keyring.c 37 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392
  1. /* Keyring handling
  2. *
  3. * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved.
  4. * Written by David Howells (dhowells@redhat.com)
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License
  8. * as published by the Free Software Foundation; either version
  9. * 2 of the License, or (at your option) any later version.
  10. */
  11. #include <linux/module.h>
  12. #include <linux/init.h>
  13. #include <linux/sched.h>
  14. #include <linux/slab.h>
  15. #include <linux/security.h>
  16. #include <linux/seq_file.h>
  17. #include <linux/err.h>
  18. #include <keys/keyring-type.h>
  19. #include <keys/user-type.h>
  20. #include <linux/assoc_array_priv.h>
  21. #include <linux/uaccess.h>
  22. #include "internal.h"
  23. /*
  24. * When plumbing the depths of the key tree, this sets a hard limit
  25. * set on how deep we're willing to go.
  26. */
  27. #define KEYRING_SEARCH_MAX_DEPTH 6
  28. /*
  29. * We keep all named keyrings in a hash to speed looking them up.
  30. */
  31. #define KEYRING_NAME_HASH_SIZE (1 << 5)
  32. /*
  33. * We mark pointers we pass to the associative array with bit 1 set if
  34. * they're keyrings and clear otherwise.
  35. */
  36. #define KEYRING_PTR_SUBTYPE 0x2UL
  37. static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x)
  38. {
  39. return (unsigned long)x & KEYRING_PTR_SUBTYPE;
  40. }
  41. static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x)
  42. {
  43. void *object = assoc_array_ptr_to_leaf(x);
  44. return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE);
  45. }
  46. static inline void *keyring_key_to_ptr(struct key *key)
  47. {
  48. if (key->type == &key_type_keyring)
  49. return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE);
  50. return key;
  51. }
  52. static struct list_head keyring_name_hash[KEYRING_NAME_HASH_SIZE];
  53. static DEFINE_RWLOCK(keyring_name_lock);
  54. static inline unsigned keyring_hash(const char *desc)
  55. {
  56. unsigned bucket = 0;
  57. for (; *desc; desc++)
  58. bucket += (unsigned char)*desc;
  59. return bucket & (KEYRING_NAME_HASH_SIZE - 1);
  60. }
  61. /*
  62. * The keyring key type definition. Keyrings are simply keys of this type and
  63. * can be treated as ordinary keys in addition to having their own special
  64. * operations.
  65. */
  66. static int keyring_preparse(struct key_preparsed_payload *prep);
  67. static void keyring_free_preparse(struct key_preparsed_payload *prep);
  68. static int keyring_instantiate(struct key *keyring,
  69. struct key_preparsed_payload *prep);
  70. static void keyring_revoke(struct key *keyring);
  71. static void keyring_destroy(struct key *keyring);
  72. static void keyring_describe(const struct key *keyring, struct seq_file *m);
  73. static long keyring_read(const struct key *keyring,
  74. char __user *buffer, size_t buflen);
  75. struct key_type key_type_keyring = {
  76. .name = "keyring",
  77. .def_datalen = 0,
  78. .preparse = keyring_preparse,
  79. .free_preparse = keyring_free_preparse,
  80. .instantiate = keyring_instantiate,
  81. .revoke = keyring_revoke,
  82. .destroy = keyring_destroy,
  83. .describe = keyring_describe,
  84. .read = keyring_read,
  85. };
  86. EXPORT_SYMBOL(key_type_keyring);
  87. /*
  88. * Semaphore to serialise link/link calls to prevent two link calls in parallel
  89. * introducing a cycle.
  90. */
  91. static DECLARE_RWSEM(keyring_serialise_link_sem);
  92. /*
  93. * Publish the name of a keyring so that it can be found by name (if it has
  94. * one).
  95. */
  96. static void keyring_publish_name(struct key *keyring)
  97. {
  98. int bucket;
  99. if (keyring->description) {
  100. bucket = keyring_hash(keyring->description);
  101. write_lock(&keyring_name_lock);
  102. if (!keyring_name_hash[bucket].next)
  103. INIT_LIST_HEAD(&keyring_name_hash[bucket]);
  104. list_add_tail(&keyring->type_data.link,
  105. &keyring_name_hash[bucket]);
  106. write_unlock(&keyring_name_lock);
  107. }
  108. }
  109. /*
  110. * Preparse a keyring payload
  111. */
  112. static int keyring_preparse(struct key_preparsed_payload *prep)
  113. {
  114. return prep->datalen != 0 ? -EINVAL : 0;
  115. }
  116. /*
  117. * Free a preparse of a user defined key payload
  118. */
  119. static void keyring_free_preparse(struct key_preparsed_payload *prep)
  120. {
  121. }
  122. /*
  123. * Initialise a keyring.
  124. *
  125. * Returns 0 on success, -EINVAL if given any data.
  126. */
  127. static int keyring_instantiate(struct key *keyring,
  128. struct key_preparsed_payload *prep)
  129. {
  130. assoc_array_init(&keyring->keys);
  131. /* make the keyring available by name if it has one */
  132. keyring_publish_name(keyring);
  133. return 0;
  134. }
  135. /*
  136. * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit. Ideally we'd
  137. * fold the carry back too, but that requires inline asm.
  138. */
  139. static u64 mult_64x32_and_fold(u64 x, u32 y)
  140. {
  141. u64 hi = (u64)(u32)(x >> 32) * y;
  142. u64 lo = (u64)(u32)(x) * y;
  143. return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32);
  144. }
  145. /*
  146. * Hash a key type and description.
