
  1010. struct task_struct *(*next)(void *);
  1011. };
  1012. #ifdef CONFIG_SMP
  1013. static unsigned long
  1014. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1015. unsigned long max_load_move, struct sched_domain *sd,
  1016. enum cpu_idle_type idle, int *all_pinned,
  1017. int *this_best_prio, struct rq_iterator *iterator);
  1018. static int
  1019. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1020. struct sched_domain *sd, enum cpu_idle_type idle,
  1021. struct rq_iterator *iterator);
  1022. #endif
  1023. #ifdef CONFIG_CGROUP_CPUACCT
  1024. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1025. #else
  1026. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1027. #endif
  1028. #ifdef CONFIG_SMP
  1029. static unsigned long source_load(int cpu, int type);
  1030. static unsigned long target_load(int cpu, int type);
  1031. static unsigned long cpu_avg_load_per_task(int cpu);
  1032. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1033. #endif /* CONFIG_SMP */
  1034. #include "sched_stats.h"
  1035. #include "sched_idletask.c"
  1036. #include "sched_fair.c"
  1037. #include "sched_rt.c"
  1038. #ifdef CONFIG_SCHED_DEBUG
  1039. # include "sched_debug.c"
  1040. #endif
  1041. #define sched_class_highest (&rt_sched_class)
  1042. static inline void inc_load(struct rq *rq, const struct task_struct *p)
  1043. {
  1044. update_load_add(&rq->load, p->se.load.weight);
  1045. }
  1046. static inline void dec_load(struct rq *rq, const struct task_struct *p)
  1047. {
  1048. update_load_sub(&rq->load, p->se.load.weight);
  1049. }
  1050. static void inc_nr_running(struct task_struct *p, struct rq *rq)
  1051. {
  1052. rq->nr_running++;
  1053. inc_load(rq, p);
  1054. }
  1055. static void dec_nr_running(struct task_struct *p, struct rq *rq)
  1056. {
  1057. rq->nr_running--;
  1058. dec_load(rq, p);
  1059. }
  1060. static void set_load_weight(struct task_struct *p)
  1061. {
  1062. if (task_has_rt_policy(p)) {
  1063. p->se.load.weight = prio_to_weight[0] * 2;
  1064. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1065. return;
  1066. }
  1067. /*
  1068. * SCHED_IDLE tasks get minimal weight:
  1069. */
  1070. if (p->policy == SCHED_IDLE) {
  1071. p->se.load.weight = WEIGHT_IDLEPRIO;
  1072. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1073. return;
  1074. }
  1075. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1076. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1077. }
  1078. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1079. {
  1080. sched_info_queued(p);
  1081. p->sched_class->enqueue_task(rq, p, wakeup);
  1082. p->se.on_rq = 1;
  1083. }
  1084. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1085. {
  1086. p->sched_class->dequeue_task(rq, p, sleep);
  1087. p->se.on_rq = 0;
  1088. }
  1089. /*
  1090. * __normal_prio - return the priority that is based on the static prio
  1091. */
  1092. static inline int __normal_prio(struct task_struct *p)
  1093. {
  1094. return p->static_prio;
  1095. }
  1096. /*
  1097. * Calculate the expected normal priority: i.e. priority
  1098. * without taking RT-inheritance into account. Might be
  1099. * boosted by interactivity modifiers. Changes upon fork,
  1100. * setprio syscalls, and whenever the interactivity
  1101. * estimator recalculates.
  1102. */
  1103. static inline int normal_prio(struct task_struct *p)
  1104. {
  1105. int prio;
  1106. if (task_has_rt_policy(p))
  1107. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1108. else
  1109. prio = __normal_prio(p);
  1110. return prio;
  1111. }
  1112. /*
  1113. * Calculate the current priority, i.e. the priority
  1114. * taken into account by the scheduler. This value might
  1115. * be boosted by RT tasks, or might be boosted by
  1116. * interactivity modifiers. Will be RT if the task got
  1117. * RT-boosted. If not then it returns p->normal_prio.
  1118. */
  1119. static int effective_prio(struct task_struct *p)
  1120. {
  1121. p->normal_prio = normal_prio(p);
  1122. /*
  1123. * If we are RT tasks or we were boosted to RT priority,
  1124. * keep the priority unchanged. Otherwise, update priority
  1125. * to the normal priority:
  1126. */
  1127. if (!rt_prio(p->prio))
  1128. return p->normal_prio;
  1129. return p->prio;
  1130. }
  1131. /*
  1132. * activate_task - move a task to the runqueue.
  1133. */
  1134. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1135. {
  1136. if (task_contributes_to_load(p))
  1137. rq->nr_uninterruptible--;
  1138. enqueue_task(rq, p, wakeup);
  1139. inc_nr_running(p, rq);
  1140. }
  1141. /*
  1142. * deactivate_task - remove a task from the runqueue.
  1143. */
  1144. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1145. {
  1146. if (task_contributes_to_load(p))
  1147. rq->nr_uninterruptible++;
  1148. dequeue_task(rq, p, sleep);
  1149. dec_nr_running(p, rq);
  1150. }
  1151. /**
  1152. * task_curr - is this task currently executing on a CPU?
  1153. * @p: the task in question.
  1154. */
  1155. inline int task_curr(const struct task_struct *p)
  1156. {
  1157. return cpu_curr(task_cpu(p)) == p;
  1158. }
  1159. /* Used instead of source_load when we know the type == 0 */
  1160. unsigned long weighted_cpuload(const int cpu)
  1161. {
  1162. return cpu_rq(cpu)->load.weight;
  1163. }
  1164. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1165. {
  1166. set_task_rq(p, cpu);
  1167. #ifdef CONFIG_SMP
  1168. /*
  1169. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1170. * successfuly executed on another CPU. We must ensure that updates of
  1171. * per-task data have been completed by this moment.
  1172. */
  1173. smp_wmb();
  1174. task_thread_info(p)->cpu = cpu;
  1175. #endif
  1176. }
  1177. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1178. const struct sched_class *prev_class,
  1179. int oldprio, int running)
  1180. {
  1181. if (prev_class != p->sched_class) {
  1182. if (prev_class->switched_from)
  1183. prev_class->switched_from(rq, p, running);
  1184. p->sched_class->switched_to(rq, p, running);
  1185. } else
  1186. p->sched_class->prio_changed(rq, p, oldprio, running);
  1187. }
  1188. #ifdef CONFIG_SMP
  1189. /*
  1190. * Is this task likely cache-hot:
  1191. */
  1192. static int
  1193. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1194. {
  1195. s64 delta;
  1196. /*
  1197. * Buddy candidates are cache hot:
  1198. */
  1199. if (&p->se == cfs_rq_of(&p->se)->next)
  1200. return 1;
  1201. if (p->sched_class != &fair_sched_class)
  1202. return 0;
  1203. if (sysctl_sched_migration_cost == -1)
  1204. return 1;
  1205. if (sysctl_sched_migration_cost == 0)
  1206. return 0;
  1207. delta = now - p->se.exec_start;
  1208. return delta < (s64)sysctl_sched_migration_cost;
  1209. }
  1210. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1211. {
  1212. int old_cpu = task_cpu(p);
  1213. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1214. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1215. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1216. u64 clock_offset;
  1217. clock_offset = old_rq->clock - new_rq->clock;
  1218. #ifdef CONFIG_SCHEDSTATS
  1219. if (p->se.wait_start)
  1220. p->se.wait_start -= clock_offset;
  1221. if (p->se.sleep_start)
  1222. p->se.sleep_start -= clock_offset;
  1223. if (p->se.block_start)
  1224. p->se.block_start -= clock_offset;
  1225. if (old_cpu != new_cpu) {
  1226. schedstat_inc(p, se.nr_migrations);
  1227. if (task_hot(p, old_rq->clock, NULL))
  1228. schedstat_inc(p, se.nr_forced2_migrations);
  1229. }
  1230. #endif
  1231. p->se.vruntime -= old_cfsrq->min_vruntime -
  1232. new_cfsrq->min_vruntime;
  1233. __set_task_cpu(p, new_cpu);
  1234. }
  1235. struct migration_req {
  1236. struct list_head list;
  1237. struct task_struct *task;
  1238. int dest_cpu;
  1239. struct completion done;
  1240. };
  1241. /*
  1242. * The task's runqueue lock must be held.
  1243. * Returns true if you have to wait for migration thread.
  1244. */
  1245. static int
  1246. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1247. {
  1248. struct rq *rq = task_rq(p);
  1249. /*
  1250. * If the task is not on a runqueue (and not running), then
  1251. * it is sufficient to simply update the task's cpu field.
  1252. */
  1253. if (!p->se.on_rq && !task_running(rq, p)) {
  1254. set_task_cpu(p, dest_cpu);
  1255. return 0;
  1256. }
  1257. init_completion(&req->done);
  1258. req->task = p;
  1259. req->dest_cpu = dest_cpu;
  1260. list_add(&req->list, &rq->migration_queue);
  1261. return 1;
  1262. }
  1263. /*
  1264. * wait_task_inactive - wait for a thread to unschedule.
  1265. *
  1266. * The caller must ensure that the task *will* unschedule sometime soon,
  1267. * else this function might spin for a *long* time. This function can't
  1268. * be called with interrupts off, or it may introduce deadlock with
  1269. * smp_call_function() if an IPI is sent by the same process we are
  1270. * waiting to become inactive.
  1271. */
  1272. void wait_task_inactive(struct task_struct *p)
  1273. {
  1274. unsigned long flags;
  1275. int running, on_rq;
  1276. struct rq *rq;
  1277. for (;;) {
  1278. /*
  1279. * We do the initial early heuristics without holding
  1280. * any task-queue locks at all. We'll only try to get
  1281. * the runqueue lock when things look like they will
  1282. * work out!
  1283. */
  1284. rq = task_rq(p);
  1285. /*
  1286. * If the task is actively running on another CPU
  1287. * still, just relax and busy-wait without holding
  1288. * any locks.
  1289. *
  1290. * NOTE! Since we don't hold any locks, it's not
  1291. * even sure that "rq" stays as the right runqueue!
  1292. * But we don't care, since "task_running()" will
  1293. * return false if the runqueue has changed and p
  1294. * is actually now running somewhere else!
  1295. */
  1296. while (task_running(rq, p))
  1297. cpu_relax();
  1298. /*
  1299. * Ok, time to look more closely! We need the rq
  1300. * lock now, to be *sure*. If we're wrong, we'll
  1301. * just go back and repeat.
  1302. */
  1303. rq = task_rq_lock(p, &flags);
  1304. running = task_running(rq, p);
  1305. on_rq = p->se.on_rq;
  1306. task_rq_unlock(rq, &flags);
  1307. /*
  1308. * Was it really running after all now that we
  1309. * checked with the proper locks actually held?
  1310. *
  1311. * Oops. Go back and try again..
  1312. */
  1313. if (unlikely(running)) {
  1314. cpu_relax();
  1315. continue;
  1316. }
  1317. /*
  1318. * It's not enough that it's not actively running,
  1319. * it must be off the runqueue _entirely_, and not
  1320. * preempted!
  1321. *
  1322. * So if it wa still runnable (but just not actively
  1323. * running right now), it's preempted, and we should
  1324. * yield - it could be a while.
  1325. */
  1326. if (unlikely(on_rq)) {
  1327. schedule_timeout_uninterruptible(1);
  1328. continue;
  1329. }
  1330. /*
  1331. * Ahh, all good. It wasn't running, and it wasn't
  1332. * runnable, which means that it will never become
  1333. * running in the future either. We're all done!
  1334. */
  1335. break;
  1336. }
  1337. }
  1338. /***
  1339. * kick_process - kick a running thread to enter/exit the kernel
  1340. * @p: the to-be-kicked thread
  1341. *
  1342. * Cause a process which is running on another CPU to enter
  1343. * kernel-mode, without any delay. (to get signals handled.)
  1344. *
  1345. * NOTE: this function doesnt have to take the runqueue lock,
  1346. * because all it wants to ensure is that the remote task enters
  1347. * the kernel. If the IPI races and the task has been migrated
  1348. * to another CPU then no harm is done and the purpose has been
  1349. * achieved as well.
  1350. */
  1351. void kick_process(struct task_struct *p)
  1352. {
  1353. int cpu;
  1354. preempt_disable();
  1355. cpu = task_cpu(p);
  1356. if ((cpu != smp_processor_id()) && task_curr(p))
  1357. smp_send_reschedule(cpu);
  1358. preempt_enable();
  1359. }
  1360. /*
  1361. * Return a low guess at the load of a migration-source cpu weighted
  1362. * according to the scheduling class and "nice" value.
  1363. *
  1364. * We want to under-estimate the load of migration sources, to
  1365. * balance conservatively.
  1366. */
  1367. static unsigned long source_load(int cpu, int type)
  1368. {
  1369. struct rq *rq = cpu_rq(cpu);
  1370. unsigned long total = weighted_cpuload(cpu);
  1371. if (type == 0)
  1372. return total;
  1373. return min(rq->cpu_load[type-1], total);
  1374. }
  1375. /*
  1376. * Return a high guess at the load of a migration-target cpu weighted
  1377. * according to the scheduling class and "nice" value.
  1378. */
  1379. static unsigned long target_load(int cpu, int type)
  1380. {
  1381. struct rq *rq = cpu_rq(cpu);
  1382. unsigned long total = weighted_cpuload(cpu);
  1383. if (type == 0)
  1384. return total;
  1385. return max(rq->cpu_load[type-1], total);
  1386. }
  1387. /*
  1388. * Return the average load per task on the cpu's run queue
  1389. */
  1390. static unsigned long cpu_avg_load_per_task(int cpu)
  1391. {
  1392. struct rq *rq = cpu_rq(cpu);
  1393. unsigned long total = weighted_cpuload(cpu);
  1394. unsigned long n = rq->nr_running;
  1395. return n ? total / n : SCHED_LOAD_SCALE;
  1396. }
  1397. /*
  1398. * find_idlest_group finds and returns the least busy CPU group within the
  1399. * domain.
  1400. */
  1401. static struct sched_group *
  1402. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1403. {
  1404. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1405. unsigned long min_load = ULONG_MAX, this_load = 0;
  1406. int load_idx = sd->forkexec_idx;
  1407. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1408. do {
  1409. unsigned long load, avg_load;
  1410. int local_group;
  1411. int i;
  1412. /* Skip over this group if it has no CPUs allowed */
  1413. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1414. continue;
  1415. local_group = cpu_isset(this_cpu, group->cpumask);
  1416. /* Tally up the load of all CPUs in the group */
  1417. avg_load = 0;
  1418. for_each_cpu_mask(i, group->cpumask) {
  1419. /* Bias balancing toward cpus of our domain */
  1420. if (local_group)
  1421. load = source_load(i, load_idx);
  1422. else
  1423. load = target_load(i, load_idx);
  1424. avg_load += load;
  1425. }
  1426. /* Adjust by relative CPU power of the group */
  1427. avg_load = sg_div_cpu_power(group,
  1428. avg_load * SCHED_LOAD_SCALE);
  1429. if (local_group) {
  1430. this_load = avg_load;
  1431. this = group;
  1432. } else if (avg_load < min_load) {
  1433. min_load = avg_load;
  1434. idlest = group;
  1435. }
  1436. } while (group = group->next, group != sd->groups);
  1437. if (!idlest || 100*this_load < imbalance*min_load)
  1438. return NULL;
  1439. return idlest;
  1440. }
  1441. /*
  1442. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1443. */
  1444. static int
  1445. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1446. {
  1447. cpumask_t tmp;
  1448. unsigned long load, min_load = ULONG_MAX;
  1449. int idlest = -1;
  1450. int i;
  1451. /* Traverse only the allowed CPUs */
  1452. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  1453. for_each_cpu_mask(i, tmp) {
  1454. load = weighted_cpuload(i);
  1455. if (load < min_load || (load == min_load && i == this_cpu)) {
  1456. min_load = load;
  1457. idlest = i;
  1458. }
  1459. }
  1460. return idlest;
  1461. }
  1462. /*
  1463. * sched_balance_self: balance the current task (running on cpu) in domains
  1464. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1465. * SD_BALANCE_EXEC.
  1466. *
  1467. * Balance, ie. select the least loaded group.
  1468. *
  1469. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1470. *
  1471. * preempt must be disabled.
  1472. */
  1473. static int sched_balance_self(int cpu, int flag)
  1474. {
  1475. struct task_struct *t = current;
  1476. struct sched_domain *tmp, *sd = NULL;
  1477. for_each_domain(cpu, tmp) {
  1478. /*
  1479. * If power savings logic is enabled for a domain, stop there.
  1480. */
  1481. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1482. break;
  1483. if (tmp->flags & flag)
  1484. sd = tmp;
  1485. }
  1486. while (sd) {
  1487. cpumask_t span;
  1488. struct sched_group *group;
  1489. int new_cpu, weight;
  1490. if (!(sd->flags & flag)) {
  1491. sd = sd->child;
  1492. continue;
  1493. }
  1494. span = sd->span;
  1495. group = find_idlest_group(sd, t, cpu);
  1496. if (!group) {
  1497. sd = sd->child;
  1498. continue;
  1499. }
  1500. new_cpu = find_idlest_cpu(group, t, cpu);
  1501. if (new_cpu == -1 || new_cpu == cpu) {
  1502. /* Now try balancing at a lower domain level of cpu */
  1503. sd = sd->child;
  1504. continue;
  1505. }
  1506. /* Now try balancing at a lower domain level of new_cpu */
  1507. cpu = new_cpu;
  1508. sd = NULL;
  1509. weight = cpus_weight(span);
  1510. for_each_domain(cpu, tmp) {
  1511. if (weight <= cpus_weight(tmp->span))
  1512. break;
  1513. if (tmp->flags & flag)
  1514. sd = tmp;
  1515. }
  1516. /* while loop will break here if sd == NULL */
  1517. }
  1518. return cpu;
  1519. }
  1520. #endif /* CONFIG_SMP */
  1521. /***
  1522. * try_to_wake_up - wake up a thread
  1523. * @p: the to-be-woken-up thread
  1524. * @state: the mask of task states that can be woken
  1525. * @sync: do a synchronous wakeup?
  1526. *
  1527. * Put it on the run-queue if it's not already there. The "current"
  1528. * thread is always on the run-queue (except when the actual
  1529. * re-schedule is in progress), and as such you're allowed to do
  1530. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1531. * runnable without the overhead of this.
  1532. *
  1533. * returns failure only if the task is already active.
  1534. */
  1535. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1536. {
  1537. int cpu, orig_cpu, this_cpu, success = 0;
  1538. unsigned long flags;
  1539. long old_state;
  1540. struct rq *rq;
  1541. smp_wmb();
  1542. rq = task_rq_lock(p, &flags);
  1543. old_state = p->state;
  1544. if (!(old_state & state))
  1545. goto out;
  1546. if (p->se.on_rq)
  1547. goto out_running;
  1548. cpu = task_cpu(p);
  1549. orig_cpu = cpu;
  1550. this_cpu = smp_processor_id();
  1551. #ifdef CONFIG_SMP
  1552. if (unlikely(task_running(rq, p)))
  1553. goto out_activate;
  1554. cpu = p->sched_class->select_task_rq(p, sync);
  1555. if (cpu != orig_cpu) {
  1556. set_task_cpu(p, cpu);
  1557. task_rq_unlock(rq, &flags);
  1558. /* might preempt at this point */
  1559. rq = task_rq_lock(p, &flags);
  1560. old_state = p->state;
  1561. if (!(old_state & state))
  1562. goto out;
  1563. if (p->se.on_rq)
  1564. goto out_running;
  1565. this_cpu = smp_processor_id();
  1566. cpu = task_cpu(p);
  1567. }
  1568. #ifdef CONFIG_SCHEDSTATS
  1569. schedstat_inc(rq, ttwu_count);
  1570. if (cpu == this_cpu)
  1571. schedstat_inc(rq, ttwu_local);
  1572. else {
  1573. struct sched_domain *sd;
  1574. for_each_domain(this_cpu, sd) {
  1575. if (cpu_isset(cpu, sd->span)) {
  1576. schedstat_inc(sd, ttwu_wake_remote);
  1577. break;
  1578. }
  1579. }
  1580. }
  1581. #endif
  1582. out_activate:
  1583. #endif /* CONFIG_SMP */
  1584. schedstat_inc(p, se.nr_wakeups);
  1585. if (sync)
  1586. schedstat_inc(p, se.nr_wakeups_sync);
  1587. if (orig_cpu != cpu)
  1588. schedstat_inc(p, se.nr_wakeups_migrate);
  1589. if (cpu == this_cpu)
  1590. schedstat_inc(p, se.nr_wakeups_local);
  1591. else
  1592. schedstat_inc(p, se.nr_wakeups_remote);
  1593. update_rq_clock(rq);
  1594. activate_task(rq, p, 1);
  1595. success = 1;
  1596. out_running:
  1597. check_preempt_curr(rq, p);
  1598. p->state = TASK_RUNNING;
  1599. #ifdef CONFIG_SMP
  1600. if (p->sched_class->task_wake_up)
  1601. p->sched_class->task_wake_up(rq, p);
  1602. #endif
  1603. out:
  1604. task_rq_unlock(rq, &flags);
  1605. return success;
  1606. }
  1607. int wake_up_process(struct task_struct *p)
  1608. {
  1609. return try_to_wake_up(p, TASK_ALL, 0);
  1610. }
  1611. EXPORT_SYMBOL(wake_up_process);
  1612. int wake_up_state(struct task_struct *p, unsigned int state)
  1613. {
  1614. return try_to_wake_up(p, state, 0);
  1615. }
  1616. /*
  1617. * Perform scheduler related setup for a newly forked process p.
  1618. * p is forked by current.
  1619. *
  1620. * __sched_fork() is basic setup used by init_idle() too:
  1621. */
  1622. static void __sched_fork(struct task_struct *p)
  1623. {
  1624. p->se.exec_start = 0;
  1625. p->se.sum_exec_runtime = 0;
  1626. p->se.prev_sum_exec_runtime = 0;
  1627. p->se.last_wakeup = 0;
  1628. p->se.avg_overlap = 0;
  1629. #ifdef CONFIG_SCHEDSTATS
  1630. p->se.wait_start = 0;
  1631. p->se.sum_sleep_runtime = 0;
  1632. p->se.sleep_start = 0;
  1633. p->se.block_start = 0;
  1634. p->se.sleep_max = 0;
  1635. p->se.block_max = 0;
  1636. p->se.exec_max = 0;
  1637. p->se.slice_max = 0;
  1638. p->se.wait_max = 0;
  1639. #endif
  1640. INIT_LIST_HEAD(&p->rt.run_list);
  1641. p->se.on_rq = 0;
  1642. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1643. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1644. #endif
  1645. /*
  1646. * We mark the process as running here, but have not actually
  1647. * inserted it onto the runqueue yet. This guarantees that
  1648. * nobody will actually run it, and a signal or other external
  1649. * event cannot wake it up and insert it on the runqueue either.
  1650. */
  1651. p->state = TASK_RUNNING;
  1652. }
  1653. /*
  1654. * fork()/clone()-time setup:
  1655. */
  1656. void sched_fork(struct task_struct *p, int clone_flags)
  1657. {
  1658. int cpu = get_cpu();
  1659. __sched_fork(p);
  1660. #ifdef CONFIG_SMP
  1661. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1662. #endif
  1663. set_task_cpu(p, cpu);
  1664. /*
  1665. * Make sure we do not leak PI boosting priority to the child:
  1666. */
  1667. p->prio = current->normal_prio;
  1668. if (!rt_prio(p->prio))
  1669. p->sched_class = &fair_sched_class;
  1670. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1671. if (likely(sched_info_on()))
  1672. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1673. #endif
  1674. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1675. p->oncpu = 0;
  1676. #endif
  1677. #ifdef CONFIG_PREEMPT
  1678. /* Want to start with kernel preemption disabled. */
  1679. task_thread_info(p)->preempt_count = 1;
  1680. #endif
  1681. put_cpu();
  1682. }
  1683. /*
  1684. * wake_up_new_task - wake up a newly created task for the first time.
  1685. *
  1686. * This function will do some initial scheduler statistics housekeeping
  1687. * that must be done for every newly created context, then puts the task
  1688. * on the runqueue and wakes it.
  1689. */
  1690. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1691. {
  1692. unsigned long flags;
  1693. struct rq *rq;
  1694. rq = task_rq_lock(p, &flags);
  1695. BUG_ON(p->state != TASK_RUNNING);
  1696. update_rq_clock(rq);
  1697. p->prio = effective_prio(p);
  1698. if (!p->sched_class->task_new || !current->se.on_rq) {
  1699. activate_task(rq, p, 0);
  1700. } else {
  1701. /*
  1702. * Let the scheduling class do new task startup
  1703. * management (if any):
  1704. */
  1705. p->sched_class->task_new(rq, p);
  1706. inc_nr_running(p, rq);
  1707. }
  1708. check_preempt_curr(rq, p);
  1709. #ifdef CONFIG_SMP
  1710. if (p->sched_class->task_wake_up)
  1711. p->sched_class->task_wake_up(rq, p);
  1712. #endif
  1713. task_rq_unlock(rq, &flags);
  1714. }
  1715. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1716. /**
  1717. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  1718. * @notifier: notifier struct to register
  1719. */
  1720. void preempt_notifier_register(struct preempt_notifier *notifier)
  1721. {
  1722. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1723. }
  1724. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1725. /**
  1726. * preempt_notifier_unregister - no longer interested in preemption notifications
  1727. * @notifier: notifier struct to unregister
  1728. *
  1729. * This is safe to call from within a preemption notifier.
  1730. */
  1731. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1732. {
  1733. hlist_del(&notifier->link);
  1734. }
  1735. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1736. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1737. {
  1738. struct preempt_notifier *notifier;
  1739. struct hlist_node *node;
  1740. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1741. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1742. }
  1743. static void
  1744. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1745. struct task_struct *next)
  1746. {
  1747. struct preempt_notifier *notifier;
  1748. struct hlist_node *node;
  1749. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1750. notifier->ops->sched_out(notifier, next);
  1751. }
  1752. #else
  1753. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1754. {
  1755. }
  1756. static void
  1757. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1758. struct task_struct *next)
  1759. {
  1760. }
  1761. #endif
  1762. /**
  1763. * prepare_task_switch - prepare to switch tasks
  1764. * @rq: the runqueue preparing to switch
  1765. * @prev: the current task that is being switched out
  1766. * @next: the task we are going to switch to.
  1767. *
  1768. * This is called with the rq lock held and interrupts off. It must
  1769. * be paired with a subsequent finish_task_switch after the context
  1770. * switch.
