pci.c 69 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737
  1. /*
  2. * NVM Express device driver
  3. * Copyright (c) 2011-2014, Intel Corporation.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms and conditions of the GNU General Public License,
  7. * version 2, as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. */
  14. #include <linux/aer.h>
  15. #include <linux/blkdev.h>
  16. #include <linux/blk-mq.h>
  17. #include <linux/blk-mq-pci.h>
  18. #include <linux/dmi.h>
  19. #include <linux/init.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/io.h>
  22. #include <linux/mm.h>
  23. #include <linux/module.h>
  24. #include <linux/mutex.h>
  25. #include <linux/once.h>
  26. #include <linux/pci.h>
  27. #include <linux/t10-pi.h>
  28. #include <linux/types.h>
  29. #include <linux/io-64-nonatomic-lo-hi.h>
  30. #include <linux/sed-opal.h>
  31. #include "nvme.h"
  32. #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
  33. #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
  34. #define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
  35. static int use_threaded_interrupts;
  36. module_param(use_threaded_interrupts, int, 0);
  37. static bool use_cmb_sqes = true;
  38. module_param(use_cmb_sqes, bool, 0644);
  39. MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
  40. static unsigned int max_host_mem_size_mb = 128;
  41. module_param(max_host_mem_size_mb, uint, 0444);
  42. MODULE_PARM_DESC(max_host_mem_size_mb,
  43. "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
  44. static unsigned int sgl_threshold = SZ_32K;
  45. module_param(sgl_threshold, uint, 0644);
  46. MODULE_PARM_DESC(sgl_threshold,
  47. "Use SGLs when average request segment size is larger or equal to "
  48. "this size. Use 0 to disable SGLs.");
  49. static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
  50. static const struct kernel_param_ops io_queue_depth_ops = {
  51. .set = io_queue_depth_set,
  52. .get = param_get_int,
  53. };
  54. static int io_queue_depth = 1024;
  55. module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
  56. MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
  57. struct nvme_dev;
  58. struct nvme_queue;
  59. static void nvme_process_cq(struct nvme_queue *nvmeq);
  60. static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
  61. /*
  62. * Represents an NVM Express device. Each nvme_dev is a PCI function.
  63. */
  64. struct nvme_dev {
  65. struct nvme_queue **queues;
  66. struct blk_mq_tag_set tagset;
  67. struct blk_mq_tag_set admin_tagset;
  68. u32 __iomem *dbs;
  69. struct device *dev;
  70. struct dma_pool *prp_page_pool;
  71. struct dma_pool *prp_small_pool;
  72. unsigned online_queues;
  73. unsigned max_qid;
  74. int q_depth;
  75. u32 db_stride;
  76. void __iomem *bar;
  77. unsigned long bar_mapped_size;
  78. struct work_struct remove_work;
  79. struct mutex shutdown_lock;
  80. bool subsystem;
  81. void __iomem *cmb;
  82. pci_bus_addr_t cmb_bus_addr;
  83. u64 cmb_size;
  84. u32 cmbsz;
  85. u32 cmbloc;
  86. struct nvme_ctrl ctrl;
  87. struct completion ioq_wait;
  88. /* shadow doorbell buffer support: */
  89. u32 *dbbuf_dbs;
  90. dma_addr_t dbbuf_dbs_dma_addr;
  91. u32 *dbbuf_eis;
  92. dma_addr_t dbbuf_eis_dma_addr;
  93. /* host memory buffer support: */
  94. u64 host_mem_size;
  95. u32 nr_host_mem_descs;
  96. dma_addr_t host_mem_descs_dma;
  97. struct nvme_host_mem_buf_desc *host_mem_descs;
  98. void **host_mem_desc_bufs;
  99. };
  100. static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
  101. {
  102. int n = 0, ret;
  103. ret = kstrtoint(val, 10, &n);
  104. if (ret != 0 || n < 2)
  105. return -EINVAL;
  106. return param_set_int(val, kp);
  107. }
  108. static inline unsigned int sq_idx(unsigned int qid, u32 stride)
  109. {
  110. return qid * 2 * stride;
  111. }
  112. static inline unsigned int cq_idx(unsigned int qid, u32 stride)
  113. {
  114. return (qid * 2 + 1) * stride;
  115. }
  116. static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
  117. {
  118. return container_of(ctrl, struct nvme_dev, ctrl);
  119. }
  120. /*
  121. * An NVM Express queue. Each device has at least two (one for admin
  122. * commands and one for I/O commands).
  123. */
  124. struct nvme_queue {
  125. struct device *q_dmadev;
  126. struct nvme_dev *dev;
  127. spinlock_t q_lock;
  128. struct nvme_command *sq_cmds;
  129. struct nvme_command __iomem *sq_cmds_io;
  130. volatile struct nvme_completion *cqes;
  131. struct blk_mq_tags **tags;
  132. dma_addr_t sq_dma_addr;
  133. dma_addr_t cq_dma_addr;
  134. u32 __iomem *q_db;
  135. u16 q_depth;
  136. s16 cq_vector;
  137. u16 sq_tail;
  138. u16 cq_head;
  139. u16 qid;
  140. u8 cq_phase;
  141. u8 cqe_seen;
  142. u32 *dbbuf_sq_db;
  143. u32 *dbbuf_cq_db;
  144. u32 *dbbuf_sq_ei;
  145. u32 *dbbuf_cq_ei;
  146. };
  147. /*
  148. * The nvme_iod describes the data in an I/O, including the list of PRP
  149. * entries. You can't see it in this data structure because C doesn't let
  150. * me express that. Use nvme_init_iod to ensure there's enough space
  151. * allocated to store the PRP list.
  152. */
  153. struct nvme_iod {
  154. struct nvme_request req;
  155. struct nvme_queue *nvmeq;
  156. bool use_sgl;
  157. int aborted;
  158. int npages; /* In the PRP list. 0 means small pool in use */
  159. int nents; /* Used in scatterlist */
  160. int length; /* Of data, in bytes */
  161. dma_addr_t first_dma;
  162. struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
  163. struct scatterlist *sg;
  164. struct scatterlist inline_sg[0];
  165. };
  166. /*
  167. * Check we didin't inadvertently grow the command struct
  168. */
  169. static inline void _nvme_check_size(void)
  170. {
  171. BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
  172. BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
  173. BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
  174. BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
  175. BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
  176. BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
  177. BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
  178. BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
  179. BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
  180. BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
  181. BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
  182. BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
  183. BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
  184. }
  185. static inline unsigned int nvme_dbbuf_size(u32 stride)
  186. {
  187. return ((num_possible_cpus() + 1) * 8 * stride);
  188. }
  189. static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
  190. {
  191. unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
  192. if (dev->dbbuf_dbs)
  193. return 0;
  194. dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
  195. &dev->dbbuf_dbs_dma_addr,
  196. GFP_KERNEL);
  197. if (!dev->dbbuf_dbs)
  198. return -ENOMEM;
  199. dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
  200. &dev->dbbuf_eis_dma_addr,
  201. GFP_KERNEL);
  202. if (!dev->dbbuf_eis) {
  203. dma_free_coherent(dev->dev, mem_size,
  204. dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
  205. dev->dbbuf_dbs = NULL;
  206. return -ENOMEM;
  207. }
  208. return 0;
  209. }
  210. static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
  211. {
  212. unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
  213. if (dev->dbbuf_dbs) {
  214. dma_free_coherent(dev->dev, mem_size,
  215. dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
  216. dev->dbbuf_dbs = NULL;
  217. }
  218. if (dev->dbbuf_eis) {
  219. dma_free_coherent(dev->dev, mem_size,
  220. dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
  221. dev->dbbuf_eis = NULL;
  222. }
  223. }
  224. static void nvme_dbbuf_init(struct nvme_dev *dev,
  225. struct nvme_queue *nvmeq, int qid)
  226. {
  227. if (!dev->dbbuf_dbs || !qid)
  228. return;
  229. nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
  230. nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
  231. nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
  232. nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
  233. }
  234. static void nvme_dbbuf_set(struct nvme_dev *dev)
  235. {
  236. struct nvme_command c;
  237. if (!dev->dbbuf_dbs)
  238. return;
  239. memset(&c, 0, sizeof(c));
  240. c.dbbuf.opcode = nvme_admin_dbbuf;
  241. c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
  242. c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
  243. if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
  244. dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
  245. /* Free memory and continue on */
  246. nvme_dbbuf_dma_free(dev);
  247. }
  248. }
  249. static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
  250. {
  251. return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
  252. }
  253. /* Update dbbuf and return true if an MMIO is required */
  254. static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
  255. volatile u32 *dbbuf_ei)
  256. {
  257. if (dbbuf_db) {
  258. u16 old_value;
  259. /*
  260. * Ensure that the queue is written before updating
  261. * the doorbell in memory
  262. */
  263. wmb();
  264. old_value = *dbbuf_db;
  265. *dbbuf_db = value;
  266. if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
  267. return false;
  268. }
  269. return true;
  270. }
  271. /*
  272. * Max size of iod being embedded in the request payload
  273. */
  274. #define NVME_INT_PAGES 2
  275. #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
  276. /*
  277. * Will slightly overestimate the number of pages needed. This is OK
  278. * as it only leads to a small amount of wasted memory for the lifetime of
  279. * the I/O.
  280. */
  281. static int nvme_npages(unsigned size, struct nvme_dev *dev)
  282. {
  283. unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
  284. dev->ctrl.page_size);
  285. return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
  286. }
  287. /*
  288. * Calculates the number of pages needed for the SGL segments. For example a 4k
  289. * page can accommodate 256 SGL descriptors.