  147. */
  148. static unsigned long hash_key_type_and_desc(const struct keyring_index_key *index_key)
  149. {
  150. const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP;
  151. const unsigned long fan_mask = ASSOC_ARRAY_FAN_MASK;
  152. const char *description = index_key->description;
  153. unsigned long hash, type;
  154. u32 piece;
  155. u64 acc;
  156. int n, desc_len = index_key->desc_len;
  157. type = (unsigned long)index_key->type;
  158. acc = mult_64x32_and_fold(type, desc_len + 13);
  159. acc = mult_64x32_and_fold(acc, 9207);
  160. for (;;) {
  161. n = desc_len;
  162. if (n <= 0)
  163. break;
  164. if (n > 4)
  165. n = 4;
  166. piece = 0;
  167. memcpy(&piece, description, n);
  168. description += n;
  169. desc_len -= n;
  170. acc = mult_64x32_and_fold(acc, piece);
  171. acc = mult_64x32_and_fold(acc, 9207);
  172. }
  173. /* Fold the hash down to 32 bits if need be. */
  174. hash = acc;
  175. if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32)
  176. hash ^= acc >> 32;
  177. /* Squidge all the keyrings into a separate part of the tree to
  178. * ordinary keys by making sure the lowest level segment in the hash is
  179. * zero for keyrings and non-zero otherwise.
  180. */
  181. if (index_key->type != &key_type_keyring && (hash & fan_mask) == 0)
  182. return hash | (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1;
  183. if (index_key->type == &key_type_keyring && (hash & fan_mask) != 0)
  184. return (hash + (hash << level_shift)) & ~fan_mask;
  185. return hash;
  186. }
  187. /*
  188. * Build the next index key chunk.
  189. *
  190. * On 32-bit systems the index key is laid out as:
  191. *
  192. * 0 4 5 9...
  193. * hash desclen typeptr desc[]
  194. *
  195. * On 64-bit systems:
  196. *
  197. * 0 8 9 17...
  198. * hash desclen typeptr desc[]
  199. *
  200. * We return it one word-sized chunk at a time.
  201. */
  202. static unsigned long keyring_get_key_chunk(const void *data, int level)
  203. {
  204. const struct keyring_index_key *index_key = data;
  205. unsigned long chunk = 0;
  206. long offset = 0;
  207. int desc_len = index_key->desc_len, n = sizeof(chunk);
  208. level /= ASSOC_ARRAY_KEY_CHUNK_SIZE;
  209. switch (level) {
  210. case 0:
  211. return hash_key_type_and_desc(index_key);
  212. case 1:
  213. return ((unsigned long)index_key->type << 8) | desc_len;
  214. case 2:
  215. if (desc_len == 0)
  216. return (u8)((unsigned long)index_key->type >>
  217. (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
  218. n--;
  219. offset = 1;
  220. default:
  221. offset += sizeof(chunk) - 1;
  222. offset += (level - 3) * sizeof(chunk);
  223. if (offset >= desc_len)
  224. return 0;
  225. desc_len -= offset;
  226. if (desc_len > n)
  227. desc_len = n;
  228. offset += desc_len;
  229. do {
  230. chunk <<= 8;
  231. chunk |= ((u8*)index_key->description)[--offset];
  232. } while (--desc_len > 0);
  233. if (level == 2) {
  234. chunk <<= 8;
  235. chunk |= (u8)((unsigned long)index_key->type >>
  236. (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
  237. }
  238. return chunk;
  239. }
  240. }
  241. static unsigned long keyring_get_object_key_chunk(const void *object, int level)
  242. {
  243. const struct key *key = keyring_ptr_to_key(object);
  244. return keyring_get_key_chunk(&key->index_key, level);
  245. }
  246. static bool keyring_compare_object(const void *object, const void *data)
  247. {
  248. const struct keyring_index_key *index_key = data;
  249. const struct key *key = keyring_ptr_to_key(object);
  250. return key->index_key.type == index_key->type &&
  251. key->index_key.desc_len == index_key->desc_len &&
  252. memcmp(key->index_key.description, index_key->description,
  253. index_key->desc_len) == 0;
  254. }
  255. /*
  256. * Compare the index keys of a pair of objects and determine the bit position
  257. * at which they differ - if they differ.
  258. */
  259. static int keyring_diff_objects(const void *object, const void *data)
  260. {
  261. const struct key *key_a = keyring_ptr_to_key(object);
  262. const struct keyring_index_key *a = &key_a->index_key;
  263. const struct keyring_index_key *b = data;
  264. unsigned long seg_a, seg_b;
  265. int level, i;
  266. level = 0;
  267. seg_a = hash_key_type_and_desc(a);
  268. seg_b = hash_key_type_and_desc(b);
  269. if ((seg_a ^ seg_b) != 0)
  270. goto differ;
  271. /* The number of bits contributed by the hash is controlled by a
  272. * constant in the assoc_array headers. Everything else thereafter we
  273. * can deal with as being machine word-size dependent.
  274. */
  275. level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8;
  276. seg_a = a->desc_len;
  277. seg_b = b->desc_len;
  278. if ((seg_a ^ seg_b) != 0)
  279. goto differ;
  280. /* The next bit may not work on big endian */
  281. level++;
  282. seg_a = (unsigned long)a->type;
  283. seg_b = (unsigned long)b->type;
  284. if ((seg_a ^ seg_b) != 0)
  285. goto differ;
  286. level += sizeof(unsigned long);
  287. if (a->desc_len == 0)
  288. goto same;
  289. i = 0;
  290. if (((unsigned long)a->description | (unsigned long)b->description) &
  291. (sizeof(unsigned long) - 1)) {
  292. do {
  293. seg_a = *(unsigned long *)(a->description + i);
  294. seg_b = *(unsigned long *)(b->description + i);
  295. if ((seg_a ^ seg_b) != 0)
  296. goto differ_plus_i;
  297. i += sizeof(unsigned long);
  298. } while (i < (a->desc_len & (sizeof(unsigned long) - 1)));
  299. }
  300. for (; i < a->desc_len; i++) {
  301. seg_a = *(unsigned char *)(a->description + i);
  302. seg_b = *(unsigned char *)(b->description + i);
  303. if ((seg_a ^ seg_b) != 0)
  304. goto differ_plus_i;
  305. }
  306. same:
  307. return -1;
  308. differ_plus_i:
  309. level += i;
  310. differ:
  311. i = level * 8 + __ffs(seg_a ^ seg_b);
  312. return i;
  313. }
  314. /*
  315. * Free an object after stripping the keyring flag off of the pointer.
