slub.c 125 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks or atomic operatios
  6. * and only uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter
  9. * (C) 2011 Linux Foundation, Christoph Lameter
  10. */
  11. #include <linux/mm.h>
  12. #include <linux/swap.h> /* struct reclaim_state */
  13. #include <linux/module.h>
  14. #include <linux/bit_spinlock.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/bitops.h>
  17. #include <linux/slab.h>
  18. #include "slab.h"
  19. #include <linux/proc_fs.h>
  20. #include <linux/notifier.h>
  21. #include <linux/seq_file.h>
  22. #include <linux/kmemcheck.h>
  23. #include <linux/cpu.h>
  24. #include <linux/cpuset.h>
  25. #include <linux/mempolicy.h>
  26. #include <linux/ctype.h>
  27. #include <linux/debugobjects.h>
  28. #include <linux/kallsyms.h>
  29. #include <linux/memory.h>
  30. #include <linux/math64.h>
  31. #include <linux/fault-inject.h>
  32. #include <linux/stacktrace.h>
  33. #include <linux/prefetch.h>
  34. #include <linux/memcontrol.h>
  35. #include <trace/events/kmem.h>
  36. #include "internal.h"
  37. /*
  38. * Lock order:
  39. * 1. slab_mutex (Global Mutex)
  40. * 2. node->list_lock
  41. * 3. slab_lock(page) (Only on some arches and for debugging)
  42. *
  43. * slab_mutex
  44. *
  45. * The role of the slab_mutex is to protect the list of all the slabs
  46. * and to synchronize major metadata changes to slab cache structures.
  47. *
  48. * The slab_lock is only used for debugging and on arches that do not
  49. * have the ability to do a cmpxchg_double. It only protects the second
  50. * double word in the page struct. Meaning
  51. * A. page->freelist -> List of object free in a page
  52. * B. page->counters -> Counters of objects
  53. * C. page->frozen -> frozen state
  54. *
  55. * If a slab is frozen then it is exempt from list management. It is not
  56. * on any list. The processor that froze the slab is the one who can
  57. * perform list operations on the page. Other processors may put objects
  58. * onto the freelist but the processor that froze the slab is the only
  59. * one that can retrieve the objects from the page's freelist.
  60. *
  61. * The list_lock protects the partial and full list on each node and
  62. * the partial slab counter. If taken then no new slabs may be added or
  63. * removed from the lists nor make the number of partial slabs be modified.
  64. * (Note that the total number of slabs is an atomic value that may be
  65. * modified without taking the list lock).
  66. *
  67. * The list_lock is a centralized lock and thus we avoid taking it as
  68. * much as possible. As long as SLUB does not have to handle partial
  69. * slabs, operations can continue without any centralized lock. F.e.
  70. * allocating a long series of objects that fill up slabs does not require
  71. * the list lock.
  72. * Interrupts are disabled during allocation and deallocation in order to
  73. * make the slab allocator safe to use in the context of an irq. In addition
  74. * interrupts are disabled to ensure that the processor does not change
  75. * while handling per_cpu slabs, due to kernel preemption.
  76. *
  77. * SLUB assigns one slab for allocation to each processor.
  78. * Allocations only occur from these slabs called cpu slabs.
  79. *
  80. * Slabs with free elements are kept on a partial list and during regular
  81. * operations no list for full slabs is used. If an object in a full slab is
  82. * freed then the slab will show up again on the partial lists.
  83. * We track full slabs for debugging purposes though because otherwise we
  84. * cannot scan all objects.
  85. *
  86. * Slabs are freed when they become empty. Teardown and setup is
  87. * minimal so we rely on the page allocators per cpu caches for
  88. * fast frees and allocs.
  89. *
  90. * Overloading of page flags that are otherwise used for LRU management.
  91. *
  92. * PageActive The slab is frozen and exempt from list processing.
  93. * This means that the slab is dedicated to a purpose
  94. * such as satisfying allocations for a specific
  95. * processor. Objects may be freed in the slab while
  96. * it is frozen but slab_free will then skip the usual
  97. * list operations. It is up to the processor holding
  98. * the slab to integrate the slab into the slab lists
  99. * when the slab is no longer needed.
  100. *
  101. * One use of this flag is to mark slabs that are
  102. * used for allocations. Then such a slab becomes a cpu
  103. * slab. The cpu slab may be equipped with an additional
  104. * freelist that allows lockless access to
  105. * free objects in addition to the regular freelist
  106. * that requires the slab lock.
  107. *
  108. * PageError Slab requires special handling due to debug
  109. * options set. This moves slab handling out of
  110. * the fast path and disables lockless freelists.
  111. */
  112. static inline int kmem_cache_debug(struct kmem_cache *s)
  113. {
  114. #ifdef CONFIG_SLUB_DEBUG
  115. return unlikely(s->flags & SLAB_DEBUG_FLAGS);
  116. #else
  117. return 0;
  118. #endif
  119. }
  120. static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
  121. {
  122. #ifdef CONFIG_SLUB_CPU_PARTIAL
  123. return !kmem_cache_debug(s);
  124. #else
  125. return false;
  126. #endif
  127. }
  128. /*
  129. * Issues still to be resolved:
  130. *
  131. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  132. *
  133. * - Variable sizing of the per node arrays
  134. */
  135. /* Enable to test recovery from slab corruption on boot */
  136. #undef SLUB_RESILIENCY_TEST
  137. /* Enable to log cmpxchg failures */
  138. #undef SLUB_DEBUG_CMPXCHG
  139. /*
  140. * Mininum number of partial slabs. These will be left on the partial
  141. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  142. */
  143. #define MIN_PARTIAL 5
  144. /*
  145. * Maximum number of desirable partial slabs.
  146. * The existence of more partial slabs makes kmem_cache_shrink
  147. * sort the partial list by the number of objects in use.
  148. */
  149. #define MAX_PARTIAL 10
  150. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  151. SLAB_POISON | SLAB_STORE_USER)
  152. /*
  153. * Debugging flags that require metadata to be stored in the slab. These get
  154. * disabled when slub_debug=O is used and a cache's min order increases with
  155. * metadata.
  156. */
  157. #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
  158. #define OO_SHIFT 16
  159. #define OO_MASK ((1 << OO_SHIFT) - 1)
  160. #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
  161. /* Internal SLUB flags */
  162. #define __OBJECT_POISON 0x80000000UL /* Poison object */
  163. #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
  164. #ifdef CONFIG_SMP
  165. static struct notifier_block slab_notifier;
  166. #endif
  167. /*
  168. * Tracking user of a slab.
  169. */
  170. #define TRACK_ADDRS_COUNT 16
  171. struct track {
  172. unsigned long addr; /* Called from address */
  173. #ifdef CONFIG_STACKTRACE
  174. unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
  175. #endif
  176. int cpu; /* Was running on cpu */
  177. int pid; /* Pid context */
  178. unsigned long when; /* When did the operation occur */
  179. };
  180. enum track_item { TRACK_ALLOC, TRACK_FREE };
  181. #ifdef CONFIG_SYSFS
  182. static int sysfs_slab_add(struct kmem_cache *);
  183. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  184. static void memcg_propagate_slab_attrs(struct kmem_cache *s);
  185. #else
  186. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  187. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  188. { return 0; }
  189. static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
  190. #endif
  191. static inline void stat(const struct kmem_cache *s, enum stat_item si)
  192. {
  193. #ifdef CONFIG_SLUB_STATS
  194. /*
  195. * The rmw is racy on a preemptible kernel but this is acceptable, so
  196. * avoid this_cpu_add()'s irq-disable overhead.
  197. */
  198. raw_cpu_inc(s->cpu_slab->stat[si]);
  199. #endif
  200. }
  201. /********************************************************************
  202. * Core slab cache functions
  203. *******************************************************************/
  204. /* Verify that a pointer has an address that is valid within a slab page */
  205. static inline int check_valid_pointer(struct kmem_cache *s,
  206. struct page *page, const void *object)
  207. {
  208. void *base;
  209. if (!object)
  210. return 1;
  211. base = page_address(page);
  212. if (object < base || object >= base + page->objects * s->size ||
  213. (object - base) % s->size) {
  214. return 0;
  215. }
  216. return 1;
  217. }
  218. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  219. {
  220. return *(void **)(object + s->offset);
  221. }
  222. static void prefetch_freepointer(const struct kmem_cache *s, void *object)
  223. {
  224. prefetch(object + s->offset);
  225. }
  226. static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
  227. {
  228. void *p;
  229. #ifdef CONFIG_DEBUG_PAGEALLOC
  230. probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
  231. #else
  232. p = get_freepointer(s, object);
  233. #endif
  234. return p;
  235. }
  236. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  237. {
  238. *(void **)(object + s->offset) = fp;
  239. }
  240. /* Loop over all objects in a slab */
  241. #define for_each_object(__p, __s, __addr, __objects) \
  242. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  243. __p += (__s)->size)
  244. #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
  245. for (__p = (__addr), __idx = 1; __idx <= __objects;\
  246. __p += (__s)->size, __idx++)
  247. /* Determine object index from a given position */
  248. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  249. {
  250. return (p - addr) / s->size;
  251. }
  252. static inline size_t slab_ksize(const struct kmem_cache *s)
  253. {
  254. #ifdef CONFIG_SLUB_DEBUG
  255. /*
  256. * Debugging requires use of the padding between object
  257. * and whatever may come after it.
  258. */
  259. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  260. return s->object_size;
  261. #endif
  262. /*
  263. * If we have the need to store the freelist pointer
  264. * back there or track user information then we can
  265. * only use the space before that information.
  266. */
  267. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  268. return s->inuse;
  269. /*
  270. * Else we can use all the padding etc for the allocation
  271. */
  272. return s->size;
  273. }
  274. static inline int order_objects(int order, unsigned long size, int reserved)
  275. {
  276. return ((PAGE_SIZE << order) - reserved) / size;
  277. }
  278. static inline struct kmem_cache_order_objects oo_make(int order,
  279. unsigned long size, int reserved)
  280. {
  281. struct kmem_cache_order_objects x = {
  282. (order << OO_SHIFT) + order_objects(order, size, reserved)
  283. };
  284. return x;
  285. }
  286. static inline int oo_order(struct kmem_cache_order_objects x)
  287. {
  288. return x.x >> OO_SHIFT;
  289. }
  290. static inline int oo_objects(struct kmem_cache_order_objects x)
  291. {
  292. return x.x & OO_MASK;
  293. }
  294. /*
  295. * Per slab locking using the pagelock
  296. */
  297. static __always_inline void slab_lock(struct page *page)
  298. {
  299. bit_spin_lock(PG_locked, &page->flags);
  300. }
  301. static __always_inline void slab_unlock(struct page *page)
  302. {
  303. __bit_spin_unlock(PG_locked, &page->flags);
  304. }
  305. static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
  306. {
  307. struct page tmp;
  308. tmp.counters = counters_new;
  309. /*
  310. * page->counters can cover frozen/inuse/objects as well
  311. * as page->_count. If we assign to ->counters directly
  312. * we run the risk of losing updates to page->_count, so
  313. * be careful and only assign to the fields we need.
  314. */
  315. page->frozen = tmp.frozen;
  316. page->inuse = tmp.inuse;
  317. page->objects = tmp.objects;
  318. }
  319. /* Interrupts must be disabled (for the fallback code to work right) */
  320. static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  321. void *freelist_old, unsigned long counters_old,
  322. void *freelist_new, unsigned long counters_new,
  323. const char *n)
  324. {
  325. VM_BUG_ON(!irqs_disabled());
  326. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  327. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  328. if (s->flags & __CMPXCHG_DOUBLE) {
  329. if (cmpxchg_double(&page->freelist, &page->counters,
  330. freelist_old, counters_old,
  331. freelist_new, counters_new))
  332. return 1;
  333. } else
  334. #endif
  335. {
  336. slab_lock(page);
  337. if (page->freelist == freelist_old &&
  338. page->counters == counters_old) {
  339. page->freelist = freelist_new;
  340. set_page_slub_counters(page, counters_new);
  341. slab_unlock(page);
  342. return 1;
  343. }
  344. slab_unlock(page);
  345. }
  346. cpu_relax();
  347. stat(s, CMPXCHG_DOUBLE_FAIL);
  348. #ifdef SLUB_DEBUG_CMPXCHG
  349. pr_info("%s %s: cmpxchg double redo ", n, s->name);
  350. #endif
  351. return 0;
  352. }
  353. static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  354. void *freelist_old, unsigned long counters_old,
  355. void *freelist_new, unsigned long counters_new,
  356. const char *n)
  357. {
  358. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  359. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  360. if (s->flags & __CMPXCHG_DOUBLE) {
  361. if (cmpxchg_double(&page->freelist, &page->counters,
  362. freelist_old, counters_old,
  363. freelist_new, counters_new))
  364. return 1;
  365. } else
  366. #endif
  367. {
  368. unsigned long flags;
  369. local_irq_save(flags);
  370. slab_lock(page);
  371. if (page->freelist == freelist_old &&
  372. page->counters == counters_old) {
  373. page->freelist = freelist_new;
  374. set_page_slub_counters(page, counters_new);
  375. slab_unlock(page);
  376. local_irq_restore(flags);
  377. return 1;
  378. }
  379. slab_unlock(page);
  380. local_irq_restore(flags);
  381. }
  382. cpu_relax();
  383. stat(s, CMPXCHG_DOUBLE_FAIL);
  384. #ifdef SLUB_DEBUG_CMPXCHG
  385. pr_info("%s %s: cmpxchg double redo ", n, s->name);
  386. #endif
  387. return 0;
  388. }
  389. #ifdef CONFIG_SLUB_DEBUG
  390. /*
  391. * Determine a map of object in use on a page.