  290. */
  291. static int nvme_pci_npages_sgl(unsigned int num_seg)
  292. {
  293. return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE);
  294. }
  295. static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev,
  296. unsigned int size, unsigned int nseg, bool use_sgl)
  297. {
  298. size_t alloc_size;
  299. if (use_sgl)
  300. alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg);
  301. else
  302. alloc_size = sizeof(__le64 *) * nvme_npages(size, dev);
  303. return alloc_size + sizeof(struct scatterlist) * nseg;
  304. }
  305. static unsigned int nvme_pci_cmd_size(struct nvme_dev *dev, bool use_sgl)
  306. {
  307. unsigned int alloc_size = nvme_pci_iod_alloc_size(dev,
  308. NVME_INT_BYTES(dev), NVME_INT_PAGES,
  309. use_sgl);
  310. return sizeof(struct nvme_iod) + alloc_size;
  311. }
  312. static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
  313. unsigned int hctx_idx)
  314. {
  315. struct nvme_dev *dev = data;
  316. struct nvme_queue *nvmeq = dev->queues[0];
  317. WARN_ON(hctx_idx != 0);
  318. WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
  319. WARN_ON(nvmeq->tags);
  320. hctx->driver_data = nvmeq;
  321. nvmeq->tags = &dev->admin_tagset.tags[0];
  322. return 0;
  323. }
  324. static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
  325. {
  326. struct nvme_queue *nvmeq = hctx->driver_data;
  327. nvmeq->tags = NULL;
  328. }
  329. static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
  330. unsigned int hctx_idx)
  331. {
  332. struct nvme_dev *dev = data;
  333. struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
  334. if (!nvmeq->tags)
  335. nvmeq->tags = &dev->tagset.tags[hctx_idx];
  336. WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
  337. hctx->driver_data = nvmeq;
  338. return 0;
  339. }
  340. static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
  341. unsigned int hctx_idx, unsigned int numa_node)
  342. {
  343. struct nvme_dev *dev = set->driver_data;
  344. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  345. int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
  346. struct nvme_queue *nvmeq = dev->queues[queue_idx];
  347. BUG_ON(!nvmeq);
  348. iod->nvmeq = nvmeq;
  349. return 0;
  350. }
  351. static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
  352. {
  353. struct nvme_dev *dev = set->driver_data;
  354. return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev));
  355. }
  356. /**
  357. * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
  358. * @nvmeq: The queue to use
  359. * @cmd: The command to send
  360. *
  361. * Safe to use from interrupt context
  362. */
  363. static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
  364. struct nvme_command *cmd)
  365. {
  366. u16 tail = nvmeq->sq_tail;
  367. if (nvmeq->sq_cmds_io)
  368. memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
  369. else
  370. memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
  371. if (++tail == nvmeq->q_depth)
  372. tail = 0;
  373. if (nvme_dbbuf_update_and_check_event(tail, nvmeq->dbbuf_sq_db,
  374. nvmeq->dbbuf_sq_ei))
  375. writel(tail, nvmeq->q_db);
  376. nvmeq->sq_tail = tail;
  377. }
  378. static void **nvme_pci_iod_list(struct request *req)
  379. {
  380. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  381. return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
  382. }
  383. static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
  384. {
  385. struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
  386. int nseg = blk_rq_nr_phys_segments(rq);
  387. unsigned int size = blk_rq_payload_bytes(rq);
  388. if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
  389. size_t alloc_size = nvme_pci_iod_alloc_size(dev, size, nseg,
  390. iod->use_sgl);
  391. iod->sg = kmalloc(alloc_size, GFP_ATOMIC);
  392. if (!iod->sg)
  393. return BLK_STS_RESOURCE;
  394. } else {
  395. iod->sg = iod->inline_sg;
  396. }
  397. iod->aborted = 0;
  398. iod->npages = -1;
  399. iod->nents = 0;
  400. iod->length = size;
  401. return BLK_STS_OK;
  402. }
  403. static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
  404. {
  405. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  406. const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1;
  407. dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
  408. int i;
  409. if (iod->npages == 0)
  410. dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
  411. dma_addr);
  412. for (i = 0; i < iod->npages; i++) {
  413. void *addr = nvme_pci_iod_list(req)[i];
  414. if (iod->use_sgl) {
  415. struct nvme_sgl_desc *sg_list = addr;
  416. next_dma_addr =
  417. le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
  418. } else {
  419. __le64 *prp_list = addr;
  420. next_dma_addr = le64_to_cpu(prp_list[last_prp]);
  421. }
  422. dma_pool_free(dev->prp_page_pool, addr, dma_addr);
  423. dma_addr = next_dma_addr;
  424. }
  425. if (iod->sg != iod->inline_sg)
  426. kfree(iod->sg);
  427. }
  428. #ifdef CONFIG_BLK_DEV_INTEGRITY
  429. static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
  430. {
  431. if (be32_to_cpu(pi->ref_tag) == v)
  432. pi->ref_tag = cpu_to_be32(p);
  433. }
  434. static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
  435. {
  436. if (be32_to_cpu(pi->ref_tag) == p)
  437. pi->ref_tag = cpu_to_be32(v);
  438. }
  439. /**
  440. * nvme_dif_remap - remaps ref tags to bip seed and physical lba
  441. *
  442. * The virtual start sector is the one that was originally submitted by the
  443. * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
  444. * start sector may be different. Remap protection information to match the
  445. * physical LBA on writes, and back to the original seed on reads.
  446. *
  447. * Type 0 and 3 do not have a ref tag, so no remapping required.
  448. */
  449. static void nvme_dif_remap(struct request *req,
  450. void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
  451. {
  452. struct nvme_ns *ns = req->rq_disk->private_data;
  453. struct bio_integrity_payload *bip;
  454. struct t10_pi_tuple *pi;
  455. void *p, *pmap;
  456. u32 i, nlb, ts, phys, virt;
  457. if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
  458. return;
  459. bip = bio_integrity(req->bio);
  460. if (!bip)
  461. return;
  462. pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
  463. p = pmap;
  464. virt = bip_get_seed(bip);
  465. phys = nvme_block_nr(ns, blk_rq_pos(req));
  466. nlb = (blk_rq_bytes(req) >> ns->lba_shift);
  467. ts = ns->disk->queue->integrity.tuple_size;
  468. for (i = 0; i < nlb; i++, virt++, phys++) {
  469. pi = (struct t10_pi_tuple *)p;
  470. dif_swap(phys, virt, pi);
  471. p += ts;
  472. }
  473. kunmap_atomic(pmap);
  474. }
  475. #else /* CONFIG_BLK_DEV_INTEGRITY */
  476. static void nvme_dif_remap(struct request *req,
  477. void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
  478. {
  479. }
  480. static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
  481. {
  482. }
  483. static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
  484. {
  485. }
  486. #endif
  487. static void nvme_print_sgl(struct scatterlist *sgl, int nents)
  488. {
  489. int i;
  490. struct scatterlist *sg;
  491. for_each_sg(sgl, sg, nents, i) {
  492. dma_addr_t phys = sg_phys(sg);
  493. pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
  494. "dma_address:%pad dma_length:%d\n",
  495. i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
  496. sg_dma_len(sg));
  497. }
  498. }
  499. static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
  500. struct request *req, struct nvme_rw_command *cmnd)
  501. {
  502. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  503. struct dma_pool *pool;
  504. int length = blk_rq_payload_bytes(req);
  505. struct scatterlist *sg = iod->sg;
  506. int dma_len = sg_dma_len(sg);
  507. u64 dma_addr = sg_dma_address(sg);
  508. u32 page_size = dev->ctrl.page_size;
  509. int offset = dma_addr & (page_size - 1);
  510. __le64 *prp_list;
  511. void **list = nvme_pci_iod_list(req);
  512. dma_addr_t prp_dma;
  513. int nprps, i;
  514. iod->use_sgl = false;
  515. length -= (page_size - offset);
  516. if (length <= 0) {
  517. iod->first_dma = 0;
  518. goto done;
  519. }
  520. dma_len -= (page_size - offset);
  521. if (dma_len) {
  522. dma_addr += (page_size - offset);
  523. } else {
  524. sg = sg_next(sg);
  525. dma_addr = sg_dma_address(sg);
  526. dma_len = sg_dma_len(sg);
  527. }
  528. if (length <= page_size) {
  529. iod->first_dma = dma_addr;
  530. goto done;
  531. }
  532. nprps = DIV_ROUND_UP(length, page_size);
  533. if (nprps <= (256 / 8)) {
  534. pool = dev->prp_small_pool;
  535. iod->npages = 0;
  536. } else {
  537. pool = dev->prp_page_pool;
  538. iod->npages = 1;
  539. }
  540. prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
  541. if (!prp_list) {
  542. iod->first_dma = dma_addr;
  543. iod->npages = -1;
  544. return BLK_STS_RESOURCE;
  545. }
  546. list[0] = prp_list;
  547. iod->first_dma = prp_dma;
  548. i = 0;
  549. for (;;) {
  550. if (i == page_size >> 3) {
  551. __le64 *old_prp_list = prp_list;
  552. prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
  553. if (!prp_list)
  554. return BLK_STS_RESOURCE;
  555. list[iod->npages++] = prp_list;
  556. prp_list[0] = old_prp_list[i - 1];
  557. old_prp_list[i - 1] = cpu_to_le64(prp_dma);
  558. i = 1;
  559. }
  560. prp_list[i++] = cpu_to_le64(dma_addr);
  561. dma_len -= page_size;
  562. dma_addr += page_size;
  563. length -= page_size;
  564. if (length <= 0)
  565. break;
  566. if (dma_len > 0)
  567. continue;
  568. if (unlikely(dma_len < 0))
  569. goto bad_sgl;
  570. sg = sg_next(sg);
  571. dma_addr = sg_dma_address(sg);
  572. dma_len = sg_dma_len(sg);
  573. }
  574. done:
  575. cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
  576. cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
  577. return BLK_STS_OK;
  578. bad_sgl:
  579. WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
  580. "Invalid SGL for payload:%d nents:%d\n",
  581. blk_rq_payload_bytes(req), iod->nents);
  582. return BLK_STS_IOERR;
  583. }
  584. static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
  585. struct scatterlist *sg)
  586. {
  587. sge->addr = cpu_to_le64(sg_dma_address(sg));
  588. sge->length = cpu_to_le32(sg_dma_len(sg));
  589. sge->type = NVME_SGL_FMT_DATA_DESC << 4;
  590. }
  591. static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
  592. dma_addr_t dma_addr, int entries)
  593. {
  594. sge->addr = cpu_to_le64(dma_addr);
  595. if (entries < SGES_PER_PAGE) {
  596. sge->length = cpu_to_le32(entries * sizeof(*sge));
  597. sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
  598. } else {
  599. sge->length = cpu_to_le32(PAGE_SIZE);
  600. sge->type = NVME_SGL_FMT_SEG_DESC << 4;
  601. }
  602. }
  603. static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
  604. struct request *req, struct nvme_rw_command *cmd)
  605. {
  606. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  607. int length = blk_rq_payload_bytes(req);
  608. struct dma_pool *pool;
  609. struct nvme_sgl_desc *sg_list;
  610. struct scatterlist *sg = iod->sg;
  611. int entries = iod->nents, i = 0;
  612. dma_addr_t sgl_dma;
  613. iod->use_sgl = true;
  614. /* setting the transfer type as SGL */
  615. cmd->flags = NVME_CMD_SGL_METABUF;
  616. if (length == sg_dma_len(sg)) {
  617. nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
  618. return BLK_STS_OK;
  619. }
  620. if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
  621. pool = dev->prp_small_pool;
  622. iod->npages = 0;
  623. } else {
  624. pool = dev->prp_page_pool;
  625. iod->npages = 1;
  626. }
  627. sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
  628. if (!sg_list) {
  629. iod->npages = -1;
  630. return BLK_STS_RESOURCE;
  631. }
  632. nvme_pci_iod_list(req)[0] = sg_list;
  633. iod->first_dma = sgl_dma;
  634. nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
  635. do {
  636. if (i == SGES_PER_PAGE) {
  637. struct nvme_sgl_desc *old_sg_desc = sg_list;
  638. struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
  639. sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
  640. if (!sg_list)
  641. return BLK_STS_RESOURCE;
  642. i = 0;
  643. nvme_pci_iod_list(req)[iod->npages++] = sg_list;
  644. sg_list[i++] = *link;
  645. nvme_pci_sgl_set_seg(link, sgl_dma, entries);
  646. }
  647. nvme_pci_sgl_set_data(&sg_list[i++], sg);
  648. length -= sg_dma_len(sg);
  649. sg = sg_next(sg);
  650. entries--;
  651. } while (length > 0);
  652. WARN_ON(entries > 0);
  653. return BLK_STS_OK;
  654. }
  655. static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
  656. {
  657. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  658. unsigned int avg_seg_size;
  659. avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req),
  660. blk_rq_nr_phys_segments(req));
  661. if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
  662. return false;
  663. if (!iod->nvmeq->qid)
  664. return false;
  665. if (!sgl_threshold || avg_seg_size < sgl_threshold)
  666. return false;
  667. return true;
  668. }
  669. static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
  670. struct nvme_command *cmnd)
  671. {
  672. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  673. struct request_queue *q = req->q;
  674. enum dma_data_direction dma_dir = rq_data_dir(req) ?