  316. */
  317. static void keyring_free_object(void *object)
  318. {
  319. key_put(keyring_ptr_to_key(object));
  320. }
  321. /*
  322. * Operations for keyring management by the index-tree routines.
  323. */
  324. static const struct assoc_array_ops keyring_assoc_array_ops = {
  325. .get_key_chunk = keyring_get_key_chunk,
  326. .get_object_key_chunk = keyring_get_object_key_chunk,
  327. .compare_object = keyring_compare_object,
  328. .diff_objects = keyring_diff_objects,
  329. .free_object = keyring_free_object,
  330. };
  331. /*
  332. * Clean up a keyring when it is destroyed. Unpublish its name if it had one
  333. * and dispose of its data.
  334. *
  335. * The garbage collector detects the final key_put(), removes the keyring from
  336. * the serial number tree and then does RCU synchronisation before coming here,
  337. * so we shouldn't need to worry about code poking around here with the RCU
  338. * readlock held by this time.
  339. */
  340. static void keyring_destroy(struct key *keyring)
  341. {
  342. if (keyring->description) {
  343. write_lock(&keyring_name_lock);
  344. if (keyring->type_data.link.next != NULL &&
  345. !list_empty(&keyring->type_data.link))
  346. list_del(&keyring->type_data.link);
  347. write_unlock(&keyring_name_lock);
  348. }
  349. assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops);
  350. }
  351. /*
  352. * Describe a keyring for /proc.
  353. */
  354. static void keyring_describe(const struct key *keyring, struct seq_file *m)
  355. {
  356. if (keyring->description)
  357. seq_puts(m, keyring->description);
  358. else
  359. seq_puts(m, "[anon]");
  360. if (key_is_instantiated(keyring)) {
  361. if (keyring->keys.nr_leaves_on_tree != 0)
  362. seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree);
  363. else
  364. seq_puts(m, ": empty");
  365. }
  366. }
  367. struct keyring_read_iterator_context {
  368. size_t qty;
  369. size_t count;
  370. key_serial_t __user *buffer;
  371. };
  372. static int keyring_read_iterator(const void *object, void *data)
  373. {
  374. struct keyring_read_iterator_context *ctx = data;
  375. const struct key *key = keyring_ptr_to_key(object);
  376. int ret;
  377. kenter("{%s,%d},,{%zu/%zu}",
  378. key->type->name, key->serial, ctx->count, ctx->qty);
  379. if (ctx->count >= ctx->qty)
  380. return 1;
  381. ret = put_user(key->serial, ctx->buffer);
  382. if (ret < 0)
  383. return ret;
  384. ctx->buffer++;
  385. ctx->count += sizeof(key->serial);
  386. return 0;
  387. }
  388. /*
  389. * Read a list of key IDs from the keyring's contents in binary form
  390. *
  391. * The keyring's semaphore is read-locked by the caller. This prevents someone
  392. * from modifying it under us - which could cause us to read key IDs multiple
  393. * times.
  394. */
  395. static long keyring_read(const struct key *keyring,
  396. char __user *buffer, size_t buflen)
  397. {
  398. struct keyring_read_iterator_context ctx;
  399. unsigned long nr_keys;
  400. int ret;
  401. kenter("{%d},,%zu", key_serial(keyring), buflen);
  402. if (buflen & (sizeof(key_serial_t) - 1))
  403. return -EINVAL;
  404. nr_keys = keyring->keys.nr_leaves_on_tree;
  405. if (nr_keys == 0)
  406. return 0;
  407. /* Calculate how much data we could return */
  408. ctx.qty = nr_keys * sizeof(key_serial_t);
  409. if (!buffer || !buflen)
  410. return ctx.qty;
  411. if (buflen > ctx.qty)
  412. ctx.qty = buflen;
  413. /* Copy the IDs of the subscribed keys into the buffer */
  414. ctx.buffer = (key_serial_t __user *)buffer;
  415. ctx.count = 0;
  416. ret = assoc_array_iterate(&keyring->keys, keyring_read_iterator, &ctx);
  417. if (ret < 0) {
  418. kleave(" = %d [iterate]", ret);
  419. return ret;
  420. }
  421. kleave(" = %zu [ok]", ctx.count);
  422. return ctx.count;
  423. }
  424. /*
  425. * Allocate a keyring and link into the destination keyring.
  426. */
  427. struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid,
  428. const struct cred *cred, key_perm_t perm,
  429. unsigned long flags, struct key *dest)
  430. {
  431. struct key *keyring;
  432. int ret;
  433. keyring = key_alloc(&key_type_keyring, description,
  434. uid, gid, cred, perm, flags);
  435. if (!IS_ERR(keyring)) {
  436. ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL);
  437. if (ret < 0) {
  438. key_put(keyring);
  439. keyring = ERR_PTR(ret);
  440. }
  441. }
  442. return keyring;
  443. }
  444. EXPORT_SYMBOL(keyring_alloc);
  445. /*
  446. * By default, we keys found by getting an exact match on their descriptions.
  447. */
  448. bool key_default_cmp(const struct key *key,
  449. const struct key_match_data *match_data)
  450. {
  451. return strcmp(key->description, match_data->raw_data) == 0;
  452. }
  453. /*
  454. * Iteration function to consider each key found.