  392. *
  393. * Node listlock must be held to guarantee that the page does
  394. * not vanish from under us.
  395. */
  396. static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
  397. {
  398. void *p;
  399. void *addr = page_address(page);
  400. for (p = page->freelist; p; p = get_freepointer(s, p))
  401. set_bit(slab_index(p, s, addr), map);
  402. }
  403. /*
  404. * Debug settings:
  405. */
  406. #ifdef CONFIG_SLUB_DEBUG_ON
  407. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  408. #else
  409. static int slub_debug;
  410. #endif
  411. static char *slub_debug_slabs;
  412. static int disable_higher_order_debug;
  413. /*
  414. * Object debugging
  415. */
  416. static void print_section(char *text, u8 *addr, unsigned int length)
  417. {
  418. print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
  419. length, 1);
  420. }
  421. static struct track *get_track(struct kmem_cache *s, void *object,
  422. enum track_item alloc)
  423. {
  424. struct track *p;
  425. if (s->offset)
  426. p = object + s->offset + sizeof(void *);
  427. else
  428. p = object + s->inuse;
  429. return p + alloc;
  430. }
  431. static void set_track(struct kmem_cache *s, void *object,
  432. enum track_item alloc, unsigned long addr)
  433. {
  434. struct track *p = get_track(s, object, alloc);
  435. if (addr) {
  436. #ifdef CONFIG_STACKTRACE
  437. struct stack_trace trace;
  438. int i;
  439. trace.nr_entries = 0;
  440. trace.max_entries = TRACK_ADDRS_COUNT;
  441. trace.entries = p->addrs;
  442. trace.skip = 3;
  443. save_stack_trace(&trace);
  444. /* See rant in lockdep.c */
  445. if (trace.nr_entries != 0 &&
  446. trace.entries[trace.nr_entries - 1] == ULONG_MAX)
  447. trace.nr_entries--;
  448. for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
  449. p->addrs[i] = 0;
  450. #endif
  451. p->addr = addr;
  452. p->cpu = smp_processor_id();
  453. p->pid = current->pid;
  454. p->when = jiffies;
  455. } else
  456. memset(p, 0, sizeof(struct track));
  457. }
  458. static void init_tracking(struct kmem_cache *s, void *object)
  459. {
  460. if (!(s->flags & SLAB_STORE_USER))
  461. return;
  462. set_track(s, object, TRACK_FREE, 0UL);
  463. set_track(s, object, TRACK_ALLOC, 0UL);
  464. }
  465. static void print_track(const char *s, struct track *t)
  466. {
  467. if (!t->addr)
  468. return;
  469. pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
  470. s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
  471. #ifdef CONFIG_STACKTRACE
  472. {
  473. int i;
  474. for (i = 0; i < TRACK_ADDRS_COUNT; i++)
  475. if (t->addrs[i])
  476. pr_err("\t%pS\n", (void *)t->addrs[i]);
  477. else
  478. break;
  479. }
  480. #endif
  481. }
  482. static void print_tracking(struct kmem_cache *s, void *object)
  483. {
  484. if (!(s->flags & SLAB_STORE_USER))
  485. return;
  486. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  487. print_track("Freed", get_track(s, object, TRACK_FREE));
  488. }
  489. static void print_page_info(struct page *page)
  490. {
  491. pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  492. page, page->objects, page->inuse, page->freelist, page->flags);
  493. }
  494. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  495. {
  496. struct va_format vaf;
  497. va_list args;
  498. va_start(args, fmt);
  499. vaf.fmt = fmt;
  500. vaf.va = &args;
  501. pr_err("=============================================================================\n");
  502. pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
  503. pr_err("-----------------------------------------------------------------------------\n\n");
  504. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  505. va_end(args);
  506. }
  507. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  508. {
  509. struct va_format vaf;
  510. va_list args;
  511. va_start(args, fmt);
  512. vaf.fmt = fmt;
  513. vaf.va = &args;
  514. pr_err("FIX %s: %pV\n", s->name, &vaf);
  515. va_end(args);
  516. }
  517. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  518. {
  519. unsigned int off; /* Offset of last byte */
  520. u8 *addr = page_address(page);
  521. print_tracking(s, p);
  522. print_page_info(page);
  523. pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  524. p, p - addr, get_freepointer(s, p));
  525. if (p > addr + 16)
  526. print_section("Bytes b4 ", p - 16, 16);
  527. print_section("Object ", p, min_t(unsigned long, s->object_size,
  528. PAGE_SIZE));
  529. if (s->flags & SLAB_RED_ZONE)
  530. print_section("Redzone ", p + s->object_size,
  531. s->inuse - s->object_size);
  532. if (s->offset)
  533. off = s->offset + sizeof(void *);
  534. else
  535. off = s->inuse;
  536. if (s->flags & SLAB_STORE_USER)
  537. off += 2 * sizeof(struct track);
  538. if (off != s->size)
  539. /* Beginning of the filler is the free pointer */
  540. print_section("Padding ", p + off, s->size - off);
  541. dump_stack();
  542. }
  543. static void object_err(struct kmem_cache *s, struct page *page,
  544. u8 *object, char *reason)
  545. {
  546. slab_bug(s, "%s", reason);
  547. print_trailer(s, page, object);
  548. }
  549. static void slab_err(struct kmem_cache *s, struct page *page,
  550. const char *fmt, ...)
  551. {
  552. va_list args;
  553. char buf[100];
  554. va_start(args, fmt);
  555. vsnprintf(buf, sizeof(buf), fmt, args);
  556. va_end(args);
  557. slab_bug(s, "%s", buf);
  558. print_page_info(page);
  559. dump_stack();
  560. }
  561. static void init_object(struct kmem_cache *s, void *object, u8 val)
  562. {
  563. u8 *p = object;
  564. if (s->flags & __OBJECT_POISON) {
  565. memset(p, POISON_FREE, s->object_size - 1);
  566. p[s->object_size - 1] = POISON_END;
  567. }
  568. if (s->flags & SLAB_RED_ZONE)
  569. memset(p + s->object_size, val, s->inuse - s->object_size);
  570. }
  571. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  572. void *from, void *to)
  573. {
  574. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  575. memset(from, data, to - from);
  576. }
  577. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  578. u8 *object, char *what,
  579. u8 *start, unsigned int value, unsigned int bytes)
  580. {
  581. u8 *fault;
  582. u8 *end;
  583. fault = memchr_inv(start, value, bytes);
  584. if (!fault)
  585. return 1;
  586. end = start + bytes;
  587. while (end > fault && end[-1] == value)
  588. end--;
  589. slab_bug(s, "%s overwritten", what);
  590. pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  591. fault, end - 1, fault[0], value);
  592. print_trailer(s, page, object);
  593. restore_bytes(s, what, value, fault, end);
  594. return 0;
  595. }
  596. /*
  597. * Object layout:
  598. *
  599. * object address
  600. * Bytes of the object to be managed.
  601. * If the freepointer may overlay the object then the free
  602. * pointer is the first word of the object.
  603. *
  604. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  605. * 0xa5 (POISON_END)
  606. *
  607. * object + s->object_size
  608. * Padding to reach word boundary. This is also used for Redzoning.
  609. * Padding is extended by another word if Redzoning is enabled and
  610. * object_size == inuse.
  611. *
  612. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  613. * 0xcc (RED_ACTIVE) for objects in use.
  614. *
  615. * object + s->inuse
  616. * Meta data starts here.
  617. *
  618. * A. Free pointer (if we cannot overwrite object on free)
  619. * B. Tracking data for SLAB_STORE_USER
  620. * C. Padding to reach required alignment boundary or at mininum
  621. * one word if debugging is on to be able to detect writes
  622. * before the word boundary.
  623. *
  624. * Padding is done using 0x5a (POISON_INUSE)
  625. *
  626. * object + s->size
  627. * Nothing is used beyond s->size.
  628. *
  629. * If slabcaches are merged then the object_size and inuse boundaries are mostly
  630. * ignored. And therefore no slab options that rely on these boundaries
  631. * may be used with merged slabcaches.
  632. */
  633. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  634. {
  635. unsigned long off = s->inuse; /* The end of info */
  636. if (s->offset)
  637. /* Freepointer is placed after the object. */
  638. off += sizeof(void *);
  639. if (s->flags & SLAB_STORE_USER)
  640. /* We also have user information there */
  641. off += 2 * sizeof(struct track);
  642. if (s->size == off)
  643. return 1;
  644. return check_bytes_and_report(s, page, p, "Object padding",
  645. p + off, POISON_INUSE, s->size - off);
  646. }
  647. /* Check the pad bytes at the end of a slab page */
  648. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  649. {
  650. u8 *start;
  651. u8 *fault;
  652. u8 *end;
  653. int length;
  654. int remainder;
  655. if (!(s->flags & SLAB_POISON))
  656. return 1;
  657. start = page_address(page);
  658. length = (PAGE_SIZE << compound_order(page)) - s->reserved;
  659. end = start + length;
  660. remainder = length % s->size;
  661. if (!remainder)
  662. return 1;
  663. fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
  664. if (!fault)
  665. return 1;
  666. while (end > fault && end[-1] == POISON_INUSE)
  667. end--;
  668. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  669. print_section("Padding ", end - remainder, remainder);
  670. restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
  671. return 0;
  672. }
  673. static int check_object(struct kmem_cache *s, struct page *page,
  674. void *object, u8 val)
  675. {
  676. u8 *p = object;
  677. u8 *endobject = object + s->object_size;
  678. if (s->flags & SLAB_RED_ZONE) {
  679. if (!check_bytes_and_report(s, page, object, "Redzone",
  680. endobject, val, s->inuse - s->object_size))
  681. return 0;
  682. } else {
  683. if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
  684. check_bytes_and_report(s, page, p, "Alignment padding",
  685. endobject, POISON_INUSE,
  686. s->inuse - s->object_size);
  687. }
  688. }
  689. if (s->flags & SLAB_POISON) {
  690. if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
  691. (!check_bytes_and_report(s, page, p, "Poison", p,
  692. POISON_FREE, s->object_size - 1) ||
  693. !check_bytes_and_report(s, page, p, "Poison",
  694. p + s->object_size - 1, POISON_END, 1)))
  695. return 0;
  696. /*
  697. * check_pad_bytes cleans up on its own.
  698. */
  699. check_pad_bytes(s, page, p);
  700. }
  701. if (!s->offset && val == SLUB_RED_ACTIVE)
  702. /*
  703. * Object and freepointer overlap. Cannot check
  704. * freepointer while object is allocated.
  705. */
  706. return 1;
  707. /* Check free pointer validity */
  708. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  709. object_err(s, page, p, "Freepointer corrupt");
  710. /*
  711. * No choice but to zap it and thus lose the remainder
  712. * of the free objects in this slab. May cause
  713. * another error because the object count is now wrong.
  714. */
  715. set_freepointer(s, p, NULL);
  716. return 0;
  717. }
  718. return 1;
  719. }
  720. static int check_slab(struct kmem_cache *s, struct page *page)
  721. {
  722. int maxobj;
  723. VM_BUG_ON(!irqs_disabled());
  724. if (!PageSlab(page)) {
  725. slab_err(s, page, "Not a valid slab page");
  726. return 0;
  727. }
  728. maxobj = order_objects(compound_order(page), s->size, s->reserved);
  729. if (page->objects > maxobj) {
  730. slab_err(s, page, "objects %u > max %u",
  731. s->name, page->objects, maxobj);
  732. return 0;
  733. }
  734. if (page->inuse > page->objects) {
  735. slab_err(s, page, "inuse %u > max %u",
  736. s->name, page->inuse, page->objects);
  737. return 0;
  738. }
  739. /* Slab_pad_check fixes things up after itself */
  740. slab_pad_check(s, page);
  741. return 1;
  742. }
  743. /*
  744. * Determine if a certain object on a page is on the freelist. Must hold the
  745. * slab lock to guarantee that the chains are in a consistent state.
  746. */
  747. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  748. {
  749. int nr = 0;
  750. void *fp;
  751. void *object = NULL;
  752. unsigned long max_objects;
  753. fp = page->freelist;
  754. while (fp && nr <= page->objects) {
  755. if (fp == search)
  756. return 1;
  757. if (!check_valid_pointer(s, page, fp)) {
  758. if (object) {
  759. object_err(s, page, object,
  760. "Freechain corrupt");
  761. set_freepointer(s, object, NULL);
  762. } else {
  763. slab_err(s, page, "Freepointer corrupt");
  764. page->freelist = NULL;
  765. page->inuse = page->objects;
  766. slab_fix(s, "Freelist cleared");
  767. return 0;
  768. }
  769. break;
  770. }
  771. object = fp;
  772. fp = get_freepointer(s, object);
  773. nr++;
  774. }
  775. max_objects = order_objects(compound_order(page), s->size, s->reserved);
  776. if (max_objects > MAX_OBJS_PER_PAGE)
  777. max_objects = MAX_OBJS_PER_PAGE;
  778. if (page->objects != max_objects) {
  779. slab_err(s, page, "Wrong number of objects. Found %d but "
  780. "should be %d", page->objects, max_objects);
  781. page->objects = max_objects;
  782. slab_fix(s, "Number of objects adjusted.");
  783. }
  784. if (page->inuse != page->objects - nr) {
  785. slab_err(s, page, "Wrong object count. Counter is %d but "
  786. "counted were %d", page->inuse, page->objects - nr);
  787. page->inuse = page->objects - nr;
  788. slab_fix(s, "Object count adjusted.");
  789. }
  790. return search == NULL;
  791. }
  792. static void trace(struct kmem_cache *s, struct page *page, void *object,
  793. int alloc)
  794. {
  795. if (s->flags & SLAB_TRACE) {
  796. pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  797. s->name,
  798. alloc ? "alloc" : "free",
  799. object, page->inuse,
  800. page->freelist);
  801. if (!alloc)
  802. print_section("Object ", (void *)object,
  803. s->object_size);
  804. dump_stack();
  805. }
  806. }
  807. /*
  808. * Tracking of fully allocated slabs for debugging purposes.