  675. DMA_TO_DEVICE : DMA_FROM_DEVICE;
  676. blk_status_t ret = BLK_STS_IOERR;
  677. sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
  678. iod->nents = blk_rq_map_sg(q, req, iod->sg);
  679. if (!iod->nents)
  680. goto out;
  681. ret = BLK_STS_RESOURCE;
  682. if (!dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
  683. DMA_ATTR_NO_WARN))
  684. goto out;
  685. if (nvme_pci_use_sgls(dev, req))
  686. ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw);
  687. else
  688. ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
  689. if (ret != BLK_STS_OK)
  690. goto out_unmap;
  691. ret = BLK_STS_IOERR;
  692. if (blk_integrity_rq(req)) {
  693. if (blk_rq_count_integrity_sg(q, req->bio) != 1)
  694. goto out_unmap;
  695. sg_init_table(&iod->meta_sg, 1);
  696. if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
  697. goto out_unmap;
  698. if (req_op(req) == REQ_OP_WRITE)
  699. nvme_dif_remap(req, nvme_dif_prep);
  700. if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
  701. goto out_unmap;
  702. }
  703. if (blk_integrity_rq(req))
  704. cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
  705. return BLK_STS_OK;
  706. out_unmap:
  707. dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
  708. out:
  709. return ret;
  710. }
  711. static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
  712. {
  713. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  714. enum dma_data_direction dma_dir = rq_data_dir(req) ?
  715. DMA_TO_DEVICE : DMA_FROM_DEVICE;
  716. if (iod->nents) {
  717. dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
  718. if (blk_integrity_rq(req)) {
  719. if (req_op(req) == REQ_OP_READ)
  720. nvme_dif_remap(req, nvme_dif_complete);
  721. dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
  722. }
  723. }
  724. nvme_cleanup_cmd(req);
  725. nvme_free_iod(dev, req);
  726. }
  727. /*
  728. * NOTE: ns is NULL when called on the admin queue.
  729. */
  730. static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
  731. const struct blk_mq_queue_data *bd)
  732. {
  733. struct nvme_ns *ns = hctx->queue->queuedata;
  734. struct nvme_queue *nvmeq = hctx->driver_data;
  735. struct nvme_dev *dev = nvmeq->dev;
  736. struct request *req = bd->rq;
  737. struct nvme_command cmnd;
  738. blk_status_t ret;
  739. ret = nvme_setup_cmd(ns, req, &cmnd);
  740. if (ret)
  741. return ret;
  742. ret = nvme_init_iod(req, dev);
  743. if (ret)
  744. goto out_free_cmd;
  745. if (blk_rq_nr_phys_segments(req)) {
  746. ret = nvme_map_data(dev, req, &cmnd);
  747. if (ret)
  748. goto out_cleanup_iod;
  749. }
  750. blk_mq_start_request(req);
  751. spin_lock_irq(&nvmeq->q_lock);
  752. if (unlikely(nvmeq->cq_vector < 0)) {
  753. ret = BLK_STS_IOERR;
  754. spin_unlock_irq(&nvmeq->q_lock);
  755. goto out_cleanup_iod;
  756. }
  757. __nvme_submit_cmd(nvmeq, &cmnd);
  758. nvme_process_cq(nvmeq);
  759. spin_unlock_irq(&nvmeq->q_lock);
  760. return BLK_STS_OK;
  761. out_cleanup_iod:
  762. nvme_free_iod(dev, req);
  763. out_free_cmd:
  764. nvme_cleanup_cmd(req);
  765. return ret;
  766. }
  767. static void nvme_pci_complete_rq(struct request *req)
  768. {
  769. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  770. nvme_unmap_data(iod->nvmeq->dev, req);
  771. nvme_complete_rq(req);
  772. }
  773. /* We read the CQE phase first to check if the rest of the entry is valid */
  774. static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
  775. u16 phase)
  776. {
  777. return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
  778. }
  779. static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
  780. {
  781. u16 head = nvmeq->cq_head;
  782. if (likely(nvmeq->cq_vector >= 0)) {
  783. if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
  784. nvmeq->dbbuf_cq_ei))
  785. writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
  786. }
  787. }
  788. static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
  789. struct nvme_completion *cqe)
  790. {
  791. struct request *req;
  792. if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
  793. dev_warn(nvmeq->dev->ctrl.device,
  794. "invalid id %d completed on queue %d\n",
  795. cqe->command_id, le16_to_cpu(cqe->sq_id));
  796. return;
  797. }
  798. /*
  799. * AEN requests are special as they don't time out and can
  800. * survive any kind of queue freeze and often don't respond to
  801. * aborts. We don't even bother to allocate a struct request
  802. * for them but rather special case them here.
  803. */
  804. if (unlikely(nvmeq->qid == 0 &&
  805. cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) {
  806. nvme_complete_async_event(&nvmeq->dev->ctrl,
  807. cqe->status, &cqe->result);
  808. return;
  809. }
  810. nvmeq->cqe_seen = 1;
  811. req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
  812. nvme_end_request(req, cqe->status, cqe->result);
  813. }
  814. static inline bool nvme_read_cqe(struct nvme_queue *nvmeq,
  815. struct nvme_completion *cqe)
  816. {
  817. if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
  818. *cqe = nvmeq->cqes[nvmeq->cq_head];
  819. if (++nvmeq->cq_head == nvmeq->q_depth) {
  820. nvmeq->cq_head = 0;
  821. nvmeq->cq_phase = !nvmeq->cq_phase;
  822. }
  823. return true;
  824. }
  825. return false;
  826. }
  827. static void nvme_process_cq(struct nvme_queue *nvmeq)
  828. {
  829. struct nvme_completion cqe;
  830. int consumed = 0;
  831. while (nvme_read_cqe(nvmeq, &cqe)) {
  832. nvme_handle_cqe(nvmeq, &cqe);
  833. consumed++;
  834. }
  835. if (consumed)
  836. nvme_ring_cq_doorbell(nvmeq);
  837. }
  838. static irqreturn_t nvme_irq(int irq, void *data)
  839. {
  840. irqreturn_t result;
  841. struct nvme_queue *nvmeq = data;
  842. spin_lock(&nvmeq->q_lock);
  843. nvme_process_cq(nvmeq);
  844. result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
  845. nvmeq->cqe_seen = 0;
  846. spin_unlock(&nvmeq->q_lock);
  847. return result;
  848. }
  849. static irqreturn_t nvme_irq_check(int irq, void *data)
  850. {
  851. struct nvme_queue *nvmeq = data;
  852. if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
  853. return IRQ_WAKE_THREAD;
  854. return IRQ_NONE;
  855. }
  856. static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
  857. {
  858. struct nvme_completion cqe;
  859. int found = 0, consumed = 0;
  860. if (!nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
  861. return 0;
  862. spin_lock_irq(&nvmeq->q_lock);
  863. while (nvme_read_cqe(nvmeq, &cqe)) {
  864. nvme_handle_cqe(nvmeq, &cqe);
  865. consumed++;
  866. if (tag == cqe.command_id) {
  867. found = 1;
  868. break;
  869. }
  870. }
  871. if (consumed)
  872. nvme_ring_cq_doorbell(nvmeq);
  873. spin_unlock_irq(&nvmeq->q_lock);
  874. return found;
  875. }
  876. static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
  877. {
  878. struct nvme_queue *nvmeq = hctx->driver_data;
  879. return __nvme_poll(nvmeq, tag);
  880. }
  881. static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
  882. {
  883. struct nvme_dev *dev = to_nvme_dev(ctrl);
  884. struct nvme_queue *nvmeq = dev->queues[0];
  885. struct nvme_command c;
  886. memset(&c, 0, sizeof(c));
  887. c.common.opcode = nvme_admin_async_event;
  888. c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
  889. spin_lock_irq(&nvmeq->q_lock);
  890. __nvme_submit_cmd(nvmeq, &c);
  891. spin_unlock_irq(&nvmeq->q_lock);
  892. }
  893. static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
  894. {
  895. struct nvme_command c;
  896. memset(&c, 0, sizeof(c));
  897. c.delete_queue.opcode = opcode;
  898. c.delete_queue.qid = cpu_to_le16(id);
  899. return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
  900. }
  901. static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
  902. struct nvme_queue *nvmeq)
  903. {
  904. struct nvme_command c;
  905. int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
  906. /*
  907. * Note: we (ab)use the fact that the prp fields survive if no data
  908. * is attached to the request.
  909. */
  910. memset(&c, 0, sizeof(c));
  911. c.create_cq.opcode = nvme_admin_create_cq;
  912. c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
  913. c.create_cq.cqid = cpu_to_le16(qid);
  914. c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
  915. c.create_cq.cq_flags = cpu_to_le16(flags);
  916. c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
  917. return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
  918. }
  919. static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
  920. struct nvme_queue *nvmeq)
  921. {
  922. struct nvme_command c;
  923. int flags = NVME_QUEUE_PHYS_CONTIG;
  924. /*
  925. * Note: we (ab)use the fact that the prp fields survive if no data
  926. * is attached to the request.