  455. */
  456. static int keyring_search_iterator(const void *object, void *iterator_data)
  457. {
  458. struct keyring_search_context *ctx = iterator_data;
  459. const struct key *key = keyring_ptr_to_key(object);
  460. unsigned long kflags = key->flags;
  461. kenter("{%d}", key->serial);
  462. /* ignore keys not of this type */
  463. if (key->type != ctx->index_key.type) {
  464. kleave(" = 0 [!type]");
  465. return 0;
  466. }
  467. /* skip invalidated, revoked and expired keys */
  468. if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
  469. if (kflags & ((1 << KEY_FLAG_INVALIDATED) |
  470. (1 << KEY_FLAG_REVOKED))) {
  471. ctx->result = ERR_PTR(-EKEYREVOKED);
  472. kleave(" = %d [invrev]", ctx->skipped_ret);
  473. goto skipped;
  474. }
  475. if (key->expiry && ctx->now.tv_sec >= key->expiry) {
  476. ctx->result = ERR_PTR(-EKEYEXPIRED);
  477. kleave(" = %d [expire]", ctx->skipped_ret);
  478. goto skipped;
  479. }
  480. }
  481. /* keys that don't match */
  482. if (!ctx->match_data.cmp(key, &ctx->match_data)) {
  483. kleave(" = 0 [!match]");
  484. return 0;
  485. }
  486. /* key must have search permissions */
  487. if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
  488. key_task_permission(make_key_ref(key, ctx->possessed),
  489. ctx->cred, KEY_NEED_SEARCH) < 0) {
  490. ctx->result = ERR_PTR(-EACCES);
  491. kleave(" = %d [!perm]", ctx->skipped_ret);
  492. goto skipped;
  493. }
  494. if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
  495. /* we set a different error code if we pass a negative key */
  496. if (kflags & (1 << KEY_FLAG_NEGATIVE)) {
  497. smp_rmb();
  498. ctx->result = ERR_PTR(key->type_data.reject_error);
  499. kleave(" = %d [neg]", ctx->skipped_ret);
  500. goto skipped;
  501. }
  502. }
  503. /* Found */
  504. ctx->result = make_key_ref(key, ctx->possessed);
  505. kleave(" = 1 [found]");
  506. return 1;
  507. skipped:
  508. return ctx->skipped_ret;
  509. }
  510. /*
  511. * Search inside a keyring for a key. We can search by walking to it
  512. * directly based on its index-key or we can iterate over the entire
  513. * tree looking for it, based on the match function.
  514. */
  515. static int search_keyring(struct key *keyring, struct keyring_search_context *ctx)
  516. {
  517. if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_DIRECT) {
  518. const void *object;
  519. object = assoc_array_find(&keyring->keys,
  520. &keyring_assoc_array_ops,
  521. &ctx->index_key);
  522. return object ? ctx->iterator(object, ctx) : 0;
  523. }
  524. return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx);
  525. }
  526. /*
  527. * Search a tree of keyrings that point to other keyrings up to the maximum
  528. * depth.
  529. */
  530. static bool search_nested_keyrings(struct key *keyring,
  531. struct keyring_search_context *ctx)
  532. {
  533. struct {
  534. struct key *keyring;
  535. struct assoc_array_node *node;
  536. int slot;
  537. } stack[KEYRING_SEARCH_MAX_DEPTH];
  538. struct assoc_array_shortcut *shortcut;
  539. struct assoc_array_node *node;
  540. struct assoc_array_ptr *ptr;
  541. struct key *key;
  542. int sp = 0, slot;
  543. kenter("{%d},{%s,%s}",
  544. keyring->serial,
  545. ctx->index_key.type->name,
  546. ctx->index_key.description);
  547. if (ctx->index_key.description)
  548. ctx->index_key.desc_len = strlen(ctx->index_key.description);
  549. /* Check to see if this top-level keyring is what we are looking for
  550. * and whether it is valid or not.
  551. */
  552. if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_ITERATE ||
  553. keyring_compare_object(keyring, &ctx->index_key)) {
  554. ctx->skipped_ret = 2;
  555. ctx->flags |= KEYRING_SEARCH_DO_STATE_CHECK;
  556. switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) {
  557. case 1:
  558. goto found;
  559. case 2:
  560. return false;
  561. default:
  562. break;
  563. }
  564. }
  565. ctx->skipped_ret = 0;
  566. if (ctx->flags & KEYRING_SEARCH_NO_STATE_CHECK)
  567. ctx->flags &= ~KEYRING_SEARCH_DO_STATE_CHECK;
  568. /* Start processing a new keyring */
  569. descend_to_keyring:
  570. kdebug("descend to %d", keyring->serial);
  571. if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
  572. (1 << KEY_FLAG_REVOKED)))
  573. goto not_this_keyring;
  574. /* Search through the keys in this keyring before its searching its
  575. * subtrees.
  576. */
  577. if (search_keyring(keyring, ctx))
  578. goto found;
  579. /* Then manually iterate through the keyrings nested in this one.
  580. *
  581. * Start from the root node of the index tree. Because of the way the
  582. * hash function has been set up, keyrings cluster on the leftmost
  583. * branch of the root node (root slot 0) or in the root node itself.
  584. * Non-keyrings avoid the leftmost branch of the root entirely (root
  585. * slots 1-15).
  586. */
  587. ptr = ACCESS_ONCE(keyring->keys.root);
  588. if (!ptr)
  589. goto not_this_keyring;
  590. if (assoc_array_ptr_is_shortcut(ptr)) {
  591. /* If the root is a shortcut, either the keyring only contains
  592. * keyring pointers (everything clusters behind root slot 0) or
  593. * doesn't contain any keyring pointers.
  594. */
  595. shortcut = assoc_array_ptr_to_shortcut(ptr);
  596. smp_read_barrier_depends();
  597. if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0)
  598. goto not_this_keyring;
  599. ptr = ACCESS_ONCE(shortcut->next_node);
  600. node = assoc_array_ptr_to_node(ptr);
  601. goto begin_node;
  602. }
  603. node = assoc_array_ptr_to_node(ptr);
  604. smp_read_barrier_depends();
  605. ptr = node->slots[0];
  606. if (!assoc_array_ptr_is_meta(ptr))
  607. goto begin_node;
  608. descend_to_node:
  609. /* Descend to a more distal node in this keyring's content tree and go
  610. * through that.