  809. */
  810. static void add_full(struct kmem_cache *s,
  811. struct kmem_cache_node *n, struct page *page)
  812. {
  813. if (!(s->flags & SLAB_STORE_USER))
  814. return;
  815. lockdep_assert_held(&n->list_lock);
  816. list_add(&page->lru, &n->full);
  817. }
  818. static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
  819. {
  820. if (!(s->flags & SLAB_STORE_USER))
  821. return;
  822. lockdep_assert_held(&n->list_lock);
  823. list_del(&page->lru);
  824. }
  825. /* Tracking of the number of slabs for debugging purposes */
  826. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  827. {
  828. struct kmem_cache_node *n = get_node(s, node);
  829. return atomic_long_read(&n->nr_slabs);
  830. }
  831. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  832. {
  833. return atomic_long_read(&n->nr_slabs);
  834. }
  835. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  836. {
  837. struct kmem_cache_node *n = get_node(s, node);
  838. /*
  839. * May be called early in order to allocate a slab for the
  840. * kmem_cache_node structure. Solve the chicken-egg
  841. * dilemma by deferring the increment of the count during
  842. * bootstrap (see early_kmem_cache_node_alloc).
  843. */
  844. if (likely(n)) {
  845. atomic_long_inc(&n->nr_slabs);
  846. atomic_long_add(objects, &n->total_objects);
  847. }
  848. }
  849. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  850. {
  851. struct kmem_cache_node *n = get_node(s, node);
  852. atomic_long_dec(&n->nr_slabs);
  853. atomic_long_sub(objects, &n->total_objects);
  854. }
  855. /* Object debug checks for alloc/free paths */
  856. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  857. void *object)
  858. {
  859. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  860. return;
  861. init_object(s, object, SLUB_RED_INACTIVE);
  862. init_tracking(s, object);
  863. }
  864. static noinline int alloc_debug_processing(struct kmem_cache *s,
  865. struct page *page,
  866. void *object, unsigned long addr)
  867. {
  868. if (!check_slab(s, page))
  869. goto bad;
  870. if (!check_valid_pointer(s, page, object)) {
  871. object_err(s, page, object, "Freelist Pointer check fails");
  872. goto bad;
  873. }
  874. if (!check_object(s, page, object, SLUB_RED_INACTIVE))
  875. goto bad;
  876. /* Success perform special debug activities for allocs */
  877. if (s->flags & SLAB_STORE_USER)
  878. set_track(s, object, TRACK_ALLOC, addr);
  879. trace(s, page, object, 1);
  880. init_object(s, object, SLUB_RED_ACTIVE);
  881. return 1;
  882. bad:
  883. if (PageSlab(page)) {
  884. /*
  885. * If this is a slab page then lets do the best we can
  886. * to avoid issues in the future. Marking all objects
  887. * as used avoids touching the remaining objects.
  888. */
  889. slab_fix(s, "Marking all objects used");
  890. page->inuse = page->objects;
  891. page->freelist = NULL;
  892. }
  893. return 0;
  894. }
  895. static noinline struct kmem_cache_node *free_debug_processing(
  896. struct kmem_cache *s, struct page *page, void *object,
  897. unsigned long addr, unsigned long *flags)
  898. {
  899. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  900. spin_lock_irqsave(&n->list_lock, *flags);
  901. slab_lock(page);
  902. if (!check_slab(s, page))
  903. goto fail;
  904. if (!check_valid_pointer(s, page, object)) {
  905. slab_err(s, page, "Invalid object pointer 0x%p", object);
  906. goto fail;
  907. }
  908. if (on_freelist(s, page, object)) {
  909. object_err(s, page, object, "Object already free");
  910. goto fail;
  911. }
  912. if (!check_object(s, page, object, SLUB_RED_ACTIVE))
  913. goto out;
  914. if (unlikely(s != page->slab_cache)) {
  915. if (!PageSlab(page)) {
  916. slab_err(s, page, "Attempt to free object(0x%p) "
  917. "outside of slab", object);
  918. } else if (!page->slab_cache) {
  919. pr_err("SLUB <none>: no slab for object 0x%p.\n",
  920. object);
  921. dump_stack();
  922. } else
  923. object_err(s, page, object,
  924. "page slab pointer corrupt.");
  925. goto fail;
  926. }
  927. if (s->flags & SLAB_STORE_USER)
  928. set_track(s, object, TRACK_FREE, addr);
  929. trace(s, page, object, 0);
  930. init_object(s, object, SLUB_RED_INACTIVE);
  931. out:
  932. slab_unlock(page);
  933. /*
  934. * Keep node_lock to preserve integrity
  935. * until the object is actually freed
  936. */
  937. return n;
  938. fail:
  939. slab_unlock(page);
  940. spin_unlock_irqrestore(&n->list_lock, *flags);
  941. slab_fix(s, "Object at 0x%p not freed", object);
  942. return NULL;
  943. }
  944. static int __init setup_slub_debug(char *str)
  945. {
  946. slub_debug = DEBUG_DEFAULT_FLAGS;
  947. if (*str++ != '=' || !*str)
  948. /*
  949. * No options specified. Switch on full debugging.
  950. */
  951. goto out;
  952. if (*str == ',')
  953. /*
  954. * No options but restriction on slabs. This means full
  955. * debugging for slabs matching a pattern.
  956. */
  957. goto check_slabs;
  958. if (tolower(*str) == 'o') {
  959. /*
  960. * Avoid enabling debugging on caches if its minimum order
  961. * would increase as a result.
  962. */
  963. disable_higher_order_debug = 1;
  964. goto out;
  965. }
  966. slub_debug = 0;
  967. if (*str == '-')
  968. /*
  969. * Switch off all debugging measures.
  970. */
  971. goto out;
  972. /*
  973. * Determine which debug features should be switched on
  974. */
  975. for (; *str && *str != ','; str++) {
  976. switch (tolower(*str)) {
  977. case 'f':
  978. slub_debug |= SLAB_DEBUG_FREE;
  979. break;
  980. case 'z':
  981. slub_debug |= SLAB_RED_ZONE;
  982. break;
  983. case 'p':
  984. slub_debug |= SLAB_POISON;
  985. break;
  986. case 'u':
  987. slub_debug |= SLAB_STORE_USER;
  988. break;
  989. case 't':
  990. slub_debug |= SLAB_TRACE;
  991. break;
  992. case 'a':
  993. slub_debug |= SLAB_FAILSLAB;
  994. break;
  995. default:
  996. pr_err("slub_debug option '%c' unknown. skipped\n",
  997. *str);
  998. }
  999. }
  1000. check_slabs:
  1001. if (*str == ',')
  1002. slub_debug_slabs = str + 1;
  1003. out:
  1004. return 1;
  1005. }
  1006. __setup("slub_debug", setup_slub_debug);
  1007. unsigned long kmem_cache_flags(unsigned long object_size,
  1008. unsigned long flags, const char *name,
  1009. void (*ctor)(void *))
  1010. {
  1011. /*
  1012. * Enable debugging if selected on the kernel commandline.
  1013. */
  1014. if (slub_debug && (!slub_debug_slabs || (name &&
  1015. !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
  1016. flags |= slub_debug;
  1017. return flags;
  1018. }
  1019. #else
  1020. static inline void setup_object_debug(struct kmem_cache *s,
  1021. struct page *page, void *object) {}
  1022. static inline int alloc_debug_processing(struct kmem_cache *s,
  1023. struct page *page, void *object, unsigned long addr) { return 0; }
  1024. static inline struct kmem_cache_node *free_debug_processing(
  1025. struct kmem_cache *s, struct page *page, void *object,
  1026. unsigned long addr, unsigned long *flags) { return NULL; }
  1027. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  1028. { return 1; }
  1029. static inline int check_object(struct kmem_cache *s, struct page *page,
  1030. void *object, u8 val) { return 1; }
  1031. static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
  1032. struct page *page) {}
  1033. static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
  1034. struct page *page) {}
  1035. unsigned long kmem_cache_flags(unsigned long object_size,
  1036. unsigned long flags, const char *name,
  1037. void (*ctor)(void *))
  1038. {
  1039. return flags;
  1040. }
  1041. #define slub_debug 0
  1042. #define disable_higher_order_debug 0
  1043. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  1044. { return 0; }
  1045. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  1046. { return 0; }
  1047. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  1048. int objects) {}
  1049. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  1050. int objects) {}
  1051. #endif /* CONFIG_SLUB_DEBUG */
  1052. /*
  1053. * Hooks for other subsystems that check memory allocations. In a typical
  1054. * production configuration these hooks all should produce no code at all.
  1055. */
  1056. static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
  1057. {
  1058. kmemleak_alloc(ptr, size, 1, flags);
  1059. }
  1060. static inline void kfree_hook(const void *x)
  1061. {
  1062. kmemleak_free(x);
  1063. }
  1064. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  1065. {
  1066. flags &= gfp_allowed_mask;
  1067. lockdep_trace_alloc(flags);
  1068. might_sleep_if(flags & __GFP_WAIT);
  1069. return should_failslab(s->object_size, flags, s->flags);
  1070. }
  1071. static inline void slab_post_alloc_hook(struct kmem_cache *s,
  1072. gfp_t flags, void *object)
  1073. {
  1074. flags &= gfp_allowed_mask;
  1075. kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
  1076. kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
  1077. }
  1078. static inline void slab_free_hook(struct kmem_cache *s, void *x)
  1079. {
  1080. kmemleak_free_recursive(x, s->flags);
  1081. /*
  1082. * Trouble is that we may no longer disable interrupts in the fast path
  1083. * So in order to make the debug calls that expect irqs to be
  1084. * disabled we need to disable interrupts temporarily.
  1085. */
  1086. #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
  1087. {
  1088. unsigned long flags;
  1089. local_irq_save(flags);
  1090. kmemcheck_slab_free(s, x, s->object_size);
  1091. debug_check_no_locks_freed(x, s->object_size);
  1092. local_irq_restore(flags);
  1093. }
  1094. #endif
  1095. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  1096. debug_check_no_obj_freed(x, s->object_size);
  1097. }
  1098. /*
  1099. * Slab allocation and freeing
  1100. */
  1101. static inline struct page *alloc_slab_page(struct kmem_cache *s,
  1102. gfp_t flags, int node, struct kmem_cache_order_objects oo)
  1103. {
  1104. struct page *page;
  1105. int order = oo_order(oo);
  1106. flags |= __GFP_NOTRACK;
  1107. if (memcg_charge_slab(s, flags, order))
  1108. return NULL;
  1109. if (node == NUMA_NO_NODE)
  1110. page = alloc_pages(flags, order);
  1111. else
  1112. page = alloc_pages_exact_node(node, flags, order);
  1113. if (!page)
  1114. memcg_uncharge_slab(s, order);
  1115. return page;
  1116. }
  1117. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  1118. {
  1119. struct page *page;
  1120. struct kmem_cache_order_objects oo = s->oo;
  1121. gfp_t alloc_gfp;
  1122. flags &= gfp_allowed_mask;
  1123. if (flags & __GFP_WAIT)
  1124. local_irq_enable();
  1125. flags |= s->allocflags;
  1126. /*
  1127. * Let the initial higher-order allocation fail under memory pressure
  1128. * so we fall-back to the minimum order allocation.
  1129. */
  1130. alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
  1131. page = alloc_slab_page(s, alloc_gfp, node, oo);
  1132. if (unlikely(!page)) {
  1133. oo = s->min;
  1134. alloc_gfp = flags;
  1135. /*
  1136. * Allocation may have failed due to fragmentation.
  1137. * Try a lower order alloc if possible
  1138. */
  1139. page = alloc_slab_page(s, alloc_gfp, node, oo);
  1140. if (page)
  1141. stat(s, ORDER_FALLBACK);
  1142. }
  1143. if (kmemcheck_enabled && page
  1144. && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
  1145. int pages = 1 << oo_order(oo);
  1146. kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
  1147. /*
  1148. * Objects from caches that have a constructor don't get
  1149. * cleared when they're allocated, so we need to do it here.