  1771. *
  1772. * prepare_task_switch sets up locking and calls architecture specific
  1773. * hooks.
  1774. */
  1775. static inline void
  1776. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1777. struct task_struct *next)
  1778. {
  1779. fire_sched_out_preempt_notifiers(prev, next);
  1780. prepare_lock_switch(rq, next);
  1781. prepare_arch_switch(next);
  1782. }
  1783. /**
  1784. * finish_task_switch - clean up after a task-switch
  1785. * @rq: runqueue associated with task-switch
  1786. * @prev: the thread we just switched away from.
  1787. *
  1788. * finish_task_switch must be called after the context switch, paired
  1789. * with a prepare_task_switch call before the context switch.
  1790. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1791. * and do any other architecture-specific cleanup actions.
  1792. *
  1793. * Note that we may have delayed dropping an mm in context_switch(). If
  1794. * so, we finish that here outside of the runqueue lock. (Doing it
  1795. * with the lock held can cause deadlocks; see schedule() for
  1796. * details.)
  1797. */
  1798. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1799. __releases(rq->lock)
  1800. {
  1801. struct mm_struct *mm = rq->prev_mm;
  1802. long prev_state;
  1803. rq->prev_mm = NULL;
  1804. /*
  1805. * A task struct has one reference for the use as "current".
  1806. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1807. * schedule one last time. The schedule call will never return, and
  1808. * the scheduled task must drop that reference.
  1809. * The test for TASK_DEAD must occur while the runqueue locks are
  1810. * still held, otherwise prev could be scheduled on another cpu, die
  1811. * there before we look at prev->state, and then the reference would
  1812. * be dropped twice.
  1813. * Manfred Spraul <manfred@colorfullife.com>
  1814. */
  1815. prev_state = prev->state;
  1816. finish_arch_switch(prev);
  1817. finish_lock_switch(rq, prev);
  1818. #ifdef CONFIG_SMP
  1819. if (current->sched_class->post_schedule)
  1820. current->sched_class->post_schedule(rq);
  1821. #endif
  1822. fire_sched_in_preempt_notifiers(current);
  1823. if (mm)
  1824. mmdrop(mm);
  1825. if (unlikely(prev_state == TASK_DEAD)) {
  1826. /*
  1827. * Remove function-return probe instances associated with this
  1828. * task and put them back on the free list.
  1829. */
  1830. kprobe_flush_task(prev);
  1831. put_task_struct(prev);
  1832. }
  1833. }
  1834. /**
  1835. * schedule_tail - first thing a freshly forked thread must call.
  1836. * @prev: the thread we just switched away from.
  1837. */
  1838. asmlinkage void schedule_tail(struct task_struct *prev)
  1839. __releases(rq->lock)
  1840. {
  1841. struct rq *rq = this_rq();
  1842. finish_task_switch(rq, prev);
  1843. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1844. /* In this case, finish_task_switch does not reenable preemption */
  1845. preempt_enable();
  1846. #endif
  1847. if (current->set_child_tid)
  1848. put_user(task_pid_vnr(current), current->set_child_tid);
  1849. }
  1850. /*
  1851. * context_switch - switch to the new MM and the new
  1852. * thread's register state.
  1853. */
  1854. static inline void
  1855. context_switch(struct rq *rq, struct task_struct *prev,
  1856. struct task_struct *next)
  1857. {
  1858. struct mm_struct *mm, *oldmm;
  1859. prepare_task_switch(rq, prev, next);
  1860. mm = next->mm;
  1861. oldmm = prev->active_mm;
  1862. /*
  1863. * For paravirt, this is coupled with an exit in switch_to to
  1864. * combine the page table reload and the switch backend into
  1865. * one hypercall.
  1866. */
  1867. arch_enter_lazy_cpu_mode();
  1868. if (unlikely(!mm)) {
  1869. next->active_mm = oldmm;
  1870. atomic_inc(&oldmm->mm_count);
  1871. enter_lazy_tlb(oldmm, next);
  1872. } else
  1873. switch_mm(oldmm, mm, next);
  1874. if (unlikely(!prev->mm)) {
  1875. prev->active_mm = NULL;
  1876. rq->prev_mm = oldmm;
  1877. }
  1878. /*
  1879. * Since the runqueue lock will be released by the next
  1880. * task (which is an invalid locking op but in the case
  1881. * of the scheduler it's an obvious special-case), so we
  1882. * do an early lockdep release here:
  1883. */
  1884. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1885. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1886. #endif
  1887. /* Here we just switch the register state and the stack. */
  1888. switch_to(prev, next, prev);
  1889. barrier();
  1890. /*
  1891. * this_rq must be evaluated again because prev may have moved
  1892. * CPUs since it called schedule(), thus the 'rq' on its stack
  1893. * frame will be invalid.
  1894. */
  1895. finish_task_switch(this_rq(), prev);
  1896. }
  1897. /*
  1898. * nr_running, nr_uninterruptible and nr_context_switches:
  1899. *
  1900. * externally visible scheduler statistics: current number of runnable
  1901. * threads, current number of uninterruptible-sleeping threads, total
  1902. * number of context switches performed since bootup.
  1903. */
  1904. unsigned long nr_running(void)
  1905. {
  1906. unsigned long i, sum = 0;
  1907. for_each_online_cpu(i)
  1908. sum += cpu_rq(i)->nr_running;
  1909. return sum;
  1910. }
  1911. unsigned long nr_uninterruptible(void)
  1912. {
  1913. unsigned long i, sum = 0;
  1914. for_each_possible_cpu(i)
  1915. sum += cpu_rq(i)->nr_uninterruptible;
  1916. /*
  1917. * Since we read the counters lockless, it might be slightly
  1918. * inaccurate. Do not allow it to go below zero though:
  1919. */
  1920. if (unlikely((long)sum < 0))
  1921. sum = 0;
  1922. return sum;
  1923. }
  1924. unsigned long long nr_context_switches(void)
  1925. {
  1926. int i;
  1927. unsigned long long sum = 0;
  1928. for_each_possible_cpu(i)
  1929. sum += cpu_rq(i)->nr_switches;
  1930. return sum;
  1931. }
  1932. unsigned long nr_iowait(void)
  1933. {
  1934. unsigned long i, sum = 0;
  1935. for_each_possible_cpu(i)
  1936. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1937. return sum;
  1938. }
  1939. unsigned long nr_active(void)
  1940. {
  1941. unsigned long i, running = 0, uninterruptible = 0;
  1942. for_each_online_cpu(i) {
  1943. running += cpu_rq(i)->nr_running;
  1944. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  1945. }
  1946. if (unlikely((long)uninterruptible < 0))
  1947. uninterruptible = 0;
  1948. return running + uninterruptible;
  1949. }
  1950. /*
  1951. * Update rq->cpu_load[] statistics. This function is usually called every
  1952. * scheduler tick (TICK_NSEC).
  1953. */
  1954. static void update_cpu_load(struct rq *this_rq)
  1955. {
  1956. unsigned long this_load = this_rq->load.weight;
  1957. int i, scale;
  1958. this_rq->nr_load_updates++;
  1959. /* Update our load: */
  1960. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  1961. unsigned long old_load, new_load;
  1962. /* scale is effectively 1 << i now, and >> i divides by scale */
  1963. old_load = this_rq->cpu_load[i];
  1964. new_load = this_load;
  1965. /*
  1966. * Round up the averaging division if load is increasing. This
  1967. * prevents us from getting stuck on 9 if the load is 10, for
  1968. * example.
  1969. */
  1970. if (new_load > old_load)
  1971. new_load += scale-1;
  1972. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  1973. }
  1974. }
  1975. #ifdef CONFIG_SMP
  1976. /*
  1977. * double_rq_lock - safely lock two runqueues
  1978. *
  1979. * Note this does not disable interrupts like task_rq_lock,
  1980. * you need to do so manually before calling.
  1981. */
  1982. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1983. __acquires(rq1->lock)
  1984. __acquires(rq2->lock)
  1985. {
  1986. BUG_ON(!irqs_disabled());
  1987. if (rq1 == rq2) {
  1988. spin_lock(&rq1->lock);
  1989. __acquire(rq2->lock); /* Fake it out ;) */
  1990. } else {
  1991. if (rq1 < rq2) {
  1992. spin_lock(&rq1->lock);
  1993. spin_lock(&rq2->lock);
  1994. } else {
  1995. spin_lock(&rq2->lock);
  1996. spin_lock(&rq1->lock);
  1997. }
  1998. }
  1999. update_rq_clock(rq1);
  2000. update_rq_clock(rq2);
  2001. }
  2002. /*
  2003. * double_rq_unlock - safely unlock two runqueues
  2004. *
  2005. * Note this does not restore interrupts like task_rq_unlock,
  2006. * you need to do so manually after calling.
  2007. */
  2008. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2009. __releases(rq1->lock)
  2010. __releases(rq2->lock)
  2011. {
  2012. spin_unlock(&rq1->lock);
  2013. if (rq1 != rq2)
  2014. spin_unlock(&rq2->lock);
  2015. else
  2016. __release(rq2->lock);
  2017. }
  2018. /*
  2019. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  2020. */
  2021. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  2022. __releases(this_rq->lock)
  2023. __acquires(busiest->lock)
  2024. __acquires(this_rq->lock)
  2025. {
  2026. int ret = 0;
  2027. if (unlikely(!irqs_disabled())) {
  2028. /* printk() doesn't work good under rq->lock */
  2029. spin_unlock(&this_rq->lock);
  2030. BUG_ON(1);
  2031. }
  2032. if (unlikely(!spin_trylock(&busiest->lock))) {
  2033. if (busiest < this_rq) {
  2034. spin_unlock(&this_rq->lock);
  2035. spin_lock(&busiest->lock);
  2036. spin_lock(&this_rq->lock);
  2037. ret = 1;
  2038. } else
  2039. spin_lock(&busiest->lock);
  2040. }
  2041. return ret;
  2042. }
  2043. /*
  2044. * If dest_cpu is allowed for this process, migrate the task to it.
  2045. * This is accomplished by forcing the cpu_allowed mask to only
  2046. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2047. * the cpu_allowed mask is restored.
  2048. */
  2049. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2050. {
  2051. struct migration_req req;
  2052. unsigned long flags;
  2053. struct rq *rq;
  2054. rq = task_rq_lock(p, &flags);
  2055. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  2056. || unlikely(cpu_is_offline(dest_cpu)))
  2057. goto out;
  2058. /* force the process onto the specified CPU */
  2059. if (migrate_task(p, dest_cpu, &req)) {
  2060. /* Need to wait for migration thread (might exit: take ref). */
  2061. struct task_struct *mt = rq->migration_thread;
  2062. get_task_struct(mt);
  2063. task_rq_unlock(rq, &flags);
  2064. wake_up_process(mt);
  2065. put_task_struct(mt);
  2066. wait_for_completion(&req.done);
  2067. return;
  2068. }
  2069. out:
  2070. task_rq_unlock(rq, &flags);
  2071. }
  2072. /*
  2073. * sched_exec - execve() is a valuable balancing opportunity, because at
  2074. * this point the task has the smallest effective memory and cache footprint.
  2075. */
  2076. void sched_exec(void)
  2077. {
  2078. int new_cpu, this_cpu = get_cpu();
  2079. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2080. put_cpu();
  2081. if (new_cpu != this_cpu)
  2082. sched_migrate_task(current, new_cpu);
  2083. }
  2084. /*
  2085. * pull_task - move a task from a remote runqueue to the local runqueue.
  2086. * Both runqueues must be locked.
  2087. */
  2088. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2089. struct rq *this_rq, int this_cpu)
  2090. {
  2091. deactivate_task(src_rq, p, 0);
  2092. set_task_cpu(p, this_cpu);
  2093. activate_task(this_rq, p, 0);
  2094. /*
  2095. * Note that idle threads have a prio of MAX_PRIO, for this test
  2096. * to be always true for them.
  2097. */
  2098. check_preempt_curr(this_rq, p);
  2099. }
  2100. /*
  2101. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2102. */
  2103. static
  2104. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2105. struct sched_domain *sd, enum cpu_idle_type idle,
  2106. int *all_pinned)
  2107. {
  2108. /*
  2109. * We do not migrate tasks that are:
  2110. * 1) running (obviously), or
  2111. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2112. * 3) are cache-hot on their current CPU.
  2113. */
  2114. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  2115. schedstat_inc(p, se.nr_failed_migrations_affine);
  2116. return 0;
  2117. }
  2118. *all_pinned = 0;
  2119. if (task_running(rq, p)) {
  2120. schedstat_inc(p, se.nr_failed_migrations_running);
  2121. return 0;
  2122. }
  2123. /*
  2124. * Aggressive migration if:
  2125. * 1) task is cache cold, or
  2126. * 2) too many balance attempts have failed.
  2127. */
  2128. if (!task_hot(p, rq->clock, sd) ||
  2129. sd->nr_balance_failed > sd->cache_nice_tries) {
  2130. #ifdef CONFIG_SCHEDSTATS
  2131. if (task_hot(p, rq->clock, sd)) {
  2132. schedstat_inc(sd, lb_hot_gained[idle]);
  2133. schedstat_inc(p, se.nr_forced_migrations);
  2134. }
  2135. #endif
  2136. return 1;
  2137. }
  2138. if (task_hot(p, rq->clock, sd)) {
  2139. schedstat_inc(p, se.nr_failed_migrations_hot);
  2140. return 0;
  2141. }
  2142. return 1;
  2143. }
  2144. static unsigned long
  2145. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2146. unsigned long max_load_move, struct sched_domain *sd,
  2147. enum cpu_idle_type idle, int *all_pinned,
  2148. int *this_best_prio, struct rq_iterator *iterator)
  2149. {
  2150. int loops = 0, pulled = 0, pinned = 0, skip_for_load;
  2151. struct task_struct *p;
  2152. long rem_load_move = max_load_move;
  2153. if (max_load_move == 0)
  2154. goto out;
  2155. pinned = 1;
  2156. /*
  2157. * Start the load-balancing iterator:
  2158. */
  2159. p = iterator->start(iterator->arg);
  2160. next:
  2161. if (!p || loops++ > sysctl_sched_nr_migrate)
  2162. goto out;
  2163. /*
  2164. * To help distribute high priority tasks across CPUs we don't
  2165. * skip a task if it will be the highest priority task (i.e. smallest
  2166. * prio value) on its new queue regardless of its load weight
  2167. */
  2168. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  2169. SCHED_LOAD_SCALE_FUZZ;
  2170. if ((skip_for_load && p->prio >= *this_best_prio) ||
  2171. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2172. p = iterator->next(iterator->arg);
  2173. goto next;
  2174. }
  2175. pull_task(busiest, p, this_rq, this_cpu);
  2176. pulled++;
  2177. rem_load_move -= p->se.load.weight;
  2178. /*
  2179. * We only want to steal up to the prescribed amount of weighted load.
  2180. */
  2181. if (rem_load_move > 0) {
  2182. if (p->prio < *this_best_prio)
  2183. *this_best_prio = p->prio;
  2184. p = iterator->next(iterator->arg);
  2185. goto next;
  2186. }
  2187. out:
  2188. /*
  2189. * Right now, this is one of only two places pull_task() is called,
  2190. * so we can safely collect pull_task() stats here rather than
  2191. * inside pull_task().
  2192. */
  2193. schedstat_add(sd, lb_gained[idle], pulled);
  2194. if (all_pinned)
  2195. *all_pinned = pinned;
  2196. return max_load_move - rem_load_move;
  2197. }
  2198. /*
  2199. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2200. * this_rq, as part of a balancing operation within domain "sd".
  2201. * Returns 1 if successful and 0 otherwise.
  2202. *
  2203. * Called with both runqueues locked.
  2204. */
  2205. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2206. unsigned long max_load_move,
  2207. struct sched_domain *sd, enum cpu_idle_type idle,
  2208. int *all_pinned)
  2209. {
  2210. const struct sched_class *class = sched_class_highest;
  2211. unsigned long total_load_moved = 0;
  2212. int this_best_prio = this_rq->curr->prio;
  2213. do {
  2214. total_load_moved +=
  2215. class->load_balance(this_rq, this_cpu, busiest,
  2216. max_load_move - total_load_moved,
  2217. sd, idle, all_pinned, &this_best_prio);
  2218. class = class->next;
  2219. } while (class && max_load_move > total_load_moved);
  2220. return total_load_moved > 0;
  2221. }
  2222. static int
  2223. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2224. struct sched_domain *sd, enum cpu_idle_type idle,
  2225. struct rq_iterator *iterator)
  2226. {
  2227. struct task_struct *p = iterator->start(iterator->arg);
  2228. int pinned = 0;
  2229. while (p) {
  2230. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2231. pull_task(busiest, p, this_rq, this_cpu);
  2232. /*
  2233. * Right now, this is only the second place pull_task()
  2234. * is called, so we can safely collect pull_task()
  2235. * stats here rather than inside pull_task().
  2236. */
  2237. schedstat_inc(sd, lb_gained[idle]);
  2238. return 1;
  2239. }
  2240. p = iterator->next(iterator->arg);
  2241. }
  2242. return 0;
  2243. }
  2244. /*
  2245. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2246. * part of active balancing operations within "domain".
  2247. * Returns 1 if successful and 0 otherwise.
  2248. *
  2249. * Called with both runqueues locked.
  2250. */
  2251. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2252. struct sched_domain *sd, enum cpu_idle_type idle)
  2253. {
  2254. const struct sched_class *class;
  2255. for (class = sched_class_highest; class; class = class->next)
  2256. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2257. return 1;
  2258. return 0;
  2259. }
  2260. /*
  2261. * find_busiest_group finds and returns the busiest CPU group within the
  2262. * domain. It calculates and returns the amount of weighted load which
  2263. * should be moved to restore balance via the imbalance parameter.
  2264. */
  2265. static struct sched_group *
  2266. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2267. unsigned long *imbalance, enum cpu_idle_type idle,
  2268. int *sd_idle, cpumask_t *cpus, int *balance)
  2269. {
  2270. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2271. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2272. unsigned long max_pull;
  2273. unsigned long busiest_load_per_task, busiest_nr_running;
  2274. unsigned long this_load_per_task, this_nr_running;
  2275. int load_idx, group_imb = 0;
  2276. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2277. int power_savings_balance = 1;
  2278. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2279. unsigned long min_nr_running = ULONG_MAX;
  2280. struct sched_group *group_min = NULL, *group_leader = NULL;
  2281. #endif
  2282. max_load = this_load = total_load = total_pwr = 0;
  2283. busiest_load_per_task = busiest_nr_running = 0;
  2284. this_load_per_task = this_nr_running = 0;
  2285. if (idle == CPU_NOT_IDLE)
  2286. load_idx = sd->busy_idx;
  2287. else if (idle == CPU_NEWLY_IDLE)
  2288. load_idx = sd->newidle_idx;
  2289. else
  2290. load_idx = sd->idle_idx;
  2291. do {
  2292. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2293. int local_group;
  2294. int i;
  2295. int __group_imb = 0;
  2296. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2297. unsigned long sum_nr_running, sum_weighted_load;
  2298. local_group = cpu_isset(this_cpu, group->cpumask);
  2299. if (local_group)
  2300. balance_cpu = first_cpu(group->cpumask);
  2301. /* Tally up the load of all CPUs in the group */
  2302. sum_weighted_load = sum_nr_running = avg_load = 0;
  2303. max_cpu_load = 0;
  2304. min_cpu_load = ~0UL;
  2305. for_each_cpu_mask(i, group->cpumask) {
  2306. struct rq *rq;
  2307. if (!cpu_isset(i, *cpus))
  2308. continue;
  2309. rq = cpu_rq(i);
  2310. if (*sd_idle && rq->nr_running)
  2311. *sd_idle = 0;
  2312. /* Bias balancing toward cpus of our domain */
  2313. if (local_group) {
  2314. if (idle_cpu(i) && !first_idle_cpu) {
  2315. first_idle_cpu = 1;
  2316. balance_cpu = i;
  2317. }
  2318. load = target_load(i, load_idx);
  2319. } else {
  2320. load = source_load(i, load_idx);
  2321. if (load > max_cpu_load)
  2322. max_cpu_load = load;
  2323. if (min_cpu_load > load)
  2324. min_cpu_load = load;
  2325. }
  2326. avg_load += load;
  2327. sum_nr_running += rq->nr_running;
  2328. sum_weighted_load += weighted_cpuload(i);
  2329. }
  2330. /*
  2331. * First idle cpu or the first cpu(busiest) in this sched group
  2332. * is eligible for doing load balancing at this and above
  2333. * domains. In the newly idle case, we will allow all the cpu's
  2334. * to do the newly idle load balance.
  2335. */
  2336. if (idle != CPU_NEWLY_IDLE && local_group &&
  2337. balance_cpu != this_cpu && balance) {
  2338. *balance = 0;
  2339. goto ret;
  2340. }
  2341. total_load += avg_load;
  2342. total_pwr += group->__cpu_power;
  2343. /* Adjust by relative CPU power of the group */
  2344. avg_load = sg_div_cpu_power(group,
  2345. avg_load * SCHED_LOAD_SCALE);
  2346. if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
  2347. __group_imb = 1;
  2348. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2349. if (local_group) {
  2350. this_load = avg_load;
  2351. this = group;
  2352. this_nr_running = sum_nr_running;
  2353. this_load_per_task = sum_weighted_load;
  2354. } else if (avg_load > max_load &&
  2355. (sum_nr_running > group_capacity || __group_imb)) {
  2356. max_load = avg_load;
  2357. busiest = group;
  2358. busiest_nr_running = sum_nr_running;
  2359. busiest_load_per_task = sum_weighted_load;
  2360. group_imb = __group_imb;
  2361. }
  2362. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2363. /*
  2364. * Busy processors will not participate in power savings
  2365. * balance.
  2366. */
  2367. if (idle == CPU_NOT_IDLE ||
  2368. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2369. goto group_next;
  2370. /*
  2371. * If the local group is idle or completely loaded
  2372. * no need to do power savings balance at this domain
  2373. */
  2374. if (local_group && (this_nr_running >= group_capacity ||
  2375. !this_nr_running))
  2376. power_savings_balance = 0;
  2377. /*
  2378. * If a group is already running at full capacity or idle,
  2379. * don't include that group in power savings calculations
  2380. */
  2381. if (!power_savings_balance || sum_nr_running >= group_capacity
  2382. || !sum_nr_running)
  2383. goto group_next;
  2384. /*
  2385. * Calculate the group which has the least non-idle load.
  2386. * This is the group from where we need to pick up the load
  2387. * for saving power
  2388. */
  2389. if ((sum_nr_running < min_nr_running) ||
  2390. (sum_nr_running == min_nr_running &&
  2391. first_cpu(group->cpumask) <
  2392. first_cpu(group_min->cpumask))) {
  2393. group_min = group;
  2394. min_nr_running = sum_nr_running;
  2395. min_load_per_task = sum_weighted_load /
  2396. sum_nr_running;
  2397. }
  2398. /*
  2399. * Calculate the group which is almost near its
  2400. * capacity but still has some space to pick up some load
  2401. * from other group and save more power
  2402. */
  2403. if (sum_nr_running <= group_capacity - 1) {
  2404. if (sum_nr_running > leader_nr_running ||
  2405. (sum_nr_running == leader_nr_running &&
  2406. first_cpu(group->cpumask) >
  2407. first_cpu(group_leader->cpumask))) {
  2408. group_leader = group;
  2409. leader_nr_running = sum_nr_running;
  2410. }
  2411. }
  2412. group_next:
  2413. #endif
  2414. group = group->next;
  2415. } while (group != sd->groups);
  2416. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2417. goto out_balanced;
  2418. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2419. if (this_load >= avg_load ||
  2420. 100*max_load <= sd->imbalance_pct*this_load)
  2421. goto out_balanced;
  2422. busiest_load_per_task /= busiest_nr_running;
  2423. if (group_imb)
  2424. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2425. /*
  2426. * We're trying to get all the cpus to the average_load, so we don't
  2427. * want to push ourselves above the average load, nor do we wish to
  2428. * reduce the max loaded cpu below the average load, as either of these
  2429. * actions would just result in more rebalancing later, and ping-pong
  2430. * tasks around. Thus we look for the minimum possible imbalance.
  2431. * Negative imbalances (*we* are more loaded than anyone else) will
  2432. * be counted as no imbalance for these purposes -- we can't fix that
  2433. * by pulling tasks to us. Be careful of negative numbers as they'll
  2434. * appear as very large values with unsigned longs.
  2435. */
  2436. if (max_load <= busiest_load_per_task)
  2437. goto out_balanced;
  2438. /*
  2439. * In the presence of smp nice balancing, certain scenarios can have
  2440. * max load less than avg load(as we skip the groups at or below
  2441. * its cpu_power, while calculating max_load..)
  2442. */
  2443. if (max_load < avg_load) {
  2444. *imbalance = 0;
  2445. goto small_imbalance;
  2446. }
  2447. /* Don't want to pull so many tasks that a group would go idle */
  2448. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2449. /* How much load to actually move to equalise the imbalance */
  2450. *imbalance = min(max_pull * busiest->__cpu_power,
  2451. (avg_load - this_load) * this->__cpu_power)
  2452. / SCHED_LOAD_SCALE;
  2453. /*
  2454. * if *imbalance is less than the average load per runnable task
  2455. * there is no gaurantee that any tasks will be moved so we'll have
  2456. * a think about bumping its value to force at least one task to be
  2457. * moved
  2458. */
  2459. if (*imbalance < busiest_load_per_task) {
  2460. unsigned long tmp, pwr_now, pwr_move;
  2461. unsigned int imbn;
  2462. small_imbalance:
  2463. pwr_move = pwr_now = 0;
  2464. imbn = 2;
  2465. if (this_nr_running) {
  2466. this_load_per_task /= this_nr_running;
  2467. if (busiest_load_per_task > this_load_per_task)
  2468. imbn = 1;
  2469. } else
  2470. this_load_per_task = SCHED_LOAD_SCALE;
  2471. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2472. busiest_load_per_task * imbn) {
  2473. *imbalance = busiest_load_per_task;
  2474. return busiest;
  2475. }
  2476. /*
  2477. * OK, we don't have enough imbalance to justify moving tasks,
  2478. * however we may be able to increase total CPU power used by
  2479. * moving them.