  611. */
  612. kdebug("descend");
  613. if (assoc_array_ptr_is_shortcut(ptr)) {
  614. shortcut = assoc_array_ptr_to_shortcut(ptr);
  615. smp_read_barrier_depends();
  616. ptr = ACCESS_ONCE(shortcut->next_node);
  617. BUG_ON(!assoc_array_ptr_is_node(ptr));
  618. }
  619. node = assoc_array_ptr_to_node(ptr);
  620. begin_node:
  621. kdebug("begin_node");
  622. smp_read_barrier_depends();
  623. slot = 0;
  624. ascend_to_node:
  625. /* Go through the slots in a node */
  626. for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
  627. ptr = ACCESS_ONCE(node->slots[slot]);
  628. if (assoc_array_ptr_is_meta(ptr) && node->back_pointer)
  629. goto descend_to_node;
  630. if (!keyring_ptr_is_keyring(ptr))
  631. continue;
  632. key = keyring_ptr_to_key(ptr);
  633. if (sp >= KEYRING_SEARCH_MAX_DEPTH) {
  634. if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) {
  635. ctx->result = ERR_PTR(-ELOOP);
  636. return false;
  637. }
  638. goto not_this_keyring;
  639. }
  640. /* Search a nested keyring */
  641. if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
  642. key_task_permission(make_key_ref(key, ctx->possessed),
  643. ctx->cred, KEY_NEED_SEARCH) < 0)
  644. continue;
  645. /* stack the current position */
  646. stack[sp].keyring = keyring;
  647. stack[sp].node = node;
  648. stack[sp].slot = slot;
  649. sp++;
  650. /* begin again with the new keyring */
  651. keyring = key;
  652. goto descend_to_keyring;
  653. }
  654. /* We've dealt with all the slots in the current node, so now we need
  655. * to ascend to the parent and continue processing there.
  656. */
  657. ptr = ACCESS_ONCE(node->back_pointer);
  658. slot = node->parent_slot;
  659. if (ptr && assoc_array_ptr_is_shortcut(ptr)) {
  660. shortcut = assoc_array_ptr_to_shortcut(ptr);
  661. smp_read_barrier_depends();
  662. ptr = ACCESS_ONCE(shortcut->back_pointer);
  663. slot = shortcut->parent_slot;
  664. }
  665. if (!ptr)
  666. goto not_this_keyring;
  667. node = assoc_array_ptr_to_node(ptr);
  668. smp_read_barrier_depends();
  669. slot++;
  670. /* If we've ascended to the root (zero backpointer), we must have just
  671. * finished processing the leftmost branch rather than the root slots -
  672. * so there can't be any more keyrings for us to find.
  673. */
  674. if (node->back_pointer) {
  675. kdebug("ascend %d", slot);
  676. goto ascend_to_node;
  677. }
  678. /* The keyring we're looking at was disqualified or didn't contain a
  679. * matching key.
  680. */
  681. not_this_keyring:
  682. kdebug("not_this_keyring %d", sp);
  683. if (sp <= 0) {
  684. kleave(" = false");
  685. return false;
  686. }
  687. /* Resume the processing of a keyring higher up in the tree */
  688. sp--;
  689. keyring = stack[sp].keyring;
  690. node = stack[sp].node;
  691. slot = stack[sp].slot + 1;
  692. kdebug("ascend to %d [%d]", keyring->serial, slot);
  693. goto ascend_to_node;
  694. /* We found a viable match */
  695. found:
  696. key = key_ref_to_ptr(ctx->result);
  697. key_check(key);
  698. if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) {
  699. key->last_used_at = ctx->now.tv_sec;
  700. keyring->last_used_at = ctx->now.tv_sec;
  701. while (sp > 0)
  702. stack[--sp].keyring->last_used_at = ctx->now.tv_sec;
  703. }
  704. kleave(" = true");
  705. return true;
  706. }
  707. /**
  708. * keyring_search_aux - Search a keyring tree for a key matching some criteria
  709. * @keyring_ref: A pointer to the keyring with possession indicator.
  710. * @ctx: The keyring search context.
  711. *
  712. * Search the supplied keyring tree for a key that matches the criteria given.
  713. * The root keyring and any linked keyrings must grant Search permission to the
  714. * caller to be searchable and keys can only be found if they too grant Search
  715. * to the caller. The possession flag on the root keyring pointer controls use
  716. * of the possessor bits in permissions checking of the entire tree. In
  717. * addition, the LSM gets to forbid keyring searches and key matches.
  718. *
  719. * The search is performed as a breadth-then-depth search up to the prescribed
  720. * limit (KEYRING_SEARCH_MAX_DEPTH).
  721. *
  722. * Keys are matched to the type provided and are then filtered by the match
  723. * function, which is given the description to use in any way it sees fit. The
  724. * match function may use any attributes of a key that it wishes to to
  725. * determine the match. Normally the match function from the key type would be
  726. * used.
  727. *
  728. * RCU can be used to prevent the keyring key lists from disappearing without
  729. * the need to take lots of locks.
  730. *
  731. * Returns a pointer to the found key and increments the key usage count if
  732. * successful; -EAGAIN if no matching keys were found, or if expired or revoked
  733. * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the
  734. * specified keyring wasn't a keyring.
  735. *
  736. * In the case of a successful return, the possession attribute from
  737. * @keyring_ref is propagated to the returned key reference.