  1150. */
  1151. if (s->ctor)
  1152. kmemcheck_mark_uninitialized_pages(page, pages);
  1153. else
  1154. kmemcheck_mark_unallocated_pages(page, pages);
  1155. }
  1156. if (flags & __GFP_WAIT)
  1157. local_irq_disable();
  1158. if (!page)
  1159. return NULL;
  1160. page->objects = oo_objects(oo);
  1161. mod_zone_page_state(page_zone(page),
  1162. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1163. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1164. 1 << oo_order(oo));
  1165. return page;
  1166. }
  1167. static void setup_object(struct kmem_cache *s, struct page *page,
  1168. void *object)
  1169. {
  1170. setup_object_debug(s, page, object);
  1171. if (unlikely(s->ctor))
  1172. s->ctor(object);
  1173. }
  1174. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  1175. {
  1176. struct page *page;
  1177. void *start;
  1178. void *p;
  1179. int order;
  1180. int idx;
  1181. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  1182. page = allocate_slab(s,
  1183. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  1184. if (!page)
  1185. goto out;
  1186. order = compound_order(page);
  1187. inc_slabs_node(s, page_to_nid(page), page->objects);
  1188. page->slab_cache = s;
  1189. __SetPageSlab(page);
  1190. if (page->pfmemalloc)
  1191. SetPageSlabPfmemalloc(page);
  1192. start = page_address(page);
  1193. if (unlikely(s->flags & SLAB_POISON))
  1194. memset(start, POISON_INUSE, PAGE_SIZE << order);
  1195. for_each_object_idx(p, idx, s, start, page->objects) {
  1196. setup_object(s, page, p);
  1197. if (likely(idx < page->objects))
  1198. set_freepointer(s, p, p + s->size);
  1199. else
  1200. set_freepointer(s, p, NULL);
  1201. }
  1202. page->freelist = start;
  1203. page->inuse = page->objects;
  1204. page->frozen = 1;
  1205. out:
  1206. return page;
  1207. }
  1208. static void __free_slab(struct kmem_cache *s, struct page *page)
  1209. {
  1210. int order = compound_order(page);
  1211. int pages = 1 << order;
  1212. if (kmem_cache_debug(s)) {
  1213. void *p;
  1214. slab_pad_check(s, page);
  1215. for_each_object(p, s, page_address(page),
  1216. page->objects)
  1217. check_object(s, page, p, SLUB_RED_INACTIVE);
  1218. }
  1219. kmemcheck_free_shadow(page, compound_order(page));
  1220. mod_zone_page_state(page_zone(page),
  1221. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1222. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1223. -pages);
  1224. __ClearPageSlabPfmemalloc(page);
  1225. __ClearPageSlab(page);
  1226. page_mapcount_reset(page);
  1227. if (current->reclaim_state)
  1228. current->reclaim_state->reclaimed_slab += pages;
  1229. __free_pages(page, order);
  1230. memcg_uncharge_slab(s, order);
  1231. }
  1232. #define need_reserve_slab_rcu \
  1233. (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
  1234. static void rcu_free_slab(struct rcu_head *h)
  1235. {
  1236. struct page *page;
  1237. if (need_reserve_slab_rcu)
  1238. page = virt_to_head_page(h);
  1239. else
  1240. page = container_of((struct list_head *)h, struct page, lru);
  1241. __free_slab(page->slab_cache, page);
  1242. }
  1243. static void free_slab(struct kmem_cache *s, struct page *page)
  1244. {
  1245. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1246. struct rcu_head *head;
  1247. if (need_reserve_slab_rcu) {
  1248. int order = compound_order(page);
  1249. int offset = (PAGE_SIZE << order) - s->reserved;
  1250. VM_BUG_ON(s->reserved != sizeof(*head));
  1251. head = page_address(page) + offset;
  1252. } else {
  1253. /*
  1254. * RCU free overloads the RCU head over the LRU
  1255. */
  1256. head = (void *)&page->lru;
  1257. }
  1258. call_rcu(head, rcu_free_slab);
  1259. } else
  1260. __free_slab(s, page);
  1261. }
  1262. static void discard_slab(struct kmem_cache *s, struct page *page)
  1263. {
  1264. dec_slabs_node(s, page_to_nid(page), page->objects);
  1265. free_slab(s, page);
  1266. }
  1267. /*
  1268. * Management of partially allocated slabs.
  1269. */
  1270. static inline void
  1271. __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
  1272. {
  1273. n->nr_partial++;
  1274. if (tail == DEACTIVATE_TO_TAIL)
  1275. list_add_tail(&page->lru, &n->partial);
  1276. else
  1277. list_add(&page->lru, &n->partial);
  1278. }
  1279. static inline void add_partial(struct kmem_cache_node *n,
  1280. struct page *page, int tail)
  1281. {
  1282. lockdep_assert_held(&n->list_lock);
  1283. __add_partial(n, page, tail);
  1284. }
  1285. static inline void
  1286. __remove_partial(struct kmem_cache_node *n, struct page *page)
  1287. {
  1288. list_del(&page->lru);
  1289. n->nr_partial--;
  1290. }
  1291. static inline void remove_partial(struct kmem_cache_node *n,
  1292. struct page *page)
  1293. {
  1294. lockdep_assert_held(&n->list_lock);
  1295. __remove_partial(n, page);
  1296. }
  1297. /*
  1298. * Remove slab from the partial list, freeze it and
  1299. * return the pointer to the freelist.
  1300. *
  1301. * Returns a list of objects or NULL if it fails.
  1302. */
  1303. static inline void *acquire_slab(struct kmem_cache *s,
  1304. struct kmem_cache_node *n, struct page *page,
  1305. int mode, int *objects)
  1306. {
  1307. void *freelist;
  1308. unsigned long counters;
  1309. struct page new;
  1310. lockdep_assert_held(&n->list_lock);
  1311. /*
  1312. * Zap the freelist and set the frozen bit.
  1313. * The old freelist is the list of objects for the
  1314. * per cpu allocation list.
  1315. */
  1316. freelist = page->freelist;
  1317. counters = page->counters;
  1318. new.counters = counters;
  1319. *objects = new.objects - new.inuse;
  1320. if (mode) {
  1321. new.inuse = page->objects;
  1322. new.freelist = NULL;
  1323. } else {
  1324. new.freelist = freelist;
  1325. }
  1326. VM_BUG_ON(new.frozen);
  1327. new.frozen = 1;
  1328. if (!__cmpxchg_double_slab(s, page,
  1329. freelist, counters,
  1330. new.freelist, new.counters,
  1331. "acquire_slab"))
  1332. return NULL;
  1333. remove_partial(n, page);
  1334. WARN_ON(!freelist);
  1335. return freelist;
  1336. }
  1337. static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
  1338. static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
  1339. /*
  1340. * Try to allocate a partial slab from a specific node.
  1341. */
  1342. static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
  1343. struct kmem_cache_cpu *c, gfp_t flags)
  1344. {
  1345. struct page *page, *page2;
  1346. void *object = NULL;
  1347. int available = 0;
  1348. int objects;
  1349. /*
  1350. * Racy check. If we mistakenly see no partial slabs then we
  1351. * just allocate an empty slab. If we mistakenly try to get a
  1352. * partial slab and there is none available then get_partials()
  1353. * will return NULL.
  1354. */
  1355. if (!n || !n->nr_partial)
  1356. return NULL;
  1357. spin_lock(&n->list_lock);
  1358. list_for_each_entry_safe(page, page2, &n->partial, lru) {
  1359. void *t;
  1360. if (!pfmemalloc_match(page, flags))
  1361. continue;
  1362. t = acquire_slab(s, n, page, object == NULL, &objects);
  1363. if (!t)
  1364. break;
  1365. available += objects;
  1366. if (!object) {
  1367. c->page = page;
  1368. stat(s, ALLOC_FROM_PARTIAL);
  1369. object = t;
  1370. } else {
  1371. put_cpu_partial(s, page, 0);
  1372. stat(s, CPU_PARTIAL_NODE);
  1373. }
  1374. if (!kmem_cache_has_cpu_partial(s)
  1375. || available > s->cpu_partial / 2)
  1376. break;
  1377. }
  1378. spin_unlock(&n->list_lock);
  1379. return object;
  1380. }
  1381. /*
  1382. * Get a page from somewhere. Search in increasing NUMA distances.
  1383. */
  1384. static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
  1385. struct kmem_cache_cpu *c)
  1386. {
  1387. #ifdef CONFIG_NUMA
  1388. struct zonelist *zonelist;
  1389. struct zoneref *z;
  1390. struct zone *zone;
  1391. enum zone_type high_zoneidx = gfp_zone(flags);
  1392. void *object;
  1393. unsigned int cpuset_mems_cookie;
  1394. /*
  1395. * The defrag ratio allows a configuration of the tradeoffs between
  1396. * inter node defragmentation and node local allocations. A lower
  1397. * defrag_ratio increases the tendency to do local allocations
  1398. * instead of attempting to obtain partial slabs from other nodes.
  1399. *
  1400. * If the defrag_ratio is set to 0 then kmalloc() always
  1401. * returns node local objects. If the ratio is higher then kmalloc()
  1402. * may return off node objects because partial slabs are obtained
  1403. * from other nodes and filled up.
  1404. *
  1405. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1406. * defrag_ratio = 1000) then every (well almost) allocation will
  1407. * first attempt to defrag slab caches on other nodes. This means
  1408. * scanning over all nodes to look for partial slabs which may be
  1409. * expensive if we do it every time we are trying to find a slab
  1410. * with available objects.
  1411. */
  1412. if (!s->remote_node_defrag_ratio ||
  1413. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1414. return NULL;
  1415. do {
  1416. cpuset_mems_cookie = read_mems_allowed_begin();
  1417. zonelist = node_zonelist(mempolicy_slab_node(), flags);
  1418. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1419. struct kmem_cache_node *n;
  1420. n = get_node(s, zone_to_nid(zone));
  1421. if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
  1422. n->nr_partial > s->min_partial) {
  1423. object = get_partial_node(s, n, c, flags);
  1424. if (object) {
  1425. /*
  1426. * Don't check read_mems_allowed_retry()
  1427. * here - if mems_allowed was updated in
  1428. * parallel, that was a harmless race
  1429. * between allocation and the cpuset
  1430. * update
  1431. */
  1432. return object;
  1433. }
  1434. }
  1435. }
  1436. } while (read_mems_allowed_retry(cpuset_mems_cookie));
  1437. #endif
  1438. return NULL;
  1439. }
  1440. /*
  1441. * Get a partial page, lock it and return it.
  1442. */
  1443. static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
  1444. struct kmem_cache_cpu *c)
  1445. {
  1446. void *object;
  1447. int searchnode = node;
  1448. if (node == NUMA_NO_NODE)
  1449. searchnode = numa_mem_id();
  1450. else if (!node_present_pages(node))
  1451. searchnode = node_to_mem_node(node);
  1452. object = get_partial_node(s, get_node(s, searchnode), c, flags);
  1453. if (object || node != NUMA_NO_NODE)
  1454. return object;
  1455. return get_any_partial(s, flags, c);
  1456. }
  1457. #ifdef CONFIG_PREEMPT
  1458. /*
  1459. * Calculate the next globally unique transaction for disambiguiation
  1460. * during cmpxchg. The transactions start with the cpu number and are then
  1461. * incremented by CONFIG_NR_CPUS.
  1462. */
  1463. #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
  1464. #else
  1465. /*
  1466. * No preemption supported therefore also no need to check for
  1467. * different cpus.
  1468. */
  1469. #define TID_STEP 1
  1470. #endif
  1471. static inline unsigned long next_tid(unsigned long tid)
  1472. {
  1473. return tid + TID_STEP;
  1474. }
  1475. static inline unsigned int tid_to_cpu(unsigned long tid)
  1476. {
  1477. return tid % TID_STEP;
  1478. }
  1479. static inline unsigned long tid_to_event(unsigned long tid)
  1480. {
  1481. return tid / TID_STEP;
  1482. }
  1483. static inline unsigned int init_tid(int cpu)
  1484. {
  1485. return cpu;
  1486. }
  1487. static inline void note_cmpxchg_failure(const char *n,
  1488. const struct kmem_cache *s, unsigned long tid)
  1489. {
  1490. #ifdef SLUB_DEBUG_CMPXCHG
  1491. unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
  1492. pr_info("%s %s: cmpxchg redo ", n, s->name);
  1493. #ifdef CONFIG_PREEMPT
  1494. if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
  1495. pr_warn("due to cpu change %d -> %d\n",
  1496. tid_to_cpu(tid), tid_to_cpu(actual_tid));
  1497. else
  1498. #endif
  1499. if (tid_to_event(tid) != tid_to_event(actual_tid))
  1500. pr_warn("due to cpu running other code. Event %ld->%ld\n",
  1501. tid_to_event(tid), tid_to_event(actual_tid));
  1502. else
  1503. pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
  1504. actual_tid, tid, next_tid(tid));
  1505. #endif
  1506. stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
  1507. }
  1508. static void init_kmem_cache_cpus(struct kmem_cache *s)
  1509. {
  1510. int cpu;
  1511. for_each_possible_cpu(cpu)
  1512. per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
  1513. }
  1514. /*
  1515. * Remove the cpu slab
  1516. */
  1517. static void deactivate_slab(struct kmem_cache *s, struct page *page,
  1518. void *freelist)
  1519. {
  1520. enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
  1521. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1522. int lock = 0;
  1523. enum slab_modes l = M_NONE, m = M_NONE;
  1524. void *nextfree;
  1525. int tail = DEACTIVATE_TO_HEAD;
  1526. struct page new;
  1527. struct page old;
  1528. if (page->freelist) {
  1529. stat(s, DEACTIVATE_REMOTE_FREES);
  1530. tail = DEACTIVATE_TO_TAIL;
  1531. }
  1532. /*
  1533. * Stage one: Free all available per cpu objects back
  1534. * to the page freelist while it is still frozen. Leave the
  1535. * last one.
  1536. *
  1537. * There is no need to take the list->lock because the page
  1538. * is still frozen.
  1539. */
  1540. while (freelist && (nextfree = get_freepointer(s, freelist))) {
  1541. void *prior;
  1542. unsigned long counters;
  1543. do {
  1544. prior = page->freelist;
  1545. counters = page->counters;
  1546. set_freepointer(s, freelist, prior);
  1547. new.counters = counters;
  1548. new.inuse--;
  1549. VM_BUG_ON(!new.frozen);
  1550. } while (!__cmpxchg_double_slab(s, page,
  1551. prior, counters,
  1552. freelist, new.counters,
  1553. "drain percpu freelist"));
  1554. freelist = nextfree;
  1555. }
  1556. /*
  1557. * Stage two: Ensure that the page is unfrozen while the
  1558. * list presence reflects the actual number of objects
  1559. * during unfreeze.