  927. */
  928. memset(&c, 0, sizeof(c));
  929. c.create_sq.opcode = nvme_admin_create_sq;
  930. c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
  931. c.create_sq.sqid = cpu_to_le16(qid);
  932. c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
  933. c.create_sq.sq_flags = cpu_to_le16(flags);
  934. c.create_sq.cqid = cpu_to_le16(qid);
  935. return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
  936. }
  937. static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
  938. {
  939. return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
  940. }
  941. static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
  942. {
  943. return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
  944. }
  945. static void abort_endio(struct request *req, blk_status_t error)
  946. {
  947. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  948. struct nvme_queue *nvmeq = iod->nvmeq;
  949. dev_warn(nvmeq->dev->ctrl.device,
  950. "Abort status: 0x%x", nvme_req(req)->status);
  951. atomic_inc(&nvmeq->dev->ctrl.abort_limit);
  952. blk_mq_free_request(req);
  953. }
  954. static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
  955. {
  956. /* If true, indicates loss of adapter communication, possibly by a
  957. * NVMe Subsystem reset.
  958. */
  959. bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
  960. /* If there is a reset ongoing, we shouldn't reset again. */
  961. if (dev->ctrl.state == NVME_CTRL_RESETTING)
  962. return false;
  963. /* We shouldn't reset unless the controller is on fatal error state
  964. * _or_ if we lost the communication with it.
  965. */
  966. if (!(csts & NVME_CSTS_CFS) && !nssro)
  967. return false;
  968. /* If PCI error recovery process is happening, we cannot reset or
  969. * the recovery mechanism will surely fail.
  970. */
  971. if (pci_channel_offline(to_pci_dev(dev->dev)))
  972. return false;
  973. return true;
  974. }
  975. static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
  976. {
  977. /* Read a config register to help see what died. */
  978. u16 pci_status;
  979. int result;
  980. result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
  981. &pci_status);
  982. if (result == PCIBIOS_SUCCESSFUL)
  983. dev_warn(dev->ctrl.device,
  984. "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
  985. csts, pci_status);
  986. else
  987. dev_warn(dev->ctrl.device,
  988. "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
  989. csts, result);
  990. }
  991. static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
  992. {
  993. struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
  994. struct nvme_queue *nvmeq = iod->nvmeq;
  995. struct nvme_dev *dev = nvmeq->dev;
  996. struct request *abort_req;
  997. struct nvme_command cmd;
  998. u32 csts = readl(dev->bar + NVME_REG_CSTS);
  999. /*
  1000. * Reset immediately if the controller is failed
  1001. */
  1002. if (nvme_should_reset(dev, csts)) {
  1003. nvme_warn_reset(dev, csts);
  1004. nvme_dev_disable(dev, false);
  1005. nvme_reset_ctrl(&dev->ctrl);
  1006. return BLK_EH_HANDLED;
  1007. }
  1008. /*
  1009. * Did we miss an interrupt?
  1010. */
  1011. if (__nvme_poll(nvmeq, req->tag)) {
  1012. dev_warn(dev->ctrl.device,
  1013. "I/O %d QID %d timeout, completion polled\n",
  1014. req->tag, nvmeq->qid);
  1015. return BLK_EH_HANDLED;
  1016. }
  1017. /*
  1018. * Shutdown immediately if controller times out while starting. The
  1019. * reset work will see the pci device disabled when it gets the forced
  1020. * cancellation error. All outstanding requests are completed on
  1021. * shutdown, so we return BLK_EH_HANDLED.
  1022. */
  1023. if (dev->ctrl.state == NVME_CTRL_RESETTING) {
  1024. dev_warn(dev->ctrl.device,
  1025. "I/O %d QID %d timeout, disable controller\n",
  1026. req->tag, nvmeq->qid);
  1027. nvme_dev_disable(dev, false);
  1028. nvme_req(req)->flags |= NVME_REQ_CANCELLED;
  1029. return BLK_EH_HANDLED;
  1030. }
  1031. /*
  1032. * Shutdown the controller immediately and schedule a reset if the
  1033. * command was already aborted once before and still hasn't been
  1034. * returned to the driver, or if this is the admin queue.
  1035. */
  1036. if (!nvmeq->qid || iod->aborted) {
  1037. dev_warn(dev->ctrl.device,
  1038. "I/O %d QID %d timeout, reset controller\n",
  1039. req->tag, nvmeq->qid);
  1040. nvme_dev_disable(dev, false);
  1041. nvme_reset_ctrl(&dev->ctrl);
  1042. /*
  1043. * Mark the request as handled, since the inline shutdown
  1044. * forces all outstanding requests to complete.
  1045. */
  1046. nvme_req(req)->flags |= NVME_REQ_CANCELLED;
  1047. return BLK_EH_HANDLED;
  1048. }
  1049. if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
  1050. atomic_inc(&dev->ctrl.abort_limit);
  1051. return BLK_EH_RESET_TIMER;
  1052. }
  1053. iod->aborted = 1;
  1054. memset(&cmd, 0, sizeof(cmd));
  1055. cmd.abort.opcode = nvme_admin_abort_cmd;
  1056. cmd.abort.cid = req->tag;
  1057. cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
  1058. dev_warn(nvmeq->dev->ctrl.device,
  1059. "I/O %d QID %d timeout, aborting\n",
  1060. req->tag, nvmeq->qid);
  1061. abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
  1062. BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
  1063. if (IS_ERR(abort_req)) {
  1064. atomic_inc(&dev->ctrl.abort_limit);
  1065. return BLK_EH_RESET_TIMER;
  1066. }
  1067. abort_req->timeout = ADMIN_TIMEOUT;
  1068. abort_req->end_io_data = NULL;
  1069. blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
  1070. /*
  1071. * The aborted req will be completed on receiving the abort req.
  1072. * We enable the timer again. If hit twice, it'll cause a device reset,
  1073. * as the device then is in a faulty state.
  1074. */
  1075. return BLK_EH_RESET_TIMER;
  1076. }
  1077. static void nvme_free_queue(struct nvme_queue *nvmeq)
  1078. {
  1079. dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
  1080. (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
  1081. if (nvmeq->sq_cmds)
  1082. dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
  1083. nvmeq->sq_cmds, nvmeq->sq_dma_addr);
  1084. kfree(nvmeq);
  1085. }
  1086. static void nvme_free_queues(struct nvme_dev *dev, int lowest)
  1087. {
  1088. int i;
  1089. for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
  1090. struct nvme_queue *nvmeq = dev->queues[i];
  1091. dev->ctrl.queue_count--;
  1092. dev->queues[i] = NULL;
  1093. nvme_free_queue(nvmeq);
  1094. }
  1095. }
  1096. /**
  1097. * nvme_suspend_queue - put queue into suspended state
  1098. * @nvmeq - queue to suspend
  1099. */
  1100. static int nvme_suspend_queue(struct nvme_queue *nvmeq)
  1101. {
  1102. int vector;
  1103. spin_lock_irq(&nvmeq->q_lock);
  1104. if (nvmeq->cq_vector == -1) {
  1105. spin_unlock_irq(&nvmeq->q_lock);
  1106. return 1;
  1107. }
  1108. vector = nvmeq->cq_vector;
  1109. nvmeq->dev->online_queues--;
  1110. nvmeq->cq_vector = -1;
  1111. spin_unlock_irq(&nvmeq->q_lock);
  1112. if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
  1113. blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
  1114. pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq);
  1115. return 0;
  1116. }
  1117. static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
  1118. {
  1119. struct nvme_queue *nvmeq = dev->queues[0];
  1120. if (!nvmeq)
  1121. return;
  1122. if (nvme_suspend_queue(nvmeq))
  1123. return;
  1124. if (shutdown)
  1125. nvme_shutdown_ctrl(&dev->ctrl);
  1126. else
  1127. nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
  1128. spin_lock_irq(&nvmeq->q_lock);
  1129. nvme_process_cq(nvmeq);
  1130. spin_unlock_irq(&nvmeq->q_lock);
  1131. }
  1132. static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
  1133. int entry_size)
  1134. {
  1135. int q_depth = dev->q_depth;
  1136. unsigned q_size_aligned = roundup(q_depth * entry_size,
  1137. dev->ctrl.page_size);
  1138. if (q_size_aligned * nr_io_queues > dev->cmb_size) {
  1139. u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
  1140. mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
  1141. q_depth = div_u64(mem_per_q, entry_size);
  1142. /*
  1143. * Ensure the reduced q_depth is above some threshold where it
  1144. * would be better to map queues in system memory with the
  1145. * original depth
  1146. */
  1147. if (q_depth < 64)
  1148. return -ENOMEM;
  1149. }
  1150. return q_depth;
  1151. }
  1152. static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
  1153. int qid, int depth)
  1154. {
  1155. if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
  1156. unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
  1157. dev->ctrl.page_size);
  1158. nvmeq->sq_dma_addr = dev->cmb_bus_addr + offset;
  1159. nvmeq->sq_cmds_io = dev->cmb + offset;
  1160. } else {
  1161. nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
  1162. &nvmeq->sq_dma_addr, GFP_KERNEL);
  1163. if (!nvmeq->sq_cmds)
  1164. return -ENOMEM;
  1165. }
  1166. return 0;
  1167. }
  1168. static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
  1169. int depth, int node)
  1170. {
  1171. struct nvme_queue *nvmeq = kzalloc_node(sizeof(*nvmeq), GFP_KERNEL,
  1172. node);
  1173. if (!nvmeq)
  1174. return NULL;
  1175. nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
  1176. &nvmeq->cq_dma_addr, GFP_KERNEL);
  1177. if (!nvmeq->cqes)
  1178. goto free_nvmeq;
  1179. if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
  1180. goto free_cqdma;
  1181. nvmeq->q_dmadev = dev->dev;
  1182. nvmeq->dev = dev;
  1183. spin_lock_init(&nvmeq->q_lock);
  1184. nvmeq->cq_head = 0;
  1185. nvmeq->cq_phase = 1;
  1186. nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
  1187. nvmeq->q_depth = depth;
  1188. nvmeq->qid = qid;
  1189. nvmeq->cq_vector = -1;
  1190. dev->queues[qid] = nvmeq;
  1191. dev->ctrl.queue_count++;
  1192. return nvmeq;
  1193. free_cqdma:
  1194. dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
  1195. nvmeq->cq_dma_addr);
  1196. free_nvmeq:
  1197. kfree(nvmeq);
  1198. return NULL;
  1199. }
  1200. static int queue_request_irq(struct nvme_queue *nvmeq)
  1201. {
  1202. struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
  1203. int nr = nvmeq->dev->ctrl.instance;
  1204. if (use_threaded_interrupts) {
  1205. return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
  1206. nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
  1207. } else {
  1208. return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
  1209. NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
  1210. }
  1211. }
  1212. static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
  1213. {
  1214. struct nvme_dev *dev = nvmeq->dev;
  1215. spin_lock_irq(&nvmeq->q_lock);
  1216. nvmeq->sq_tail = 0;
  1217. nvmeq->cq_head = 0;
  1218. nvmeq->cq_phase = 1;
  1219. nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
  1220. memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
  1221. nvme_dbbuf_init(dev, nvmeq, qid);
  1222. dev->online_queues++;
  1223. spin_unlock_irq(&nvmeq->q_lock);
  1224. }
  1225. static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
  1226. {
  1227. struct nvme_dev *dev = nvmeq->dev;
  1228. int result;
  1229. nvmeq->cq_vector = qid - 1;
  1230. result = adapter_alloc_cq(dev, qid, nvmeq);
  1231. if (result < 0)
  1232. return result;
  1233. result = adapter_alloc_sq(dev, qid, nvmeq);
  1234. if (result < 0)
  1235. goto release_cq;
  1236. nvme_init_queue(nvmeq, qid);
  1237. result = queue_request_irq(nvmeq);
  1238. if (result < 0)
  1239. goto release_sq;
  1240. return result;
  1241. release_sq:
  1242. adapter_delete_sq(dev, qid);
  1243. release_cq:
  1244. adapter_delete_cq(dev, qid);
  1245. return result;
  1246. }
  1247. static const struct blk_mq_ops nvme_mq_admin_ops = {
  1248. .queue_rq = nvme_queue_rq,
  1249. .complete = nvme_pci_complete_rq,
  1250. .init_hctx = nvme_admin_init_hctx,
  1251. .exit_hctx = nvme_admin_exit_hctx,
  1252. .init_request = nvme_init_request,
  1253. .timeout = nvme_timeout,
  1254. };
  1255. static const struct blk_mq_ops nvme_mq_ops = {
  1256. .queue_rq = nvme_queue_rq,
  1257. .complete = nvme_pci_complete_rq,
  1258. .init_hctx = nvme_init_hctx,
  1259. .init_request = nvme_init_request,
  1260. .map_queues = nvme_pci_map_queues,
  1261. .timeout = nvme_timeout,
  1262. .poll = nvme_poll,
  1263. };
  1264. static void nvme_dev_remove_admin(struct nvme_dev *dev)
  1265. {
  1266. if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
  1267. /*
  1268. * If the controller was reset during removal, it's possible
  1269. * user requests may be waiting on a stopped queue. Start the
  1270. * queue to flush these to completion.