  738. */
  739. key_ref_t keyring_search_aux(key_ref_t keyring_ref,
  740. struct keyring_search_context *ctx)
  741. {
  742. struct key *keyring;
  743. long err;
  744. ctx->iterator = keyring_search_iterator;
  745. ctx->possessed = is_key_possessed(keyring_ref);
  746. ctx->result = ERR_PTR(-EAGAIN);
  747. keyring = key_ref_to_ptr(keyring_ref);
  748. key_check(keyring);
  749. if (keyring->type != &key_type_keyring)
  750. return ERR_PTR(-ENOTDIR);
  751. if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) {
  752. err = key_task_permission(keyring_ref, ctx->cred, KEY_NEED_SEARCH);
  753. if (err < 0)
  754. return ERR_PTR(err);
  755. }
  756. rcu_read_lock();
  757. ctx->now = current_kernel_time();
  758. if (search_nested_keyrings(keyring, ctx))
  759. __key_get(key_ref_to_ptr(ctx->result));
  760. rcu_read_unlock();
  761. return ctx->result;
  762. }
  763. /**
  764. * keyring_search - Search the supplied keyring tree for a matching key
  765. * @keyring: The root of the keyring tree to be searched.
  766. * @type: The type of keyring we want to find.
  767. * @description: The name of the keyring we want to find.
  768. *
  769. * As keyring_search_aux() above, but using the current task's credentials and
  770. * type's default matching function and preferred search method.
  771. */
  772. key_ref_t keyring_search(key_ref_t keyring,
  773. struct key_type *type,
  774. const char *description)
  775. {
  776. struct keyring_search_context ctx = {
  777. .index_key.type = type,
  778. .index_key.description = description,
  779. .cred = current_cred(),
  780. .match_data.cmp = key_default_cmp,
  781. .match_data.raw_data = description,
  782. .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
  783. .flags = KEYRING_SEARCH_DO_STATE_CHECK,
  784. };
  785. key_ref_t key;
  786. int ret;
  787. if (type->match_preparse) {
  788. ret = type->match_preparse(&ctx.match_data);
  789. if (ret < 0)
  790. return ERR_PTR(ret);
  791. }
  792. key = keyring_search_aux(keyring, &ctx);
  793. if (type->match_free)
  794. type->match_free(&ctx.match_data);
  795. return key;
  796. }
  797. EXPORT_SYMBOL(keyring_search);
  798. /*
  799. * Search the given keyring for a key that might be updated.
  800. *
  801. * The caller must guarantee that the keyring is a keyring and that the
  802. * permission is granted to modify the keyring as no check is made here. The
  803. * caller must also hold a lock on the keyring semaphore.
  804. *
  805. * Returns a pointer to the found key with usage count incremented if
  806. * successful and returns NULL if not found. Revoked and invalidated keys are
  807. * skipped over.
  808. *
  809. * If successful, the possession indicator is propagated from the keyring ref
  810. * to the returned key reference.
  811. */
  812. key_ref_t find_key_to_update(key_ref_t keyring_ref,
  813. const struct keyring_index_key *index_key)
  814. {
  815. struct key *keyring, *key;
  816. const void *object;
  817. keyring = key_ref_to_ptr(keyring_ref);
  818. kenter("{%d},{%s,%s}",
  819. keyring->serial, index_key->type->name, index_key->description);
  820. object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops,
  821. index_key);
  822. if (object)
  823. goto found;
  824. kleave(" = NULL");
  825. return NULL;
  826. found:
  827. key = keyring_ptr_to_key(object);
  828. if (key->flags & ((1 << KEY_FLAG_INVALIDATED) |
  829. (1 << KEY_FLAG_REVOKED))) {
  830. kleave(" = NULL [x]");
  831. return NULL;
  832. }
  833. __key_get(key);
  834. kleave(" = {%d}", key->serial);
  835. return make_key_ref(key, is_key_possessed(keyring_ref));
  836. }
  837. /*
  838. * Find a keyring with the specified name.
  839. *
  840. * All named keyrings in the current user namespace are searched, provided they
  841. * grant Search permission directly to the caller (unless this check is
  842. * skipped). Keyrings whose usage points have reached zero or who have been
  843. * revoked are skipped.
  844. *
  845. * Returns a pointer to the keyring with the keyring's refcount having being
  846. * incremented on success. -ENOKEY is returned if a key could not be found.
  847. */
  848. struct key *find_keyring_by_name(const char *name, bool skip_perm_check)
  849. {
  850. struct key *keyring;
  851. int bucket;
  852. if (!name)
  853. return ERR_PTR(-EINVAL);
  854. bucket = keyring_hash(name);
  855. read_lock(&keyring_name_lock);
  856. if (keyring_name_hash[bucket].next) {
  857. /* search this hash bucket for a keyring with a matching name
  858. * that's readable and that hasn't been revoked */
  859. list_for_each_entry(keyring,
  860. &keyring_name_hash[bucket],
  861. type_data.link
  862. ) {
  863. if (!kuid_has_mapping(current_user_ns(), keyring->user->uid))
  864. continue;
  865. if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
  866. continue;
  867. if (strcmp(keyring->description, name) != 0)
  868. continue;
  869. if (!skip_perm_check &&
  870. key_permission(make_key_ref(keyring, 0),
  871. KEY_NEED_SEARCH) < 0)
  872. continue;
  873. /* we've got a match but we might end up racing with
  874. * key_cleanup() if the keyring is currently 'dead'
  875. * (ie. it has a zero usage count) */
  876. if (!atomic_inc_not_zero(&keyring->usage))
  877. continue;
  878. keyring->last_used_at = current_kernel_time().tv_sec;
  879. goto out;
  880. }
  881. }
  882. keyring = ERR_PTR(-ENOKEY);
  883. out:
  884. read_unlock(&keyring_name_lock);
  885. return keyring;
  886. }
  887. static int keyring_detect_cycle_iterator(const void *object,
  888. void *iterator_data)
  889. {
  890. struct keyring_search_context *ctx = iterator_data;
  891. const struct key *key = keyring_ptr_to_key(object);
  892. kenter("{%d}", key->serial);
  893. /* We might get a keyring with matching index-key that is nonetheless a
  894. * different keyring. */
  895. if (key != ctx->match_data.raw_data)
  896. return 0;
  897. ctx->result = ERR_PTR(-EDEADLK);
  898. return 1;
  899. }
  900. /*
  901. * See if a cycle will will be created by inserting acyclic tree B in acyclic
  902. * tree A at the topmost level (ie: as a direct child of A).