  1560. *
  1561. * We setup the list membership and then perform a cmpxchg
  1562. * with the count. If there is a mismatch then the page
  1563. * is not unfrozen but the page is on the wrong list.
  1564. *
  1565. * Then we restart the process which may have to remove
  1566. * the page from the list that we just put it on again
  1567. * because the number of objects in the slab may have
  1568. * changed.
  1569. */
  1570. redo:
  1571. old.freelist = page->freelist;
  1572. old.counters = page->counters;
  1573. VM_BUG_ON(!old.frozen);
  1574. /* Determine target state of the slab */
  1575. new.counters = old.counters;
  1576. if (freelist) {
  1577. new.inuse--;
  1578. set_freepointer(s, freelist, old.freelist);
  1579. new.freelist = freelist;
  1580. } else
  1581. new.freelist = old.freelist;
  1582. new.frozen = 0;
  1583. if (!new.inuse && n->nr_partial >= s->min_partial)
  1584. m = M_FREE;
  1585. else if (new.freelist) {
  1586. m = M_PARTIAL;
  1587. if (!lock) {
  1588. lock = 1;
  1589. /*
  1590. * Taking the spinlock removes the possiblity
  1591. * that acquire_slab() will see a slab page that
  1592. * is frozen
  1593. */
  1594. spin_lock(&n->list_lock);
  1595. }
  1596. } else {
  1597. m = M_FULL;
  1598. if (kmem_cache_debug(s) && !lock) {
  1599. lock = 1;
  1600. /*
  1601. * This also ensures that the scanning of full
  1602. * slabs from diagnostic functions will not see
  1603. * any frozen slabs.
  1604. */
  1605. spin_lock(&n->list_lock);
  1606. }
  1607. }
  1608. if (l != m) {
  1609. if (l == M_PARTIAL)
  1610. remove_partial(n, page);
  1611. else if (l == M_FULL)
  1612. remove_full(s, n, page);
  1613. if (m == M_PARTIAL) {
  1614. add_partial(n, page, tail);
  1615. stat(s, tail);
  1616. } else if (m == M_FULL) {
  1617. stat(s, DEACTIVATE_FULL);
  1618. add_full(s, n, page);
  1619. }
  1620. }
  1621. l = m;
  1622. if (!__cmpxchg_double_slab(s, page,
  1623. old.freelist, old.counters,
  1624. new.freelist, new.counters,
  1625. "unfreezing slab"))
  1626. goto redo;
  1627. if (lock)
  1628. spin_unlock(&n->list_lock);
  1629. if (m == M_FREE) {
  1630. stat(s, DEACTIVATE_EMPTY);
  1631. discard_slab(s, page);
  1632. stat(s, FREE_SLAB);
  1633. }
  1634. }
  1635. /*
  1636. * Unfreeze all the cpu partial slabs.
  1637. *
  1638. * This function must be called with interrupts disabled
  1639. * for the cpu using c (or some other guarantee must be there
  1640. * to guarantee no concurrent accesses).
  1641. */
  1642. static void unfreeze_partials(struct kmem_cache *s,
  1643. struct kmem_cache_cpu *c)
  1644. {
  1645. #ifdef CONFIG_SLUB_CPU_PARTIAL
  1646. struct kmem_cache_node *n = NULL, *n2 = NULL;
  1647. struct page *page, *discard_page = NULL;
  1648. while ((page = c->partial)) {
  1649. struct page new;
  1650. struct page old;
  1651. c->partial = page->next;
  1652. n2 = get_node(s, page_to_nid(page));
  1653. if (n != n2) {
  1654. if (n)
  1655. spin_unlock(&n->list_lock);
  1656. n = n2;
  1657. spin_lock(&n->list_lock);
  1658. }
  1659. do {
  1660. old.freelist = page->freelist;
  1661. old.counters = page->counters;
  1662. VM_BUG_ON(!old.frozen);
  1663. new.counters = old.counters;
  1664. new.freelist = old.freelist;
  1665. new.frozen = 0;
  1666. } while (!__cmpxchg_double_slab(s, page,
  1667. old.freelist, old.counters,
  1668. new.freelist, new.counters,
  1669. "unfreezing slab"));
  1670. if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
  1671. page->next = discard_page;
  1672. discard_page = page;
  1673. } else {
  1674. add_partial(n, page, DEACTIVATE_TO_TAIL);
  1675. stat(s, FREE_ADD_PARTIAL);
  1676. }
  1677. }
  1678. if (n)
  1679. spin_unlock(&n->list_lock);
  1680. while (discard_page) {
  1681. page = discard_page;
  1682. discard_page = discard_page->next;
  1683. stat(s, DEACTIVATE_EMPTY);
  1684. discard_slab(s, page);
  1685. stat(s, FREE_SLAB);
  1686. }
  1687. #endif
  1688. }
  1689. /*
  1690. * Put a page that was just frozen (in __slab_free) into a partial page
  1691. * slot if available. This is done without interrupts disabled and without
  1692. * preemption disabled. The cmpxchg is racy and may put the partial page
  1693. * onto a random cpus partial slot.
  1694. *
  1695. * If we did not find a slot then simply move all the partials to the
  1696. * per node partial list.
  1697. */
  1698. static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
  1699. {
  1700. #ifdef CONFIG_SLUB_CPU_PARTIAL
  1701. struct page *oldpage;
  1702. int pages;
  1703. int pobjects;
  1704. do {
  1705. pages = 0;
  1706. pobjects = 0;
  1707. oldpage = this_cpu_read(s->cpu_slab->partial);
  1708. if (oldpage) {
  1709. pobjects = oldpage->pobjects;
  1710. pages = oldpage->pages;
  1711. if (drain && pobjects > s->cpu_partial) {
  1712. unsigned long flags;
  1713. /*
  1714. * partial array is full. Move the existing
  1715. * set to the per node partial list.
  1716. */
  1717. local_irq_save(flags);
  1718. unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
  1719. local_irq_restore(flags);
  1720. oldpage = NULL;
  1721. pobjects = 0;
  1722. pages = 0;
  1723. stat(s, CPU_PARTIAL_DRAIN);
  1724. }
  1725. }
  1726. pages++;
  1727. pobjects += page->objects - page->inuse;
  1728. page->pages = pages;
  1729. page->pobjects = pobjects;
  1730. page->next = oldpage;
  1731. } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
  1732. != oldpage);
  1733. #endif
  1734. }
  1735. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1736. {
  1737. stat(s, CPUSLAB_FLUSH);
  1738. deactivate_slab(s, c->page, c->freelist);
  1739. c->tid = next_tid(c->tid);
  1740. c->page = NULL;
  1741. c->freelist = NULL;
  1742. }
  1743. /*
  1744. * Flush cpu slab.
  1745. *
  1746. * Called from IPI handler with interrupts disabled.
  1747. */
  1748. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1749. {
  1750. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1751. if (likely(c)) {
  1752. if (c->page)
  1753. flush_slab(s, c);
  1754. unfreeze_partials(s, c);
  1755. }
  1756. }
  1757. static void flush_cpu_slab(void *d)
  1758. {
  1759. struct kmem_cache *s = d;
  1760. __flush_cpu_slab(s, smp_processor_id());
  1761. }
  1762. static bool has_cpu_slab(int cpu, void *info)
  1763. {
  1764. struct kmem_cache *s = info;
  1765. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1766. return c->page || c->partial;
  1767. }
  1768. static void flush_all(struct kmem_cache *s)
  1769. {
  1770. on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
  1771. }
  1772. /*
  1773. * Check if the objects in a per cpu structure fit numa
  1774. * locality expectations.
  1775. */
  1776. static inline int node_match(struct page *page, int node)
  1777. {
  1778. #ifdef CONFIG_NUMA
  1779. if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
  1780. return 0;
  1781. #endif
  1782. return 1;
  1783. }
  1784. #ifdef CONFIG_SLUB_DEBUG
  1785. static int count_free(struct page *page)
  1786. {
  1787. return page->objects - page->inuse;
  1788. }
  1789. static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
  1790. {
  1791. return atomic_long_read(&n->total_objects);
  1792. }
  1793. #endif /* CONFIG_SLUB_DEBUG */
  1794. #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
  1795. static unsigned long count_partial(struct kmem_cache_node *n,
  1796. int (*get_count)(struct page *))
  1797. {
  1798. unsigned long flags;
  1799. unsigned long x = 0;
  1800. struct page *page;
  1801. spin_lock_irqsave(&n->list_lock, flags);
  1802. list_for_each_entry(page, &n->partial, lru)
  1803. x += get_count(page);
  1804. spin_unlock_irqrestore(&n->list_lock, flags);
  1805. return x;
  1806. }
  1807. #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
  1808. static noinline void
  1809. slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
  1810. {
  1811. #ifdef CONFIG_SLUB_DEBUG
  1812. static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
  1813. DEFAULT_RATELIMIT_BURST);
  1814. int node;
  1815. struct kmem_cache_node *n;
  1816. if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
  1817. return;
  1818. pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
  1819. nid, gfpflags);
  1820. pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
  1821. s->name, s->object_size, s->size, oo_order(s->oo),
  1822. oo_order(s->min));
  1823. if (oo_order(s->min) > get_order(s->object_size))
  1824. pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
  1825. s->name);
  1826. for_each_kmem_cache_node(s, node, n) {
  1827. unsigned long nr_slabs;
  1828. unsigned long nr_objs;
  1829. unsigned long nr_free;
  1830. nr_free = count_partial(n, count_free);
  1831. nr_slabs = node_nr_slabs(n);
  1832. nr_objs = node_nr_objs(n);
  1833. pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
  1834. node, nr_slabs, nr_objs, nr_free);
  1835. }
  1836. #endif
  1837. }
  1838. static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
  1839. int node, struct kmem_cache_cpu **pc)
  1840. {
  1841. void *freelist;
  1842. struct kmem_cache_cpu *c = *pc;
  1843. struct page *page;
  1844. freelist = get_partial(s, flags, node, c);
  1845. if (freelist)
  1846. return freelist;
  1847. page = new_slab(s, flags, node);
  1848. if (page) {
  1849. c = raw_cpu_ptr(s->cpu_slab);
  1850. if (c->page)
  1851. flush_slab(s, c);
  1852. /*
  1853. * No other reference to the page yet so we can
  1854. * muck around with it freely without cmpxchg
  1855. */
  1856. freelist = page->freelist;
  1857. page->freelist = NULL;
  1858. stat(s, ALLOC_SLAB);
  1859. c->page = page;
  1860. *pc = c;
  1861. } else
  1862. freelist = NULL;
  1863. return freelist;
  1864. }
  1865. static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
  1866. {
  1867. if (unlikely(PageSlabPfmemalloc(page)))
  1868. return gfp_pfmemalloc_allowed(gfpflags);
  1869. return true;
  1870. }
  1871. /*
  1872. * Check the page->freelist of a page and either transfer the freelist to the
  1873. * per cpu freelist or deactivate the page.
  1874. *
  1875. * The page is still frozen if the return value is not NULL.
  1876. *
  1877. * If this function returns NULL then the page has been unfrozen.
  1878. *
  1879. * This function must be called with interrupt disabled.
  1880. */
  1881. static inline void *get_freelist(struct kmem_cache *s, struct page *page)
  1882. {
  1883. struct page new;
  1884. unsigned long counters;
  1885. void *freelist;
  1886. do {
  1887. freelist = page->freelist;
  1888. counters = page->counters;
  1889. new.counters = counters;
  1890. VM_BUG_ON(!new.frozen);
  1891. new.inuse = page->objects;
  1892. new.frozen = freelist != NULL;
  1893. } while (!__cmpxchg_double_slab(s, page,
  1894. freelist, counters,
  1895. NULL, new.counters,
  1896. "get_freelist"));
  1897. return freelist;
  1898. }
  1899. /*
  1900. * Slow path. The lockless freelist is empty or we need to perform
  1901. * debugging duties.
  1902. *
  1903. * Processing is still very fast if new objects have been freed to the
  1904. * regular freelist. In that case we simply take over the regular freelist
  1905. * as the lockless freelist and zap the regular freelist.
  1906. *
  1907. * If that is not working then we fall back to the partial lists. We take the
  1908. * first element of the freelist as the object to allocate now and move the
  1909. * rest of the freelist to the lockless freelist.
  1910. *
  1911. * And if we were unable to get a new slab from the partial slab lists then
  1912. * we need to allocate a new slab. This is the slowest path since it involves
  1913. * a call to the page allocator and the setup of a new slab.
  1914. */
  1915. static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
  1916. unsigned long addr, struct kmem_cache_cpu *c)
  1917. {
  1918. void *freelist;
  1919. struct page *page;
  1920. unsigned long flags;
  1921. local_irq_save(flags);
  1922. #ifdef CONFIG_PREEMPT
  1923. /*
  1924. * We may have been preempted and rescheduled on a different
  1925. * cpu before disabling interrupts. Need to reload cpu area
  1926. * pointer.