  1271. */
  1272. blk_mq_unquiesce_queue(dev->ctrl.admin_q);
  1273. blk_cleanup_queue(dev->ctrl.admin_q);
  1274. blk_mq_free_tag_set(&dev->admin_tagset);
  1275. }
  1276. }
  1277. static int nvme_alloc_admin_tags(struct nvme_dev *dev)
  1278. {
  1279. if (!dev->ctrl.admin_q) {
  1280. dev->admin_tagset.ops = &nvme_mq_admin_ops;
  1281. dev->admin_tagset.nr_hw_queues = 1;
  1282. dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
  1283. dev->admin_tagset.timeout = ADMIN_TIMEOUT;
  1284. dev->admin_tagset.numa_node = dev_to_node(dev->dev);
  1285. dev->admin_tagset.cmd_size = nvme_pci_cmd_size(dev, false);
  1286. dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
  1287. dev->admin_tagset.driver_data = dev;
  1288. if (blk_mq_alloc_tag_set(&dev->admin_tagset))
  1289. return -ENOMEM;
  1290. dev->ctrl.admin_tagset = &dev->admin_tagset;
  1291. dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
  1292. if (IS_ERR(dev->ctrl.admin_q)) {
  1293. blk_mq_free_tag_set(&dev->admin_tagset);
  1294. return -ENOMEM;
  1295. }
  1296. if (!blk_get_queue(dev->ctrl.admin_q)) {
  1297. nvme_dev_remove_admin(dev);
  1298. dev->ctrl.admin_q = NULL;
  1299. return -ENODEV;
  1300. }
  1301. } else
  1302. blk_mq_unquiesce_queue(dev->ctrl.admin_q);
  1303. return 0;
  1304. }
  1305. static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
  1306. {
  1307. return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
  1308. }
  1309. static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
  1310. {
  1311. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1312. if (size <= dev->bar_mapped_size)
  1313. return 0;
  1314. if (size > pci_resource_len(pdev, 0))
  1315. return -ENOMEM;
  1316. if (dev->bar)
  1317. iounmap(dev->bar);
  1318. dev->bar = ioremap(pci_resource_start(pdev, 0), size);
  1319. if (!dev->bar) {
  1320. dev->bar_mapped_size = 0;
  1321. return -ENOMEM;
  1322. }
  1323. dev->bar_mapped_size = size;
  1324. dev->dbs = dev->bar + NVME_REG_DBS;
  1325. return 0;
  1326. }
  1327. static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
  1328. {
  1329. int result;
  1330. u32 aqa;
  1331. struct nvme_queue *nvmeq;
  1332. result = nvme_remap_bar(dev, db_bar_size(dev, 0));
  1333. if (result < 0)
  1334. return result;
  1335. dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
  1336. NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
  1337. if (dev->subsystem &&
  1338. (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
  1339. writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
  1340. result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
  1341. if (result < 0)
  1342. return result;
  1343. nvmeq = dev->queues[0];
  1344. if (!nvmeq) {
  1345. nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH,
  1346. dev_to_node(dev->dev));
  1347. if (!nvmeq)
  1348. return -ENOMEM;
  1349. }
  1350. aqa = nvmeq->q_depth - 1;
  1351. aqa |= aqa << 16;
  1352. writel(aqa, dev->bar + NVME_REG_AQA);
  1353. lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
  1354. lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
  1355. result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
  1356. if (result)
  1357. return result;
  1358. nvmeq->cq_vector = 0;
  1359. nvme_init_queue(nvmeq, 0);
  1360. result = queue_request_irq(nvmeq);
  1361. if (result) {
  1362. nvmeq->cq_vector = -1;
  1363. return result;
  1364. }
  1365. return result;
  1366. }
  1367. static int nvme_create_io_queues(struct nvme_dev *dev)
  1368. {
  1369. unsigned i, max;
  1370. int ret = 0;
  1371. for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
  1372. /* vector == qid - 1, match nvme_create_queue */
  1373. if (!nvme_alloc_queue(dev, i, dev->q_depth,
  1374. pci_irq_get_node(to_pci_dev(dev->dev), i - 1))) {
  1375. ret = -ENOMEM;
  1376. break;
  1377. }
  1378. }
  1379. max = min(dev->max_qid, dev->ctrl.queue_count - 1);
  1380. for (i = dev->online_queues; i <= max; i++) {
  1381. ret = nvme_create_queue(dev->queues[i], i);
  1382. if (ret)
  1383. break;
  1384. }
  1385. /*
  1386. * Ignore failing Create SQ/CQ commands, we can continue with less
  1387. * than the desired aount of queues, and even a controller without
  1388. * I/O queues an still be used to issue admin commands. This might
  1389. * be useful to upgrade a buggy firmware for example.
  1390. */
  1391. return ret >= 0 ? 0 : ret;
  1392. }
  1393. static ssize_t nvme_cmb_show(struct device *dev,
  1394. struct device_attribute *attr,
  1395. char *buf)
  1396. {
  1397. struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
  1398. return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
  1399. ndev->cmbloc, ndev->cmbsz);
  1400. }
  1401. static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
  1402. static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
  1403. {
  1404. u64 szu, size, offset;
  1405. resource_size_t bar_size;
  1406. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1407. void __iomem *cmb;
  1408. int bar;
  1409. dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
  1410. if (!(NVME_CMB_SZ(dev->cmbsz)))
  1411. return NULL;
  1412. dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
  1413. if (!use_cmb_sqes)
  1414. return NULL;
  1415. szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
  1416. size = szu * NVME_CMB_SZ(dev->cmbsz);
  1417. offset = szu * NVME_CMB_OFST(dev->cmbloc);
  1418. bar = NVME_CMB_BIR(dev->cmbloc);
  1419. bar_size = pci_resource_len(pdev, bar);
  1420. if (offset > bar_size)
  1421. return NULL;
  1422. /*
  1423. * Controllers may support a CMB size larger than their BAR,
  1424. * for example, due to being behind a bridge. Reduce the CMB to
  1425. * the reported size of the BAR
  1426. */
  1427. if (size > bar_size - offset)
  1428. size = bar_size - offset;
  1429. cmb = ioremap_wc(pci_resource_start(pdev, bar) + offset, size);
  1430. if (!cmb)
  1431. return NULL;
  1432. dev->cmb_bus_addr = pci_bus_address(pdev, bar) + offset;
  1433. dev->cmb_size = size;
  1434. return cmb;
  1435. }
  1436. static inline void nvme_release_cmb(struct nvme_dev *dev)
  1437. {
  1438. if (dev->cmb) {
  1439. iounmap(dev->cmb);
  1440. dev->cmb = NULL;
  1441. sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
  1442. &dev_attr_cmb.attr, NULL);
  1443. dev->cmbsz = 0;
  1444. }
  1445. }
  1446. static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
  1447. {
  1448. u64 dma_addr = dev->host_mem_descs_dma;
  1449. struct nvme_command c;
  1450. int ret;
  1451. memset(&c, 0, sizeof(c));
  1452. c.features.opcode = nvme_admin_set_features;
  1453. c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
  1454. c.features.dword11 = cpu_to_le32(bits);
  1455. c.features.dword12 = cpu_to_le32(dev->host_mem_size >>
  1456. ilog2(dev->ctrl.page_size));
  1457. c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
  1458. c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
  1459. c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
  1460. ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
  1461. if (ret) {
  1462. dev_warn(dev->ctrl.device,
  1463. "failed to set host mem (err %d, flags %#x).\n",
  1464. ret, bits);
  1465. }
  1466. return ret;
  1467. }
  1468. static void nvme_free_host_mem(struct nvme_dev *dev)
  1469. {
  1470. int i;
  1471. for (i = 0; i < dev->nr_host_mem_descs; i++) {
  1472. struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
  1473. size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
  1474. dma_free_coherent(dev->dev, size, dev->host_mem_desc_bufs[i],
  1475. le64_to_cpu(desc->addr));
  1476. }
  1477. kfree(dev->host_mem_desc_bufs);
  1478. dev->host_mem_desc_bufs = NULL;
  1479. dma_free_coherent(dev->dev,
  1480. dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
  1481. dev->host_mem_descs, dev->host_mem_descs_dma);
  1482. dev->host_mem_descs = NULL;
  1483. dev->nr_host_mem_descs = 0;
  1484. }
  1485. static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
  1486. u32 chunk_size)
  1487. {
  1488. struct nvme_host_mem_buf_desc *descs;
  1489. u32 max_entries, len;
  1490. dma_addr_t descs_dma;
  1491. int i = 0;
  1492. void **bufs;
  1493. u64 size, tmp;
  1494. tmp = (preferred + chunk_size - 1);
  1495. do_div(tmp, chunk_size);
  1496. max_entries = tmp;
  1497. if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
  1498. max_entries = dev->ctrl.hmmaxd;
  1499. descs = dma_zalloc_coherent(dev->dev, max_entries * sizeof(*descs),
  1500. &descs_dma, GFP_KERNEL);
  1501. if (!descs)
  1502. goto out;
  1503. bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
  1504. if (!bufs)
  1505. goto out_free_descs;
  1506. for (size = 0; size < preferred && i < max_entries; size += len) {
  1507. dma_addr_t dma_addr;
  1508. len = min_t(u64, chunk_size, preferred - size);
  1509. bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
  1510. DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
  1511. if (!bufs[i])
  1512. break;
  1513. descs[i].addr = cpu_to_le64(dma_addr);
  1514. descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
  1515. i++;
  1516. }
  1517. if (!size)
  1518. goto out_free_bufs;
  1519. dev->nr_host_mem_descs = i;
  1520. dev->host_mem_size = size;
  1521. dev->host_mem_descs = descs;
  1522. dev->host_mem_descs_dma = descs_dma;
  1523. dev->host_mem_desc_bufs = bufs;
  1524. return 0;
  1525. out_free_bufs:
  1526. while (--i >= 0) {
  1527. size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
  1528. dma_free_coherent(dev->dev, size, bufs[i],
  1529. le64_to_cpu(descs[i].addr));
  1530. }
  1531. kfree(bufs);
  1532. out_free_descs:
  1533. dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
  1534. descs_dma);
  1535. out:
  1536. dev->host_mem_descs = NULL;
  1537. return -ENOMEM;
  1538. }
  1539. static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
  1540. {
  1541. u32 chunk_size;
  1542. /* start big and work our way down */
  1543. for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
  1544. chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
  1545. chunk_size /= 2) {
  1546. if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
  1547. if (!min || dev->host_mem_size >= min)
  1548. return 0;
  1549. nvme_free_host_mem(dev);
  1550. }
  1551. }
  1552. return -ENOMEM;
  1553. }
  1554. static int nvme_setup_host_mem(struct nvme_dev *dev)
  1555. {
  1556. u64 max = (u64)max_host_mem_size_mb * SZ_1M;
  1557. u64 preferred = (u64)dev->ctrl.hmpre * 4096;
  1558. u64 min = (u64)dev->ctrl.hmmin * 4096;
  1559. u32 enable_bits = NVME_HOST_MEM_ENABLE;
  1560. int ret;
  1561. preferred = min(preferred, max);
  1562. if (min > max) {
  1563. dev_warn(dev->ctrl.device,
  1564. "min host memory (%lld MiB) above limit (%d MiB).\n",
  1565. min >> ilog2(SZ_1M), max_host_mem_size_mb);
  1566. nvme_free_host_mem(dev);
  1567. return 0;
  1568. }
  1569. /*
  1570. * If we already have a buffer allocated check if we can reuse it.