  903. *
  904. * Since we are adding B to A at the top level, checking for cycles should just
  905. * be a matter of seeing if node A is somewhere in tree B.
  906. */
  907. static int keyring_detect_cycle(struct key *A, struct key *B)
  908. {
  909. struct keyring_search_context ctx = {
  910. .index_key = A->index_key,
  911. .match_data.raw_data = A,
  912. .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
  913. .iterator = keyring_detect_cycle_iterator,
  914. .flags = (KEYRING_SEARCH_NO_STATE_CHECK |
  915. KEYRING_SEARCH_NO_UPDATE_TIME |
  916. KEYRING_SEARCH_NO_CHECK_PERM |
  917. KEYRING_SEARCH_DETECT_TOO_DEEP),
  918. };
  919. rcu_read_lock();
  920. search_nested_keyrings(B, &ctx);
  921. rcu_read_unlock();
  922. return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result);
  923. }
  924. /*
  925. * Preallocate memory so that a key can be linked into to a keyring.
  926. */
  927. int __key_link_begin(struct key *keyring,
  928. const struct keyring_index_key *index_key,
  929. struct assoc_array_edit **_edit)
  930. __acquires(&keyring->sem)
  931. __acquires(&keyring_serialise_link_sem)
  932. {
  933. struct assoc_array_edit *edit;
  934. int ret;
  935. kenter("%d,%s,%s,",
  936. keyring->serial, index_key->type->name, index_key->description);
  937. BUG_ON(index_key->desc_len == 0);
  938. if (keyring->type != &key_type_keyring)
  939. return -ENOTDIR;
  940. down_write(&keyring->sem);
  941. ret = -EKEYREVOKED;
  942. if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
  943. goto error_krsem;
  944. /* serialise link/link calls to prevent parallel calls causing a cycle
  945. * when linking two keyring in opposite orders */
  946. if (index_key->type == &key_type_keyring)
  947. down_write(&keyring_serialise_link_sem);
  948. /* Create an edit script that will insert/replace the key in the
  949. * keyring tree.
  950. */
  951. edit = assoc_array_insert(&keyring->keys,
  952. &keyring_assoc_array_ops,
  953. index_key,
  954. NULL);
  955. if (IS_ERR(edit)) {
  956. ret = PTR_ERR(edit);
  957. goto error_sem;
  958. }
  959. /* If we're not replacing a link in-place then we're going to need some
  960. * extra quota.
  961. */
  962. if (!edit->dead_leaf) {
  963. ret = key_payload_reserve(keyring,
  964. keyring->datalen + KEYQUOTA_LINK_BYTES);
  965. if (ret < 0)
  966. goto error_cancel;
  967. }
  968. *_edit = edit;
  969. kleave(" = 0");
  970. return 0;
  971. error_cancel:
  972. assoc_array_cancel_edit(edit);
  973. error_sem:
  974. if (index_key->type == &key_type_keyring)
  975. up_write(&keyring_serialise_link_sem);
  976. error_krsem:
  977. up_write(&keyring->sem);
  978. kleave(" = %d", ret);
  979. return ret;
  980. }
  981. /*
  982. * Check already instantiated keys aren't going to be a problem.
  983. *
  984. * The caller must have called __key_link_begin(). Don't need to call this for
  985. * keys that were created since __key_link_begin() was called.
  986. */
  987. int __key_link_check_live_key(struct key *keyring, struct key *key)
  988. {
  989. if (key->type == &key_type_keyring)
  990. /* check that we aren't going to create a cycle by linking one
  991. * keyring to another */
  992. return keyring_detect_cycle(keyring, key);
  993. return 0;
  994. }
  995. /*
  996. * Link a key into to a keyring.
  997. *
  998. * Must be called with __key_link_begin() having being called. Discards any
  999. * already extant link to matching key if there is one, so that each keyring
  1000. * holds at most one link to any given key of a particular type+description
  1001. * combination.
  1002. */
  1003. void __key_link(struct key *key, struct assoc_array_edit **_edit)
  1004. {
  1005. __key_get(key);
  1006. assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key));
  1007. assoc_array_apply_edit(*_edit);
  1008. *_edit = NULL;
  1009. }
  1010. /*
  1011. * Finish linking a key into to a keyring.
  1012. *
  1013. * Must be called with __key_link_begin() having being called.
  1014. */
  1015. void __key_link_end(struct key *keyring,
  1016. const struct keyring_index_key *index_key,
  1017. struct assoc_array_edit *edit)
  1018. __releases(&keyring->sem)
  1019. __releases(&keyring_serialise_link_sem)
  1020. {
  1021. BUG_ON(index_key->type == NULL);
  1022. kenter("%d,%s,", keyring->serial, index_key->type->name);
  1023. if (index_key->type == &key_type_keyring)
  1024. up_write(&keyring_serialise_link_sem);
  1025. if (edit && !edit->dead_leaf) {
  1026. key_payload_reserve(keyring,
  1027. keyring->datalen - KEYQUOTA_LINK_BYTES);
  1028. assoc_array_cancel_edit(edit);
  1029. }
  1030. up_write(&keyring->sem);
  1031. }
  1032. /**
  1033. * key_link - Link a key to a keyring
  1034. * @keyring: The keyring to make the link in.
  1035. * @key: The key to link to.
  1036. *
  1037. * Make a link in a keyring to a key, such that the keyring holds a reference
  1038. * on that key and the key can potentially be found by searching that keyring.
  1039. *
  1040. * This function will write-lock the keyring's semaphore and will consume some
  1041. * of the user's key data quota to hold the link.
  1042. *
  1043. * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring,
  1044. * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is
  1045. * full, -EDQUOT if there is insufficient key data quota remaining to add
  1046. * another link or -ENOMEM if there's insufficient memory.
  1047. *
  1048. * It is assumed that the caller has checked that it is permitted for a link to
  1049. * be made (the keyring should have Write permission and the key Link
  1050. * permission).