  1927. */
  1928. c = this_cpu_ptr(s->cpu_slab);
  1929. #endif
  1930. page = c->page;
  1931. if (!page)
  1932. goto new_slab;
  1933. redo:
  1934. if (unlikely(!node_match(page, node))) {
  1935. int searchnode = node;
  1936. if (node != NUMA_NO_NODE && !node_present_pages(node))
  1937. searchnode = node_to_mem_node(node);
  1938. if (unlikely(!node_match(page, searchnode))) {
  1939. stat(s, ALLOC_NODE_MISMATCH);
  1940. deactivate_slab(s, page, c->freelist);
  1941. c->page = NULL;
  1942. c->freelist = NULL;
  1943. goto new_slab;
  1944. }
  1945. }
  1946. /*
  1947. * By rights, we should be searching for a slab page that was
  1948. * PFMEMALLOC but right now, we are losing the pfmemalloc
  1949. * information when the page leaves the per-cpu allocator
  1950. */
  1951. if (unlikely(!pfmemalloc_match(page, gfpflags))) {
  1952. deactivate_slab(s, page, c->freelist);
  1953. c->page = NULL;
  1954. c->freelist = NULL;
  1955. goto new_slab;
  1956. }
  1957. /* must check again c->freelist in case of cpu migration or IRQ */
  1958. freelist = c->freelist;
  1959. if (freelist)
  1960. goto load_freelist;
  1961. freelist = get_freelist(s, page);
  1962. if (!freelist) {
  1963. c->page = NULL;
  1964. stat(s, DEACTIVATE_BYPASS);
  1965. goto new_slab;
  1966. }
  1967. stat(s, ALLOC_REFILL);
  1968. load_freelist:
  1969. /*
  1970. * freelist is pointing to the list of objects to be used.
  1971. * page is pointing to the page from which the objects are obtained.
  1972. * That page must be frozen for per cpu allocations to work.
  1973. */
  1974. VM_BUG_ON(!c->page->frozen);
  1975. c->freelist = get_freepointer(s, freelist);
  1976. c->tid = next_tid(c->tid);
  1977. local_irq_restore(flags);
  1978. return freelist;
  1979. new_slab:
  1980. if (c->partial) {
  1981. page = c->page = c->partial;
  1982. c->partial = page->next;
  1983. stat(s, CPU_PARTIAL_ALLOC);
  1984. c->freelist = NULL;
  1985. goto redo;
  1986. }
  1987. freelist = new_slab_objects(s, gfpflags, node, &c);
  1988. if (unlikely(!freelist)) {
  1989. slab_out_of_memory(s, gfpflags, node);
  1990. local_irq_restore(flags);
  1991. return NULL;
  1992. }
  1993. page = c->page;
  1994. if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
  1995. goto load_freelist;
  1996. /* Only entered in the debug case */
  1997. if (kmem_cache_debug(s) &&
  1998. !alloc_debug_processing(s, page, freelist, addr))
  1999. goto new_slab; /* Slab failed checks. Next slab needed */
  2000. deactivate_slab(s, page, get_freepointer(s, freelist));
  2001. c->page = NULL;
  2002. c->freelist = NULL;
  2003. local_irq_restore(flags);
  2004. return freelist;
  2005. }
  2006. /*
  2007. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  2008. * have the fastpath folded into their functions. So no function call
  2009. * overhead for requests that can be satisfied on the fastpath.
  2010. *
  2011. * The fastpath works by first checking if the lockless freelist can be used.
  2012. * If not then __slab_alloc is called for slow processing.
  2013. *
  2014. * Otherwise we can simply pick the next object from the lockless free list.
  2015. */
  2016. static __always_inline void *slab_alloc_node(struct kmem_cache *s,
  2017. gfp_t gfpflags, int node, unsigned long addr)
  2018. {
  2019. void **object;
  2020. struct kmem_cache_cpu *c;
  2021. struct page *page;
  2022. unsigned long tid;
  2023. if (slab_pre_alloc_hook(s, gfpflags))
  2024. return NULL;
  2025. s = memcg_kmem_get_cache(s, gfpflags);
  2026. redo:
  2027. /*
  2028. * Must read kmem_cache cpu data via this cpu ptr. Preemption is
  2029. * enabled. We may switch back and forth between cpus while
  2030. * reading from one cpu area. That does not matter as long
  2031. * as we end up on the original cpu again when doing the cmpxchg.
  2032. *
  2033. * Preemption is disabled for the retrieval of the tid because that
  2034. * must occur from the current processor. We cannot allow rescheduling
  2035. * on a different processor between the determination of the pointer
  2036. * and the retrieval of the tid.
  2037. */
  2038. preempt_disable();
  2039. c = this_cpu_ptr(s->cpu_slab);
  2040. /*
  2041. * The transaction ids are globally unique per cpu and per operation on
  2042. * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
  2043. * occurs on the right processor and that there was no operation on the
  2044. * linked list in between.
  2045. */
  2046. tid = c->tid;
  2047. preempt_enable();
  2048. object = c->freelist;
  2049. page = c->page;
  2050. if (unlikely(!object || !node_match(page, node))) {
  2051. object = __slab_alloc(s, gfpflags, node, addr, c);
  2052. stat(s, ALLOC_SLOWPATH);
  2053. } else {
  2054. void *next_object = get_freepointer_safe(s, object);
  2055. /*
  2056. * The cmpxchg will only match if there was no additional
  2057. * operation and if we are on the right processor.
  2058. *
  2059. * The cmpxchg does the following atomically (without lock
  2060. * semantics!)
  2061. * 1. Relocate first pointer to the current per cpu area.
  2062. * 2. Verify that tid and freelist have not been changed
  2063. * 3. If they were not changed replace tid and freelist
  2064. *
  2065. * Since this is without lock semantics the protection is only
  2066. * against code executing on this cpu *not* from access by
  2067. * other cpus.
  2068. */
  2069. if (unlikely(!this_cpu_cmpxchg_double(
  2070. s->cpu_slab->freelist, s->cpu_slab->tid,
  2071. object, tid,
  2072. next_object, next_tid(tid)))) {
  2073. note_cmpxchg_failure("slab_alloc", s, tid);
  2074. goto redo;
  2075. }
  2076. prefetch_freepointer(s, next_object);
  2077. stat(s, ALLOC_FASTPATH);
  2078. }
  2079. if (unlikely(gfpflags & __GFP_ZERO) && object)
  2080. memset(object, 0, s->object_size);
  2081. slab_post_alloc_hook(s, gfpflags, object);
  2082. return object;
  2083. }
  2084. static __always_inline void *slab_alloc(struct kmem_cache *s,
  2085. gfp_t gfpflags, unsigned long addr)
  2086. {
  2087. return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
  2088. }
  2089. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  2090. {
  2091. void *ret = slab_alloc(s, gfpflags, _RET_IP_);
  2092. trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
  2093. s->size, gfpflags);
  2094. return ret;
  2095. }
  2096. EXPORT_SYMBOL(kmem_cache_alloc);
  2097. #ifdef CONFIG_TRACING
  2098. void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
  2099. {
  2100. void *ret = slab_alloc(s, gfpflags, _RET_IP_);
  2101. trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
  2102. return ret;
  2103. }
  2104. EXPORT_SYMBOL(kmem_cache_alloc_trace);
  2105. #endif
  2106. #ifdef CONFIG_NUMA
  2107. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  2108. {
  2109. void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
  2110. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  2111. s->object_size, s->size, gfpflags, node);
  2112. return ret;
  2113. }
  2114. EXPORT_SYMBOL(kmem_cache_alloc_node);
  2115. #ifdef CONFIG_TRACING
  2116. void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
  2117. gfp_t gfpflags,
  2118. int node, size_t size)
  2119. {
  2120. void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
  2121. trace_kmalloc_node(_RET_IP_, ret,
  2122. size, s->size, gfpflags, node);
  2123. return ret;
  2124. }
  2125. EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
  2126. #endif
  2127. #endif
  2128. /*
  2129. * Slow patch handling. This may still be called frequently since objects
  2130. * have a longer lifetime than the cpu slabs in most processing loads.
  2131. *
  2132. * So we still attempt to reduce cache line usage. Just take the slab
  2133. * lock and free the item. If there is no additional partial page
  2134. * handling required then we can return immediately.
  2135. */
  2136. static void __slab_free(struct kmem_cache *s, struct page *page,
  2137. void *x, unsigned long addr)
  2138. {
  2139. void *prior;
  2140. void **object = (void *)x;
  2141. int was_frozen;
  2142. struct page new;
  2143. unsigned long counters;
  2144. struct kmem_cache_node *n = NULL;
  2145. unsigned long uninitialized_var(flags);
  2146. stat(s, FREE_SLOWPATH);
  2147. if (kmem_cache_debug(s) &&
  2148. !(n = free_debug_processing(s, page, x, addr, &flags)))
  2149. return;
  2150. do {
  2151. if (unlikely(n)) {
  2152. spin_unlock_irqrestore(&n->list_lock, flags);
  2153. n = NULL;
  2154. }
  2155. prior = page->freelist;
  2156. counters = page->counters;
  2157. set_freepointer(s, object, prior);
  2158. new.counters = counters;
  2159. was_frozen = new.frozen;
  2160. new.inuse--;
  2161. if ((!new.inuse || !prior) && !was_frozen) {
  2162. if (kmem_cache_has_cpu_partial(s) && !prior) {
  2163. /*
  2164. * Slab was on no list before and will be
  2165. * partially empty
  2166. * We can defer the list move and instead
  2167. * freeze it.
  2168. */
  2169. new.frozen = 1;
  2170. } else { /* Needs to be taken off a list */
  2171. n = get_node(s, page_to_nid(page));
  2172. /*
  2173. * Speculatively acquire the list_lock.
  2174. * If the cmpxchg does not succeed then we may
  2175. * drop the list_lock without any processing.
  2176. *
  2177. * Otherwise the list_lock will synchronize with
  2178. * other processors updating the list of slabs.
  2179. */
  2180. spin_lock_irqsave(&n->list_lock, flags);
  2181. }
  2182. }
  2183. } while (!cmpxchg_double_slab(s, page,
  2184. prior, counters,
  2185. object, new.counters,
  2186. "__slab_free"));
  2187. if (likely(!n)) {
  2188. /*
  2189. * If we just froze the page then put it onto the
  2190. * per cpu partial list.
  2191. */
  2192. if (new.frozen && !was_frozen) {
  2193. put_cpu_partial(s, page, 1);
  2194. stat(s, CPU_PARTIAL_FREE);
  2195. }
  2196. /*
  2197. * The list lock was not taken therefore no list
  2198. * activity can be necessary.
  2199. */
  2200. if (was_frozen)
  2201. stat(s, FREE_FROZEN);
  2202. return;
  2203. }
  2204. if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
  2205. goto slab_empty;
  2206. /*
  2207. * Objects left in the slab. If it was not on the partial list before
  2208. * then add it.
  2209. */
  2210. if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
  2211. if (kmem_cache_debug(s))
  2212. remove_full(s, n, page);
  2213. add_partial(n, page, DEACTIVATE_TO_TAIL);
  2214. stat(s, FREE_ADD_PARTIAL);
  2215. }
  2216. spin_unlock_irqrestore(&n->list_lock, flags);
  2217. return;
  2218. slab_empty:
  2219. if (prior) {
  2220. /*
  2221. * Slab on the partial list.
  2222. */
  2223. remove_partial(n, page);
  2224. stat(s, FREE_REMOVE_PARTIAL);
  2225. } else {
  2226. /* Slab must be on the full list */
  2227. remove_full(s, n, page);
  2228. }
  2229. spin_unlock_irqrestore(&n->list_lock, flags);
  2230. stat(s, FREE_SLAB);
  2231. discard_slab(s, page);
  2232. }
  2233. /*
  2234. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  2235. * can perform fastpath freeing without additional function calls.
  2236. *
  2237. * The fastpath is only possible if we are freeing to the current cpu slab
  2238. * of this processor. This typically the case if we have just allocated
  2239. * the item before.
  2240. *
  2241. * If fastpath is not possible then fall back to __slab_free where we deal
  2242. * with all sorts of special processing.
  2243. */
  2244. static __always_inline void slab_free(struct kmem_cache *s,
  2245. struct page *page, void *x, unsigned long addr)
  2246. {
  2247. void **object = (void *)x;
  2248. struct kmem_cache_cpu *c;
  2249. unsigned long tid;
  2250. slab_free_hook(s, x);
  2251. redo:
  2252. /*
  2253. * Determine the currently cpus per cpu slab.
  2254. * The cpu may change afterward. However that does not matter since
  2255. * data is retrieved via this pointer. If we are on the same cpu
  2256. * during the cmpxchg then the free will succedd.
  2257. */
  2258. preempt_disable();
  2259. c = this_cpu_ptr(s->cpu_slab);
  2260. tid = c->tid;
  2261. preempt_enable();
  2262. if (likely(page == c->page)) {
  2263. set_freepointer(s, object, c->freelist);
  2264. if (unlikely(!this_cpu_cmpxchg_double(
  2265. s->cpu_slab->freelist, s->cpu_slab->tid,
  2266. c->freelist, tid,
  2267. object, next_tid(tid)))) {
  2268. note_cmpxchg_failure("slab_free", s, tid);
  2269. goto redo;
  2270. }
  2271. stat(s, FREE_FASTPATH);
  2272. } else
  2273. __slab_free(s, page, x, addr);
  2274. }
  2275. void kmem_cache_free(struct kmem_cache *s, void *x)
  2276. {
  2277. s = cache_from_obj(s, x);
  2278. if (!s)
  2279. return;
  2280. slab_free(s, virt_to_head_page(x), x, _RET_IP_);
  2281. trace_kmem_cache_free(_RET_IP_, x);
  2282. }
  2283. EXPORT_SYMBOL(kmem_cache_free);
  2284. /*
  2285. * Object placement in a slab is made very easy because we always start at
  2286. * offset 0. If we tune the size of the object to the alignment then we can
  2287. * get the required alignment by putting one properly sized object after
  2288. * another.
  2289. *
  2290. * Notice that the allocation order determines the sizes of the per cpu
  2291. * caches. Each processor has always one slab available for allocations.
  2292. * Increasing the allocation order reduces the number of times that slabs
  2293. * must be moved on and off the partial lists and is therefore a factor in
  2294. * locking overhead.