  2480. */
  2481. pwr_now += busiest->__cpu_power *
  2482. min(busiest_load_per_task, max_load);
  2483. pwr_now += this->__cpu_power *
  2484. min(this_load_per_task, this_load);
  2485. pwr_now /= SCHED_LOAD_SCALE;
  2486. /* Amount of load we'd subtract */
  2487. tmp = sg_div_cpu_power(busiest,
  2488. busiest_load_per_task * SCHED_LOAD_SCALE);
  2489. if (max_load > tmp)
  2490. pwr_move += busiest->__cpu_power *
  2491. min(busiest_load_per_task, max_load - tmp);
  2492. /* Amount of load we'd add */
  2493. if (max_load * busiest->__cpu_power <
  2494. busiest_load_per_task * SCHED_LOAD_SCALE)
  2495. tmp = sg_div_cpu_power(this,
  2496. max_load * busiest->__cpu_power);
  2497. else
  2498. tmp = sg_div_cpu_power(this,
  2499. busiest_load_per_task * SCHED_LOAD_SCALE);
  2500. pwr_move += this->__cpu_power *
  2501. min(this_load_per_task, this_load + tmp);
  2502. pwr_move /= SCHED_LOAD_SCALE;
  2503. /* Move if we gain throughput */
  2504. if (pwr_move > pwr_now)
  2505. *imbalance = busiest_load_per_task;
  2506. }
  2507. return busiest;
  2508. out_balanced:
  2509. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2510. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2511. goto ret;
  2512. if (this == group_leader && group_leader != group_min) {
  2513. *imbalance = min_load_per_task;
  2514. return group_min;
  2515. }
  2516. #endif
  2517. ret:
  2518. *imbalance = 0;
  2519. return NULL;
  2520. }
  2521. /*
  2522. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2523. */
  2524. static struct rq *
  2525. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2526. unsigned long imbalance, cpumask_t *cpus)
  2527. {
  2528. struct rq *busiest = NULL, *rq;
  2529. unsigned long max_load = 0;
  2530. int i;
  2531. for_each_cpu_mask(i, group->cpumask) {
  2532. unsigned long wl;
  2533. if (!cpu_isset(i, *cpus))
  2534. continue;
  2535. rq = cpu_rq(i);
  2536. wl = weighted_cpuload(i);
  2537. if (rq->nr_running == 1 && wl > imbalance)
  2538. continue;
  2539. if (wl > max_load) {
  2540. max_load = wl;
  2541. busiest = rq;
  2542. }
  2543. }
  2544. return busiest;
  2545. }
  2546. /*
  2547. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2548. * so long as it is large enough.
  2549. */
  2550. #define MAX_PINNED_INTERVAL 512
  2551. /*
  2552. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2553. * tasks if there is an imbalance.
  2554. */
  2555. static int load_balance(int this_cpu, struct rq *this_rq,
  2556. struct sched_domain *sd, enum cpu_idle_type idle,
  2557. int *balance)
  2558. {
  2559. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2560. struct sched_group *group;
  2561. unsigned long imbalance;
  2562. struct rq *busiest;
  2563. cpumask_t cpus = CPU_MASK_ALL;
  2564. unsigned long flags;
  2565. /*
  2566. * When power savings policy is enabled for the parent domain, idle
  2567. * sibling can pick up load irrespective of busy siblings. In this case,
  2568. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2569. * portraying it as CPU_NOT_IDLE.
  2570. */
  2571. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2572. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2573. sd_idle = 1;
  2574. schedstat_inc(sd, lb_count[idle]);
  2575. redo:
  2576. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2577. &cpus, balance);
  2578. if (*balance == 0)
  2579. goto out_balanced;
  2580. if (!group) {
  2581. schedstat_inc(sd, lb_nobusyg[idle]);
  2582. goto out_balanced;
  2583. }
  2584. busiest = find_busiest_queue(group, idle, imbalance, &cpus);
  2585. if (!busiest) {
  2586. schedstat_inc(sd, lb_nobusyq[idle]);
  2587. goto out_balanced;
  2588. }
  2589. BUG_ON(busiest == this_rq);
  2590. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2591. ld_moved = 0;
  2592. if (busiest->nr_running > 1) {
  2593. /*
  2594. * Attempt to move tasks. If find_busiest_group has found
  2595. * an imbalance but busiest->nr_running <= 1, the group is
  2596. * still unbalanced. ld_moved simply stays zero, so it is
  2597. * correctly treated as an imbalance.
  2598. */
  2599. local_irq_save(flags);
  2600. double_rq_lock(this_rq, busiest);
  2601. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2602. imbalance, sd, idle, &all_pinned);
  2603. double_rq_unlock(this_rq, busiest);
  2604. local_irq_restore(flags);
  2605. /*
  2606. * some other cpu did the load balance for us.
  2607. */
  2608. if (ld_moved && this_cpu != smp_processor_id())
  2609. resched_cpu(this_cpu);
  2610. /* All tasks on this runqueue were pinned by CPU affinity */
  2611. if (unlikely(all_pinned)) {
  2612. cpu_clear(cpu_of(busiest), cpus);
  2613. if (!cpus_empty(cpus))
  2614. goto redo;
  2615. goto out_balanced;
  2616. }
  2617. }
  2618. if (!ld_moved) {
  2619. schedstat_inc(sd, lb_failed[idle]);
  2620. sd->nr_balance_failed++;
  2621. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2622. spin_lock_irqsave(&busiest->lock, flags);
  2623. /* don't kick the migration_thread, if the curr
  2624. * task on busiest cpu can't be moved to this_cpu
  2625. */
  2626. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2627. spin_unlock_irqrestore(&busiest->lock, flags);
  2628. all_pinned = 1;
  2629. goto out_one_pinned;
  2630. }
  2631. if (!busiest->active_balance) {
  2632. busiest->active_balance = 1;
  2633. busiest->push_cpu = this_cpu;
  2634. active_balance = 1;
  2635. }
  2636. spin_unlock_irqrestore(&busiest->lock, flags);
  2637. if (active_balance)
  2638. wake_up_process(busiest->migration_thread);
  2639. /*
  2640. * We've kicked active balancing, reset the failure
  2641. * counter.
  2642. */
  2643. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2644. }
  2645. } else
  2646. sd->nr_balance_failed = 0;
  2647. if (likely(!active_balance)) {
  2648. /* We were unbalanced, so reset the balancing interval */
  2649. sd->balance_interval = sd->min_interval;
  2650. } else {
  2651. /*
  2652. * If we've begun active balancing, start to back off. This
  2653. * case may not be covered by the all_pinned logic if there
  2654. * is only 1 task on the busy runqueue (because we don't call
  2655. * move_tasks).
  2656. */
  2657. if (sd->balance_interval < sd->max_interval)
  2658. sd->balance_interval *= 2;
  2659. }
  2660. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2661. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2662. return -1;
  2663. return ld_moved;
  2664. out_balanced:
  2665. schedstat_inc(sd, lb_balanced[idle]);
  2666. sd->nr_balance_failed = 0;
  2667. out_one_pinned:
  2668. /* tune up the balancing interval */
  2669. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2670. (sd->balance_interval < sd->max_interval))
  2671. sd->balance_interval *= 2;
  2672. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2673. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2674. return -1;
  2675. return 0;
  2676. }
  2677. /*
  2678. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2679. * tasks if there is an imbalance.
  2680. *
  2681. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  2682. * this_rq is locked.
  2683. */
  2684. static int
  2685. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  2686. {
  2687. struct sched_group *group;
  2688. struct rq *busiest = NULL;
  2689. unsigned long imbalance;
  2690. int ld_moved = 0;
  2691. int sd_idle = 0;
  2692. int all_pinned = 0;
  2693. cpumask_t cpus = CPU_MASK_ALL;
  2694. /*
  2695. * When power savings policy is enabled for the parent domain, idle
  2696. * sibling can pick up load irrespective of busy siblings. In this case,
  2697. * let the state of idle sibling percolate up as IDLE, instead of
  2698. * portraying it as CPU_NOT_IDLE.
  2699. */
  2700. if (sd->flags & SD_SHARE_CPUPOWER &&
  2701. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2702. sd_idle = 1;
  2703. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  2704. redo:
  2705. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  2706. &sd_idle, &cpus, NULL);
  2707. if (!group) {
  2708. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  2709. goto out_balanced;
  2710. }
  2711. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
  2712. &cpus);
  2713. if (!busiest) {
  2714. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  2715. goto out_balanced;
  2716. }
  2717. BUG_ON(busiest == this_rq);
  2718. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  2719. ld_moved = 0;
  2720. if (busiest->nr_running > 1) {
  2721. /* Attempt to move tasks */
  2722. double_lock_balance(this_rq, busiest);
  2723. /* this_rq->clock is already updated */
  2724. update_rq_clock(busiest);
  2725. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2726. imbalance, sd, CPU_NEWLY_IDLE,
  2727. &all_pinned);
  2728. spin_unlock(&busiest->lock);
  2729. if (unlikely(all_pinned)) {
  2730. cpu_clear(cpu_of(busiest), cpus);
  2731. if (!cpus_empty(cpus))
  2732. goto redo;
  2733. }
  2734. }
  2735. if (!ld_moved) {
  2736. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  2737. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2738. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2739. return -1;
  2740. } else
  2741. sd->nr_balance_failed = 0;
  2742. return ld_moved;
  2743. out_balanced:
  2744. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  2745. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2746. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2747. return -1;
  2748. sd->nr_balance_failed = 0;
  2749. return 0;
  2750. }
  2751. /*
  2752. * idle_balance is called by schedule() if this_cpu is about to become
  2753. * idle. Attempts to pull tasks from other CPUs.
  2754. */
  2755. static void idle_balance(int this_cpu, struct rq *this_rq)
  2756. {
  2757. struct sched_domain *sd;
  2758. int pulled_task = -1;
  2759. unsigned long next_balance = jiffies + HZ;
  2760. for_each_domain(this_cpu, sd) {
  2761. unsigned long interval;
  2762. if (!(sd->flags & SD_LOAD_BALANCE))
  2763. continue;
  2764. if (sd->flags & SD_BALANCE_NEWIDLE)
  2765. /* If we've pulled tasks over stop searching: */
  2766. pulled_task = load_balance_newidle(this_cpu,
  2767. this_rq, sd);
  2768. interval = msecs_to_jiffies(sd->balance_interval);
  2769. if (time_after(next_balance, sd->last_balance + interval))
  2770. next_balance = sd->last_balance + interval;
  2771. if (pulled_task)
  2772. break;
  2773. }
  2774. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2775. /*
  2776. * We are going idle. next_balance may be set based on
  2777. * a busy processor. So reset next_balance.
  2778. */
  2779. this_rq->next_balance = next_balance;
  2780. }
  2781. }
  2782. /*
  2783. * active_load_balance is run by migration threads. It pushes running tasks
  2784. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2785. * running on each physical CPU where possible, and avoids physical /
  2786. * logical imbalances.
  2787. *
  2788. * Called with busiest_rq locked.
  2789. */
  2790. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2791. {
  2792. int target_cpu = busiest_rq->push_cpu;
  2793. struct sched_domain *sd;
  2794. struct rq *target_rq;
  2795. /* Is there any task to move? */
  2796. if (busiest_rq->nr_running <= 1)
  2797. return;
  2798. target_rq = cpu_rq(target_cpu);
  2799. /*
  2800. * This condition is "impossible", if it occurs
  2801. * we need to fix it. Originally reported by
  2802. * Bjorn Helgaas on a 128-cpu setup.
  2803. */
  2804. BUG_ON(busiest_rq == target_rq);
  2805. /* move a task from busiest_rq to target_rq */
  2806. double_lock_balance(busiest_rq, target_rq);
  2807. update_rq_clock(busiest_rq);
  2808. update_rq_clock(target_rq);
  2809. /* Search for an sd spanning us and the target CPU. */
  2810. for_each_domain(target_cpu, sd) {
  2811. if ((sd->flags & SD_LOAD_BALANCE) &&
  2812. cpu_isset(busiest_cpu, sd->span))
  2813. break;
  2814. }
  2815. if (likely(sd)) {
  2816. schedstat_inc(sd, alb_count);
  2817. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2818. sd, CPU_IDLE))
  2819. schedstat_inc(sd, alb_pushed);
  2820. else
  2821. schedstat_inc(sd, alb_failed);
  2822. }
  2823. spin_unlock(&target_rq->lock);
  2824. }
  2825. #ifdef CONFIG_NO_HZ
  2826. static struct {
  2827. atomic_t load_balancer;
  2828. cpumask_t cpu_mask;
  2829. } nohz ____cacheline_aligned = {
  2830. .load_balancer = ATOMIC_INIT(-1),
  2831. .cpu_mask = CPU_MASK_NONE,
  2832. };
  2833. /*
  2834. * This routine will try to nominate the ilb (idle load balancing)
  2835. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2836. * load balancing on behalf of all those cpus. If all the cpus in the system
  2837. * go into this tickless mode, then there will be no ilb owner (as there is
  2838. * no need for one) and all the cpus will sleep till the next wakeup event
  2839. * arrives...
  2840. *
  2841. * For the ilb owner, tick is not stopped. And this tick will be used
  2842. * for idle load balancing. ilb owner will still be part of
  2843. * nohz.cpu_mask..
  2844. *
  2845. * While stopping the tick, this cpu will become the ilb owner if there
  2846. * is no other owner. And will be the owner till that cpu becomes busy
  2847. * or if all cpus in the system stop their ticks at which point
  2848. * there is no need for ilb owner.
  2849. *
  2850. * When the ilb owner becomes busy, it nominates another owner, during the
  2851. * next busy scheduler_tick()
  2852. */
  2853. int select_nohz_load_balancer(int stop_tick)
  2854. {
  2855. int cpu = smp_processor_id();
  2856. if (stop_tick) {
  2857. cpu_set(cpu, nohz.cpu_mask);
  2858. cpu_rq(cpu)->in_nohz_recently = 1;
  2859. /*
  2860. * If we are going offline and still the leader, give up!
  2861. */
  2862. if (cpu_is_offline(cpu) &&
  2863. atomic_read(&nohz.load_balancer) == cpu) {
  2864. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2865. BUG();
  2866. return 0;
  2867. }
  2868. /* time for ilb owner also to sleep */
  2869. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2870. if (atomic_read(&nohz.load_balancer) == cpu)
  2871. atomic_set(&nohz.load_balancer, -1);
  2872. return 0;
  2873. }
  2874. if (atomic_read(&nohz.load_balancer) == -1) {
  2875. /* make me the ilb owner */
  2876. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  2877. return 1;
  2878. } else if (atomic_read(&nohz.load_balancer) == cpu)
  2879. return 1;
  2880. } else {
  2881. if (!cpu_isset(cpu, nohz.cpu_mask))
  2882. return 0;
  2883. cpu_clear(cpu, nohz.cpu_mask);
  2884. if (atomic_read(&nohz.load_balancer) == cpu)
  2885. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2886. BUG();
  2887. }
  2888. return 0;
  2889. }
  2890. #endif
  2891. static DEFINE_SPINLOCK(balancing);
  2892. /*
  2893. * It checks each scheduling domain to see if it is due to be balanced,
  2894. * and initiates a balancing operation if so.
  2895. *
  2896. * Balancing parameters are set up in arch_init_sched_domains.
  2897. */
  2898. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  2899. {
  2900. int balance = 1;
  2901. struct rq *rq = cpu_rq(cpu);
  2902. unsigned long interval;
  2903. struct sched_domain *sd;
  2904. /* Earliest time when we have to do rebalance again */
  2905. unsigned long next_balance = jiffies + 60*HZ;
  2906. int update_next_balance = 0;
  2907. for_each_domain(cpu, sd) {
  2908. if (!(sd->flags & SD_LOAD_BALANCE))
  2909. continue;
  2910. interval = sd->balance_interval;
  2911. if (idle != CPU_IDLE)
  2912. interval *= sd->busy_factor;
  2913. /* scale ms to jiffies */
  2914. interval = msecs_to_jiffies(interval);
  2915. if (unlikely(!interval))
  2916. interval = 1;
  2917. if (interval > HZ*NR_CPUS/10)
  2918. interval = HZ*NR_CPUS/10;
  2919. if (sd->flags & SD_SERIALIZE) {
  2920. if (!spin_trylock(&balancing))
  2921. goto out;
  2922. }
  2923. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  2924. if (load_balance(cpu, rq, sd, idle, &balance)) {
  2925. /*
  2926. * We've pulled tasks over so either we're no
  2927. * longer idle, or one of our SMT siblings is
  2928. * not idle.
  2929. */
  2930. idle = CPU_NOT_IDLE;
  2931. }
  2932. sd->last_balance = jiffies;
  2933. }
  2934. if (sd->flags & SD_SERIALIZE)
  2935. spin_unlock(&balancing);
  2936. out:
  2937. if (time_after(next_balance, sd->last_balance + interval)) {
  2938. next_balance = sd->last_balance + interval;
  2939. update_next_balance = 1;
  2940. }
  2941. /*
  2942. * Stop the load balance at this level. There is another
  2943. * CPU in our sched group which is doing load balancing more
  2944. * actively.
  2945. */
  2946. if (!balance)
  2947. break;
  2948. }
  2949. /*
  2950. * next_balance will be updated only when there is a need.
  2951. * When the cpu is attached to null domain for ex, it will not be
  2952. * updated.
  2953. */
  2954. if (likely(update_next_balance))
  2955. rq->next_balance = next_balance;
  2956. }
  2957. /*
  2958. * run_rebalance_domains is triggered when needed from the scheduler tick.
  2959. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  2960. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  2961. */
  2962. static void run_rebalance_domains(struct softirq_action *h)
  2963. {
  2964. int this_cpu = smp_processor_id();
  2965. struct rq *this_rq = cpu_rq(this_cpu);
  2966. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  2967. CPU_IDLE : CPU_NOT_IDLE;
  2968. rebalance_domains(this_cpu, idle);
  2969. #ifdef CONFIG_NO_HZ
  2970. /*
  2971. * If this cpu is the owner for idle load balancing, then do the
  2972. * balancing on behalf of the other idle cpus whose ticks are
  2973. * stopped.
  2974. */
  2975. if (this_rq->idle_at_tick &&
  2976. atomic_read(&nohz.load_balancer) == this_cpu) {
  2977. cpumask_t cpus = nohz.cpu_mask;
  2978. struct rq *rq;
  2979. int balance_cpu;
  2980. cpu_clear(this_cpu, cpus);
  2981. for_each_cpu_mask(balance_cpu, cpus) {
  2982. /*
  2983. * If this cpu gets work to do, stop the load balancing
  2984. * work being done for other cpus. Next load
  2985. * balancing owner will pick it up.
  2986. */
  2987. if (need_resched())
  2988. break;
  2989. rebalance_domains(balance_cpu, CPU_IDLE);
  2990. rq = cpu_rq(balance_cpu);
  2991. if (time_after(this_rq->next_balance, rq->next_balance))
  2992. this_rq->next_balance = rq->next_balance;
  2993. }
  2994. }
  2995. #endif
  2996. }
  2997. /*
  2998. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  2999. *
  3000. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3001. * idle load balancing owner or decide to stop the periodic load balancing,
  3002. * if the whole system is idle.
  3003. */
  3004. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3005. {
  3006. #ifdef CONFIG_NO_HZ
  3007. /*
  3008. * If we were in the nohz mode recently and busy at the current
  3009. * scheduler tick, then check if we need to nominate new idle
  3010. * load balancer.
  3011. */
  3012. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3013. rq->in_nohz_recently = 0;
  3014. if (atomic_read(&nohz.load_balancer) == cpu) {
  3015. cpu_clear(cpu, nohz.cpu_mask);
  3016. atomic_set(&nohz.load_balancer, -1);
  3017. }
  3018. if (atomic_read(&nohz.load_balancer) == -1) {
  3019. /*
  3020. * simple selection for now: Nominate the
  3021. * first cpu in the nohz list to be the next
  3022. * ilb owner.
  3023. *
  3024. * TBD: Traverse the sched domains and nominate
  3025. * the nearest cpu in the nohz.cpu_mask.
  3026. */
  3027. int ilb = first_cpu(nohz.cpu_mask);
  3028. if (ilb != NR_CPUS)
  3029. resched_cpu(ilb);
  3030. }
  3031. }
  3032. /*
  3033. * If this cpu is idle and doing idle load balancing for all the
  3034. * cpus with ticks stopped, is it time for that to stop?
  3035. */
  3036. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3037. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3038. resched_cpu(cpu);
  3039. return;
  3040. }
  3041. /*
  3042. * If this cpu is idle and the idle load balancing is done by
  3043. * someone else, then no need raise the SCHED_SOFTIRQ
  3044. */
  3045. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3046. cpu_isset(cpu, nohz.cpu_mask))
  3047. return;
  3048. #endif
  3049. if (time_after_eq(jiffies, rq->next_balance))
  3050. raise_softirq(SCHED_SOFTIRQ);
  3051. }
  3052. #else /* CONFIG_SMP */
  3053. /*
  3054. * on UP we do not need to balance between CPUs:
  3055. */
  3056. static inline void idle_balance(int cpu, struct rq *rq)
  3057. {
  3058. }
  3059. #endif
  3060. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3061. EXPORT_PER_CPU_SYMBOL(kstat);
  3062. /*
  3063. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  3064. * that have not yet been banked in case the task is currently running.
  3065. */
  3066. unsigned long long task_sched_runtime(struct task_struct *p)
  3067. {
  3068. unsigned long flags;
  3069. u64 ns, delta_exec;
  3070. struct rq *rq;
  3071. rq = task_rq_lock(p, &flags);
  3072. ns = p->se.sum_exec_runtime;
  3073. if (task_current(rq, p)) {
  3074. update_rq_clock(rq);
  3075. delta_exec = rq->clock - p->se.exec_start;
  3076. if ((s64)delta_exec > 0)
  3077. ns += delta_exec;
  3078. }
  3079. task_rq_unlock(rq, &flags);
  3080. return ns;
  3081. }
  3082. /*
  3083. * Account user cpu time to a process.
  3084. * @p: the process that the cpu time gets accounted to
  3085. * @cputime: the cpu time spent in user space since the last update
  3086. */
  3087. void account_user_time(struct task_struct *p, cputime_t cputime)
  3088. {
  3089. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3090. cputime64_t tmp;
  3091. p->utime = cputime_add(p->utime, cputime);
  3092. /* Add user time to cpustat. */
  3093. tmp = cputime_to_cputime64(cputime);
  3094. if (TASK_NICE(p) > 0)
  3095. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3096. else
  3097. cpustat->user = cputime64_add(cpustat->user, tmp);
  3098. }
  3099. /*
  3100. * Account guest cpu time to a process.
  3101. * @p: the process that the cpu time gets accounted to
  3102. * @cputime: the cpu time spent in virtual machine since the last update
  3103. */
  3104. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  3105. {
  3106. cputime64_t tmp;
  3107. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3108. tmp = cputime_to_cputime64(cputime);
  3109. p->utime = cputime_add(p->utime, cputime);
  3110. p->gtime = cputime_add(p->gtime, cputime);
  3111. cpustat->user = cputime64_add(cpustat->user, tmp);
  3112. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3113. }
  3114. /*
  3115. * Account scaled user cpu time to a process.
  3116. * @p: the process that the cpu time gets accounted to
  3117. * @cputime: the cpu time spent in user space since the last update
  3118. */
  3119. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  3120. {
  3121. p->utimescaled = cputime_add(p->utimescaled, cputime);
  3122. }
  3123. /*
  3124. * Account system cpu time to a process.
  3125. * @p: the process that the cpu time gets accounted to
  3126. * @hardirq_offset: the offset to subtract from hardirq_count()
  3127. * @cputime: the cpu time spent in kernel space since the last update
  3128. */
  3129. void account_system_time(struct task_struct *p, int hardirq_offset,
  3130. cputime_t cputime)
  3131. {
  3132. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3133. struct rq *rq = this_rq();
  3134. cputime64_t tmp;
  3135. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
  3136. return account_guest_time(p, cputime);
  3137. p->stime = cputime_add(p->stime, cputime);
  3138. /* Add system time to cpustat. */
  3139. tmp = cputime_to_cputime64(cputime);
  3140. if (hardirq_count() - hardirq_offset)
  3141. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3142. else if (softirq_count())
  3143. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3144. else if (p != rq->idle)
  3145. cpustat->system = cputime64_add(cpustat->system, tmp);
  3146. else if (atomic_read(&rq->nr_iowait) > 0)
  3147. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3148. else
  3149. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3150. /* Account for system time used */
  3151. acct_update_integrals(p);
  3152. }
  3153. /*
  3154. * Account scaled system cpu time to a process.
  3155. * @p: the process that the cpu time gets accounted to
  3156. * @hardirq_offset: the offset to subtract from hardirq_count()
  3157. * @cputime: the cpu time spent in kernel space since the last update
  3158. */
  3159. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  3160. {
  3161. p->stimescaled = cputime_add(p->stimescaled, cputime);
  3162. }
  3163. /*
  3164. * Account for involuntary wait time.
  3165. * @p: the process from which the cpu time has been stolen
  3166. * @steal: the cpu time spent in involuntary wait
  3167. */
  3168. void account_steal_time(struct task_struct *p, cputime_t steal)
  3169. {
  3170. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3171. cputime64_t tmp = cputime_to_cputime64(steal);
  3172. struct rq *rq = this_rq();
  3173. if (p == rq->idle) {
  3174. p->stime = cputime_add(p->stime, steal);
  3175. if (atomic_read(&rq->nr_iowait) > 0)
  3176. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3177. else
  3178. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3179. } else
  3180. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  3181. }
  3182. /*
  3183. * This function gets called by the timer code, with HZ frequency.
  3184. * We call it with interrupts disabled.
  3185. *
  3186. * It also gets called by the fork code, when changing the parent's
  3187. * timeslices.
  3188. */
  3189. void scheduler_tick(void)
  3190. {
  3191. int cpu = smp_processor_id();
  3192. struct rq *rq = cpu_rq(cpu);
  3193. struct task_struct *curr = rq->curr;
  3194. u64 next_tick = rq->tick_timestamp + TICK_NSEC;
  3195. spin_lock(&rq->lock);
  3196. __update_rq_clock(rq);
  3197. /*
  3198. * Let rq->clock advance by at least TICK_NSEC:
  3199. */
  3200. if (unlikely(rq->clock < next_tick)) {
  3201. rq->clock = next_tick;
  3202. rq->clock_underflows++;
  3203. }
  3204. rq->tick_timestamp = rq->clock;
  3205. update_cpu_load(rq);
  3206. curr->sched_class->task_tick(rq, curr, 0);
  3207. update_sched_rt_period(rq);
  3208. spin_unlock(&rq->lock);
  3209. #ifdef CONFIG_SMP
  3210. rq->idle_at_tick = idle_cpu(cpu);
  3211. trigger_load_balance(rq, cpu);
  3212. #endif
  3213. }
  3214. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  3215. void __kprobes add_preempt_count(int val)
  3216. {
  3217. /*
  3218. * Underflow?