  1571. */
  1572. if (dev->host_mem_descs) {
  1573. if (dev->host_mem_size >= min)
  1574. enable_bits |= NVME_HOST_MEM_RETURN;
  1575. else
  1576. nvme_free_host_mem(dev);
  1577. }
  1578. if (!dev->host_mem_descs) {
  1579. if (nvme_alloc_host_mem(dev, min, preferred)) {
  1580. dev_warn(dev->ctrl.device,
  1581. "failed to allocate host memory buffer.\n");
  1582. return 0; /* controller must work without HMB */
  1583. }
  1584. dev_info(dev->ctrl.device,
  1585. "allocated %lld MiB host memory buffer.\n",
  1586. dev->host_mem_size >> ilog2(SZ_1M));
  1587. }
  1588. ret = nvme_set_host_mem(dev, enable_bits);
  1589. if (ret)
  1590. nvme_free_host_mem(dev);
  1591. return ret;
  1592. }
  1593. static int nvme_setup_io_queues(struct nvme_dev *dev)
  1594. {
  1595. struct nvme_queue *adminq = dev->queues[0];
  1596. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1597. int result, nr_io_queues;
  1598. unsigned long size;
  1599. nr_io_queues = num_present_cpus();
  1600. result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
  1601. if (result < 0)
  1602. return result;
  1603. if (nr_io_queues == 0)
  1604. return 0;
  1605. if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
  1606. result = nvme_cmb_qdepth(dev, nr_io_queues,
  1607. sizeof(struct nvme_command));
  1608. if (result > 0)
  1609. dev->q_depth = result;
  1610. else
  1611. nvme_release_cmb(dev);
  1612. }
  1613. do {
  1614. size = db_bar_size(dev, nr_io_queues);
  1615. result = nvme_remap_bar(dev, size);
  1616. if (!result)
  1617. break;
  1618. if (!--nr_io_queues)
  1619. return -ENOMEM;
  1620. } while (1);
  1621. adminq->q_db = dev->dbs;
  1622. /* Deregister the admin queue's interrupt */
  1623. pci_free_irq(pdev, 0, adminq);
  1624. /*
  1625. * If we enable msix early due to not intx, disable it again before
  1626. * setting up the full range we need.
  1627. */
  1628. pci_free_irq_vectors(pdev);
  1629. nr_io_queues = pci_alloc_irq_vectors(pdev, 1, nr_io_queues,
  1630. PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY);
  1631. if (nr_io_queues <= 0)
  1632. return -EIO;
  1633. dev->max_qid = nr_io_queues;
  1634. /*
  1635. * Should investigate if there's a performance win from allocating
  1636. * more queues than interrupt vectors; it might allow the submission
  1637. * path to scale better, even if the receive path is limited by the
  1638. * number of interrupts.
  1639. */
  1640. result = queue_request_irq(adminq);
  1641. if (result) {
  1642. adminq->cq_vector = -1;
  1643. return result;
  1644. }
  1645. return nvme_create_io_queues(dev);
  1646. }
  1647. static void nvme_del_queue_end(struct request *req, blk_status_t error)
  1648. {
  1649. struct nvme_queue *nvmeq = req->end_io_data;
  1650. blk_mq_free_request(req);
  1651. complete(&nvmeq->dev->ioq_wait);
  1652. }
  1653. static void nvme_del_cq_end(struct request *req, blk_status_t error)
  1654. {
  1655. struct nvme_queue *nvmeq = req->end_io_data;
  1656. if (!error) {
  1657. unsigned long flags;
  1658. /*
  1659. * We might be called with the AQ q_lock held
  1660. * and the I/O queue q_lock should always
  1661. * nest inside the AQ one.
  1662. */
  1663. spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
  1664. SINGLE_DEPTH_NESTING);
  1665. nvme_process_cq(nvmeq);
  1666. spin_unlock_irqrestore(&nvmeq->q_lock, flags);
  1667. }
  1668. nvme_del_queue_end(req, error);
  1669. }
  1670. static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
  1671. {
  1672. struct request_queue *q = nvmeq->dev->ctrl.admin_q;
  1673. struct request *req;
  1674. struct nvme_command cmd;
  1675. memset(&cmd, 0, sizeof(cmd));
  1676. cmd.delete_queue.opcode = opcode;
  1677. cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
  1678. req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
  1679. if (IS_ERR(req))
  1680. return PTR_ERR(req);
  1681. req->timeout = ADMIN_TIMEOUT;
  1682. req->end_io_data = nvmeq;
  1683. blk_execute_rq_nowait(q, NULL, req, false,
  1684. opcode == nvme_admin_delete_cq ?
  1685. nvme_del_cq_end : nvme_del_queue_end);
  1686. return 0;
  1687. }
  1688. static void nvme_disable_io_queues(struct nvme_dev *dev, int queues)
  1689. {
  1690. int pass;
  1691. unsigned long timeout;
  1692. u8 opcode = nvme_admin_delete_sq;
  1693. for (pass = 0; pass < 2; pass++) {
  1694. int sent = 0, i = queues;
  1695. reinit_completion(&dev->ioq_wait);
  1696. retry:
  1697. timeout = ADMIN_TIMEOUT;
  1698. for (; i > 0; i--, sent++)
  1699. if (nvme_delete_queue(dev->queues[i], opcode))
  1700. break;
  1701. while (sent--) {
  1702. timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
  1703. if (timeout == 0)
  1704. return;
  1705. if (i)
  1706. goto retry;
  1707. }
  1708. opcode = nvme_admin_delete_cq;
  1709. }
  1710. }
  1711. /*
  1712. * return error value only when tagset allocation failed
  1713. */
  1714. static int nvme_dev_add(struct nvme_dev *dev)
  1715. {
  1716. int ret;
  1717. if (!dev->ctrl.tagset) {
  1718. dev->tagset.ops = &nvme_mq_ops;
  1719. dev->tagset.nr_hw_queues = dev->online_queues - 1;
  1720. dev->tagset.timeout = NVME_IO_TIMEOUT;
  1721. dev->tagset.numa_node = dev_to_node(dev->dev);
  1722. dev->tagset.queue_depth =
  1723. min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
  1724. dev->tagset.cmd_size = nvme_pci_cmd_size(dev, false);
  1725. if ((dev->ctrl.sgls & ((1 << 0) | (1 << 1))) && sgl_threshold) {
  1726. dev->tagset.cmd_size = max(dev->tagset.cmd_size,
  1727. nvme_pci_cmd_size(dev, true));
  1728. }
  1729. dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
  1730. dev->tagset.driver_data = dev;
  1731. ret = blk_mq_alloc_tag_set(&dev->tagset);
  1732. if (ret) {
  1733. dev_warn(dev->ctrl.device,
  1734. "IO queues tagset allocation failed %d\n", ret);
  1735. return ret;
  1736. }
  1737. dev->ctrl.tagset = &dev->tagset;
  1738. nvme_dbbuf_set(dev);
  1739. } else {
  1740. blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
  1741. /* Free previously allocated queues that are no longer usable */
  1742. nvme_free_queues(dev, dev->online_queues);
  1743. }
  1744. return 0;
  1745. }
  1746. static int nvme_pci_enable(struct nvme_dev *dev)
  1747. {
  1748. int result = -ENOMEM;
  1749. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1750. if (pci_enable_device_mem(pdev))
  1751. return result;
  1752. pci_set_master(pdev);
  1753. if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
  1754. dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
  1755. goto disable;
  1756. if (readl(dev->bar + NVME_REG_CSTS) == -1) {
  1757. result = -ENODEV;
  1758. goto disable;
  1759. }
  1760. /*
  1761. * Some devices and/or platforms don't advertise or work with INTx
  1762. * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
  1763. * adjust this later.
  1764. */
  1765. result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
  1766. if (result < 0)
  1767. return result;
  1768. dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
  1769. dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
  1770. io_queue_depth);
  1771. dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
  1772. dev->dbs = dev->bar + 4096;
  1773. /*
  1774. * Temporary fix for the Apple controller found in the MacBook8,1 and
  1775. * some MacBook7,1 to avoid controller resets and data loss.