  2295. */
  2296. /*
  2297. * Mininum / Maximum order of slab pages. This influences locking overhead
  2298. * and slab fragmentation. A higher order reduces the number of partial slabs
  2299. * and increases the number of allocations possible without having to
  2300. * take the list_lock.
  2301. */
  2302. static int slub_min_order;
  2303. static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
  2304. static int slub_min_objects;
  2305. /*
  2306. * Calculate the order of allocation given an slab object size.
  2307. *
  2308. * The order of allocation has significant impact on performance and other
  2309. * system components. Generally order 0 allocations should be preferred since
  2310. * order 0 does not cause fragmentation in the page allocator. Larger objects
  2311. * be problematic to put into order 0 slabs because there may be too much
  2312. * unused space left. We go to a higher order if more than 1/16th of the slab
  2313. * would be wasted.
  2314. *
  2315. * In order to reach satisfactory performance we must ensure that a minimum
  2316. * number of objects is in one slab. Otherwise we may generate too much
  2317. * activity on the partial lists which requires taking the list_lock. This is
  2318. * less a concern for large slabs though which are rarely used.
  2319. *
  2320. * slub_max_order specifies the order where we begin to stop considering the
  2321. * number of objects in a slab as critical. If we reach slub_max_order then
  2322. * we try to keep the page order as low as possible. So we accept more waste
  2323. * of space in favor of a small page order.
  2324. *
  2325. * Higher order allocations also allow the placement of more objects in a
  2326. * slab and thereby reduce object handling overhead. If the user has
  2327. * requested a higher mininum order then we start with that one instead of
  2328. * the smallest order which will fit the object.
  2329. */
  2330. static inline int slab_order(int size, int min_objects,
  2331. int max_order, int fract_leftover, int reserved)
  2332. {
  2333. int order;
  2334. int rem;
  2335. int min_order = slub_min_order;
  2336. if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
  2337. return get_order(size * MAX_OBJS_PER_PAGE) - 1;
  2338. for (order = max(min_order,
  2339. fls(min_objects * size - 1) - PAGE_SHIFT);
  2340. order <= max_order; order++) {
  2341. unsigned long slab_size = PAGE_SIZE << order;
  2342. if (slab_size < min_objects * size + reserved)
  2343. continue;
  2344. rem = (slab_size - reserved) % size;
  2345. if (rem <= slab_size / fract_leftover)
  2346. break;
  2347. }
  2348. return order;
  2349. }
  2350. static inline int calculate_order(int size, int reserved)
  2351. {
  2352. int order;
  2353. int min_objects;
  2354. int fraction;
  2355. int max_objects;
  2356. /*
  2357. * Attempt to find best configuration for a slab. This
  2358. * works by first attempting to generate a layout with
  2359. * the best configuration and backing off gradually.
  2360. *
  2361. * First we reduce the acceptable waste in a slab. Then
  2362. * we reduce the minimum objects required in a slab.
  2363. */
  2364. min_objects = slub_min_objects;
  2365. if (!min_objects)
  2366. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  2367. max_objects = order_objects(slub_max_order, size, reserved);
  2368. min_objects = min(min_objects, max_objects);
  2369. while (min_objects > 1) {
  2370. fraction = 16;
  2371. while (fraction >= 4) {
  2372. order = slab_order(size, min_objects,
  2373. slub_max_order, fraction, reserved);
  2374. if (order <= slub_max_order)
  2375. return order;
  2376. fraction /= 2;
  2377. }
  2378. min_objects--;
  2379. }
  2380. /*
  2381. * We were unable to place multiple objects in a slab. Now
  2382. * lets see if we can place a single object there.
  2383. */
  2384. order = slab_order(size, 1, slub_max_order, 1, reserved);
  2385. if (order <= slub_max_order)
  2386. return order;
  2387. /*
  2388. * Doh this slab cannot be placed using slub_max_order.
  2389. */
  2390. order = slab_order(size, 1, MAX_ORDER, 1, reserved);
  2391. if (order < MAX_ORDER)
  2392. return order;
  2393. return -ENOSYS;
  2394. }
  2395. static void
  2396. init_kmem_cache_node(struct kmem_cache_node *n)
  2397. {
  2398. n->nr_partial = 0;
  2399. spin_lock_init(&n->list_lock);
  2400. INIT_LIST_HEAD(&n->partial);
  2401. #ifdef CONFIG_SLUB_DEBUG
  2402. atomic_long_set(&n->nr_slabs, 0);
  2403. atomic_long_set(&n->total_objects, 0);
  2404. INIT_LIST_HEAD(&n->full);
  2405. #endif
  2406. }
  2407. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
  2408. {
  2409. BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
  2410. KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
  2411. /*
  2412. * Must align to double word boundary for the double cmpxchg
  2413. * instructions to work; see __pcpu_double_call_return_bool().
  2414. */
  2415. s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
  2416. 2 * sizeof(void *));
  2417. if (!s->cpu_slab)
  2418. return 0;
  2419. init_kmem_cache_cpus(s);
  2420. return 1;
  2421. }
  2422. static struct kmem_cache *kmem_cache_node;
  2423. /*
  2424. * No kmalloc_node yet so do it by hand. We know that this is the first
  2425. * slab on the node for this slabcache. There are no concurrent accesses
  2426. * possible.
  2427. *
  2428. * Note that this function only works on the kmem_cache_node
  2429. * when allocating for the kmem_cache_node. This is used for bootstrapping
  2430. * memory on a fresh node that has no slab structures yet.
  2431. */
  2432. static void early_kmem_cache_node_alloc(int node)
  2433. {
  2434. struct page *page;
  2435. struct kmem_cache_node *n;
  2436. BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
  2437. page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
  2438. BUG_ON(!page);
  2439. if (page_to_nid(page) != node) {
  2440. pr_err("SLUB: Unable to allocate memory from node %d\n", node);
  2441. pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
  2442. }
  2443. n = page->freelist;
  2444. BUG_ON(!n);
  2445. page->freelist = get_freepointer(kmem_cache_node, n);
  2446. page->inuse = 1;
  2447. page->frozen = 0;
  2448. kmem_cache_node->node[node] = n;
  2449. #ifdef CONFIG_SLUB_DEBUG
  2450. init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
  2451. init_tracking(kmem_cache_node, n);
  2452. #endif
  2453. init_kmem_cache_node(n);
  2454. inc_slabs_node(kmem_cache_node, node, page->objects);
  2455. /*
  2456. * No locks need to be taken here as it has just been
  2457. * initialized and there is no concurrent access.
  2458. */
  2459. __add_partial(n, page, DEACTIVATE_TO_HEAD);
  2460. }
  2461. static void free_kmem_cache_nodes(struct kmem_cache *s)
  2462. {
  2463. int node;
  2464. struct kmem_cache_node *n;
  2465. for_each_kmem_cache_node(s, node, n) {
  2466. kmem_cache_free(kmem_cache_node, n);
  2467. s->node[node] = NULL;
  2468. }
  2469. }
  2470. static int init_kmem_cache_nodes(struct kmem_cache *s)
  2471. {
  2472. int node;
  2473. for_each_node_state(node, N_NORMAL_MEMORY) {
  2474. struct kmem_cache_node *n;
  2475. if (slab_state == DOWN) {
  2476. early_kmem_cache_node_alloc(node);
  2477. continue;
  2478. }
  2479. n = kmem_cache_alloc_node(kmem_cache_node,
  2480. GFP_KERNEL, node);
  2481. if (!n) {
  2482. free_kmem_cache_nodes(s);
  2483. return 0;
  2484. }
  2485. s->node[node] = n;
  2486. init_kmem_cache_node(n);
  2487. }
  2488. return 1;
  2489. }
  2490. static void set_min_partial(struct kmem_cache *s, unsigned long min)
  2491. {
  2492. if (min < MIN_PARTIAL)
  2493. min = MIN_PARTIAL;
  2494. else if (min > MAX_PARTIAL)
  2495. min = MAX_PARTIAL;
  2496. s->min_partial = min;
  2497. }
  2498. /*
  2499. * calculate_sizes() determines the order and the distribution of data within
  2500. * a slab object.
  2501. */
  2502. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  2503. {
  2504. unsigned long flags = s->flags;
  2505. unsigned long size = s->object_size;
  2506. int order;
  2507. /*
  2508. * Round up object size to the next word boundary. We can only
  2509. * place the free pointer at word boundaries and this determines
  2510. * the possible location of the free pointer.
  2511. */
  2512. size = ALIGN(size, sizeof(void *));
  2513. #ifdef CONFIG_SLUB_DEBUG
  2514. /*
  2515. * Determine if we can poison the object itself. If the user of
  2516. * the slab may touch the object after free or before allocation
  2517. * then we should never poison the object itself.
  2518. */
  2519. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  2520. !s->ctor)
  2521. s->flags |= __OBJECT_POISON;
  2522. else
  2523. s->flags &= ~__OBJECT_POISON;
  2524. /*
  2525. * If we are Redzoning then check if there is some space between the
  2526. * end of the object and the free pointer. If not then add an
  2527. * additional word to have some bytes to store Redzone information.
  2528. */
  2529. if ((flags & SLAB_RED_ZONE) && size == s->object_size)
  2530. size += sizeof(void *);
  2531. #endif
  2532. /*
  2533. * With that we have determined the number of bytes in actual use
  2534. * by the object. This is the potential offset to the free pointer.
  2535. */
  2536. s->inuse = size;
  2537. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  2538. s->ctor)) {
  2539. /*
  2540. * Relocate free pointer after the object if it is not
  2541. * permitted to overwrite the first word of the object on
  2542. * kmem_cache_free.
  2543. *
  2544. * This is the case if we do RCU, have a constructor or
  2545. * destructor or are poisoning the objects.
  2546. */
  2547. s->offset = size;
  2548. size += sizeof(void *);
  2549. }
  2550. #ifdef CONFIG_SLUB_DEBUG
  2551. if (flags & SLAB_STORE_USER)
  2552. /*
  2553. * Need to store information about allocs and frees after
  2554. * the object.
  2555. */
  2556. size += 2 * sizeof(struct track);
  2557. if (flags & SLAB_RED_ZONE)
  2558. /*
  2559. * Add some empty padding so that we can catch
  2560. * overwrites from earlier objects rather than let
  2561. * tracking information or the free pointer be
  2562. * corrupted if a user writes before the start
  2563. * of the object.
  2564. */
  2565. size += sizeof(void *);
  2566. #endif
  2567. /*
  2568. * SLUB stores one object immediately after another beginning from
  2569. * offset 0. In order to align the objects we have to simply size
  2570. * each object to conform to the alignment.
  2571. */
  2572. size = ALIGN(size, s->align);
  2573. s->size = size;
  2574. if (forced_order >= 0)
  2575. order = forced_order;
  2576. else
  2577. order = calculate_order(size, s->reserved);
  2578. if (order < 0)
  2579. return 0;
  2580. s->allocflags = 0;
  2581. if (order)
  2582. s->allocflags |= __GFP_COMP;
  2583. if (s->flags & SLAB_CACHE_DMA)
  2584. s->allocflags |= GFP_DMA;
  2585. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  2586. s->allocflags |= __GFP_RECLAIMABLE;
  2587. /*
  2588. * Determine the number of objects per slab
  2589. */
  2590. s->oo = oo_make(order, size, s->reserved);
  2591. s->min = oo_make(get_order(size), size, s->reserved);
  2592. if (oo_objects(s->oo) > oo_objects(s->max))
  2593. s->max = s->oo;
  2594. return !!oo_objects(s->oo);
  2595. }
  2596. static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
  2597. {
  2598. s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
  2599. s->reserved = 0;
  2600. if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
  2601. s->reserved = sizeof(struct rcu_head);
  2602. if (!calculate_sizes(s, -1))
  2603. goto error;
  2604. if (disable_higher_order_debug) {
  2605. /*
  2606. * Disable debugging flags that store metadata if the min slab
  2607. * order increased.
  2608. */
  2609. if (get_order(s->size) > get_order(s->object_size)) {
  2610. s->flags &= ~DEBUG_METADATA_FLAGS;
  2611. s->offset = 0;
  2612. if (!calculate_sizes(s, -1))
  2613. goto error;
  2614. }
  2615. }
  2616. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  2617. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  2618. if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
  2619. /* Enable fast mode */
  2620. s->flags |= __CMPXCHG_DOUBLE;
  2621. #endif
  2622. /*
  2623. * The larger the object size is, the more pages we want on the partial
  2624. * list to avoid pounding the page allocator excessively.
  2625. */
  2626. set_min_partial(s, ilog2(s->size) / 2);
  2627. /*
  2628. * cpu_partial determined the maximum number of objects kept in the
  2629. * per cpu partial lists of a processor.
  2630. *
  2631. * Per cpu partial lists mainly contain slabs that just have one
  2632. * object freed. If they are used for allocation then they can be
  2633. * filled up again with minimal effort. The slab will never hit the
  2634. * per node partial lists and therefore no locking will be required.
  2635. *
  2636. * This setting also determines
  2637. *
  2638. * A) The number of objects from per cpu partial slabs dumped to the
  2639. * per node list when we reach the limit.
  2640. * B) The number of objects in cpu partial slabs to extract from the
  2641. * per node list when we run out of per cpu objects. We only fetch
  2642. * 50% to keep some capacity around for frees.