  3219. */
  3220. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3221. return;
  3222. preempt_count() += val;
  3223. /*
  3224. * Spinlock count overflowing soon?
  3225. */
  3226. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3227. PREEMPT_MASK - 10);
  3228. }
  3229. EXPORT_SYMBOL(add_preempt_count);
  3230. void __kprobes sub_preempt_count(int val)
  3231. {
  3232. /*
  3233. * Underflow?
  3234. */
  3235. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3236. return;
  3237. /*
  3238. * Is the spinlock portion underflowing?
  3239. */
  3240. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3241. !(preempt_count() & PREEMPT_MASK)))
  3242. return;
  3243. preempt_count() -= val;
  3244. }
  3245. EXPORT_SYMBOL(sub_preempt_count);
  3246. #endif
  3247. /*
  3248. * Print scheduling while atomic bug:
  3249. */
  3250. static noinline void __schedule_bug(struct task_struct *prev)
  3251. {
  3252. struct pt_regs *regs = get_irq_regs();
  3253. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3254. prev->comm, prev->pid, preempt_count());
  3255. debug_show_held_locks(prev);
  3256. if (irqs_disabled())
  3257. print_irqtrace_events(prev);
  3258. if (regs)
  3259. show_regs(regs);
  3260. else
  3261. dump_stack();
  3262. }
  3263. /*
  3264. * Various schedule()-time debugging checks and statistics:
  3265. */
  3266. static inline void schedule_debug(struct task_struct *prev)
  3267. {
  3268. /*
  3269. * Test if we are atomic. Since do_exit() needs to call into
  3270. * schedule() atomically, we ignore that path for now.
  3271. * Otherwise, whine if we are scheduling when we should not be.
  3272. */
  3273. if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
  3274. __schedule_bug(prev);
  3275. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3276. schedstat_inc(this_rq(), sched_count);
  3277. #ifdef CONFIG_SCHEDSTATS
  3278. if (unlikely(prev->lock_depth >= 0)) {
  3279. schedstat_inc(this_rq(), bkl_count);
  3280. schedstat_inc(prev, sched_info.bkl_count);
  3281. }
  3282. #endif
  3283. }
  3284. /*
  3285. * Pick up the highest-prio task:
  3286. */
  3287. static inline struct task_struct *
  3288. pick_next_task(struct rq *rq, struct task_struct *prev)
  3289. {
  3290. const struct sched_class *class;
  3291. struct task_struct *p;
  3292. /*
  3293. * Optimization: we know that if all tasks are in
  3294. * the fair class we can call that function directly:
  3295. */
  3296. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3297. p = fair_sched_class.pick_next_task(rq);
  3298. if (likely(p))
  3299. return p;
  3300. }
  3301. class = sched_class_highest;
  3302. for ( ; ; ) {
  3303. p = class->pick_next_task(rq);
  3304. if (p)
  3305. return p;
  3306. /*
  3307. * Will never be NULL as the idle class always
  3308. * returns a non-NULL p:
  3309. */
  3310. class = class->next;
  3311. }
  3312. }
  3313. /*
  3314. * schedule() is the main scheduler function.
  3315. */
  3316. asmlinkage void __sched schedule(void)
  3317. {
  3318. struct task_struct *prev, *next;
  3319. unsigned long *switch_count;
  3320. struct rq *rq;
  3321. int cpu;
  3322. need_resched:
  3323. preempt_disable();
  3324. cpu = smp_processor_id();
  3325. rq = cpu_rq(cpu);
  3326. rcu_qsctr_inc(cpu);
  3327. prev = rq->curr;
  3328. switch_count = &prev->nivcsw;
  3329. release_kernel_lock(prev);
  3330. need_resched_nonpreemptible:
  3331. schedule_debug(prev);
  3332. hrtick_clear(rq);
  3333. /*
  3334. * Do the rq-clock update outside the rq lock:
  3335. */
  3336. local_irq_disable();
  3337. __update_rq_clock(rq);
  3338. spin_lock(&rq->lock);
  3339. clear_tsk_need_resched(prev);
  3340. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3341. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  3342. unlikely(signal_pending(prev)))) {
  3343. prev->state = TASK_RUNNING;
  3344. } else {
  3345. deactivate_task(rq, prev, 1);
  3346. }
  3347. switch_count = &prev->nvcsw;
  3348. }
  3349. #ifdef CONFIG_SMP
  3350. if (prev->sched_class->pre_schedule)
  3351. prev->sched_class->pre_schedule(rq, prev);
  3352. #endif
  3353. if (unlikely(!rq->nr_running))
  3354. idle_balance(cpu, rq);
  3355. prev->sched_class->put_prev_task(rq, prev);
  3356. next = pick_next_task(rq, prev);
  3357. sched_info_switch(prev, next);
  3358. if (likely(prev != next)) {
  3359. rq->nr_switches++;
  3360. rq->curr = next;
  3361. ++*switch_count;
  3362. context_switch(rq, prev, next); /* unlocks the rq */
  3363. /*
  3364. * the context switch might have flipped the stack from under
  3365. * us, hence refresh the local variables.
  3366. */
  3367. cpu = smp_processor_id();
  3368. rq = cpu_rq(cpu);
  3369. } else
  3370. spin_unlock_irq(&rq->lock);
  3371. hrtick_set(rq);
  3372. if (unlikely(reacquire_kernel_lock(current) < 0))
  3373. goto need_resched_nonpreemptible;
  3374. preempt_enable_no_resched();
  3375. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3376. goto need_resched;
  3377. }
  3378. EXPORT_SYMBOL(schedule);
  3379. #ifdef CONFIG_PREEMPT
  3380. /*
  3381. * this is the entry point to schedule() from in-kernel preemption
  3382. * off of preempt_enable. Kernel preemptions off return from interrupt
  3383. * occur there and call schedule directly.
  3384. */
  3385. asmlinkage void __sched preempt_schedule(void)
  3386. {
  3387. struct thread_info *ti = current_thread_info();
  3388. struct task_struct *task = current;
  3389. int saved_lock_depth;
  3390. /*
  3391. * If there is a non-zero preempt_count or interrupts are disabled,
  3392. * we do not want to preempt the current task. Just return..
  3393. */
  3394. if (likely(ti->preempt_count || irqs_disabled()))
  3395. return;
  3396. do {
  3397. add_preempt_count(PREEMPT_ACTIVE);
  3398. /*
  3399. * We keep the big kernel semaphore locked, but we
  3400. * clear ->lock_depth so that schedule() doesnt
  3401. * auto-release the semaphore:
  3402. */
  3403. saved_lock_depth = task->lock_depth;
  3404. task->lock_depth = -1;
  3405. schedule();
  3406. task->lock_depth = saved_lock_depth;
  3407. sub_preempt_count(PREEMPT_ACTIVE);
  3408. /*
  3409. * Check again in case we missed a preemption opportunity
  3410. * between schedule and now.
  3411. */
  3412. barrier();
  3413. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3414. }
  3415. EXPORT_SYMBOL(preempt_schedule);
  3416. /*
  3417. * this is the entry point to schedule() from kernel preemption
  3418. * off of irq context.
  3419. * Note, that this is called and return with irqs disabled. This will
  3420. * protect us against recursive calling from irq.
  3421. */
  3422. asmlinkage void __sched preempt_schedule_irq(void)
  3423. {
  3424. struct thread_info *ti = current_thread_info();
  3425. struct task_struct *task = current;
  3426. int saved_lock_depth;
  3427. /* Catch callers which need to be fixed */
  3428. BUG_ON(ti->preempt_count || !irqs_disabled());
  3429. do {
  3430. add_preempt_count(PREEMPT_ACTIVE);
  3431. /*
  3432. * We keep the big kernel semaphore locked, but we
  3433. * clear ->lock_depth so that schedule() doesnt
  3434. * auto-release the semaphore:
  3435. */
  3436. saved_lock_depth = task->lock_depth;
  3437. task->lock_depth = -1;
  3438. local_irq_enable();
  3439. schedule();
  3440. local_irq_disable();
  3441. task->lock_depth = saved_lock_depth;
  3442. sub_preempt_count(PREEMPT_ACTIVE);
  3443. /*
  3444. * Check again in case we missed a preemption opportunity
  3445. * between schedule and now.
  3446. */
  3447. barrier();
  3448. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3449. }
  3450. #endif /* CONFIG_PREEMPT */
  3451. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3452. void *key)
  3453. {
  3454. return try_to_wake_up(curr->private, mode, sync);
  3455. }
  3456. EXPORT_SYMBOL(default_wake_function);
  3457. /*
  3458. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3459. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3460. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3461. *
  3462. * There are circumstances in which we can try to wake a task which has already
  3463. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3464. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3465. */
  3466. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3467. int nr_exclusive, int sync, void *key)
  3468. {
  3469. wait_queue_t *curr, *next;
  3470. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3471. unsigned flags = curr->flags;
  3472. if (curr->func(curr, mode, sync, key) &&
  3473. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3474. break;
  3475. }
  3476. }
  3477. /**
  3478. * __wake_up - wake up threads blocked on a waitqueue.
  3479. * @q: the waitqueue
  3480. * @mode: which threads
  3481. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3482. * @key: is directly passed to the wakeup function
  3483. */
  3484. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3485. int nr_exclusive, void *key)
  3486. {
  3487. unsigned long flags;
  3488. spin_lock_irqsave(&q->lock, flags);
  3489. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3490. spin_unlock_irqrestore(&q->lock, flags);
  3491. }
  3492. EXPORT_SYMBOL(__wake_up);
  3493. /*
  3494. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3495. */
  3496. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3497. {
  3498. __wake_up_common(q, mode, 1, 0, NULL);
  3499. }
  3500. /**
  3501. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3502. * @q: the waitqueue
  3503. * @mode: which threads
  3504. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3505. *
  3506. * The sync wakeup differs that the waker knows that it will schedule
  3507. * away soon, so while the target thread will be woken up, it will not
  3508. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3509. * with each other. This can prevent needless bouncing between CPUs.
  3510. *
  3511. * On UP it can prevent extra preemption.
  3512. */
  3513. void
  3514. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3515. {
  3516. unsigned long flags;
  3517. int sync = 1;
  3518. if (unlikely(!q))
  3519. return;
  3520. if (unlikely(!nr_exclusive))
  3521. sync = 0;
  3522. spin_lock_irqsave(&q->lock, flags);
  3523. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3524. spin_unlock_irqrestore(&q->lock, flags);
  3525. }
  3526. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3527. void complete(struct completion *x)
  3528. {
  3529. unsigned long flags;
  3530. spin_lock_irqsave(&x->wait.lock, flags);
  3531. x->done++;
  3532. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3533. spin_unlock_irqrestore(&x->wait.lock, flags);
  3534. }
  3535. EXPORT_SYMBOL(complete);
  3536. void complete_all(struct completion *x)
  3537. {
  3538. unsigned long flags;
  3539. spin_lock_irqsave(&x->wait.lock, flags);
  3540. x->done += UINT_MAX/2;
  3541. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3542. spin_unlock_irqrestore(&x->wait.lock, flags);
  3543. }
  3544. EXPORT_SYMBOL(complete_all);
  3545. static inline long __sched
  3546. do_wait_for_common(struct completion *x, long timeout, int state)
  3547. {
  3548. if (!x->done) {
  3549. DECLARE_WAITQUEUE(wait, current);
  3550. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3551. __add_wait_queue_tail(&x->wait, &wait);
  3552. do {
  3553. if ((state == TASK_INTERRUPTIBLE &&
  3554. signal_pending(current)) ||
  3555. (state == TASK_KILLABLE &&
  3556. fatal_signal_pending(current))) {
  3557. __remove_wait_queue(&x->wait, &wait);
  3558. return -ERESTARTSYS;
  3559. }
  3560. __set_current_state(state);
  3561. spin_unlock_irq(&x->wait.lock);
  3562. timeout = schedule_timeout(timeout);
  3563. spin_lock_irq(&x->wait.lock);
  3564. if (!timeout) {
  3565. __remove_wait_queue(&x->wait, &wait);
  3566. return timeout;
  3567. }
  3568. } while (!x->done);
  3569. __remove_wait_queue(&x->wait, &wait);
  3570. }
  3571. x->done--;
  3572. return timeout;
  3573. }
  3574. static long __sched
  3575. wait_for_common(struct completion *x, long timeout, int state)
  3576. {
  3577. might_sleep();
  3578. spin_lock_irq(&x->wait.lock);
  3579. timeout = do_wait_for_common(x, timeout, state);
  3580. spin_unlock_irq(&x->wait.lock);
  3581. return timeout;
  3582. }
  3583. void __sched wait_for_completion(struct completion *x)
  3584. {
  3585. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3586. }
  3587. EXPORT_SYMBOL(wait_for_completion);
  3588. unsigned long __sched
  3589. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3590. {
  3591. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3592. }
  3593. EXPORT_SYMBOL(wait_for_completion_timeout);
  3594. int __sched wait_for_completion_interruptible(struct completion *x)
  3595. {
  3596. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3597. if (t == -ERESTARTSYS)
  3598. return t;
  3599. return 0;
  3600. }
  3601. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3602. unsigned long __sched
  3603. wait_for_completion_interruptible_timeout(struct completion *x,
  3604. unsigned long timeout)
  3605. {
  3606. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3607. }
  3608. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3609. int __sched wait_for_completion_killable(struct completion *x)
  3610. {
  3611. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3612. if (t == -ERESTARTSYS)
  3613. return t;
  3614. return 0;
  3615. }
  3616. EXPORT_SYMBOL(wait_for_completion_killable);
  3617. static long __sched
  3618. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3619. {
  3620. unsigned long flags;
  3621. wait_queue_t wait;
  3622. init_waitqueue_entry(&wait, current);
  3623. __set_current_state(state);
  3624. spin_lock_irqsave(&q->lock, flags);
  3625. __add_wait_queue(q, &wait);
  3626. spin_unlock(&q->lock);
  3627. timeout = schedule_timeout(timeout);
  3628. spin_lock_irq(&q->lock);
  3629. __remove_wait_queue(q, &wait);
  3630. spin_unlock_irqrestore(&q->lock, flags);
  3631. return timeout;
  3632. }
  3633. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3634. {
  3635. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3636. }
  3637. EXPORT_SYMBOL(interruptible_sleep_on);
  3638. long __sched
  3639. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3640. {
  3641. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3642. }
  3643. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3644. void __sched sleep_on(wait_queue_head_t *q)
  3645. {
  3646. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3647. }
  3648. EXPORT_SYMBOL(sleep_on);
  3649. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3650. {
  3651. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3652. }
  3653. EXPORT_SYMBOL(sleep_on_timeout);
  3654. #ifdef CONFIG_RT_MUTEXES
  3655. /*
  3656. * rt_mutex_setprio - set the current priority of a task
  3657. * @p: task
  3658. * @prio: prio value (kernel-internal form)
  3659. *
  3660. * This function changes the 'effective' priority of a task. It does
  3661. * not touch ->normal_prio like __setscheduler().
  3662. *
  3663. * Used by the rt_mutex code to implement priority inheritance logic.
  3664. */
  3665. void rt_mutex_setprio(struct task_struct *p, int prio)
  3666. {
  3667. unsigned long flags;
  3668. int oldprio, on_rq, running;
  3669. struct rq *rq;
  3670. const struct sched_class *prev_class = p->sched_class;
  3671. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3672. rq = task_rq_lock(p, &flags);
  3673. update_rq_clock(rq);
  3674. oldprio = p->prio;
  3675. on_rq = p->se.on_rq;
  3676. running = task_current(rq, p);
  3677. if (on_rq)
  3678. dequeue_task(rq, p, 0);
  3679. if (running)
  3680. p->sched_class->put_prev_task(rq, p);
  3681. if (rt_prio(prio))
  3682. p->sched_class = &rt_sched_class;
  3683. else
  3684. p->sched_class = &fair_sched_class;
  3685. p->prio = prio;
  3686. if (running)
  3687. p->sched_class->set_curr_task(rq);
  3688. if (on_rq) {
  3689. enqueue_task(rq, p, 0);
  3690. check_class_changed(rq, p, prev_class, oldprio, running);
  3691. }
  3692. task_rq_unlock(rq, &flags);
  3693. }
  3694. #endif
  3695. void set_user_nice(struct task_struct *p, long nice)
  3696. {
  3697. int old_prio, delta, on_rq;
  3698. unsigned long flags;
  3699. struct rq *rq;
  3700. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3701. return;
  3702. /*
  3703. * We have to be careful, if called from sys_setpriority(),
  3704. * the task might be in the middle of scheduling on another CPU.
  3705. */
  3706. rq = task_rq_lock(p, &flags);
  3707. update_rq_clock(rq);
  3708. /*
  3709. * The RT priorities are set via sched_setscheduler(), but we still
  3710. * allow the 'normal' nice value to be set - but as expected
  3711. * it wont have any effect on scheduling until the task is
  3712. * SCHED_FIFO/SCHED_RR:
  3713. */
  3714. if (task_has_rt_policy(p)) {
  3715. p->static_prio = NICE_TO_PRIO(nice);
  3716. goto out_unlock;
  3717. }
  3718. on_rq = p->se.on_rq;
  3719. if (on_rq) {
  3720. dequeue_task(rq, p, 0);
  3721. dec_load(rq, p);
  3722. }
  3723. p->static_prio = NICE_TO_PRIO(nice);
  3724. set_load_weight(p);
  3725. old_prio = p->prio;
  3726. p->prio = effective_prio(p);
  3727. delta = p->prio - old_prio;
  3728. if (on_rq) {
  3729. enqueue_task(rq, p, 0);
  3730. inc_load(rq, p);
  3731. /*
  3732. * If the task increased its priority or is running and
  3733. * lowered its priority, then reschedule its CPU:
  3734. */
  3735. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3736. resched_task(rq->curr);
  3737. }
  3738. out_unlock:
  3739. task_rq_unlock(rq, &flags);
  3740. }
  3741. EXPORT_SYMBOL(set_user_nice);
  3742. /*
  3743. * can_nice - check if a task can reduce its nice value
  3744. * @p: task
  3745. * @nice: nice value
  3746. */
  3747. int can_nice(const struct task_struct *p, const int nice)
  3748. {
  3749. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3750. int nice_rlim = 20 - nice;
  3751. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3752. capable(CAP_SYS_NICE));
  3753. }
  3754. #ifdef __ARCH_WANT_SYS_NICE
  3755. /*
  3756. * sys_nice - change the priority of the current process.
  3757. * @increment: priority increment
  3758. *
  3759. * sys_setpriority is a more generic, but much slower function that
  3760. * does similar things.
  3761. */
  3762. asmlinkage long sys_nice(int increment)
  3763. {
  3764. long nice, retval;
  3765. /*
  3766. * Setpriority might change our priority at the same moment.
  3767. * We don't have to worry. Conceptually one call occurs first
  3768. * and we have a single winner.
  3769. */
  3770. if (increment < -40)
  3771. increment = -40;
  3772. if (increment > 40)
  3773. increment = 40;
  3774. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3775. if (nice < -20)
  3776. nice = -20;
  3777. if (nice > 19)
  3778. nice = 19;
  3779. if (increment < 0 && !can_nice(current, nice))
  3780. return -EPERM;
  3781. retval = security_task_setnice(current, nice);
  3782. if (retval)
  3783. return retval;
  3784. set_user_nice(current, nice);
  3785. return 0;
  3786. }
  3787. #endif
  3788. /**
  3789. * task_prio - return the priority value of a given task.
  3790. * @p: the task in question.
  3791. *
  3792. * This is the priority value as seen by users in /proc.
  3793. * RT tasks are offset by -200. Normal tasks are centered
  3794. * around 0, value goes from -16 to +15.
  3795. */
  3796. int task_prio(const struct task_struct *p)
  3797. {
  3798. return p->prio - MAX_RT_PRIO;
  3799. }
  3800. /**
  3801. * task_nice - return the nice value of a given task.
  3802. * @p: the task in question.
  3803. */
  3804. int task_nice(const struct task_struct *p)
  3805. {
  3806. return TASK_NICE(p);
  3807. }
  3808. EXPORT_SYMBOL(task_nice);
  3809. /**
  3810. * idle_cpu - is a given cpu idle currently?
  3811. * @cpu: the processor in question.
  3812. */
  3813. int idle_cpu(int cpu)
  3814. {
  3815. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3816. }
  3817. /**
  3818. * idle_task - return the idle task for a given cpu.
  3819. * @cpu: the processor in question.
  3820. */
  3821. struct task_struct *idle_task(int cpu)
  3822. {
  3823. return cpu_rq(cpu)->idle;
  3824. }
  3825. /**
  3826. * find_process_by_pid - find a process with a matching PID value.
  3827. * @pid: the pid in question.
  3828. */
  3829. static struct task_struct *find_process_by_pid(pid_t pid)
  3830. {
  3831. return pid ? find_task_by_vpid(pid) : current;
  3832. }
  3833. /* Actually do priority change: must hold rq lock. */
  3834. static void
  3835. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3836. {
  3837. BUG_ON(p->se.on_rq);
  3838. p->policy = policy;
  3839. switch (p->policy) {
  3840. case SCHED_NORMAL:
  3841. case SCHED_BATCH:
  3842. case SCHED_IDLE:
  3843. p->sched_class = &fair_sched_class;
  3844. break;
  3845. case SCHED_FIFO:
  3846. case SCHED_RR:
  3847. p->sched_class = &rt_sched_class;
  3848. break;
  3849. }
  3850. p->rt_priority = prio;
  3851. p->normal_prio = normal_prio(p);
  3852. /* we are holding p->pi_lock already */
  3853. p->prio = rt_mutex_getprio(p);
  3854. set_load_weight(p);
  3855. }
  3856. /**
  3857. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3858. * @p: the task in question.
  3859. * @policy: new policy.
  3860. * @param: structure containing the new RT priority.
  3861. *
  3862. * NOTE that the task may be already dead.
  3863. */
  3864. int sched_setscheduler(struct task_struct *p, int policy,
  3865. struct sched_param *param)
  3866. {
  3867. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3868. unsigned long flags;
  3869. const struct sched_class *prev_class = p->sched_class;
  3870. struct rq *rq;
  3871. /* may grab non-irq protected spin_locks */
  3872. BUG_ON(in_interrupt());
  3873. recheck:
  3874. /* double check policy once rq lock held */
  3875. if (policy < 0)
  3876. policy = oldpolicy = p->policy;
  3877. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3878. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3879. policy != SCHED_IDLE)
  3880. return -EINVAL;
  3881. /*
  3882. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3883. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3884. * SCHED_BATCH and SCHED_IDLE is 0.
  3885. */
  3886. if (param->sched_priority < 0 ||
  3887. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3888. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3889. return -EINVAL;
  3890. if (rt_policy(policy) != (param->sched_priority != 0))
  3891. return -EINVAL;
  3892. /*
  3893. * Allow unprivileged RT tasks to decrease priority:
  3894. */
  3895. if (!capable(CAP_SYS_NICE)) {
  3896. if (rt_policy(policy)) {
  3897. unsigned long rlim_rtprio;
  3898. if (!lock_task_sighand(p, &flags))
  3899. return -ESRCH;
  3900. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  3901. unlock_task_sighand(p, &flags);
  3902. /* can't set/change the rt policy */
  3903. if (policy != p->policy && !rlim_rtprio)
  3904. return -EPERM;
  3905. /* can't increase priority */
  3906. if (param->sched_priority > p->rt_priority &&
  3907. param->sched_priority > rlim_rtprio)
  3908. return -EPERM;
  3909. }
  3910. /*
  3911. * Like positive nice levels, dont allow tasks to
  3912. * move out of SCHED_IDLE either:
  3913. */
  3914. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3915. return -EPERM;
  3916. /* can't change other user's priorities */
  3917. if ((current->euid != p->euid) &&
  3918. (current->euid != p->uid))
  3919. return -EPERM;
  3920. }
  3921. #ifdef CONFIG_RT_GROUP_SCHED
  3922. /*
  3923. * Do not allow realtime tasks into groups that have no runtime
  3924. * assigned.
  3925. */
  3926. if (rt_policy(policy) && task_group(p)->rt_runtime == 0)
  3927. return -EPERM;
  3928. #endif
  3929. retval = security_task_setscheduler(p, policy, param);
  3930. if (retval)
  3931. return retval;
  3932. /*
  3933. * make sure no PI-waiters arrive (or leave) while we are
  3934. * changing the priority of the task:
  3935. */
  3936. spin_lock_irqsave(&p->pi_lock, flags);
  3937. /*
  3938. * To be able to change p->policy safely, the apropriate
  3939. * runqueue lock must be held.
  3940. */
  3941. rq = __task_rq_lock(p);
  3942. /* recheck policy now with rq lock held */
  3943. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3944. policy = oldpolicy = -1;
  3945. __task_rq_unlock(rq);
  3946. spin_unlock_irqrestore(&p->pi_lock, flags);
  3947. goto recheck;
  3948. }
  3949. update_rq_clock(rq);
  3950. on_rq = p->se.on_rq;
  3951. running = task_current(rq, p);
  3952. if (on_rq)
  3953. deactivate_task(rq, p, 0);
  3954. if (running)
  3955. p->sched_class->put_prev_task(rq, p);
  3956. oldprio = p->prio;
  3957. __setscheduler(rq, p, policy, param->sched_priority);
  3958. if (running)
  3959. p->sched_class->set_curr_task(rq);
  3960. if (on_rq) {
  3961. activate_task(rq, p, 0);
  3962. check_class_changed(rq, p, prev_class, oldprio, running);
  3963. }
  3964. __task_rq_unlock(rq);
  3965. spin_unlock_irqrestore(&p->pi_lock, flags);
  3966. rt_mutex_adjust_pi(p);
  3967. return 0;
  3968. }
  3969. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3970. static int
  3971. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3972. {
  3973. struct sched_param lparam;
  3974. struct task_struct *p;
  3975. int retval;
  3976. if (!param || pid < 0)
  3977. return -EINVAL;
  3978. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3979. return -EFAULT;
  3980. rcu_read_lock();
  3981. retval = -ESRCH;
  3982. p = find_process_by_pid(pid);
  3983. if (p != NULL)
  3984. retval = sched_setscheduler(p, policy, &lparam);
  3985. rcu_read_unlock();
  3986. return retval;
  3987. }
  3988. /**
  3989. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3990. * @pid: the pid in question.