  1776. */
  1777. if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
  1778. dev->q_depth = 2;
  1779. dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
  1780. "set queue depth=%u to work around controller resets\n",
  1781. dev->q_depth);
  1782. } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
  1783. (pdev->device == 0xa821 || pdev->device == 0xa822) &&
  1784. NVME_CAP_MQES(dev->ctrl.cap) == 0) {
  1785. dev->q_depth = 64;
  1786. dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
  1787. "set queue depth=%u\n", dev->q_depth);
  1788. }
  1789. /*
  1790. * CMBs can currently only exist on >=1.2 PCIe devices. We only
  1791. * populate sysfs if a CMB is implemented. Since nvme_dev_attrs_group
  1792. * has no name we can pass NULL as final argument to
  1793. * sysfs_add_file_to_group.
  1794. */
  1795. if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2, 0)) {
  1796. dev->cmb = nvme_map_cmb(dev);
  1797. if (dev->cmb) {
  1798. if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
  1799. &dev_attr_cmb.attr, NULL))
  1800. dev_warn(dev->ctrl.device,
  1801. "failed to add sysfs attribute for CMB\n");
  1802. }
  1803. }
  1804. pci_enable_pcie_error_reporting(pdev);
  1805. pci_save_state(pdev);
  1806. return 0;
  1807. disable:
  1808. pci_disable_device(pdev);
  1809. return result;
  1810. }
  1811. static void nvme_dev_unmap(struct nvme_dev *dev)
  1812. {
  1813. if (dev->bar)
  1814. iounmap(dev->bar);
  1815. pci_release_mem_regions(to_pci_dev(dev->dev));
  1816. }
  1817. static void nvme_pci_disable(struct nvme_dev *dev)
  1818. {
  1819. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1820. nvme_release_cmb(dev);
  1821. pci_free_irq_vectors(pdev);
  1822. if (pci_is_enabled(pdev)) {
  1823. pci_disable_pcie_error_reporting(pdev);
  1824. pci_disable_device(pdev);
  1825. }
  1826. }
  1827. static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
  1828. {
  1829. int i, queues;
  1830. bool dead = true;
  1831. struct pci_dev *pdev = to_pci_dev(dev->dev);
  1832. mutex_lock(&dev->shutdown_lock);
  1833. if (pci_is_enabled(pdev)) {
  1834. u32 csts = readl(dev->bar + NVME_REG_CSTS);
  1835. if (dev->ctrl.state == NVME_CTRL_LIVE ||
  1836. dev->ctrl.state == NVME_CTRL_RESETTING)
  1837. nvme_start_freeze(&dev->ctrl);
  1838. dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
  1839. pdev->error_state != pci_channel_io_normal);
  1840. }
  1841. /*
  1842. * Give the controller a chance to complete all entered requests if
  1843. * doing a safe shutdown.
  1844. */
  1845. if (!dead) {
  1846. if (shutdown)
  1847. nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
  1848. /*
  1849. * If the controller is still alive tell it to stop using the
  1850. * host memory buffer. In theory the shutdown / reset should
  1851. * make sure that it doesn't access the host memoery anymore,
  1852. * but I'd rather be safe than sorry..
  1853. */
  1854. if (dev->host_mem_descs)
  1855. nvme_set_host_mem(dev, 0);
  1856. }
  1857. nvme_stop_queues(&dev->ctrl);
  1858. queues = dev->online_queues - 1;
  1859. for (i = dev->ctrl.queue_count - 1; i > 0; i--)
  1860. nvme_suspend_queue(dev->queues[i]);
  1861. if (dead) {
  1862. /* A device might become IO incapable very soon during
  1863. * probe, before the admin queue is configured. Thus,
  1864. * queue_count can be 0 here.
  1865. */
  1866. if (dev->ctrl.queue_count)
  1867. nvme_suspend_queue(dev->queues[0]);
  1868. } else {
  1869. nvme_disable_io_queues(dev, queues);
  1870. nvme_disable_admin_queue(dev, shutdown);
  1871. }
  1872. nvme_pci_disable(dev);
  1873. blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
  1874. blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
  1875. /*
  1876. * The driver will not be starting up queues again if shutting down so
  1877. * must flush all entered requests to their failed completion to avoid
  1878. * deadlocking blk-mq hot-cpu notifier.
  1879. */
  1880. if (shutdown)
  1881. nvme_start_queues(&dev->ctrl);
  1882. mutex_unlock(&dev->shutdown_lock);
  1883. }
  1884. static int nvme_setup_prp_pools(struct nvme_dev *dev)
  1885. {
  1886. dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
  1887. PAGE_SIZE, PAGE_SIZE, 0);
  1888. if (!dev->prp_page_pool)
  1889. return -ENOMEM;
  1890. /* Optimisation for I/Os between 4k and 128k */
  1891. dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
  1892. 256, 256, 0);
  1893. if (!dev->prp_small_pool) {
  1894. dma_pool_destroy(dev->prp_page_pool);
  1895. return -ENOMEM;
  1896. }
  1897. return 0;
  1898. }
  1899. static void nvme_release_prp_pools(struct nvme_dev *dev)
  1900. {
  1901. dma_pool_destroy(dev->prp_page_pool);
  1902. dma_pool_destroy(dev->prp_small_pool);
  1903. }
  1904. static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
  1905. {
  1906. struct nvme_dev *dev = to_nvme_dev(ctrl);
  1907. nvme_dbbuf_dma_free(dev);
  1908. put_device(dev->dev);
  1909. if (dev->tagset.tags)
  1910. blk_mq_free_tag_set(&dev->tagset);
  1911. if (dev->ctrl.admin_q)
  1912. blk_put_queue(dev->ctrl.admin_q);
  1913. kfree(dev->queues);
  1914. free_opal_dev(dev->ctrl.opal_dev);
  1915. kfree(dev);
  1916. }
  1917. static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
  1918. {
  1919. dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
  1920. nvme_get_ctrl(&dev->ctrl);
  1921. nvme_dev_disable(dev, false);
  1922. if (!queue_work(nvme_wq, &dev->remove_work))
  1923. nvme_put_ctrl(&dev->ctrl);
  1924. }
  1925. static void nvme_reset_work(struct work_struct *work)
  1926. {
  1927. struct nvme_dev *dev =
  1928. container_of(work, struct nvme_dev, ctrl.reset_work);
  1929. bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
  1930. int result = -ENODEV;
  1931. enum nvme_ctrl_state new_state = NVME_CTRL_LIVE;
  1932. if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
  1933. goto out;
  1934. /*
  1935. * If we're called to reset a live controller first shut it down before
  1936. * moving on.
  1937. */
  1938. if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
  1939. nvme_dev_disable(dev, false);
  1940. result = nvme_pci_enable(dev);
  1941. if (result)
  1942. goto out;
  1943. result = nvme_pci_configure_admin_queue(dev);
  1944. if (result)
  1945. goto out;
  1946. result = nvme_alloc_admin_tags(dev);
  1947. if (result)
  1948. goto out;
  1949. result = nvme_init_identify(&dev->ctrl);
  1950. if (result)
  1951. goto out;
  1952. if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
  1953. if (!dev->ctrl.opal_dev)
  1954. dev->ctrl.opal_dev =
  1955. init_opal_dev(&dev->ctrl, &nvme_sec_submit);
  1956. else if (was_suspend)
  1957. opal_unlock_from_suspend(dev->ctrl.opal_dev);
  1958. } else {
  1959. free_opal_dev(dev->ctrl.opal_dev);
  1960. dev->ctrl.opal_dev = NULL;
  1961. }
  1962. if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
  1963. result = nvme_dbbuf_dma_alloc(dev);
  1964. if (result)
  1965. dev_warn(dev->dev,
  1966. "unable to allocate dma for dbbuf\n");
  1967. }
  1968. if (dev->ctrl.hmpre) {
  1969. result = nvme_setup_host_mem(dev);
  1970. if (result < 0)
  1971. goto out;
  1972. }
  1973. result = nvme_setup_io_queues(dev);
  1974. if (result)
  1975. goto out;
  1976. /*
  1977. * Keep the controller around but remove all namespaces if we don't have
  1978. * any working I/O queue.
  1979. */
  1980. if (dev->online_queues < 2) {
  1981. dev_warn(dev->ctrl.device, "IO queues not created\n");
  1982. nvme_kill_queues(&dev->ctrl);
  1983. nvme_remove_namespaces(&dev->ctrl);
  1984. new_state = NVME_CTRL_ADMIN_ONLY;
  1985. } else {
  1986. nvme_start_queues(&dev->ctrl);
  1987. nvme_wait_freeze(&dev->ctrl);
  1988. /* hit this only when allocate tagset fails */
  1989. if (nvme_dev_add(dev))
  1990. new_state = NVME_CTRL_ADMIN_ONLY;
  1991. nvme_unfreeze(&dev->ctrl);
  1992. }
  1993. /*
  1994. * If only admin queue live, keep it to do further investigation or
  1995. * recovery.
  1996. */
  1997. if (!nvme_change_ctrl_state(&dev->ctrl, new_state)) {
  1998. dev_warn(dev->ctrl.device,
  1999. "failed to mark controller state %d\n", new_state);
  2000. goto out;
  2001. }
  2002. nvme_start_ctrl(&dev->ctrl);
  2003. return;
  2004. out:
  2005. nvme_remove_dead_ctrl(dev, result);
  2006. }
  2007. static void nvme_remove_dead_ctrl_work(struct work_struct *work)
  2008. {
  2009. struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
  2010. struct pci_dev *pdev = to_pci_dev(dev->dev);
  2011. nvme_kill_queues(&dev->ctrl);
  2012. if (pci_get_drvdata(pdev))
  2013. device_release_driver(&pdev->dev);
  2014. nvme_put_ctrl(&dev->ctrl);
  2015. }
  2016. static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
  2017. {
  2018. *val = readl(to_nvme_dev(ctrl)->bar + off);
  2019. return 0;
  2020. }
  2021. static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
  2022. {
  2023. writel(val, to_nvme_dev(ctrl)->bar + off);
  2024. return 0;
  2025. }
  2026. static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
  2027. {
  2028. *val = readq(to_nvme_dev(ctrl)->bar + off);
  2029. return 0;
  2030. }
  2031. static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
  2032. .name = "pcie",
  2033. .module = THIS_MODULE,
  2034. .flags = NVME_F_METADATA_SUPPORTED,
  2035. .reg_read32 = nvme_pci_reg_read32,
  2036. .reg_write32 = nvme_pci_reg_write32,
  2037. .reg_read64 = nvme_pci_reg_read64,
  2038. .free_ctrl = nvme_pci_free_ctrl,
  2039. .submit_async_event = nvme_pci_submit_async_event,
  2040. };
  2041. static int nvme_dev_map(struct nvme_dev *dev)
  2042. {
  2043. struct pci_dev *pdev = to_pci_dev(dev->dev);
  2044. if (pci_request_mem_regions(pdev, "nvme"))
  2045. return -ENODEV;
  2046. if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
  2047. goto release;
  2048. return 0;
  2049. release:
  2050. pci_release_mem_regions(pdev);
  2051. return -ENODEV;
  2052. }
  2053. static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
  2054. {
  2055. if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
  2056. /*
  2057. * Several Samsung devices seem to drop off the PCIe bus
  2058. * randomly when APST is on and uses the deepest sleep state.