  1051. */
  1052. int key_link(struct key *keyring, struct key *key)
  1053. {
  1054. struct assoc_array_edit *edit;
  1055. int ret;
  1056. kenter("{%d,%d}", keyring->serial, atomic_read(&keyring->usage));
  1057. key_check(keyring);
  1058. key_check(key);
  1059. if (test_bit(KEY_FLAG_TRUSTED_ONLY, &keyring->flags) &&
  1060. !test_bit(KEY_FLAG_TRUSTED, &key->flags))
  1061. return -EPERM;
  1062. ret = __key_link_begin(keyring, &key->index_key, &edit);
  1063. if (ret == 0) {
  1064. kdebug("begun {%d,%d}", keyring->serial, atomic_read(&keyring->usage));
  1065. ret = __key_link_check_live_key(keyring, key);
  1066. if (ret == 0)
  1067. __key_link(key, &edit);
  1068. __key_link_end(keyring, &key->index_key, edit);
  1069. }
  1070. kleave(" = %d {%d,%d}", ret, keyring->serial, atomic_read(&keyring->usage));
  1071. return ret;
  1072. }
  1073. EXPORT_SYMBOL(key_link);
  1074. /**
  1075. * key_unlink - Unlink the first link to a key from a keyring.
  1076. * @keyring: The keyring to remove the link from.
  1077. * @key: The key the link is to.
  1078. *
  1079. * Remove a link from a keyring to a key.
  1080. *
  1081. * This function will write-lock the keyring's semaphore.
  1082. *
  1083. * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if
  1084. * the key isn't linked to by the keyring or -ENOMEM if there's insufficient
  1085. * memory.
  1086. *
  1087. * It is assumed that the caller has checked that it is permitted for a link to
  1088. * be removed (the keyring should have Write permission; no permissions are
  1089. * required on the key).
  1090. */
  1091. int key_unlink(struct key *keyring, struct key *key)
  1092. {
  1093. struct assoc_array_edit *edit;
  1094. int ret;
  1095. key_check(keyring);
  1096. key_check(key);
  1097. if (keyring->type != &key_type_keyring)
  1098. return -ENOTDIR;
  1099. down_write(&keyring->sem);
  1100. edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops,
  1101. &key->index_key);
  1102. if (IS_ERR(edit)) {
  1103. ret = PTR_ERR(edit);
  1104. goto error;
  1105. }
  1106. ret = -ENOENT;
  1107. if (edit == NULL)
  1108. goto error;
  1109. assoc_array_apply_edit(edit);
  1110. key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES);
  1111. ret = 0;
  1112. error:
  1113. up_write(&keyring->sem);
  1114. return ret;
  1115. }
  1116. EXPORT_SYMBOL(key_unlink);
  1117. /**
  1118. * keyring_clear - Clear a keyring
  1119. * @keyring: The keyring to clear.
  1120. *
  1121. * Clear the contents of the specified keyring.
  1122. *
  1123. * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring.
  1124. */
  1125. int keyring_clear(struct key *keyring)
  1126. {
  1127. struct assoc_array_edit *edit;
  1128. int ret;
  1129. if (keyring->type != &key_type_keyring)
  1130. return -ENOTDIR;
  1131. down_write(&keyring->sem);
  1132. edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
  1133. if (IS_ERR(edit)) {
  1134. ret = PTR_ERR(edit);
  1135. } else {
  1136. if (edit)
  1137. assoc_array_apply_edit(edit);
  1138. key_payload_reserve(keyring, 0);
  1139. ret = 0;
  1140. }
  1141. up_write(&keyring->sem);
  1142. return ret;
  1143. }
  1144. EXPORT_SYMBOL(keyring_clear);
  1145. /*
  1146. * Dispose of the links from a revoked keyring.
  1147. *
  1148. * This is called with the key sem write-locked.
  1149. */
  1150. static void keyring_revoke(struct key *keyring)
  1151. {
  1152. struct assoc_array_edit *edit;
  1153. edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
  1154. if (!IS_ERR(edit)) {
  1155. if (edit)
  1156. assoc_array_apply_edit(edit);
  1157. key_payload_reserve(keyring, 0);
  1158. }
  1159. }
  1160. static bool keyring_gc_select_iterator(void *object, void *iterator_data)
  1161. {
  1162. struct key *key = keyring_ptr_to_key(object);
  1163. time_t *limit = iterator_data;
  1164. if (key_is_dead(key, *limit))
  1165. return false;
  1166. key_get(key);
  1167. return true;
  1168. }
  1169. static int keyring_gc_check_iterator(const void *object, void *iterator_data)
  1170. {
  1171. const struct key *key = keyring_ptr_to_key(object);
  1172. time_t *limit = iterator_data;
  1173. key_check(key);
  1174. return key_is_dead(key, *limit);
  1175. }
  1176. /*
  1177. * Garbage collect pointers from a keyring.
  1178. *
  1179. * Not called with any locks held. The keyring's key struct will not be
  1180. * deallocated under us as only our caller may deallocate it.
  1181. */
  1182. void keyring_gc(struct key *keyring, time_t limit)
  1183. {
  1184. int result;
  1185. kenter("%x{%s}", keyring->serial, keyring->description ?: "");
  1186. if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
  1187. (1 << KEY_FLAG_REVOKED)))
  1188. goto dont_gc;
  1189. /* scan the keyring looking for dead keys */
  1190. rcu_read_lock();
  1191. result = assoc_array_iterate(&keyring->keys,
  1192. keyring_gc_check_iterator, &limit);
  1193. rcu_read_unlock();
  1194. if (result == true)
  1195. goto do_gc;
  1196. dont_gc:
  1197. kleave(" [no gc]");
  1198. return;
  1199. do_gc:
  1200. down_write(&keyring->sem);
  1201. assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops,
  1202. keyring_gc_select_iterator, &limit);
  1203. up_write(&keyring->sem);
  1204. kleave(" [gc]");
  1205. }