  3991. * @policy: new policy.
  3992. * @param: structure containing the new RT priority.
  3993. */
  3994. asmlinkage long
  3995. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3996. {
  3997. /* negative values for policy are not valid */
  3998. if (policy < 0)
  3999. return -EINVAL;
  4000. return do_sched_setscheduler(pid, policy, param);
  4001. }
  4002. /**
  4003. * sys_sched_setparam - set/change the RT priority of a thread
  4004. * @pid: the pid in question.
  4005. * @param: structure containing the new RT priority.
  4006. */
  4007. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  4008. {
  4009. return do_sched_setscheduler(pid, -1, param);
  4010. }
  4011. /**
  4012. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4013. * @pid: the pid in question.
  4014. */
  4015. asmlinkage long sys_sched_getscheduler(pid_t pid)
  4016. {
  4017. struct task_struct *p;
  4018. int retval;
  4019. if (pid < 0)
  4020. return -EINVAL;
  4021. retval = -ESRCH;
  4022. read_lock(&tasklist_lock);
  4023. p = find_process_by_pid(pid);
  4024. if (p) {
  4025. retval = security_task_getscheduler(p);
  4026. if (!retval)
  4027. retval = p->policy;
  4028. }
  4029. read_unlock(&tasklist_lock);
  4030. return retval;
  4031. }
  4032. /**
  4033. * sys_sched_getscheduler - get the RT priority of a thread
  4034. * @pid: the pid in question.
  4035. * @param: structure containing the RT priority.
  4036. */
  4037. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  4038. {
  4039. struct sched_param lp;
  4040. struct task_struct *p;
  4041. int retval;
  4042. if (!param || pid < 0)
  4043. return -EINVAL;
  4044. read_lock(&tasklist_lock);
  4045. p = find_process_by_pid(pid);
  4046. retval = -ESRCH;
  4047. if (!p)
  4048. goto out_unlock;
  4049. retval = security_task_getscheduler(p);
  4050. if (retval)
  4051. goto out_unlock;
  4052. lp.sched_priority = p->rt_priority;
  4053. read_unlock(&tasklist_lock);
  4054. /*
  4055. * This one might sleep, we cannot do it with a spinlock held ...
  4056. */
  4057. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4058. return retval;
  4059. out_unlock:
  4060. read_unlock(&tasklist_lock);
  4061. return retval;
  4062. }
  4063. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  4064. {
  4065. cpumask_t cpus_allowed;
  4066. struct task_struct *p;
  4067. int retval;
  4068. get_online_cpus();
  4069. read_lock(&tasklist_lock);
  4070. p = find_process_by_pid(pid);
  4071. if (!p) {
  4072. read_unlock(&tasklist_lock);
  4073. put_online_cpus();
  4074. return -ESRCH;
  4075. }
  4076. /*
  4077. * It is not safe to call set_cpus_allowed with the
  4078. * tasklist_lock held. We will bump the task_struct's
  4079. * usage count and then drop tasklist_lock.
  4080. */
  4081. get_task_struct(p);
  4082. read_unlock(&tasklist_lock);
  4083. retval = -EPERM;
  4084. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  4085. !capable(CAP_SYS_NICE))
  4086. goto out_unlock;
  4087. retval = security_task_setscheduler(p, 0, NULL);
  4088. if (retval)
  4089. goto out_unlock;
  4090. cpus_allowed = cpuset_cpus_allowed(p);
  4091. cpus_and(new_mask, new_mask, cpus_allowed);
  4092. again:
  4093. retval = set_cpus_allowed(p, new_mask);
  4094. if (!retval) {
  4095. cpus_allowed = cpuset_cpus_allowed(p);
  4096. if (!cpus_subset(new_mask, cpus_allowed)) {
  4097. /*
  4098. * We must have raced with a concurrent cpuset
  4099. * update. Just reset the cpus_allowed to the
  4100. * cpuset's cpus_allowed
  4101. */
  4102. new_mask = cpus_allowed;
  4103. goto again;
  4104. }
  4105. }
  4106. out_unlock:
  4107. put_task_struct(p);
  4108. put_online_cpus();
  4109. return retval;
  4110. }
  4111. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4112. cpumask_t *new_mask)
  4113. {
  4114. if (len < sizeof(cpumask_t)) {
  4115. memset(new_mask, 0, sizeof(cpumask_t));
  4116. } else if (len > sizeof(cpumask_t)) {
  4117. len = sizeof(cpumask_t);
  4118. }
  4119. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4120. }
  4121. /**
  4122. * sys_sched_setaffinity - set the cpu affinity of a process
  4123. * @pid: pid of the process
  4124. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4125. * @user_mask_ptr: user-space pointer to the new cpu mask
  4126. */
  4127. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  4128. unsigned long __user *user_mask_ptr)
  4129. {
  4130. cpumask_t new_mask;
  4131. int retval;
  4132. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  4133. if (retval)
  4134. return retval;
  4135. return sched_setaffinity(pid, new_mask);
  4136. }
  4137. /*
  4138. * Represents all cpu's present in the system
  4139. * In systems capable of hotplug, this map could dynamically grow
  4140. * as new cpu's are detected in the system via any platform specific
  4141. * method, such as ACPI for e.g.
  4142. */
  4143. cpumask_t cpu_present_map __read_mostly;
  4144. EXPORT_SYMBOL(cpu_present_map);
  4145. #ifndef CONFIG_SMP
  4146. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  4147. EXPORT_SYMBOL(cpu_online_map);
  4148. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  4149. EXPORT_SYMBOL(cpu_possible_map);
  4150. #endif
  4151. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  4152. {
  4153. struct task_struct *p;
  4154. int retval;
  4155. get_online_cpus();
  4156. read_lock(&tasklist_lock);
  4157. retval = -ESRCH;
  4158. p = find_process_by_pid(pid);
  4159. if (!p)
  4160. goto out_unlock;
  4161. retval = security_task_getscheduler(p);
  4162. if (retval)
  4163. goto out_unlock;
  4164. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  4165. out_unlock:
  4166. read_unlock(&tasklist_lock);
  4167. put_online_cpus();
  4168. return retval;
  4169. }
  4170. /**
  4171. * sys_sched_getaffinity - get the cpu affinity of a process
  4172. * @pid: pid of the process
  4173. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4174. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4175. */
  4176. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  4177. unsigned long __user *user_mask_ptr)
  4178. {
  4179. int ret;
  4180. cpumask_t mask;
  4181. if (len < sizeof(cpumask_t))
  4182. return -EINVAL;
  4183. ret = sched_getaffinity(pid, &mask);
  4184. if (ret < 0)
  4185. return ret;
  4186. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  4187. return -EFAULT;
  4188. return sizeof(cpumask_t);
  4189. }
  4190. /**
  4191. * sys_sched_yield - yield the current processor to other threads.
  4192. *
  4193. * This function yields the current CPU to other tasks. If there are no
  4194. * other threads running on this CPU then this function will return.
  4195. */
  4196. asmlinkage long sys_sched_yield(void)
  4197. {
  4198. struct rq *rq = this_rq_lock();
  4199. schedstat_inc(rq, yld_count);
  4200. current->sched_class->yield_task(rq);
  4201. /*
  4202. * Since we are going to call schedule() anyway, there's
  4203. * no need to preempt or enable interrupts:
  4204. */
  4205. __release(rq->lock);
  4206. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4207. _raw_spin_unlock(&rq->lock);
  4208. preempt_enable_no_resched();
  4209. schedule();
  4210. return 0;
  4211. }
  4212. static void __cond_resched(void)
  4213. {
  4214. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4215. __might_sleep(__FILE__, __LINE__);
  4216. #endif
  4217. /*
  4218. * The BKS might be reacquired before we have dropped
  4219. * PREEMPT_ACTIVE, which could trigger a second
  4220. * cond_resched() call.
  4221. */
  4222. do {
  4223. add_preempt_count(PREEMPT_ACTIVE);
  4224. schedule();
  4225. sub_preempt_count(PREEMPT_ACTIVE);
  4226. } while (need_resched());
  4227. }
  4228. #if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
  4229. int __sched _cond_resched(void)
  4230. {
  4231. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4232. system_state == SYSTEM_RUNNING) {
  4233. __cond_resched();
  4234. return 1;
  4235. }
  4236. return 0;
  4237. }
  4238. EXPORT_SYMBOL(_cond_resched);
  4239. #endif
  4240. /*
  4241. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4242. * call schedule, and on return reacquire the lock.
  4243. *
  4244. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4245. * operations here to prevent schedule() from being called twice (once via
  4246. * spin_unlock(), once by hand).
  4247. */
  4248. int cond_resched_lock(spinlock_t *lock)
  4249. {
  4250. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  4251. int ret = 0;
  4252. if (spin_needbreak(lock) || resched) {
  4253. spin_unlock(lock);
  4254. if (resched && need_resched())
  4255. __cond_resched();
  4256. else
  4257. cpu_relax();
  4258. ret = 1;
  4259. spin_lock(lock);
  4260. }
  4261. return ret;
  4262. }
  4263. EXPORT_SYMBOL(cond_resched_lock);
  4264. int __sched cond_resched_softirq(void)
  4265. {
  4266. BUG_ON(!in_softirq());
  4267. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4268. local_bh_enable();
  4269. __cond_resched();
  4270. local_bh_disable();
  4271. return 1;
  4272. }
  4273. return 0;
  4274. }
  4275. EXPORT_SYMBOL(cond_resched_softirq);
  4276. /**
  4277. * yield - yield the current processor to other threads.
  4278. *
  4279. * This is a shortcut for kernel-space yielding - it marks the
  4280. * thread runnable and calls sys_sched_yield().
  4281. */
  4282. void __sched yield(void)
  4283. {
  4284. set_current_state(TASK_RUNNING);
  4285. sys_sched_yield();
  4286. }
  4287. EXPORT_SYMBOL(yield);
  4288. /*
  4289. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4290. * that process accounting knows that this is a task in IO wait state.
  4291. *
  4292. * But don't do that if it is a deliberate, throttling IO wait (this task
  4293. * has set its backing_dev_info: the queue against which it should throttle)
  4294. */
  4295. void __sched io_schedule(void)
  4296. {
  4297. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4298. delayacct_blkio_start();
  4299. atomic_inc(&rq->nr_iowait);
  4300. schedule();
  4301. atomic_dec(&rq->nr_iowait);
  4302. delayacct_blkio_end();
  4303. }
  4304. EXPORT_SYMBOL(io_schedule);
  4305. long __sched io_schedule_timeout(long timeout)
  4306. {
  4307. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4308. long ret;
  4309. delayacct_blkio_start();
  4310. atomic_inc(&rq->nr_iowait);
  4311. ret = schedule_timeout(timeout);
  4312. atomic_dec(&rq->nr_iowait);
  4313. delayacct_blkio_end();
  4314. return ret;
  4315. }
  4316. /**
  4317. * sys_sched_get_priority_max - return maximum RT priority.
  4318. * @policy: scheduling class.
  4319. *
  4320. * this syscall returns the maximum rt_priority that can be used
  4321. * by a given scheduling class.
  4322. */
  4323. asmlinkage long sys_sched_get_priority_max(int policy)
  4324. {
  4325. int ret = -EINVAL;
  4326. switch (policy) {
  4327. case SCHED_FIFO:
  4328. case SCHED_RR:
  4329. ret = MAX_USER_RT_PRIO-1;
  4330. break;
  4331. case SCHED_NORMAL:
  4332. case SCHED_BATCH:
  4333. case SCHED_IDLE:
  4334. ret = 0;
  4335. break;
  4336. }
  4337. return ret;
  4338. }
  4339. /**
  4340. * sys_sched_get_priority_min - return minimum RT priority.
  4341. * @policy: scheduling class.
  4342. *
  4343. * this syscall returns the minimum rt_priority that can be used
  4344. * by a given scheduling class.
  4345. */
  4346. asmlinkage long sys_sched_get_priority_min(int policy)
  4347. {
  4348. int ret = -EINVAL;
  4349. switch (policy) {
  4350. case SCHED_FIFO:
  4351. case SCHED_RR:
  4352. ret = 1;
  4353. break;
  4354. case SCHED_NORMAL:
  4355. case SCHED_BATCH:
  4356. case SCHED_IDLE:
  4357. ret = 0;
  4358. }
  4359. return ret;
  4360. }
  4361. /**
  4362. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4363. * @pid: pid of the process.
  4364. * @interval: userspace pointer to the timeslice value.
  4365. *
  4366. * this syscall writes the default timeslice value of a given process
  4367. * into the user-space timespec buffer. A value of '0' means infinity.
  4368. */
  4369. asmlinkage
  4370. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4371. {
  4372. struct task_struct *p;
  4373. unsigned int time_slice;
  4374. int retval;
  4375. struct timespec t;
  4376. if (pid < 0)
  4377. return -EINVAL;
  4378. retval = -ESRCH;
  4379. read_lock(&tasklist_lock);
  4380. p = find_process_by_pid(pid);
  4381. if (!p)
  4382. goto out_unlock;
  4383. retval = security_task_getscheduler(p);
  4384. if (retval)
  4385. goto out_unlock;
  4386. /*
  4387. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4388. * tasks that are on an otherwise idle runqueue:
  4389. */
  4390. time_slice = 0;
  4391. if (p->policy == SCHED_RR) {
  4392. time_slice = DEF_TIMESLICE;
  4393. } else if (p->policy != SCHED_FIFO) {
  4394. struct sched_entity *se = &p->se;
  4395. unsigned long flags;
  4396. struct rq *rq;
  4397. rq = task_rq_lock(p, &flags);
  4398. if (rq->cfs.load.weight)
  4399. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4400. task_rq_unlock(rq, &flags);
  4401. }
  4402. read_unlock(&tasklist_lock);
  4403. jiffies_to_timespec(time_slice, &t);
  4404. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4405. return retval;
  4406. out_unlock:
  4407. read_unlock(&tasklist_lock);
  4408. return retval;
  4409. }
  4410. static const char stat_nam[] = "RSDTtZX";
  4411. void sched_show_task(struct task_struct *p)
  4412. {
  4413. unsigned long free = 0;
  4414. unsigned state;
  4415. state = p->state ? __ffs(p->state) + 1 : 0;
  4416. printk(KERN_INFO "%-13.13s %c", p->comm,
  4417. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4418. #if BITS_PER_LONG == 32
  4419. if (state == TASK_RUNNING)
  4420. printk(KERN_CONT " running ");
  4421. else
  4422. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4423. #else
  4424. if (state == TASK_RUNNING)
  4425. printk(KERN_CONT " running task ");
  4426. else
  4427. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4428. #endif
  4429. #ifdef CONFIG_DEBUG_STACK_USAGE
  4430. {
  4431. unsigned long *n = end_of_stack(p);
  4432. while (!*n)
  4433. n++;
  4434. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4435. }
  4436. #endif
  4437. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4438. task_pid_nr(p), task_pid_nr(p->real_parent));
  4439. show_stack(p, NULL);
  4440. }
  4441. void show_state_filter(unsigned long state_filter)
  4442. {
  4443. struct task_struct *g, *p;
  4444. #if BITS_PER_LONG == 32
  4445. printk(KERN_INFO
  4446. " task PC stack pid father\n");
  4447. #else
  4448. printk(KERN_INFO
  4449. " task PC stack pid father\n");
  4450. #endif
  4451. read_lock(&tasklist_lock);
  4452. do_each_thread(g, p) {
  4453. /*
  4454. * reset the NMI-timeout, listing all files on a slow
  4455. * console might take alot of time:
  4456. */
  4457. touch_nmi_watchdog();
  4458. if (!state_filter || (p->state & state_filter))
  4459. sched_show_task(p);
  4460. } while_each_thread(g, p);
  4461. touch_all_softlockup_watchdogs();
  4462. #ifdef CONFIG_SCHED_DEBUG
  4463. sysrq_sched_debug_show();
  4464. #endif
  4465. read_unlock(&tasklist_lock);
  4466. /*
  4467. * Only show locks if all tasks are dumped:
  4468. */
  4469. if (state_filter == -1)
  4470. debug_show_all_locks();
  4471. }
  4472. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4473. {
  4474. idle->sched_class = &idle_sched_class;
  4475. }
  4476. /**
  4477. * init_idle - set up an idle thread for a given CPU
  4478. * @idle: task in question
  4479. * @cpu: cpu the idle task belongs to
  4480. *
  4481. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4482. * flag, to make booting more robust.
  4483. */
  4484. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4485. {
  4486. struct rq *rq = cpu_rq(cpu);
  4487. unsigned long flags;
  4488. __sched_fork(idle);
  4489. idle->se.exec_start = sched_clock();
  4490. idle->prio = idle->normal_prio = MAX_PRIO;
  4491. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4492. __set_task_cpu(idle, cpu);
  4493. spin_lock_irqsave(&rq->lock, flags);
  4494. rq->curr = rq->idle = idle;
  4495. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4496. idle->oncpu = 1;
  4497. #endif
  4498. spin_unlock_irqrestore(&rq->lock, flags);
  4499. /* Set the preempt count _outside_ the spinlocks! */
  4500. task_thread_info(idle)->preempt_count = 0;
  4501. /*
  4502. * The idle tasks have their own, simple scheduling class:
  4503. */
  4504. idle->sched_class = &idle_sched_class;
  4505. }
  4506. /*
  4507. * In a system that switches off the HZ timer nohz_cpu_mask
  4508. * indicates which cpus entered this state. This is used
  4509. * in the rcu update to wait only for active cpus. For system
  4510. * which do not switch off the HZ timer nohz_cpu_mask should
  4511. * always be CPU_MASK_NONE.
  4512. */
  4513. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4514. /*
  4515. * Increase the granularity value when there are more CPUs,
  4516. * because with more CPUs the 'effective latency' as visible
  4517. * to users decreases. But the relationship is not linear,
  4518. * so pick a second-best guess by going with the log2 of the
  4519. * number of CPUs.
  4520. *
  4521. * This idea comes from the SD scheduler of Con Kolivas:
  4522. */
  4523. static inline void sched_init_granularity(void)
  4524. {
  4525. unsigned int factor = 1 + ilog2(num_online_cpus());
  4526. const unsigned long limit = 200000000;
  4527. sysctl_sched_min_granularity *= factor;
  4528. if (sysctl_sched_min_granularity > limit)
  4529. sysctl_sched_min_granularity = limit;
  4530. sysctl_sched_latency *= factor;
  4531. if (sysctl_sched_latency > limit)
  4532. sysctl_sched_latency = limit;
  4533. sysctl_sched_wakeup_granularity *= factor;
  4534. sysctl_sched_batch_wakeup_granularity *= factor;
  4535. }
  4536. #ifdef CONFIG_SMP
  4537. /*
  4538. * This is how migration works:
  4539. *
  4540. * 1) we queue a struct migration_req structure in the source CPU's
  4541. * runqueue and wake up that CPU's migration thread.
  4542. * 2) we down() the locked semaphore => thread blocks.
  4543. * 3) migration thread wakes up (implicitly it forces the migrated
  4544. * thread off the CPU)
  4545. * 4) it gets the migration request and checks whether the migrated
  4546. * task is still in the wrong runqueue.
  4547. * 5) if it's in the wrong runqueue then the migration thread removes
  4548. * it and puts it into the right queue.
  4549. * 6) migration thread up()s the semaphore.
  4550. * 7) we wake up and the migration is done.
  4551. */
  4552. /*
  4553. * Change a given task's CPU affinity. Migrate the thread to a
  4554. * proper CPU and schedule it away if the CPU it's executing on
  4555. * is removed from the allowed bitmask.
  4556. *
  4557. * NOTE: the caller must have a valid reference to the task, the
  4558. * task must not exit() & deallocate itself prematurely. The
  4559. * call is not atomic; no spinlocks may be held.
  4560. */
  4561. int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
  4562. {
  4563. struct migration_req req;
  4564. unsigned long flags;
  4565. struct rq *rq;
  4566. int ret = 0;
  4567. rq = task_rq_lock(p, &flags);
  4568. if (!cpus_intersects(new_mask, cpu_online_map)) {
  4569. ret = -EINVAL;
  4570. goto out;
  4571. }
  4572. if (p->sched_class->set_cpus_allowed)
  4573. p->sched_class->set_cpus_allowed(p, &new_mask);
  4574. else {
  4575. p->cpus_allowed = new_mask;
  4576. p->rt.nr_cpus_allowed = cpus_weight(new_mask);
  4577. }
  4578. /* Can the task run on the task's current CPU? If so, we're done */
  4579. if (cpu_isset(task_cpu(p), new_mask))
  4580. goto out;
  4581. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  4582. /* Need help from migration thread: drop lock and wait. */
  4583. task_rq_unlock(rq, &flags);
  4584. wake_up_process(rq->migration_thread);
  4585. wait_for_completion(&req.done);
  4586. tlb_migrate_finish(p->mm);
  4587. return 0;
  4588. }
  4589. out:
  4590. task_rq_unlock(rq, &flags);
  4591. return ret;
  4592. }
  4593. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  4594. /*
  4595. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4596. * this because either it can't run here any more (set_cpus_allowed()
  4597. * away from this CPU, or CPU going down), or because we're
  4598. * attempting to rebalance this task on exec (sched_exec).
  4599. *
  4600. * So we race with normal scheduler movements, but that's OK, as long
  4601. * as the task is no longer on this CPU.
  4602. *
  4603. * Returns non-zero if task was successfully migrated.
  4604. */
  4605. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4606. {
  4607. struct rq *rq_dest, *rq_src;
  4608. int ret = 0, on_rq;
  4609. if (unlikely(cpu_is_offline(dest_cpu)))
  4610. return ret;
  4611. rq_src = cpu_rq(src_cpu);
  4612. rq_dest = cpu_rq(dest_cpu);
  4613. double_rq_lock(rq_src, rq_dest);
  4614. /* Already moved. */
  4615. if (task_cpu(p) != src_cpu)
  4616. goto out;
  4617. /* Affinity changed (again). */
  4618. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4619. goto out;
  4620. on_rq = p->se.on_rq;
  4621. if (on_rq)
  4622. deactivate_task(rq_src, p, 0);
  4623. set_task_cpu(p, dest_cpu);
  4624. if (on_rq) {
  4625. activate_task(rq_dest, p, 0);
  4626. check_preempt_curr(rq_dest, p);
  4627. }
  4628. ret = 1;
  4629. out:
  4630. double_rq_unlock(rq_src, rq_dest);
  4631. return ret;
  4632. }
  4633. /*
  4634. * migration_thread - this is a highprio system thread that performs
  4635. * thread migration by bumping thread off CPU then 'pushing' onto
  4636. * another runqueue.
  4637. */
  4638. static int migration_thread(void *data)
  4639. {
  4640. int cpu = (long)data;
  4641. struct rq *rq;
  4642. rq = cpu_rq(cpu);
  4643. BUG_ON(rq->migration_thread != current);
  4644. set_current_state(TASK_INTERRUPTIBLE);
  4645. while (!kthread_should_stop()) {
  4646. struct migration_req *req;
  4647. struct list_head *head;
  4648. spin_lock_irq(&rq->lock);
  4649. if (cpu_is_offline(cpu)) {
  4650. spin_unlock_irq(&rq->lock);
  4651. goto wait_to_die;
  4652. }
  4653. if (rq->active_balance) {
  4654. active_load_balance(rq, cpu);
  4655. rq->active_balance = 0;
  4656. }
  4657. head = &rq->migration_queue;
  4658. if (list_empty(head)) {
  4659. spin_unlock_irq(&rq->lock);
  4660. schedule();
  4661. set_current_state(TASK_INTERRUPTIBLE);
  4662. continue;
  4663. }
  4664. req = list_entry(head->next, struct migration_req, list);
  4665. list_del_init(head->next);
  4666. spin_unlock(&rq->lock);
  4667. __migrate_task(req->task, cpu, req->dest_cpu);
  4668. local_irq_enable();
  4669. complete(&req->done);
  4670. }
  4671. __set_current_state(TASK_RUNNING);
  4672. return 0;
  4673. wait_to_die:
  4674. /* Wait for kthread_stop */
  4675. set_current_state(TASK_INTERRUPTIBLE);
  4676. while (!kthread_should_stop()) {
  4677. schedule();
  4678. set_current_state(TASK_INTERRUPTIBLE);
  4679. }
  4680. __set_current_state(TASK_RUNNING);
  4681. return 0;
  4682. }
  4683. #ifdef CONFIG_HOTPLUG_CPU
  4684. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  4685. {
  4686. int ret;
  4687. local_irq_disable();
  4688. ret = __migrate_task(p, src_cpu, dest_cpu);
  4689. local_irq_enable();
  4690. return ret;
  4691. }
  4692. /*
  4693. * Figure out where task on dead CPU should go, use force if necessary.
  4694. * NOTE: interrupts should be disabled by the caller
  4695. */
  4696. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4697. {
  4698. unsigned long flags;
  4699. cpumask_t mask;
  4700. struct rq *rq;
  4701. int dest_cpu;
  4702. do {
  4703. /* On same node? */
  4704. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4705. cpus_and(mask, mask, p->cpus_allowed);
  4706. dest_cpu = any_online_cpu(mask);
  4707. /* On any allowed CPU? */
  4708. if (dest_cpu == NR_CPUS)
  4709. dest_cpu = any_online_cpu(p->cpus_allowed);
  4710. /* No more Mr. Nice Guy. */
  4711. if (dest_cpu == NR_CPUS) {
  4712. cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
  4713. /*
  4714. * Try to stay on the same cpuset, where the
  4715. * current cpuset may be a subset of all cpus.
  4716. * The cpuset_cpus_allowed_locked() variant of
  4717. * cpuset_cpus_allowed() will not block. It must be
  4718. * called within calls to cpuset_lock/cpuset_unlock.
  4719. */
  4720. rq = task_rq_lock(p, &flags);
  4721. p->cpus_allowed = cpus_allowed;
  4722. dest_cpu = any_online_cpu(p->cpus_allowed);
  4723. task_rq_unlock(rq, &flags);
  4724. /*
  4725. * Don't tell them about moving exiting tasks or
  4726. * kernel threads (both mm NULL), since they never
  4727. * leave kernel.