  2059. * This has been observed on a Samsung "SM951 NVMe SAMSUNG
  2060. * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
  2061. * 950 PRO 256GB", but it seems to be restricted to two Dell
  2062. * laptops.
  2063. */
  2064. if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
  2065. (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
  2066. dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
  2067. return NVME_QUIRK_NO_DEEPEST_PS;
  2068. } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
  2069. /*
  2070. * Samsung SSD 960 EVO drops off the PCIe bus after system
  2071. * suspend on a Ryzen board, ASUS PRIME B350M-A.
  2072. */
  2073. if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
  2074. dmi_match(DMI_BOARD_NAME, "PRIME B350M-A"))
  2075. return NVME_QUIRK_NO_APST;
  2076. }
  2077. return 0;
  2078. }
  2079. static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
  2080. {
  2081. int node, result = -ENOMEM;
  2082. struct nvme_dev *dev;
  2083. unsigned long quirks = id->driver_data;
  2084. node = dev_to_node(&pdev->dev);
  2085. if (node == NUMA_NO_NODE)
  2086. set_dev_node(&pdev->dev, first_memory_node);
  2087. dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
  2088. if (!dev)
  2089. return -ENOMEM;
  2090. dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
  2091. GFP_KERNEL, node);
  2092. if (!dev->queues)
  2093. goto free;
  2094. dev->dev = get_device(&pdev->dev);
  2095. pci_set_drvdata(pdev, dev);
  2096. result = nvme_dev_map(dev);
  2097. if (result)
  2098. goto put_pci;
  2099. INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
  2100. INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
  2101. mutex_init(&dev->shutdown_lock);
  2102. init_completion(&dev->ioq_wait);
  2103. result = nvme_setup_prp_pools(dev);
  2104. if (result)
  2105. goto unmap;
  2106. quirks |= check_vendor_combination_bug(pdev);
  2107. result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
  2108. quirks);
  2109. if (result)
  2110. goto release_pools;
  2111. dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
  2112. nvme_reset_ctrl(&dev->ctrl);
  2113. return 0;
  2114. release_pools:
  2115. nvme_release_prp_pools(dev);
  2116. unmap:
  2117. nvme_dev_unmap(dev);
  2118. put_pci:
  2119. put_device(dev->dev);
  2120. free:
  2121. kfree(dev->queues);
  2122. kfree(dev);
  2123. return result;
  2124. }
  2125. static void nvme_reset_prepare(struct pci_dev *pdev)
  2126. {
  2127. struct nvme_dev *dev = pci_get_drvdata(pdev);
  2128. nvme_dev_disable(dev, false);
  2129. }
  2130. static void nvme_reset_done(struct pci_dev *pdev)
  2131. {
  2132. struct nvme_dev *dev = pci_get_drvdata(pdev);
  2133. nvme_reset_ctrl(&dev->ctrl);
  2134. }
  2135. static void nvme_shutdown(struct pci_dev *pdev)
  2136. {
  2137. struct nvme_dev *dev = pci_get_drvdata(pdev);
  2138. nvme_dev_disable(dev, true);
  2139. }
  2140. /*
  2141. * The driver's remove may be called on a device in a partially initialized
  2142. * state. This function must not have any dependencies on the device state in
  2143. * order to proceed.
  2144. */
  2145. static void nvme_remove(struct pci_dev *pdev)
  2146. {
  2147. struct nvme_dev *dev = pci_get_drvdata(pdev);
  2148. nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
  2149. cancel_work_sync(&dev->ctrl.reset_work);
  2150. pci_set_drvdata(pdev, NULL);
  2151. if (!pci_device_is_present(pdev)) {
  2152. nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
  2153. nvme_dev_disable(dev, false);
  2154. }
  2155. flush_work(&dev->ctrl.reset_work);
  2156. nvme_stop_ctrl(&dev->ctrl);
  2157. nvme_remove_namespaces(&dev->ctrl);
  2158. nvme_dev_disable(dev, true);
  2159. nvme_free_host_mem(dev);
  2160. nvme_dev_remove_admin(dev);
  2161. nvme_free_queues(dev, 0);
  2162. nvme_uninit_ctrl(&dev->ctrl);
  2163. nvme_release_prp_pools(dev);
  2164. nvme_dev_unmap(dev);
  2165. nvme_put_ctrl(&dev->ctrl);
  2166. }
  2167. static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
  2168. {
  2169. int ret = 0;
  2170. if (numvfs == 0) {
  2171. if (pci_vfs_assigned(pdev)) {
  2172. dev_warn(&pdev->dev,
  2173. "Cannot disable SR-IOV VFs while assigned\n");
  2174. return -EPERM;
  2175. }
  2176. pci_disable_sriov(pdev);
  2177. return 0;
  2178. }
  2179. ret = pci_enable_sriov(pdev, numvfs);
  2180. return ret ? ret : numvfs;
  2181. }
  2182. #ifdef CONFIG_PM_SLEEP
  2183. static int nvme_suspend(struct device *dev)
  2184. {
  2185. struct pci_dev *pdev = to_pci_dev(dev);
  2186. struct nvme_dev *ndev = pci_get_drvdata(pdev);
  2187. nvme_dev_disable(ndev, true);
  2188. return 0;
  2189. }
  2190. static int nvme_resume(struct device *dev)
  2191. {
  2192. struct pci_dev *pdev = to_pci_dev(dev);
  2193. struct nvme_dev *ndev = pci_get_drvdata(pdev);
  2194. nvme_reset_ctrl(&ndev->ctrl);
  2195. return 0;
  2196. }
  2197. #endif
  2198. static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
  2199. static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
  2200. pci_channel_state_t state)
  2201. {
  2202. struct nvme_dev *dev = pci_get_drvdata(pdev);
  2203. /*
  2204. * A frozen channel requires a reset. When detected, this method will
  2205. * shutdown the controller to quiesce. The controller will be restarted
  2206. * after the slot reset through driver's slot_reset callback.
  2207. */
  2208. switch (state) {
  2209. case pci_channel_io_normal:
  2210. return PCI_ERS_RESULT_CAN_RECOVER;
  2211. case pci_channel_io_frozen:
  2212. dev_warn(dev->ctrl.device,
  2213. "frozen state error detected, reset controller\n");
  2214. nvme_dev_disable(dev, false);
  2215. return PCI_ERS_RESULT_NEED_RESET;
  2216. case pci_channel_io_perm_failure:
  2217. dev_warn(dev->ctrl.device,
  2218. "failure state error detected, request disconnect\n");
  2219. return PCI_ERS_RESULT_DISCONNECT;
  2220. }
  2221. return PCI_ERS_RESULT_NEED_RESET;
  2222. }
  2223. static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
  2224. {
  2225. struct nvme_dev *dev = pci_get_drvdata(pdev);
  2226. dev_info(dev->ctrl.device, "restart after slot reset\n");
  2227. pci_restore_state(pdev);
  2228. nvme_reset_ctrl(&dev->ctrl);
  2229. return PCI_ERS_RESULT_RECOVERED;
  2230. }
  2231. static void nvme_error_resume(struct pci_dev *pdev)
  2232. {
  2233. pci_cleanup_aer_uncorrect_error_status(pdev);
  2234. }
  2235. static const struct pci_error_handlers nvme_err_handler = {
  2236. .error_detected = nvme_error_detected,
  2237. .slot_reset = nvme_slot_reset,
  2238. .resume = nvme_error_resume,
  2239. .reset_prepare = nvme_reset_prepare,
  2240. .reset_done = nvme_reset_done,
  2241. };
  2242. static const struct pci_device_id nvme_id_table[] = {
  2243. { PCI_VDEVICE(INTEL, 0x0953),
  2244. .driver_data = NVME_QUIRK_STRIPE_SIZE |
  2245. NVME_QUIRK_DEALLOCATE_ZEROES, },
  2246. { PCI_VDEVICE(INTEL, 0x0a53),
  2247. .driver_data = NVME_QUIRK_STRIPE_SIZE |
  2248. NVME_QUIRK_DEALLOCATE_ZEROES, },
  2249. { PCI_VDEVICE(INTEL, 0x0a54),
  2250. .driver_data = NVME_QUIRK_STRIPE_SIZE |
  2251. NVME_QUIRK_DEALLOCATE_ZEROES, },
  2252. { PCI_VDEVICE(INTEL, 0x0a55),
  2253. .driver_data = NVME_QUIRK_STRIPE_SIZE |
  2254. NVME_QUIRK_DEALLOCATE_ZEROES, },
  2255. { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
  2256. .driver_data = NVME_QUIRK_NO_DEEPEST_PS },
  2257. { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
  2258. .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
  2259. { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
  2260. .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
  2261. { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
  2262. .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
  2263. { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
  2264. .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
  2265. { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
  2266. .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
  2267. { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
  2268. .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
  2269. { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */
  2270. .driver_data = NVME_QUIRK_LIGHTNVM, },
  2271. { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */
  2272. .driver_data = NVME_QUIRK_LIGHTNVM, },
  2273. { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
  2274. { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
  2275. { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
  2276. { 0, }
  2277. };
  2278. MODULE_DEVICE_TABLE(pci, nvme_id_table);
  2279. static struct pci_driver nvme_driver = {
  2280. .name = "nvme",
  2281. .id_table = nvme_id_table,
  2282. .probe = nvme_probe,
  2283. .remove = nvme_remove,
  2284. .shutdown = nvme_shutdown,
  2285. .driver = {
  2286. .pm = &nvme_dev_pm_ops,
  2287. },
  2288. .sriov_configure = nvme_pci_sriov_configure,
  2289. .err_handler = &nvme_err_handler,
  2290. };
  2291. static int __init nvme_init(void)
  2292. {
  2293. return pci_register_driver(&nvme_driver);
  2294. }
  2295. static void __exit nvme_exit(void)
  2296. {
  2297. pci_unregister_driver(&nvme_driver);
  2298. flush_workqueue(nvme_wq);
  2299. _nvme_check_size();
  2300. }
  2301. MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
  2302. MODULE_LICENSE("GPL");
  2303. MODULE_VERSION("1.0");
  2304. module_init(nvme_init);
  2305. module_exit(nvme_exit);