  4728. */
  4729. if (p->mm && printk_ratelimit()) {
  4730. printk(KERN_INFO "process %d (%s) no "
  4731. "longer affine to cpu%d\n",
  4732. task_pid_nr(p), p->comm, dead_cpu);
  4733. }
  4734. }
  4735. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  4736. }
  4737. /*
  4738. * While a dead CPU has no uninterruptible tasks queued at this point,
  4739. * it might still have a nonzero ->nr_uninterruptible counter, because
  4740. * for performance reasons the counter is not stricly tracking tasks to
  4741. * their home CPUs. So we just add the counter to another CPU's counter,
  4742. * to keep the global sum constant after CPU-down:
  4743. */
  4744. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4745. {
  4746. struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  4747. unsigned long flags;
  4748. local_irq_save(flags);
  4749. double_rq_lock(rq_src, rq_dest);
  4750. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4751. rq_src->nr_uninterruptible = 0;
  4752. double_rq_unlock(rq_src, rq_dest);
  4753. local_irq_restore(flags);
  4754. }
  4755. /* Run through task list and migrate tasks from the dead cpu. */
  4756. static void migrate_live_tasks(int src_cpu)
  4757. {
  4758. struct task_struct *p, *t;
  4759. read_lock(&tasklist_lock);
  4760. do_each_thread(t, p) {
  4761. if (p == current)
  4762. continue;
  4763. if (task_cpu(p) == src_cpu)
  4764. move_task_off_dead_cpu(src_cpu, p);
  4765. } while_each_thread(t, p);
  4766. read_unlock(&tasklist_lock);
  4767. }
  4768. /*
  4769. * Schedules idle task to be the next runnable task on current CPU.
  4770. * It does so by boosting its priority to highest possible.
  4771. * Used by CPU offline code.
  4772. */
  4773. void sched_idle_next(void)
  4774. {
  4775. int this_cpu = smp_processor_id();
  4776. struct rq *rq = cpu_rq(this_cpu);
  4777. struct task_struct *p = rq->idle;
  4778. unsigned long flags;
  4779. /* cpu has to be offline */
  4780. BUG_ON(cpu_online(this_cpu));
  4781. /*
  4782. * Strictly not necessary since rest of the CPUs are stopped by now
  4783. * and interrupts disabled on the current cpu.
  4784. */
  4785. spin_lock_irqsave(&rq->lock, flags);
  4786. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4787. update_rq_clock(rq);
  4788. activate_task(rq, p, 0);
  4789. spin_unlock_irqrestore(&rq->lock, flags);
  4790. }
  4791. /*
  4792. * Ensures that the idle task is using init_mm right before its cpu goes
  4793. * offline.
  4794. */
  4795. void idle_task_exit(void)
  4796. {
  4797. struct mm_struct *mm = current->active_mm;
  4798. BUG_ON(cpu_online(smp_processor_id()));
  4799. if (mm != &init_mm)
  4800. switch_mm(mm, &init_mm, current);
  4801. mmdrop(mm);
  4802. }
  4803. /* called under rq->lock with disabled interrupts */
  4804. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4805. {
  4806. struct rq *rq = cpu_rq(dead_cpu);
  4807. /* Must be exiting, otherwise would be on tasklist. */
  4808. BUG_ON(!p->exit_state);
  4809. /* Cannot have done final schedule yet: would have vanished. */
  4810. BUG_ON(p->state == TASK_DEAD);
  4811. get_task_struct(p);
  4812. /*
  4813. * Drop lock around migration; if someone else moves it,
  4814. * that's OK. No task can be added to this CPU, so iteration is
  4815. * fine.
  4816. */
  4817. spin_unlock_irq(&rq->lock);
  4818. move_task_off_dead_cpu(dead_cpu, p);
  4819. spin_lock_irq(&rq->lock);
  4820. put_task_struct(p);
  4821. }
  4822. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4823. static void migrate_dead_tasks(unsigned int dead_cpu)
  4824. {
  4825. struct rq *rq = cpu_rq(dead_cpu);
  4826. struct task_struct *next;
  4827. for ( ; ; ) {
  4828. if (!rq->nr_running)
  4829. break;
  4830. update_rq_clock(rq);
  4831. next = pick_next_task(rq, rq->curr);
  4832. if (!next)
  4833. break;
  4834. migrate_dead(dead_cpu, next);
  4835. }
  4836. }
  4837. #endif /* CONFIG_HOTPLUG_CPU */
  4838. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4839. static struct ctl_table sd_ctl_dir[] = {
  4840. {
  4841. .procname = "sched_domain",
  4842. .mode = 0555,
  4843. },
  4844. {0, },
  4845. };
  4846. static struct ctl_table sd_ctl_root[] = {
  4847. {
  4848. .ctl_name = CTL_KERN,
  4849. .procname = "kernel",
  4850. .mode = 0555,
  4851. .child = sd_ctl_dir,
  4852. },
  4853. {0, },
  4854. };
  4855. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4856. {
  4857. struct ctl_table *entry =
  4858. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4859. return entry;
  4860. }
  4861. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4862. {
  4863. struct ctl_table *entry;
  4864. /*
  4865. * In the intermediate directories, both the child directory and
  4866. * procname are dynamically allocated and could fail but the mode
  4867. * will always be set. In the lowest directory the names are
  4868. * static strings and all have proc handlers.
  4869. */
  4870. for (entry = *tablep; entry->mode; entry++) {
  4871. if (entry->child)
  4872. sd_free_ctl_entry(&entry->child);
  4873. if (entry->proc_handler == NULL)
  4874. kfree(entry->procname);
  4875. }
  4876. kfree(*tablep);
  4877. *tablep = NULL;
  4878. }
  4879. static void
  4880. set_table_entry(struct ctl_table *entry,
  4881. const char *procname, void *data, int maxlen,
  4882. mode_t mode, proc_handler *proc_handler)
  4883. {
  4884. entry->procname = procname;
  4885. entry->data = data;
  4886. entry->maxlen = maxlen;
  4887. entry->mode = mode;
  4888. entry->proc_handler = proc_handler;
  4889. }
  4890. static struct ctl_table *
  4891. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4892. {
  4893. struct ctl_table *table = sd_alloc_ctl_entry(12);
  4894. if (table == NULL)
  4895. return NULL;
  4896. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4897. sizeof(long), 0644, proc_doulongvec_minmax);
  4898. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4899. sizeof(long), 0644, proc_doulongvec_minmax);
  4900. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4901. sizeof(int), 0644, proc_dointvec_minmax);
  4902. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4903. sizeof(int), 0644, proc_dointvec_minmax);
  4904. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4905. sizeof(int), 0644, proc_dointvec_minmax);
  4906. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4907. sizeof(int), 0644, proc_dointvec_minmax);
  4908. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4909. sizeof(int), 0644, proc_dointvec_minmax);
  4910. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4911. sizeof(int), 0644, proc_dointvec_minmax);
  4912. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4913. sizeof(int), 0644, proc_dointvec_minmax);
  4914. set_table_entry(&table[9], "cache_nice_tries",
  4915. &sd->cache_nice_tries,
  4916. sizeof(int), 0644, proc_dointvec_minmax);
  4917. set_table_entry(&table[10], "flags", &sd->flags,
  4918. sizeof(int), 0644, proc_dointvec_minmax);
  4919. /* &table[11] is terminator */
  4920. return table;
  4921. }
  4922. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4923. {
  4924. struct ctl_table *entry, *table;
  4925. struct sched_domain *sd;
  4926. int domain_num = 0, i;
  4927. char buf[32];
  4928. for_each_domain(cpu, sd)
  4929. domain_num++;
  4930. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4931. if (table == NULL)
  4932. return NULL;
  4933. i = 0;
  4934. for_each_domain(cpu, sd) {
  4935. snprintf(buf, 32, "domain%d", i);
  4936. entry->procname = kstrdup(buf, GFP_KERNEL);
  4937. entry->mode = 0555;
  4938. entry->child = sd_alloc_ctl_domain_table(sd);
  4939. entry++;
  4940. i++;
  4941. }
  4942. return table;
  4943. }
  4944. static struct ctl_table_header *sd_sysctl_header;
  4945. static void register_sched_domain_sysctl(void)
  4946. {
  4947. int i, cpu_num = num_online_cpus();
  4948. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4949. char buf[32];
  4950. WARN_ON(sd_ctl_dir[0].child);
  4951. sd_ctl_dir[0].child = entry;
  4952. if (entry == NULL)
  4953. return;
  4954. for_each_online_cpu(i) {
  4955. snprintf(buf, 32, "cpu%d", i);
  4956. entry->procname = kstrdup(buf, GFP_KERNEL);
  4957. entry->mode = 0555;
  4958. entry->child = sd_alloc_ctl_cpu_table(i);
  4959. entry++;
  4960. }
  4961. WARN_ON(sd_sysctl_header);
  4962. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4963. }
  4964. /* may be called multiple times per register */
  4965. static void unregister_sched_domain_sysctl(void)
  4966. {
  4967. if (sd_sysctl_header)
  4968. unregister_sysctl_table(sd_sysctl_header);
  4969. sd_sysctl_header = NULL;
  4970. if (sd_ctl_dir[0].child)
  4971. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4972. }
  4973. #else
  4974. static void register_sched_domain_sysctl(void)
  4975. {
  4976. }
  4977. static void unregister_sched_domain_sysctl(void)
  4978. {
  4979. }
  4980. #endif
  4981. /*
  4982. * migration_call - callback that gets triggered when a CPU is added.
  4983. * Here we can start up the necessary migration thread for the new CPU.
  4984. */
  4985. static int __cpuinit
  4986. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4987. {
  4988. struct task_struct *p;
  4989. int cpu = (long)hcpu;
  4990. unsigned long flags;
  4991. struct rq *rq;
  4992. switch (action) {
  4993. case CPU_UP_PREPARE:
  4994. case CPU_UP_PREPARE_FROZEN:
  4995. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  4996. if (IS_ERR(p))
  4997. return NOTIFY_BAD;
  4998. kthread_bind(p, cpu);
  4999. /* Must be high prio: stop_machine expects to yield to it. */
  5000. rq = task_rq_lock(p, &flags);
  5001. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5002. task_rq_unlock(rq, &flags);
  5003. cpu_rq(cpu)->migration_thread = p;
  5004. break;
  5005. case CPU_ONLINE:
  5006. case CPU_ONLINE_FROZEN:
  5007. /* Strictly unnecessary, as first user will wake it. */
  5008. wake_up_process(cpu_rq(cpu)->migration_thread);
  5009. /* Update our root-domain */
  5010. rq = cpu_rq(cpu);
  5011. spin_lock_irqsave(&rq->lock, flags);
  5012. if (rq->rd) {
  5013. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5014. cpu_set(cpu, rq->rd->online);
  5015. }
  5016. spin_unlock_irqrestore(&rq->lock, flags);
  5017. break;
  5018. #ifdef CONFIG_HOTPLUG_CPU
  5019. case CPU_UP_CANCELED:
  5020. case CPU_UP_CANCELED_FROZEN:
  5021. if (!cpu_rq(cpu)->migration_thread)
  5022. break;
  5023. /* Unbind it from offline cpu so it can run. Fall thru. */
  5024. kthread_bind(cpu_rq(cpu)->migration_thread,
  5025. any_online_cpu(cpu_online_map));
  5026. kthread_stop(cpu_rq(cpu)->migration_thread);
  5027. cpu_rq(cpu)->migration_thread = NULL;
  5028. break;
  5029. case CPU_DEAD:
  5030. case CPU_DEAD_FROZEN:
  5031. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5032. migrate_live_tasks(cpu);
  5033. rq = cpu_rq(cpu);
  5034. kthread_stop(rq->migration_thread);
  5035. rq->migration_thread = NULL;
  5036. /* Idle task back to normal (off runqueue, low prio) */
  5037. spin_lock_irq(&rq->lock);
  5038. update_rq_clock(rq);
  5039. deactivate_task(rq, rq->idle, 0);
  5040. rq->idle->static_prio = MAX_PRIO;
  5041. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5042. rq->idle->sched_class = &idle_sched_class;
  5043. migrate_dead_tasks(cpu);
  5044. spin_unlock_irq(&rq->lock);
  5045. cpuset_unlock();
  5046. migrate_nr_uninterruptible(rq);
  5047. BUG_ON(rq->nr_running != 0);
  5048. /*
  5049. * No need to migrate the tasks: it was best-effort if
  5050. * they didn't take sched_hotcpu_mutex. Just wake up
  5051. * the requestors.
  5052. */
  5053. spin_lock_irq(&rq->lock);
  5054. while (!list_empty(&rq->migration_queue)) {
  5055. struct migration_req *req;
  5056. req = list_entry(rq->migration_queue.next,
  5057. struct migration_req, list);
  5058. list_del_init(&req->list);
  5059. complete(&req->done);
  5060. }
  5061. spin_unlock_irq(&rq->lock);
  5062. break;
  5063. case CPU_DYING:
  5064. case CPU_DYING_FROZEN:
  5065. /* Update our root-domain */
  5066. rq = cpu_rq(cpu);
  5067. spin_lock_irqsave(&rq->lock, flags);
  5068. if (rq->rd) {
  5069. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5070. cpu_clear(cpu, rq->rd->online);
  5071. }
  5072. spin_unlock_irqrestore(&rq->lock, flags);
  5073. break;
  5074. #endif
  5075. }
  5076. return NOTIFY_OK;
  5077. }
  5078. /* Register at highest priority so that task migration (migrate_all_tasks)
  5079. * happens before everything else.
  5080. */
  5081. static struct notifier_block __cpuinitdata migration_notifier = {
  5082. .notifier_call = migration_call,
  5083. .priority = 10
  5084. };
  5085. void __init migration_init(void)
  5086. {
  5087. void *cpu = (void *)(long)smp_processor_id();
  5088. int err;
  5089. /* Start one for the boot CPU: */
  5090. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5091. BUG_ON(err == NOTIFY_BAD);
  5092. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5093. register_cpu_notifier(&migration_notifier);
  5094. }
  5095. #endif
  5096. #ifdef CONFIG_SMP
  5097. /* Number of possible processor ids */
  5098. int nr_cpu_ids __read_mostly = NR_CPUS;
  5099. EXPORT_SYMBOL(nr_cpu_ids);
  5100. #ifdef CONFIG_SCHED_DEBUG
  5101. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
  5102. {
  5103. struct sched_group *group = sd->groups;
  5104. cpumask_t groupmask;
  5105. char str[NR_CPUS];
  5106. cpumask_scnprintf(str, NR_CPUS, sd->span);
  5107. cpus_clear(groupmask);
  5108. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5109. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5110. printk("does not load-balance\n");
  5111. if (sd->parent)
  5112. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5113. " has parent");
  5114. return -1;
  5115. }
  5116. printk(KERN_CONT "span %s\n", str);
  5117. if (!cpu_isset(cpu, sd->span)) {
  5118. printk(KERN_ERR "ERROR: domain->span does not contain "
  5119. "CPU%d\n", cpu);
  5120. }
  5121. if (!cpu_isset(cpu, group->cpumask)) {
  5122. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5123. " CPU%d\n", cpu);
  5124. }
  5125. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5126. do {
  5127. if (!group) {
  5128. printk("\n");
  5129. printk(KERN_ERR "ERROR: group is NULL\n");
  5130. break;
  5131. }
  5132. if (!group->__cpu_power) {
  5133. printk(KERN_CONT "\n");
  5134. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5135. "set\n");
  5136. break;
  5137. }
  5138. if (!cpus_weight(group->cpumask)) {
  5139. printk(KERN_CONT "\n");
  5140. printk(KERN_ERR "ERROR: empty group\n");
  5141. break;
  5142. }
  5143. if (cpus_intersects(groupmask, group->cpumask)) {
  5144. printk(KERN_CONT "\n");
  5145. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5146. break;
  5147. }
  5148. cpus_or(groupmask, groupmask, group->cpumask);
  5149. cpumask_scnprintf(str, NR_CPUS, group->cpumask);
  5150. printk(KERN_CONT " %s", str);
  5151. group = group->next;
  5152. } while (group != sd->groups);
  5153. printk(KERN_CONT "\n");
  5154. if (!cpus_equal(sd->span, groupmask))
  5155. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5156. if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
  5157. printk(KERN_ERR "ERROR: parent span is not a superset "
  5158. "of domain->span\n");
  5159. return 0;
  5160. }
  5161. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5162. {
  5163. int level = 0;
  5164. if (!sd) {
  5165. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5166. return;
  5167. }
  5168. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5169. for (;;) {
  5170. if (sched_domain_debug_one(sd, cpu, level))
  5171. break;
  5172. level++;
  5173. sd = sd->parent;
  5174. if (!sd)
  5175. break;
  5176. }
  5177. }
  5178. #else
  5179. # define sched_domain_debug(sd, cpu) do { } while (0)
  5180. #endif
  5181. static int sd_degenerate(struct sched_domain *sd)
  5182. {
  5183. if (cpus_weight(sd->span) == 1)
  5184. return 1;
  5185. /* Following flags need at least 2 groups */
  5186. if (sd->flags & (SD_LOAD_BALANCE |
  5187. SD_BALANCE_NEWIDLE |
  5188. SD_BALANCE_FORK |
  5189. SD_BALANCE_EXEC |
  5190. SD_SHARE_CPUPOWER |
  5191. SD_SHARE_PKG_RESOURCES)) {
  5192. if (sd->groups != sd->groups->next)
  5193. return 0;
  5194. }
  5195. /* Following flags don't use groups */
  5196. if (sd->flags & (SD_WAKE_IDLE |
  5197. SD_WAKE_AFFINE |
  5198. SD_WAKE_BALANCE))
  5199. return 0;
  5200. return 1;
  5201. }
  5202. static int
  5203. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5204. {
  5205. unsigned long cflags = sd->flags, pflags = parent->flags;
  5206. if (sd_degenerate(parent))
  5207. return 1;
  5208. if (!cpus_equal(sd->span, parent->span))
  5209. return 0;
  5210. /* Does parent contain flags not in child? */
  5211. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5212. if (cflags & SD_WAKE_AFFINE)
  5213. pflags &= ~SD_WAKE_BALANCE;
  5214. /* Flags needing groups don't count if only 1 group in parent */
  5215. if (parent->groups == parent->groups->next) {
  5216. pflags &= ~(SD_LOAD_BALANCE |
  5217. SD_BALANCE_NEWIDLE |
  5218. SD_BALANCE_FORK |
  5219. SD_BALANCE_EXEC |
  5220. SD_SHARE_CPUPOWER |
  5221. SD_SHARE_PKG_RESOURCES);
  5222. }
  5223. if (~cflags & pflags)
  5224. return 0;
  5225. return 1;
  5226. }
  5227. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5228. {
  5229. unsigned long flags;
  5230. const struct sched_class *class;
  5231. spin_lock_irqsave(&rq->lock, flags);
  5232. if (rq->rd) {
  5233. struct root_domain *old_rd = rq->rd;
  5234. for (class = sched_class_highest; class; class = class->next) {
  5235. if (class->leave_domain)
  5236. class->leave_domain(rq);
  5237. }
  5238. cpu_clear(rq->cpu, old_rd->span);
  5239. cpu_clear(rq->cpu, old_rd->online);
  5240. if (atomic_dec_and_test(&old_rd->refcount))
  5241. kfree(old_rd);
  5242. }
  5243. atomic_inc(&rd->refcount);
  5244. rq->rd = rd;
  5245. cpu_set(rq->cpu, rd->span);
  5246. if (cpu_isset(rq->cpu, cpu_online_map))
  5247. cpu_set(rq->cpu, rd->online);
  5248. for (class = sched_class_highest; class; class = class->next) {
  5249. if (class->join_domain)
  5250. class->join_domain(rq);
  5251. }
  5252. spin_unlock_irqrestore(&rq->lock, flags);
  5253. }
  5254. static void init_rootdomain(struct root_domain *rd)
  5255. {
  5256. memset(rd, 0, sizeof(*rd));
  5257. cpus_clear(rd->span);
  5258. cpus_clear(rd->online);
  5259. }
  5260. static void init_defrootdomain(void)
  5261. {
  5262. init_rootdomain(&def_root_domain);
  5263. atomic_set(&def_root_domain.refcount, 1);
  5264. }
  5265. static struct root_domain *alloc_rootdomain(void)
  5266. {
  5267. struct root_domain *rd;
  5268. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5269. if (!rd)
  5270. return NULL;
  5271. init_rootdomain(rd);
  5272. return rd;
  5273. }
  5274. /*
  5275. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5276. * hold the hotplug lock.
  5277. */
  5278. static void
  5279. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5280. {
  5281. struct rq *rq = cpu_rq(cpu);
  5282. struct sched_domain *tmp;
  5283. /* Remove the sched domains which do not contribute to scheduling. */
  5284. for (tmp = sd; tmp; tmp = tmp->parent) {
  5285. struct sched_domain *parent = tmp->parent;
  5286. if (!parent)
  5287. break;
  5288. if (sd_parent_degenerate(tmp, parent)) {
  5289. tmp->parent = parent->parent;
  5290. if (parent->parent)
  5291. parent->parent->child = tmp;
  5292. }
  5293. }
  5294. if (sd && sd_degenerate(sd)) {
  5295. sd = sd->parent;
  5296. if (sd)
  5297. sd->child = NULL;
  5298. }
  5299. sched_domain_debug(sd, cpu);
  5300. rq_attach_root(rq, rd);
  5301. rcu_assign_pointer(rq->sd, sd);
  5302. }
  5303. /* cpus with isolated domains */
  5304. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5305. /* Setup the mask of cpus configured for isolated domains */
  5306. static int __init isolated_cpu_setup(char *str)
  5307. {
  5308. int ints[NR_CPUS], i;
  5309. str = get_options(str, ARRAY_SIZE(ints), ints);
  5310. cpus_clear(cpu_isolated_map);
  5311. for (i = 1; i <= ints[0]; i++)
  5312. if (ints[i] < NR_CPUS)
  5313. cpu_set(ints[i], cpu_isolated_map);
  5314. return 1;
  5315. }
  5316. __setup("isolcpus=", isolated_cpu_setup);
  5317. /*
  5318. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5319. * to a function which identifies what group(along with sched group) a CPU
  5320. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5321. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5322. *
  5323. * init_sched_build_groups will build a circular linked list of the groups
  5324. * covered by the given span, and will set each group's ->cpumask correctly,
  5325. * and ->cpu_power to 0.
  5326. */
  5327. static void
  5328. init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
  5329. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5330. struct sched_group **sg))
  5331. {
  5332. struct sched_group *first = NULL, *last = NULL;
  5333. cpumask_t covered = CPU_MASK_NONE;
  5334. int i;
  5335. for_each_cpu_mask(i, span) {
  5336. struct sched_group *sg;
  5337. int group = group_fn(i, cpu_map, &sg);
  5338. int j;
  5339. if (cpu_isset(i, covered))
  5340. continue;
  5341. sg->cpumask = CPU_MASK_NONE;
  5342. sg->__cpu_power = 0;
  5343. for_each_cpu_mask(j, span) {
  5344. if (group_fn(j, cpu_map, NULL) != group)
  5345. continue;
  5346. cpu_set(j, covered);
  5347. cpu_set(j, sg->cpumask);
  5348. }
  5349. if (!first)
  5350. first = sg;
  5351. if (last)
  5352. last->next = sg;
  5353. last = sg;
  5354. }
  5355. last->next = first;
  5356. }
  5357. #define SD_NODES_PER_DOMAIN 16
  5358. #ifdef CONFIG_NUMA
  5359. /**
  5360. * find_next_best_node - find the next node to include in a sched_domain
  5361. * @node: node whose sched_domain we're building
  5362. * @used_nodes: nodes already in the sched_domain
  5363. *
  5364. * Find the next node to include in a given scheduling domain. Simply
  5365. * finds the closest node not already in the @used_nodes map.
  5366. *
  5367. * Should use nodemask_t.
  5368. */
  5369. static int find_next_best_node(int node, unsigned long *used_nodes)
  5370. {
  5371. int i, n, val, min_val, best_node = 0;
  5372. min_val = INT_MAX;
  5373. for (i = 0; i < MAX_NUMNODES; i++) {
  5374. /* Start at @node */
  5375. n = (node + i) % MAX_NUMNODES;
  5376. if (!nr_cpus_node(n))
  5377. continue;
  5378. /* Skip already used nodes */
  5379. if (test_bit(n, used_nodes))
  5380. continue;
  5381. /* Simple min distance search */
  5382. val = node_distance(node, n);
  5383. if (val < min_val) {
  5384. min_val = val;
  5385. best_node = n;
  5386. }
  5387. }
  5388. set_bit(best_node, used_nodes);
  5389. return best_node;
  5390. }
  5391. /**
  5392. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5393. * @node: node whose cpumask we're constructing
  5394. * @size: number of nodes to include in this span
  5395. *
  5396. * Given a node, construct a good cpumask for its sched_domain to span. It
  5397. * should be one that prevents unnecessary balancing, but also spreads tasks
  5398. * out optimally.
  5399. */
  5400. static cpumask_t sched_domain_node_span(int node)
  5401. {
  5402. DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
  5403. cpumask_t span, nodemask;
  5404. int i;
  5405. cpus_clear(span);
  5406. bitmap_zero(used_nodes, MAX_NUMNODES);
  5407. nodemask = node_to_cpumask(node);
  5408. cpus_or(span, span, nodemask);
  5409. set_bit(node, used_nodes);
  5410. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5411. int next_node = find_next_best_node(node, used_nodes);
  5412. nodemask = node_to_cpumask(next_node);
  5413. cpus_or(span, span, nodemask);
  5414. }
  5415. return span;
  5416. }
  5417. #endif
  5418. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5419. /*
  5420. * SMT sched-domains:
  5421. */
  5422. #ifdef CONFIG_SCHED_SMT
  5423. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5424. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5425. static int
  5426. cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5427. {
  5428. if (sg)
  5429. *sg = &per_cpu(sched_group_cpus, cpu);
  5430. return cpu;
  5431. }
  5432. #endif
  5433. /*
  5434. * multi-core sched-domains:
  5435. */
  5436. #ifdef CONFIG_SCHED_MC
  5437. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5438. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5439. #endif
  5440. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5441. static int
  5442. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5443. {
  5444. int group;
  5445. cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
  5446. cpus_and(mask, mask, *cpu_map);
  5447. group = first_cpu(mask);
  5448. if (sg)
  5449. *sg = &per_cpu(sched_group_core, group);
  5450. return group;
  5451. }
  5452. #elif defined(CONFIG_SCHED_MC)
  5453. static int
  5454. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5455. {
  5456. if (sg)
  5457. *sg = &per_cpu(sched_group_core, cpu);
  5458. return cpu;
  5459. }
  5460. #endif
  5461. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5462. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5463. static int
  5464. cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5465. {
  5466. int group;
  5467. #ifdef CONFIG_SCHED_MC
  5468. cpumask_t mask = cpu_coregroup_map(cpu);
  5469. cpus_and(mask, mask, *cpu_map);
  5470. group = first_cpu(mask);
  5471. #elif defined(CONFIG_SCHED_SMT)
  5472. cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
  5473. cpus_and(mask, mask, *cpu_map);
  5474. group = first_cpu(mask);
  5475. #else
  5476. group = cpu;
  5477. #endif
  5478. if (sg)
  5479. *sg = &per_cpu(sched_group_phys, group);
  5480. return group;
  5481. }
  5482. #ifdef CONFIG_NUMA
  5483. /*
  5484. * The init_sched_build_groups can't handle what we want to do with node
  5485. * groups, so roll our own. Now each node has its own list of groups which
  5486. * gets dynamically allocated.
  5487. */
  5488. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5489. static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
  5490. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5491. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5492. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5493. struct sched_group **sg)
  5494. {
  5495. cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
  5496. int group;
  5497. cpus_and(nodemask, nodemask, *cpu_map);
  5498. group = first_cpu(nodemask);
  5499. if (sg)
  5500. *sg = &per_cpu(sched_group_allnodes, group);
  5501. return group;
  5502. }
  5503. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5504. {
  5505. struct sched_group *sg = group_head;
  5506. int j;
  5507. if (!sg)
  5508. return;
  5509. do {
  5510. for_each_cpu_mask(j, sg->cpumask) {
  5511. struct sched_domain *sd;
  5512. sd = &per_cpu(phys_domains, j);
  5513. if (j != first_cpu(sd->groups->cpumask)) {
  5514. /*
  5515. * Only add "power" once for each
  5516. * physical package.
  5517. */
  5518. continue;
  5519. }
  5520. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5521. }
  5522. sg = sg->next;
  5523. } while (sg != group_head);
  5524. }
  5525. #endif
  5526. #ifdef CONFIG_NUMA
  5527. /* Free memory allocated for various sched_group structures */
  5528. static void free_sched_groups(const cpumask_t *cpu_map)
  5529. {
  5530. int cpu, i;
  5531. for_each_cpu_mask(cpu, *cpu_map) {
  5532. struct sched_group **sched_group_nodes
  5533. = sched_group_nodes_bycpu[cpu];
  5534. if (!sched_group_nodes)
  5535. continue;
  5536. for (i = 0; i < MAX_NUMNODES; i++) {
  5537. cpumask_t nodemask = node_to_cpumask(i);
  5538. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5539. cpus_and(nodemask, nodemask, *cpu_map);
  5540. if (cpus_empty(nodemask))
  5541. continue;
  5542. if (sg == NULL)
  5543. continue;
  5544. sg = sg->next;
  5545. next_sg:
  5546. oldsg = sg;
  5547. sg = sg->next;
  5548. kfree(oldsg);
  5549. if (oldsg != sched_group_nodes[i])
  5550. goto next_sg;
  5551. }
  5552. kfree(sched_group_nodes);
  5553. sched_group_nodes_bycpu[cpu] = NULL;
  5554. }
  5555. }
  5556. #else
  5557. static void free_sched_groups(const cpumask_t *cpu_map)
  5558. {
  5559. }
  5560. #endif
  5561. /*
  5562. * Initialize sched groups cpu_power.
  5563. *
  5564. * cpu_power indicates the capacity of sched group, which is used while
  5565. * distributing the load between different sched groups in a sched domain.
  5566. * Typically cpu_power for all the groups in a sched domain will be same unless
  5567. * there are asymmetries in the topology. If there are asymmetries, group
  5568. * having more cpu_power will pickup more load compared to the group having
  5569. * less cpu_power.
  5570. *
  5571. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5572. * the maximum number of tasks a group can handle in the presence of other idle
  5573. * or lightly loaded groups in the same sched domain.
  5574. */
  5575. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5576. {
  5577. struct sched_domain *child;
  5578. struct sched_group *group;
  5579. WARN_ON(!sd || !sd->groups);
  5580. if (cpu != first_cpu(sd->groups->cpumask))
  5581. return;
  5582. child = sd->child;
  5583. sd->groups->__cpu_power = 0;
  5584. /*
  5585. * For perf policy, if the groups in child domain share resources
  5586. * (for example cores sharing some portions of the cache hierarchy
  5587. * or SMT), then set this domain groups cpu_power such that each group
  5588. * can handle only one task, when there are other idle groups in the
  5589. * same sched domain.
  5590. */
  5591. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5592. (child->flags &
  5593. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5594. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5595. return;
  5596. }
  5597. /*
  5598. * add cpu_power of each child group to this groups cpu_power
  5599. */
  5600. group = child->groups;
  5601. do {
  5602. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5603. group = group->next;
  5604. } while (group != child->groups);
  5605. }
  5606. /*
  5607. * Build sched domains for a given set of cpus and attach the sched domains
  5608. * to the individual cpus
  5609. */
  5610. static int build_sched_domains(const cpumask_t *cpu_map)
  5611. {
  5612. int i;
  5613. struct root_domain *rd;
  5614. #ifdef CONFIG_NUMA
  5615. struct sched_group **sched_group_nodes = NULL;
  5616. int sd_allnodes = 0;
  5617. /*
  5618. * Allocate the per-node list of sched groups
  5619. */
  5620. sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
  5621. GFP_KERNEL);
  5622. if (!sched_group_nodes) {
  5623. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5624. return -ENOMEM;
  5625. }
  5626. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5627. #endif
  5628. rd = alloc_rootdomain();
  5629. if (!rd) {
  5630. printk(KERN_WARNING "Cannot alloc root domain\n");
  5631. return -ENOMEM;
  5632. }
  5633. /*
  5634. * Set up domains for cpus specified by the cpu_map.
  5635. */
  5636. for_each_cpu_mask(i, *cpu_map) {
  5637. struct sched_domain *sd = NULL, *p;
  5638. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  5639. cpus_and(nodemask, nodemask, *cpu_map);
  5640. #ifdef CONFIG_NUMA
  5641. if (cpus_weight(*cpu_map) >
  5642. SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  5643. sd = &per_cpu(allnodes_domains, i);
  5644. *sd = SD_ALLNODES_INIT;
  5645. sd->span = *cpu_map;
  5646. cpu_to_allnodes_group(i, cpu_map, &sd->groups);
  5647. p = sd;
  5648. sd_allnodes = 1;
  5649. } else
  5650. p = NULL;
  5651. sd = &per_cpu(node_domains, i);
  5652. *sd = SD_NODE_INIT;
  5653. sd->span = sched_domain_node_span(cpu_to_node(i));
  5654. sd->parent = p;
  5655. if (p)
  5656. p->child = sd;
  5657. cpus_and(sd->span, sd->span, *cpu_map);
  5658. #endif
  5659. p = sd;
  5660. sd = &per_cpu(phys_domains, i);
  5661. *sd = SD_CPU_INIT;
  5662. sd->span = nodemask;
  5663. sd->parent = p;
  5664. if (p)
  5665. p->child = sd;
  5666. cpu_to_phys_group(i, cpu_map, &sd->groups);
  5667. #ifdef CONFIG_SCHED_MC
  5668. p = sd;
  5669. sd = &per_cpu(core_domains, i);
  5670. *sd = SD_MC_INIT;
  5671. sd->span = cpu_coregroup_map(i);
  5672. cpus_and(sd->span, sd->span, *cpu_map);
  5673. sd->parent = p;
  5674. p->child = sd;
  5675. cpu_to_core_group(i, cpu_map, &sd->groups);
  5676. #endif
  5677. #ifdef CONFIG_SCHED_SMT
  5678. p = sd;
  5679. sd = &per_cpu(cpu_domains, i);
  5680. *sd = SD_SIBLING_INIT;
  5681. sd->span = per_cpu(cpu_sibling_map, i);
  5682. cpus_and(sd->span, sd->span, *cpu_map);
  5683. sd->parent = p;
  5684. p->child = sd;
  5685. cpu_to_cpu_group(i, cpu_map, &sd->groups);
  5686. #endif
  5687. }
  5688. #ifdef CONFIG_SCHED_SMT
  5689. /* Set up CPU (sibling) groups */
  5690. for_each_cpu_mask(i, *cpu_map) {
  5691. cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
  5692. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  5693. if (i != first_cpu(this_sibling_map))
  5694. continue;
  5695. init_sched_build_groups(this_sibling_map, cpu_map,
  5696. &cpu_to_cpu_group);
  5697. }
  5698. #endif
  5699. #ifdef CONFIG_SCHED_MC
  5700. /* Set up multi-core groups */
  5701. for_each_cpu_mask(i, *cpu_map) {
  5702. cpumask_t this_core_map = cpu_coregroup_map(i);
  5703. cpus_and(this_core_map, this_core_map, *cpu_map);
  5704. if (i != first_cpu(this_core_map))
  5705. continue;
  5706. init_sched_build_groups(this_core_map, cpu_map,
  5707. &cpu_to_core_group);
  5708. }
  5709. #endif
  5710. /* Set up physical groups */
  5711. for (i = 0; i < MAX_NUMNODES; i++) {
  5712. cpumask_t nodemask = node_to_cpumask(i);
  5713. cpus_and(nodemask, nodemask, *cpu_map);
  5714. if (cpus_empty(nodemask))
  5715. continue;
  5716. init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
  5717. }
  5718. #ifdef CONFIG_NUMA
  5719. /* Set up node groups */
  5720. if (sd_allnodes)
  5721. init_sched_build_groups(*cpu_map, cpu_map,
  5722. &cpu_to_allnodes_group);
  5723. for (i = 0; i < MAX_NUMNODES; i++) {
  5724. /* Set up node groups */
  5725. struct sched_group *sg, *prev;
  5726. cpumask_t nodemask = node_to_cpumask(i);
  5727. cpumask_t domainspan;
  5728. cpumask_t covered = CPU_MASK_NONE;
  5729. int j;
  5730. cpus_and(nodemask, nodemask, *cpu_map);
  5731. if (cpus_empty(nodemask)) {
  5732. sched_group_nodes[i] = NULL;
  5733. continue;
  5734. }
  5735. domainspan = sched_domain_node_span(i);
  5736. cpus_and(domainspan, domainspan, *cpu_map);
  5737. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5738. if (!sg) {
  5739. printk(KERN_WARNING "Can not alloc domain group for "
  5740. "node %d\n", i);
  5741. goto error;
  5742. }
  5743. sched_group_nodes[i] = sg;
  5744. for_each_cpu_mask(j, nodemask) {
  5745. struct sched_domain *sd;
  5746. sd = &per_cpu(node_domains, j);
  5747. sd->groups = sg;
  5748. }
  5749. sg->__cpu_power = 0;
  5750. sg->cpumask = nodemask;
  5751. sg->next = sg;
  5752. cpus_or(covered, covered, nodemask);
  5753. prev = sg;
  5754. for (j = 0; j < MAX_NUMNODES; j++) {
  5755. cpumask_t tmp, notcovered;
  5756. int n = (i + j) % MAX_NUMNODES;
  5757. cpus_complement(notcovered, covered);
  5758. cpus_and(tmp, notcovered, *cpu_map);
  5759. cpus_and(tmp, tmp, domainspan);
  5760. if (cpus_empty(tmp))
  5761. break;
  5762. nodemask = node_to_cpumask(n);
  5763. cpus_and(tmp, tmp, nodemask);
  5764. if (cpus_empty(tmp))
  5765. continue;
  5766. sg = kmalloc_node(sizeof(struct sched_group),
  5767. GFP_KERNEL, i);
  5768. if (!sg) {
  5769. printk(KERN_WARNING
  5770. "Can not alloc domain group for node %d\n", j);
  5771. goto error;
  5772. }
  5773. sg->__cpu_power = 0;
  5774. sg->cpumask = tmp;
  5775. sg->next = prev->next;
  5776. cpus_or(covered, covered, tmp);
  5777. prev->next = sg;
  5778. prev = sg;
  5779. }
  5780. }
  5781. #endif
  5782. /* Calculate CPU power for physical packages and nodes */
  5783. #ifdef CONFIG_SCHED_SMT
  5784. for_each_cpu_mask(i, *cpu_map) {
  5785. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  5786. init_sched_groups_power(i, sd);
  5787. }
  5788. #endif
  5789. #ifdef CONFIG_SCHED_MC
  5790. for_each_cpu_mask(i, *cpu_map) {
  5791. struct sched_domain *sd = &per_cpu(core_domains, i);
  5792. init_sched_groups_power(i, sd);
  5793. }
  5794. #endif
  5795. for_each_cpu_mask(i, *cpu_map) {
  5796. struct sched_domain *sd = &per_cpu(phys_domains, i);
  5797. init_sched_groups_power(i, sd);
  5798. }
  5799. #ifdef CONFIG_NUMA
  5800. for (i = 0; i < MAX_NUMNODES; i++)
  5801. init_numa_sched_groups_power(sched_group_nodes[i]);
  5802. if (sd_allnodes) {
  5803. struct sched_group *sg;
  5804. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
  5805. init_numa_sched_groups_power(sg);
  5806. }
  5807. #endif
  5808. /* Attach the domains */
  5809. for_each_cpu_mask(i, *cpu_map) {
  5810. struct sched_domain *sd;
  5811. #ifdef CONFIG_SCHED_SMT
  5812. sd = &per_cpu(cpu_domains, i);
  5813. #elif defined(CONFIG_SCHED_MC)
  5814. sd = &per_cpu(core_domains, i);
  5815. #else
  5816. sd = &per_cpu(phys_domains, i);
  5817. #endif
  5818. cpu_attach_domain(sd, rd, i);
  5819. }
  5820. return 0;
  5821. #ifdef CONFIG_NUMA
  5822. error:
  5823. free_sched_groups(cpu_map);
  5824. return -ENOMEM;
  5825. #endif
  5826. }
  5827. static cpumask_t *doms_cur; /* current sched domains */
  5828. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5829. /*
  5830. * Special case: If a kmalloc of a doms_cur partition (array of
  5831. * cpumask_t) fails, then fallback to a single sched domain,
  5832. * as determined by the single cpumask_t fallback_doms.
  5833. */
  5834. static cpumask_t fallback_doms;
  5835. /*
  5836. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5837. * For now this just excludes isolated cpus, but could be used to
  5838. * exclude other special cases in the future.
  5839. */
  5840. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  5841. {
  5842. int err;
  5843. ndoms_cur = 1;
  5844. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5845. if (!doms_cur)
  5846. doms_cur = &fallback_doms;
  5847. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  5848. err = build_sched_domains(doms_cur);
  5849. register_sched_domain_sysctl();
  5850. return err;
  5851. }
  5852. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  5853. {
  5854. free_sched_groups(cpu_map);
  5855. }
  5856. /*
  5857. * Detach sched domains from a group of cpus specified in cpu_map
  5858. * These cpus will now be attached to the NULL domain
  5859. */
  5860. static void detach_destroy_domains(const cpumask_t *cpu_map)
  5861. {
  5862. int i;
  5863. unregister_sched_domain_sysctl();
  5864. for_each_cpu_mask(i, *cpu_map)
  5865. cpu_attach_domain(NULL, &def_root_domain, i);
  5866. synchronize_sched();
  5867. arch_destroy_sched_domains(cpu_map);
  5868. }
  5869. /*
  5870. * Partition sched domains as specified by the 'ndoms_new'
  5871. * cpumasks in the array doms_new[] of cpumasks. This compares
  5872. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5873. * It destroys each deleted domain and builds each new domain.
  5874. *
  5875. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  5876. * The masks don't intersect (don't overlap.) We should setup one
  5877. * sched domain for each mask. CPUs not in any of the cpumasks will
  5878. * not be load balanced. If the same cpumask appears both in the
  5879. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5880. * it as it is.
  5881. *
  5882. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  5883. * ownership of it and will kfree it when done with it. If the caller
  5884. * failed the kmalloc call, then it can pass in doms_new == NULL,
  5885. * and partition_sched_domains() will fallback to the single partition
  5886. * 'fallback_doms'.
  5887. *
  5888. * Call with hotplug lock held
  5889. */
  5890. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
  5891. {
  5892. int i, j;
  5893. lock_doms_cur();
  5894. /* always unregister in case we don't destroy any domains */
  5895. unregister_sched_domain_sysctl();
  5896. if (doms_new == NULL) {
  5897. ndoms_new = 1;
  5898. doms_new = &fallback_doms;
  5899. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  5900. }
  5901. /* Destroy deleted domains */
  5902. for (i = 0; i < ndoms_cur; i++) {
  5903. for (j = 0; j < ndoms_new; j++) {
  5904. if (cpus_equal(doms_cur[i], doms_new[j]))
  5905. goto match1;
  5906. }
  5907. /* no match - a current sched domain not in new doms_new[] */
  5908. detach_destroy_domains(doms_cur + i);
  5909. match1:
  5910. ;
  5911. }
  5912. /* Build new domains */
  5913. for (i = 0; i < ndoms_new; i++) {
  5914. for (j = 0; j < ndoms_cur; j++) {
  5915. if (cpus_equal(doms_new[i], doms_cur[j]))
  5916. goto match2;
  5917. }
  5918. /* no match - add a new doms_new */
  5919. build_sched_domains(doms_new + i);
  5920. match2:
  5921. ;
  5922. }
  5923. /* Remember the new sched domains */
  5924. if (doms_cur != &fallback_doms)
  5925. kfree(doms_cur);
  5926. doms_cur = doms_new;
  5927. ndoms_cur = ndoms_new;
  5928. register_sched_domain_sysctl();
  5929. unlock_doms_cur();
  5930. }
  5931. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5932. static int arch_reinit_sched_domains(void)
  5933. {
  5934. int err;
  5935. get_online_cpus();
  5936. detach_destroy_domains(&cpu_online_map);
  5937. err = arch_init_sched_domains(&cpu_online_map);
  5938. put_online_cpus();
  5939. return err;
  5940. }
  5941. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5942. {
  5943. int ret;
  5944. if (buf[0] != '0' && buf[0] != '1')
  5945. return -EINVAL;
  5946. if (smt)
  5947. sched_smt_power_savings = (buf[0] == '1');
  5948. else
  5949. sched_mc_power_savings = (buf[0] == '1');
  5950. ret = arch_reinit_sched_domains();
  5951. return ret ? ret : count;
  5952. }
  5953. #ifdef CONFIG_SCHED_MC
  5954. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  5955. {
  5956. return sprintf(page, "%u\n", sched_mc_power_savings);
  5957. }
  5958. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  5959. const char *buf, size_t count)
  5960. {
  5961. return sched_power_savings_store(buf, count, 0);
  5962. }
  5963. static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  5964. sched_mc_power_savings_store);
  5965. #endif
  5966. #ifdef CONFIG_SCHED_SMT
  5967. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  5968. {
  5969. return sprintf(page, "%u\n", sched_smt_power_savings);
  5970. }
  5971. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  5972. const char *buf, size_t count)
  5973. {
  5974. return sched_power_savings_store(buf, count, 1);
  5975. }
  5976. static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  5977. sched_smt_power_savings_store);
  5978. #endif
  5979. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  5980. {
  5981. int err = 0;
  5982. #ifdef CONFIG_SCHED_SMT
  5983. if (smt_capable())
  5984. err = sysfs_create_file(&cls->kset.kobj,
  5985. &attr_sched_smt_power_savings.attr);
  5986. #endif
  5987. #ifdef CONFIG_SCHED_MC
  5988. if (!err && mc_capable())
  5989. err = sysfs_create_file(&cls->kset.kobj,
  5990. &attr_sched_mc_power_savings.attr);
  5991. #endif
  5992. return err;
  5993. }
  5994. #endif
  5995. /*
  5996. * Force a reinitialization of the sched domains hierarchy. The domains
  5997. * and groups cannot be updated in place without racing with the balancing
  5998. * code, so we temporarily attach all running cpus to the NULL domain
  5999. * which will prevent rebalancing while the sched domains are recalculated.
  6000. */
  6001. static int update_sched_domains(struct notifier_block *nfb,
  6002. unsigned long action, void *hcpu)
  6003. {
  6004. switch (action) {
  6005. case CPU_UP_PREPARE:
  6006. case CPU_UP_PREPARE_FROZEN:
  6007. case CPU_DOWN_PREPARE:
  6008. case CPU_DOWN_PREPARE_FROZEN:
  6009. detach_destroy_domains(&cpu_online_map);
  6010. return NOTIFY_OK;
  6011. case CPU_UP_CANCELED:
  6012. case CPU_UP_CANCELED_FROZEN:
  6013. case CPU_DOWN_FAILED:
  6014. case CPU_DOWN_FAILED_FROZEN:
  6015. case CPU_ONLINE:
  6016. case CPU_ONLINE_FROZEN:
  6017. case CPU_DEAD:
  6018. case CPU_DEAD_FROZEN:
  6019. /*
  6020. * Fall through and re-initialise the domains.
  6021. */
  6022. break;
  6023. default:
  6024. return NOTIFY_DONE;
  6025. }
  6026. /* The hotplug lock is already held by cpu_up/cpu_down */
  6027. arch_init_sched_domains(&cpu_online_map);
  6028. return NOTIFY_OK;
  6029. }
  6030. void __init sched_init_smp(void)
  6031. {
  6032. cpumask_t non_isolated_cpus;
  6033. get_online_cpus();
  6034. arch_init_sched_domains(&cpu_online_map);
  6035. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  6036. if (cpus_empty(non_isolated_cpus))
  6037. cpu_set(smp_processor_id(), non_isolated_cpus);
  6038. put_online_cpus();
  6039. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6040. hotcpu_notifier(update_sched_domains, 0);
  6041. /* Move init over to a non-isolated CPU */
  6042. if (set_cpus_allowed(current, non_isolated_cpus) < 0)
  6043. BUG();
  6044. sched_init_granularity();
  6045. }
  6046. #else
  6047. void __init sched_init_smp(void)
  6048. {
  6049. sched_init_granularity();
  6050. }
  6051. #endif /* CONFIG_SMP */
  6052. int in_sched_functions(unsigned long addr)
  6053. {
  6054. return in_lock_functions(addr) ||
  6055. (addr >= (unsigned long)__sched_text_start
  6056. && addr < (unsigned long)__sched_text_end);
  6057. }
  6058. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6059. {
  6060. cfs_rq->tasks_timeline = RB_ROOT;
  6061. #ifdef CONFIG_FAIR_GROUP_SCHED
  6062. cfs_rq->rq = rq;
  6063. #endif
  6064. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6065. }
  6066. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6067. {
  6068. struct rt_prio_array *array;
  6069. int i;
  6070. array = &rt_rq->active;
  6071. for (i = 0; i < MAX_RT_PRIO; i++) {
  6072. INIT_LIST_HEAD(array->queue + i);
  6073. __clear_bit(i, array->bitmap);
  6074. }
  6075. /* delimiter for bitsearch: */
  6076. __set_bit(MAX_RT_PRIO, array->bitmap);
  6077. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6078. rt_rq->highest_prio = MAX_RT_PRIO;
  6079. #endif
  6080. #ifdef CONFIG_SMP
  6081. rt_rq->rt_nr_migratory = 0;
  6082. rt_rq->overloaded = 0;
  6083. #endif
  6084. rt_rq->rt_time = 0;
  6085. rt_rq->rt_throttled = 0;
  6086. #ifdef CONFIG_RT_GROUP_SCHED
  6087. rt_rq->rt_nr_boosted = 0;
  6088. rt_rq->rq = rq;
  6089. #endif
  6090. }
  6091. #ifdef CONFIG_FAIR_GROUP_SCHED
  6092. static void init_tg_cfs_entry(struct rq *rq, struct task_group *tg,
  6093. struct cfs_rq *cfs_rq, struct sched_entity *se,
  6094. int cpu, int add)
  6095. {
  6096. tg->cfs_rq[cpu] = cfs_rq;
  6097. init_cfs_rq(cfs_rq, rq);
  6098. cfs_rq->tg = tg;
  6099. if (add)
  6100. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6101. tg->se[cpu] = se;
  6102. se->cfs_rq = &rq->cfs;
  6103. se->my_q = cfs_rq;
  6104. se->load.weight = tg->shares;
  6105. se->load.inv_weight = div64_64(1ULL<<32, se->load.weight);
  6106. se->parent = NULL;
  6107. }
  6108. #endif
  6109. #ifdef CONFIG_RT_GROUP_SCHED
  6110. static void init_tg_rt_entry(struct rq *rq, struct task_group *tg,
  6111. struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
  6112. int cpu, int add)
  6113. {
  6114. tg->rt_rq[cpu] = rt_rq;
  6115. init_rt_rq(rt_rq, rq);
  6116. rt_rq->tg = tg;
  6117. rt_rq->rt_se = rt_se;
  6118. if (add)
  6119. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6120. tg->rt_se[cpu] = rt_se;
  6121. rt_se->rt_rq = &rq->rt;
  6122. rt_se->my_q = rt_rq;
  6123. rt_se->parent = NULL;
  6124. INIT_LIST_HEAD(&rt_se->run_list);
  6125. }
  6126. #endif
  6127. void __init sched_init(void)
  6128. {
  6129. int highest_cpu = 0;
  6130. int i, j;
  6131. #ifdef CONFIG_SMP
  6132. init_defrootdomain();
  6133. #endif
  6134. #ifdef CONFIG_GROUP_SCHED
  6135. list_add(&init_task_group.list, &task_groups);
  6136. #endif
  6137. for_each_possible_cpu(i) {
  6138. struct rq *rq;
  6139. rq = cpu_rq(i);
  6140. spin_lock_init(&rq->lock);
  6141. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  6142. rq->nr_running = 0;
  6143. rq->clock = 1;
  6144. init_cfs_rq(&rq->cfs, rq);
  6145. init_rt_rq(&rq->rt, rq);
  6146. #ifdef CONFIG_FAIR_GROUP_SCHED
  6147. init_task_group.shares = init_task_group_load;
  6148. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6149. init_tg_cfs_entry(rq, &init_task_group,
  6150. &per_cpu(init_cfs_rq, i),
  6151. &per_cpu(init_sched_entity, i), i, 1);
  6152. #endif
  6153. #ifdef CONFIG_RT_GROUP_SCHED
  6154. init_task_group.rt_runtime =
  6155. sysctl_sched_rt_runtime * NSEC_PER_USEC;
  6156. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6157. init_tg_rt_entry(rq, &init_task_group,
  6158. &per_cpu(init_rt_rq, i),
  6159. &per_cpu(init_sched_rt_entity, i), i, 1);
  6160. #endif
  6161. rq->rt_period_expire = 0;
  6162. rq->rt_throttled = 0;
  6163. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6164. rq->cpu_load[j] = 0;
  6165. #ifdef CONFIG_SMP
  6166. rq->sd = NULL;
  6167. rq->rd = NULL;
  6168. rq->active_balance = 0;
  6169. rq->next_balance = jiffies;
  6170. rq->push_cpu = 0;
  6171. rq->cpu = i;
  6172. rq->migration_thread = NULL;
  6173. INIT_LIST_HEAD(&rq->migration_queue);
  6174. rq_attach_root(rq, &def_root_domain);
  6175. #endif
  6176. init_rq_hrtick(rq);
  6177. atomic_set(&rq->nr_iowait, 0);
  6178. highest_cpu = i;
  6179. }
  6180. set_load_weight(&init_task);
  6181. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6182. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6183. #endif
  6184. #ifdef CONFIG_SMP
  6185. nr_cpu_ids = highest_cpu + 1;
  6186. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  6187. #endif
  6188. #ifdef CONFIG_RT_MUTEXES
  6189. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  6190. #endif
  6191. /*
  6192. * The boot idle thread does lazy MMU switching as well:
  6193. */
  6194. atomic_inc(&init_mm.mm_count);
  6195. enter_lazy_tlb(&init_mm, current);
  6196. /*
  6197. * Make us the idle thread. Technically, schedule() should not be
  6198. * called from this thread, however somewhere below it might be,
  6199. * but because we are the idle thread, we just pick up running again
  6200. * when this runqueue becomes "idle".
  6201. */
  6202. init_idle(current, smp_processor_id());
  6203. /*
  6204. * During early bootup we pretend to be a normal task:
  6205. */
  6206. current->sched_class = &fair_sched_class;
  6207. scheduler_running = 1;
  6208. }
  6209. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6210. void __might_sleep(char *file, int line)
  6211. {
  6212. #ifdef in_atomic
  6213. static unsigned long prev_jiffy; /* ratelimiting */
  6214. if ((in_atomic() || irqs_disabled()) &&
  6215. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  6216. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6217. return;
  6218. prev_jiffy = jiffies;
  6219. printk(KERN_ERR "BUG: sleeping function called from invalid"
  6220. " context at %s:%d\n", file, line);
  6221. printk("in_atomic():%d, irqs_disabled():%d\n",
  6222. in_atomic(), irqs_disabled());
  6223. debug_show_held_locks(current);
  6224. if (irqs_disabled())
  6225. print_irqtrace_events(current);
  6226. dump_stack();
  6227. }
  6228. #endif
  6229. }
  6230. EXPORT_SYMBOL(__might_sleep);
  6231. #endif
  6232. #ifdef CONFIG_MAGIC_SYSRQ
  6233. static void normalize_task(struct rq *rq, struct task_struct *p)
  6234. {
  6235. int on_rq;
  6236. update_rq_clock(rq);
  6237. on_rq = p->se.on_rq;
  6238. if (on_rq)
  6239. deactivate_task(rq, p, 0);
  6240. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6241. if (on_rq) {
  6242. activate_task(rq, p, 0);
  6243. resched_task(rq->curr);
  6244. }
  6245. }
  6246. void normalize_rt_tasks(void)
  6247. {
  6248. struct task_struct *g, *p;
  6249. unsigned long flags;
  6250. struct rq *rq;
  6251. read_lock_irqsave(&tasklist_lock, flags);
  6252. do_each_thread(g, p) {
  6253. /*
  6254. * Only normalize user tasks:
  6255. */
  6256. if (!p->mm)
  6257. continue;
  6258. p->se.exec_start = 0;
  6259. #ifdef CONFIG_SCHEDSTATS
  6260. p->se.wait_start = 0;
  6261. p->se.sleep_start = 0;
  6262. p->se.block_start = 0;
  6263. #endif
  6264. task_rq(p)->clock = 0;
  6265. if (!rt_task(p)) {
  6266. /*
  6267. * Renice negative nice level userspace
  6268. * tasks back to 0:
  6269. */
  6270. if (TASK_NICE(p) < 0 && p->mm)
  6271. set_user_nice(p, 0);
  6272. continue;
  6273. }
  6274. spin_lock(&p->pi_lock);
  6275. rq = __task_rq_lock(p);
  6276. normalize_task(rq, p);
  6277. __task_rq_unlock(rq);
  6278. spin_unlock(&p->pi_lock);
  6279. } while_each_thread(g, p);
  6280. read_unlock_irqrestore(&tasklist_lock, flags);
  6281. }
  6282. #endif /* CONFIG_MAGIC_SYSRQ */
  6283. #ifdef CONFIG_IA64
  6284. /*
  6285. * These functions are only useful for the IA64 MCA handling.
  6286. *
  6287. * They can only be called when the whole system has been
  6288. * stopped - every CPU needs to be quiescent, and no scheduling
  6289. * activity can take place. Using them for anything else would
  6290. * be a serious bug, and as a result, they aren't even visible
  6291. * under any other configuration.
  6292. */
  6293. /**
  6294. * curr_task - return the current task for a given cpu.
  6295. * @cpu: the processor in question.
  6296. *
  6297. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6298. */
  6299. struct task_struct *curr_task(int cpu)
  6300. {
  6301. return cpu_curr(cpu);
  6302. }
  6303. /**
  6304. * set_curr_task - set the current task for a given cpu.
  6305. * @cpu: the processor in question.
  6306. * @p: the task pointer to set.
  6307. *
  6308. * Description: This function must only be used when non-maskable interrupts
  6309. * are serviced on a separate stack. It allows the architecture to switch the
  6310. * notion of the current task on a cpu in a non-blocking manner. This function
  6311. * must be called with all CPU's synchronized, and interrupts disabled, the
  6312. * and caller must save the original value of the current task (see
  6313. * curr_task() above) and restore that value before reenabling interrupts and
  6314. * re-starting the system.
  6315. *
  6316. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6317. */
  6318. void set_curr_task(int cpu, struct task_struct *p)
  6319. {
  6320. cpu_curr(cpu) = p;
  6321. }
  6322. #endif
  6323. #ifdef CONFIG_GROUP_SCHED
  6324. #ifdef CONFIG_FAIR_GROUP_SCHED
  6325. static void free_fair_sched_group(struct task_group *tg)
  6326. {
  6327. int i;
  6328. for_each_possible_cpu(i) {
  6329. if (tg->cfs_rq)
  6330. kfree(tg->cfs_rq[i]);
  6331. if (tg->se)
  6332. kfree(tg->se[i]);
  6333. }
  6334. kfree(tg->cfs_rq);
  6335. kfree(tg->se);
  6336. }
  6337. static int alloc_fair_sched_group(struct task_group *tg)
  6338. {
  6339. struct cfs_rq *cfs_rq;
  6340. struct sched_entity *se;
  6341. struct rq *rq;
  6342. int i;
  6343. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
  6344. if (!tg->cfs_rq)
  6345. goto err;
  6346. tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
  6347. if (!tg->se)
  6348. goto err;
  6349. tg->shares = NICE_0_LOAD;
  6350. for_each_possible_cpu(i) {
  6351. rq = cpu_rq(i);
  6352. cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
  6353. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6354. if (!cfs_rq)
  6355. goto err;
  6356. se = kmalloc_node(sizeof(struct sched_entity),
  6357. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6358. if (!se)
  6359. goto err;
  6360. init_tg_cfs_entry(rq, tg, cfs_rq, se, i, 0);
  6361. }
  6362. return 1;
  6363. err:
  6364. return 0;
  6365. }
  6366. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6367. {
  6368. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  6369. &cpu_rq(cpu)->leaf_cfs_rq_list);
  6370. }
  6371. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6372. {
  6373. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  6374. }
  6375. #else
  6376. static inline void free_fair_sched_group(struct task_group *tg)
  6377. {
  6378. }
  6379. static inline int alloc_fair_sched_group(struct task_group *tg)
  6380. {
  6381. return 1;
  6382. }
  6383. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6384. {
  6385. }
  6386. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6387. {
  6388. }
  6389. #endif
  6390. #ifdef CONFIG_RT_GROUP_SCHED
  6391. static void free_rt_sched_group(struct task_group *tg)
  6392. {
  6393. int i;
  6394. for_each_possible_cpu(i) {
  6395. if (tg->rt_rq)
  6396. kfree(tg->rt_rq[i]);
  6397. if (tg->rt_se)
  6398. kfree(tg->rt_se[i]);
  6399. }
  6400. kfree(tg->rt_rq);
  6401. kfree(tg->rt_se);
  6402. }
  6403. static int alloc_rt_sched_group(struct task_group *tg)
  6404. {
  6405. struct rt_rq *rt_rq;
  6406. struct sched_rt_entity *rt_se;
  6407. struct rq *rq;
  6408. int i;
  6409. tg->rt_rq = kzalloc(sizeof(rt_rq) * NR_CPUS, GFP_KERNEL);
  6410. if (!tg->rt_rq)
  6411. goto err;
  6412. tg->rt_se = kzalloc(sizeof(rt_se) * NR_CPUS, GFP_KERNEL);
  6413. if (!tg->rt_se)
  6414. goto err;
  6415. tg->rt_runtime = 0;
  6416. for_each_possible_cpu(i) {
  6417. rq = cpu_rq(i);
  6418. rt_rq = kmalloc_node(sizeof(struct rt_rq),
  6419. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6420. if (!rt_rq)
  6421. goto err;
  6422. rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
  6423. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6424. if (!rt_se)
  6425. goto err;
  6426. init_tg_rt_entry(rq, tg, rt_rq, rt_se, i, 0);
  6427. }
  6428. return 1;
  6429. err:
  6430. return 0;
  6431. }
  6432. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6433. {
  6434. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  6435. &cpu_rq(cpu)->leaf_rt_rq_list);
  6436. }
  6437. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6438. {
  6439. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  6440. }
  6441. #else
  6442. static inline void free_rt_sched_group(struct task_group *tg)
  6443. {
  6444. }
  6445. static inline int alloc_rt_sched_group(struct task_group *tg)
  6446. {
  6447. return 1;
  6448. }
  6449. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6450. {
  6451. }
  6452. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6453. {
  6454. }
  6455. #endif
  6456. static void free_sched_group(struct task_group *tg)
  6457. {
  6458. free_fair_sched_group(tg);
  6459. free_rt_sched_group(tg);
  6460. kfree(tg);
  6461. }
  6462. /* allocate runqueue etc for a new task group */
  6463. struct task_group *sched_create_group(void)
  6464. {
  6465. struct task_group *tg;
  6466. unsigned long flags;
  6467. int i;
  6468. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6469. if (!tg)
  6470. return ERR_PTR(-ENOMEM);
  6471. if (!alloc_fair_sched_group(tg))
  6472. goto err;
  6473. if (!alloc_rt_sched_group(tg))
  6474. goto err;
  6475. spin_lock_irqsave(&task_group_lock, flags);
  6476. for_each_possible_cpu(i) {
  6477. register_fair_sched_group(tg, i);
  6478. register_rt_sched_group(tg, i);
  6479. }
  6480. list_add_rcu(&tg->list, &task_groups);
  6481. spin_unlock_irqrestore(&task_group_lock, flags);
  6482. return tg;
  6483. err:
  6484. free_sched_group(tg);
  6485. return ERR_PTR(-ENOMEM);
  6486. }
  6487. /* rcu callback to free various structures associated with a task group */
  6488. static void free_sched_group_rcu(struct rcu_head *rhp)
  6489. {
  6490. /* now it should be safe to free those cfs_rqs */
  6491. free_sched_group(container_of(rhp, struct task_group, rcu));
  6492. }
  6493. /* Destroy runqueue etc associated with a task group */
  6494. void sched_destroy_group(struct task_group *tg)
  6495. {
  6496. unsigned long flags;
  6497. int i;
  6498. spin_lock_irqsave(&task_group_lock, flags);
  6499. for_each_possible_cpu(i) {
  6500. unregister_fair_sched_group(tg, i);
  6501. unregister_rt_sched_group(tg, i);
  6502. }
  6503. list_del_rcu(&tg->list);
  6504. spin_unlock_irqrestore(&task_group_lock, flags);
  6505. /* wait for possible concurrent references to cfs_rqs complete */
  6506. call_rcu(&tg->rcu, free_sched_group_rcu);
  6507. }
  6508. /* change task's runqueue when it moves between groups.
  6509. * The caller of this function should have put the task in its new group
  6510. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6511. * reflect its new group.
  6512. */
  6513. void sched_move_task(struct task_struct *tsk)
  6514. {
  6515. int on_rq, running;
  6516. unsigned long flags;
  6517. struct rq *rq;
  6518. rq = task_rq_lock(tsk, &flags);
  6519. update_rq_clock(rq);
  6520. running = task_current(rq, tsk);
  6521. on_rq = tsk->se.on_rq;
  6522. if (on_rq)
  6523. dequeue_task(rq, tsk, 0);
  6524. if (unlikely(running))
  6525. tsk->sched_class->put_prev_task(rq, tsk);
  6526. set_task_rq(tsk, task_cpu(tsk));
  6527. #ifdef CONFIG_FAIR_GROUP_SCHED
  6528. if (tsk->sched_class->moved_group)
  6529. tsk->sched_class->moved_group(tsk);
  6530. #endif
  6531. if (unlikely(running))
  6532. tsk->sched_class->set_curr_task(rq);
  6533. if (on_rq)
  6534. enqueue_task(rq, tsk, 0);
  6535. task_rq_unlock(rq, &flags);
  6536. }
  6537. #ifdef CONFIG_FAIR_GROUP_SCHED
  6538. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  6539. {
  6540. struct cfs_rq *cfs_rq = se->cfs_rq;
  6541. struct rq *rq = cfs_rq->rq;
  6542. int on_rq;
  6543. spin_lock_irq(&rq->lock);
  6544. on_rq = se->on_rq;
  6545. if (on_rq)
  6546. dequeue_entity(cfs_rq, se, 0);
  6547. se->load.weight = shares;
  6548. se->load.inv_weight = div64_64((1ULL<<32), shares);
  6549. if (on_rq)
  6550. enqueue_entity(cfs_rq, se, 0);
  6551. spin_unlock_irq(&rq->lock);
  6552. }
  6553. static DEFINE_MUTEX(shares_mutex);
  6554. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  6555. {
  6556. int i;
  6557. unsigned long flags;
  6558. /*
  6559. * A weight of 0 or 1 can cause arithmetics problems.
  6560. * (The default weight is 1024 - so there's no practical
  6561. * limitation from this.)
  6562. */
  6563. if (shares < 2)
  6564. shares = 2;
  6565. mutex_lock(&shares_mutex);
  6566. if (tg->shares == shares)
  6567. goto done;
  6568. spin_lock_irqsave(&task_group_lock, flags);
  6569. for_each_possible_cpu(i)
  6570. unregister_fair_sched_group(tg, i);
  6571. spin_unlock_irqrestore(&task_group_lock, flags);
  6572. /* wait for any ongoing reference to this group to finish */
  6573. synchronize_sched();
  6574. /*
  6575. * Now we are free to modify the group's share on each cpu
  6576. * w/o tripping rebalance_share or load_balance_fair.
  6577. */
  6578. tg->shares = shares;
  6579. for_each_possible_cpu(i)
  6580. set_se_shares(tg->se[i], shares);
  6581. /*
  6582. * Enable load balance activity on this group, by inserting it back on
  6583. * each cpu's rq->leaf_cfs_rq_list.
  6584. */
  6585. spin_lock_irqsave(&task_group_lock, flags);
  6586. for_each_possible_cpu(i)
  6587. register_fair_sched_group(tg, i);
  6588. spin_unlock_irqrestore(&task_group_lock, flags);
  6589. done:
  6590. mutex_unlock(&shares_mutex);
  6591. return 0;
  6592. }
  6593. unsigned long sched_group_shares(struct task_group *tg)
  6594. {
  6595. return tg->shares;
  6596. }
  6597. #endif
  6598. #ifdef CONFIG_RT_GROUP_SCHED
  6599. /*
  6600. * Ensure that the real time constraints are schedulable.
  6601. */
  6602. static DEFINE_MUTEX(rt_constraints_mutex);
  6603. static unsigned long to_ratio(u64 period, u64 runtime)
  6604. {
  6605. if (runtime == RUNTIME_INF)
  6606. return 1ULL << 16;
  6607. return div64_64(runtime << 16, period);
  6608. }
  6609. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  6610. {
  6611. struct task_group *tgi;
  6612. unsigned long total = 0;
  6613. unsigned long global_ratio =
  6614. to_ratio(sysctl_sched_rt_period,
  6615. sysctl_sched_rt_runtime < 0 ?
  6616. RUNTIME_INF : sysctl_sched_rt_runtime);
  6617. rcu_read_lock();
  6618. list_for_each_entry_rcu(tgi, &task_groups, list) {
  6619. if (tgi == tg)
  6620. continue;
  6621. total += to_ratio(period, tgi->rt_runtime);
  6622. }
  6623. rcu_read_unlock();
  6624. return total + to_ratio(period, runtime) < global_ratio;
  6625. }
  6626. /* Must be called with tasklist_lock held */
  6627. static inline int tg_has_rt_tasks(struct task_group *tg)
  6628. {
  6629. struct task_struct *g, *p;
  6630. do_each_thread(g, p) {
  6631. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  6632. return 1;
  6633. } while_each_thread(g, p);
  6634. return 0;
  6635. }
  6636. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  6637. {
  6638. u64 rt_runtime, rt_period;
  6639. int err = 0;
  6640. rt_period = (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  6641. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  6642. if (rt_runtime_us == -1)
  6643. rt_runtime = RUNTIME_INF;
  6644. mutex_lock(&rt_constraints_mutex);
  6645. read_lock(&tasklist_lock);
  6646. if (rt_runtime_us == 0 && tg_has_rt_tasks(tg)) {
  6647. err = -EBUSY;
  6648. goto unlock;
  6649. }
  6650. if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
  6651. err = -EINVAL;
  6652. goto unlock;
  6653. }
  6654. tg->rt_runtime = rt_runtime;
  6655. unlock:
  6656. read_unlock(&tasklist_lock);
  6657. mutex_unlock(&rt_constraints_mutex);
  6658. return err;
  6659. }
  6660. long sched_group_rt_runtime(struct task_group *tg)
  6661. {
  6662. u64 rt_runtime_us;
  6663. if (tg->rt_runtime == RUNTIME_INF)
  6664. return -1;
  6665. rt_runtime_us = tg->rt_runtime;
  6666. do_div(rt_runtime_us, NSEC_PER_USEC);
  6667. return rt_runtime_us;
  6668. }
  6669. #endif
  6670. #endif /* CONFIG_GROUP_SCHED */
  6671. #ifdef CONFIG_CGROUP_SCHED
  6672. /* return corresponding task_group object of a cgroup */
  6673. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  6674. {
  6675. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  6676. struct task_group, css);
  6677. }
  6678. static struct cgroup_subsys_state *
  6679. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6680. {
  6681. struct task_group *tg;
  6682. if (!cgrp->parent) {
  6683. /* This is early initialization for the top cgroup */
  6684. init_task_group.css.cgroup = cgrp;
  6685. return &init_task_group.css;
  6686. }
  6687. /* we support only 1-level deep hierarchical scheduler atm */
  6688. if (cgrp->parent->parent)
  6689. return ERR_PTR(-EINVAL);
  6690. tg = sched_create_group();
  6691. if (IS_ERR(tg))
  6692. return ERR_PTR(-ENOMEM);
  6693. /* Bind the cgroup to task_group object we just created */
  6694. tg->css.cgroup = cgrp;
  6695. return &tg->css;
  6696. }
  6697. static void
  6698. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6699. {
  6700. struct task_group *tg = cgroup_tg(cgrp);
  6701. sched_destroy_group(tg);
  6702. }
  6703. static int
  6704. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  6705. struct task_struct *tsk)
  6706. {
  6707. #ifdef CONFIG_RT_GROUP_SCHED
  6708. /* Don't accept realtime tasks when there is no way for them to run */
  6709. if (rt_task(tsk) && cgroup_tg(cgrp)->rt_runtime == 0)
  6710. return -EINVAL;
  6711. #else
  6712. /* We don't support RT-tasks being in separate groups */
  6713. if (tsk->sched_class != &fair_sched_class)
  6714. return -EINVAL;
  6715. #endif
  6716. return 0;
  6717. }
  6718. static void
  6719. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  6720. struct cgroup *old_cont, struct task_struct *tsk)
  6721. {
  6722. sched_move_task(tsk);
  6723. }
  6724. #ifdef CONFIG_FAIR_GROUP_SCHED
  6725. static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  6726. u64 shareval)
  6727. {
  6728. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  6729. }
  6730. static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
  6731. {
  6732. struct task_group *tg = cgroup_tg(cgrp);
  6733. return (u64) tg->shares;
  6734. }
  6735. #endif
  6736. #ifdef CONFIG_RT_GROUP_SCHED
  6737. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  6738. struct file *file,
  6739. const char __user *userbuf,
  6740. size_t nbytes, loff_t *unused_ppos)
  6741. {
  6742. char buffer[64];
  6743. int retval = 0;
  6744. s64 val;
  6745. char *end;
  6746. if (!nbytes)
  6747. return -EINVAL;
  6748. if (nbytes >= sizeof(buffer))
  6749. return -E2BIG;
  6750. if (copy_from_user(buffer, userbuf, nbytes))
  6751. return -EFAULT;
  6752. buffer[nbytes] = 0; /* nul-terminate */
  6753. /* strip newline if necessary */
  6754. if (nbytes && (buffer[nbytes-1] == '\n'))
  6755. buffer[nbytes-1] = 0;
  6756. val = simple_strtoll(buffer, &end, 0);
  6757. if (*end)
  6758. return -EINVAL;
  6759. /* Pass to subsystem */
  6760. retval = sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  6761. if (!retval)
  6762. retval = nbytes;
  6763. return retval;
  6764. }
  6765. static ssize_t cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft,
  6766. struct file *file,
  6767. char __user *buf, size_t nbytes,
  6768. loff_t *ppos)
  6769. {
  6770. char tmp[64];
  6771. long val = sched_group_rt_runtime(cgroup_tg(cgrp));
  6772. int len = sprintf(tmp, "%ld\n", val);
  6773. return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
  6774. }
  6775. #endif
  6776. static struct cftype cpu_files[] = {
  6777. #ifdef CONFIG_FAIR_GROUP_SCHED
  6778. {
  6779. .name = "shares",
  6780. .read_uint = cpu_shares_read_uint,
  6781. .write_uint = cpu_shares_write_uint,
  6782. },
  6783. #endif
  6784. #ifdef CONFIG_RT_GROUP_SCHED
  6785. {
  6786. .name = "rt_runtime_us",
  6787. .read = cpu_rt_runtime_read,
  6788. .write = cpu_rt_runtime_write,
  6789. },
  6790. #endif
  6791. };
  6792. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  6793. {
  6794. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  6795. }
  6796. struct cgroup_subsys cpu_cgroup_subsys = {
  6797. .name = "cpu",
  6798. .create = cpu_cgroup_create,
  6799. .destroy = cpu_cgroup_destroy,
  6800. .can_attach = cpu_cgroup_can_attach,
  6801. .attach = cpu_cgroup_attach,
  6802. .populate = cpu_cgroup_populate,
  6803. .subsys_id = cpu_cgroup_subsys_id,
  6804. .early_init = 1,
  6805. };
  6806. #endif /* CONFIG_CGROUP_SCHED */
  6807. #ifdef CONFIG_CGROUP_CPUACCT
  6808. /*
  6809. * CPU accounting code for task groups.
  6810. *
  6811. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  6812. * (balbir@in.ibm.com).
  6813. */
  6814. /* track cpu usage of a group of tasks */
  6815. struct cpuacct {
  6816. struct cgroup_subsys_state css;
  6817. /* cpuusage holds pointer to a u64-type object on every cpu */
  6818. u64 *cpuusage;
  6819. };
  6820. struct cgroup_subsys cpuacct_subsys;
  6821. /* return cpu accounting group corresponding to this container */
  6822. static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
  6823. {
  6824. return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
  6825. struct cpuacct, css);
  6826. }
  6827. /* return cpu accounting group to which this task belongs */
  6828. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  6829. {
  6830. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  6831. struct cpuacct, css);
  6832. }
  6833. /* create a new cpu accounting group */
  6834. static struct cgroup_subsys_state *cpuacct_create(
  6835. struct cgroup_subsys *ss, struct cgroup *cont)
  6836. {
  6837. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  6838. if (!ca)
  6839. return ERR_PTR(-ENOMEM);
  6840. ca->cpuusage = alloc_percpu(u64);
  6841. if (!ca->cpuusage) {
  6842. kfree(ca);
  6843. return ERR_PTR(-ENOMEM);
  6844. }
  6845. return &ca->css;
  6846. }
  6847. /* destroy an existing cpu accounting group */
  6848. static void
  6849. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
  6850. {
  6851. struct cpuacct *ca = cgroup_ca(cont);
  6852. free_percpu(ca->cpuusage);
  6853. kfree(ca);
  6854. }
  6855. /* return total cpu usage (in nanoseconds) of a group */
  6856. static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
  6857. {
  6858. struct cpuacct *ca = cgroup_ca(cont);
  6859. u64 totalcpuusage = 0;
  6860. int i;
  6861. for_each_possible_cpu(i) {
  6862. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  6863. /*
  6864. * Take rq->lock to make 64-bit addition safe on 32-bit
  6865. * platforms.
  6866. */
  6867. spin_lock_irq(&cpu_rq(i)->lock);
  6868. totalcpuusage += *cpuusage;
  6869. spin_unlock_irq(&cpu_rq(i)->lock);
  6870. }
  6871. return totalcpuusage;
  6872. }
  6873. static struct cftype files[] = {
  6874. {
  6875. .name = "usage",
  6876. .read_uint = cpuusage_read,
  6877. },
  6878. };
  6879. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  6880. {
  6881. return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
  6882. }
  6883. /*
  6884. * charge this task's execution time to its accounting group.
  6885. *
  6886. * called with rq->lock held.
  6887. */
  6888. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  6889. {
  6890. struct cpuacct *ca;
  6891. if (!cpuacct_subsys.active)
  6892. return;
  6893. ca = task_ca(tsk);
  6894. if (ca) {
  6895. u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
  6896. *cpuusage += cputime;
  6897. }
  6898. }
  6899. struct cgroup_subsys cpuacct_subsys = {
  6900. .name = "cpuacct",
  6901. .create = cpuacct_create,
  6902. .destroy = cpuacct_destroy,
  6903. .populate = cpuacct_populate,
  6904. .subsys_id = cpuacct_subsys_id,
  6905. };
  6906. #endif /* CONFIG_CGROUP_CPUACCT */