  2643. */
  2644. if (!kmem_cache_has_cpu_partial(s))
  2645. s->cpu_partial = 0;
  2646. else if (s->size >= PAGE_SIZE)
  2647. s->cpu_partial = 2;
  2648. else if (s->size >= 1024)
  2649. s->cpu_partial = 6;
  2650. else if (s->size >= 256)
  2651. s->cpu_partial = 13;
  2652. else
  2653. s->cpu_partial = 30;
  2654. #ifdef CONFIG_NUMA
  2655. s->remote_node_defrag_ratio = 1000;
  2656. #endif
  2657. if (!init_kmem_cache_nodes(s))
  2658. goto error;
  2659. if (alloc_kmem_cache_cpus(s))
  2660. return 0;
  2661. free_kmem_cache_nodes(s);
  2662. error:
  2663. if (flags & SLAB_PANIC)
  2664. panic("Cannot create slab %s size=%lu realsize=%u "
  2665. "order=%u offset=%u flags=%lx\n",
  2666. s->name, (unsigned long)s->size, s->size,
  2667. oo_order(s->oo), s->offset, flags);
  2668. return -EINVAL;
  2669. }
  2670. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2671. const char *text)
  2672. {
  2673. #ifdef CONFIG_SLUB_DEBUG
  2674. void *addr = page_address(page);
  2675. void *p;
  2676. unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
  2677. sizeof(long), GFP_ATOMIC);
  2678. if (!map)
  2679. return;
  2680. slab_err(s, page, text, s->name);
  2681. slab_lock(page);
  2682. get_map(s, page, map);
  2683. for_each_object(p, s, addr, page->objects) {
  2684. if (!test_bit(slab_index(p, s, addr), map)) {
  2685. pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
  2686. print_tracking(s, p);
  2687. }
  2688. }
  2689. slab_unlock(page);
  2690. kfree(map);
  2691. #endif
  2692. }
  2693. /*
  2694. * Attempt to free all partial slabs on a node.
  2695. * This is called from kmem_cache_close(). We must be the last thread
  2696. * using the cache and therefore we do not need to lock anymore.
  2697. */
  2698. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2699. {
  2700. struct page *page, *h;
  2701. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2702. if (!page->inuse) {
  2703. __remove_partial(n, page);
  2704. discard_slab(s, page);
  2705. } else {
  2706. list_slab_objects(s, page,
  2707. "Objects remaining in %s on kmem_cache_close()");
  2708. }
  2709. }
  2710. }
  2711. /*
  2712. * Release all resources used by a slab cache.
  2713. */
  2714. static inline int kmem_cache_close(struct kmem_cache *s)
  2715. {
  2716. int node;
  2717. struct kmem_cache_node *n;
  2718. flush_all(s);
  2719. /* Attempt to free all objects */
  2720. for_each_kmem_cache_node(s, node, n) {
  2721. free_partial(s, n);
  2722. if (n->nr_partial || slabs_node(s, node))
  2723. return 1;
  2724. }
  2725. free_percpu(s->cpu_slab);
  2726. free_kmem_cache_nodes(s);
  2727. return 0;
  2728. }
  2729. int __kmem_cache_shutdown(struct kmem_cache *s)
  2730. {
  2731. return kmem_cache_close(s);
  2732. }
  2733. /********************************************************************
  2734. * Kmalloc subsystem
  2735. *******************************************************************/
  2736. static int __init setup_slub_min_order(char *str)
  2737. {
  2738. get_option(&str, &slub_min_order);
  2739. return 1;
  2740. }
  2741. __setup("slub_min_order=", setup_slub_min_order);
  2742. static int __init setup_slub_max_order(char *str)
  2743. {
  2744. get_option(&str, &slub_max_order);
  2745. slub_max_order = min(slub_max_order, MAX_ORDER - 1);
  2746. return 1;
  2747. }
  2748. __setup("slub_max_order=", setup_slub_max_order);
  2749. static int __init setup_slub_min_objects(char *str)
  2750. {
  2751. get_option(&str, &slub_min_objects);
  2752. return 1;
  2753. }
  2754. __setup("slub_min_objects=", setup_slub_min_objects);
  2755. void *__kmalloc(size_t size, gfp_t flags)
  2756. {
  2757. struct kmem_cache *s;
  2758. void *ret;
  2759. if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
  2760. return kmalloc_large(size, flags);
  2761. s = kmalloc_slab(size, flags);
  2762. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2763. return s;
  2764. ret = slab_alloc(s, flags, _RET_IP_);
  2765. trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
  2766. return ret;
  2767. }
  2768. EXPORT_SYMBOL(__kmalloc);
  2769. #ifdef CONFIG_NUMA
  2770. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  2771. {
  2772. struct page *page;
  2773. void *ptr = NULL;
  2774. flags |= __GFP_COMP | __GFP_NOTRACK;
  2775. page = alloc_kmem_pages_node(node, flags, get_order(size));
  2776. if (page)
  2777. ptr = page_address(page);
  2778. kmalloc_large_node_hook(ptr, size, flags);
  2779. return ptr;
  2780. }
  2781. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2782. {
  2783. struct kmem_cache *s;
  2784. void *ret;
  2785. if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
  2786. ret = kmalloc_large_node(size, flags, node);
  2787. trace_kmalloc_node(_RET_IP_, ret,
  2788. size, PAGE_SIZE << get_order(size),
  2789. flags, node);
  2790. return ret;
  2791. }
  2792. s = kmalloc_slab(size, flags);
  2793. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2794. return s;
  2795. ret = slab_alloc_node(s, flags, node, _RET_IP_);
  2796. trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
  2797. return ret;
  2798. }
  2799. EXPORT_SYMBOL(__kmalloc_node);
  2800. #endif
  2801. size_t ksize(const void *object)
  2802. {
  2803. struct page *page;
  2804. if (unlikely(object == ZERO_SIZE_PTR))
  2805. return 0;
  2806. page = virt_to_head_page(object);
  2807. if (unlikely(!PageSlab(page))) {
  2808. WARN_ON(!PageCompound(page));
  2809. return PAGE_SIZE << compound_order(page);
  2810. }
  2811. return slab_ksize(page->slab_cache);
  2812. }
  2813. EXPORT_SYMBOL(ksize);
  2814. void kfree(const void *x)
  2815. {
  2816. struct page *page;
  2817. void *object = (void *)x;
  2818. trace_kfree(_RET_IP_, x);
  2819. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2820. return;
  2821. page = virt_to_head_page(x);
  2822. if (unlikely(!PageSlab(page))) {
  2823. BUG_ON(!PageCompound(page));
  2824. kfree_hook(x);
  2825. __free_kmem_pages(page, compound_order(page));
  2826. return;
  2827. }
  2828. slab_free(page->slab_cache, page, object, _RET_IP_);
  2829. }
  2830. EXPORT_SYMBOL(kfree);
  2831. /*
  2832. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2833. * the remaining slabs by the number of items in use. The slabs with the
  2834. * most items in use come first. New allocations will then fill those up
  2835. * and thus they can be removed from the partial lists.
  2836. *
  2837. * The slabs with the least items are placed last. This results in them
  2838. * being allocated from last increasing the chance that the last objects
  2839. * are freed in them.
  2840. */
  2841. int __kmem_cache_shrink(struct kmem_cache *s)
  2842. {
  2843. int node;
  2844. int i;
  2845. struct kmem_cache_node *n;
  2846. struct page *page;
  2847. struct page *t;
  2848. int objects = oo_objects(s->max);
  2849. struct list_head *slabs_by_inuse =
  2850. kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
  2851. unsigned long flags;
  2852. if (!slabs_by_inuse)
  2853. return -ENOMEM;
  2854. flush_all(s);
  2855. for_each_kmem_cache_node(s, node, n) {
  2856. if (!n->nr_partial)
  2857. continue;
  2858. for (i = 0; i < objects; i++)
  2859. INIT_LIST_HEAD(slabs_by_inuse + i);
  2860. spin_lock_irqsave(&n->list_lock, flags);
  2861. /*
  2862. * Build lists indexed by the items in use in each slab.
  2863. *
  2864. * Note that concurrent frees may occur while we hold the
  2865. * list_lock. page->inuse here is the upper limit.
  2866. */
  2867. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2868. list_move(&page->lru, slabs_by_inuse + page->inuse);
  2869. if (!page->inuse)
  2870. n->nr_partial--;
  2871. }
  2872. /*
  2873. * Rebuild the partial list with the slabs filled up most
  2874. * first and the least used slabs at the end.
  2875. */
  2876. for (i = objects - 1; i > 0; i--)
  2877. list_splice(slabs_by_inuse + i, n->partial.prev);
  2878. spin_unlock_irqrestore(&n->list_lock, flags);
  2879. /* Release empty slabs */
  2880. list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
  2881. discard_slab(s, page);
  2882. }
  2883. kfree(slabs_by_inuse);
  2884. return 0;
  2885. }
  2886. static int slab_mem_going_offline_callback(void *arg)
  2887. {
  2888. struct kmem_cache *s;
  2889. mutex_lock(&slab_mutex);
  2890. list_for_each_entry(s, &slab_caches, list)
  2891. __kmem_cache_shrink(s);
  2892. mutex_unlock(&slab_mutex);
  2893. return 0;
  2894. }
  2895. static void slab_mem_offline_callback(void *arg)
  2896. {
  2897. struct kmem_cache_node *n;
  2898. struct kmem_cache *s;
  2899. struct memory_notify *marg = arg;
  2900. int offline_node;
  2901. offline_node = marg->status_change_nid_normal;
  2902. /*
  2903. * If the node still has available memory. we need kmem_cache_node
  2904. * for it yet.
  2905. */
  2906. if (offline_node < 0)
  2907. return;
  2908. mutex_lock(&slab_mutex);
  2909. list_for_each_entry(s, &slab_caches, list) {
  2910. n = get_node(s, offline_node);
  2911. if (n) {
  2912. /*
  2913. * if n->nr_slabs > 0, slabs still exist on the node
  2914. * that is going down. We were unable to free them,
  2915. * and offline_pages() function shouldn't call this
  2916. * callback. So, we must fail.
  2917. */
  2918. BUG_ON(slabs_node(s, offline_node));
  2919. s->node[offline_node] = NULL;
  2920. kmem_cache_free(kmem_cache_node, n);
  2921. }
  2922. }
  2923. mutex_unlock(&slab_mutex);
  2924. }
  2925. static int slab_mem_going_online_callback(void *arg)
  2926. {
  2927. struct kmem_cache_node *n;
  2928. struct kmem_cache *s;
  2929. struct memory_notify *marg = arg;
  2930. int nid = marg->status_change_nid_normal;
  2931. int ret = 0;
  2932. /*
  2933. * If the node's memory is already available, then kmem_cache_node is
  2934. * already created. Nothing to do.
  2935. */
  2936. if (nid < 0)
  2937. return 0;
  2938. /*
  2939. * We are bringing a node online. No memory is available yet. We must
  2940. * allocate a kmem_cache_node structure in order to bring the node
  2941. * online.
  2942. */
  2943. mutex_lock(&slab_mutex);
  2944. list_for_each_entry(s, &slab_caches, list) {
  2945. /*
  2946. * XXX: kmem_cache_alloc_node will fallback to other nodes
  2947. * since memory is not yet available from the node that
  2948. * is brought up.
  2949. */
  2950. n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
  2951. if (!n) {
  2952. ret = -ENOMEM;
  2953. goto out;
  2954. }
  2955. init_kmem_cache_node(n);
  2956. s->node[nid] = n;
  2957. }
  2958. out:
  2959. mutex_unlock(&slab_mutex);
  2960. return ret;
  2961. }
  2962. static int slab_memory_callback(struct notifier_block *self,
  2963. unsigned long action, void *arg)
  2964. {
  2965. int ret = 0;
  2966. switch (action) {
  2967. case MEM_GOING_ONLINE:
  2968. ret = slab_mem_going_online_callback(arg);
  2969. break;
  2970. case MEM_GOING_OFFLINE:
  2971. ret = slab_mem_going_offline_callback(arg);
  2972. break;
  2973. case MEM_OFFLINE:
  2974. case MEM_CANCEL_ONLINE:
  2975. slab_mem_offline_callback(arg);
  2976. break;
  2977. case MEM_ONLINE:
  2978. case MEM_CANCEL_OFFLINE:
  2979. break;
  2980. }
  2981. if (ret)
  2982. ret = notifier_from_errno(ret);
  2983. else
  2984. ret = NOTIFY_OK;
  2985. return ret;
  2986. }
  2987. static struct notifier_block slab_memory_callback_nb = {
  2988. .notifier_call = slab_memory_callback,
  2989. .priority = SLAB_CALLBACK_PRI,
  2990. };
  2991. /********************************************************************
  2992. * Basic setup of slabs
  2993. *******************************************************************/
  2994. /*
  2995. * Used for early kmem_cache structures that were allocated using
  2996. * the page allocator. Allocate them properly then fix up the pointers
  2997. * that may be pointing to the wrong kmem_cache structure.
  2998. */
  2999. static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
  3000. {
  3001. int node;
  3002. struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
  3003. struct kmem_cache_node *n;
  3004. memcpy(s, static_cache, kmem_cache->object_size);
  3005. /*
  3006. * This runs very early, and only the boot processor is supposed to be
  3007. * up. Even if it weren't true, IRQs are not up so we couldn't fire
  3008. * IPIs around.
  3009. */
  3010. __flush_cpu_slab(s, smp_processor_id());
  3011. for_each_kmem_cache_node(s, node, n) {
  3012. struct page *p;
  3013. list_for_each_entry(p, &n->partial, lru)
  3014. p->slab_cache = s;
  3015. #ifdef CONFIG_SLUB_DEBUG
  3016. list_for_each_entry(p, &n->full, lru)
  3017. p->slab_cache = s;
  3018. #endif
  3019. }
  3020. list_add(&s->list, &slab_caches);
  3021. return s;
  3022. }
  3023. void __init kmem_cache_init(void)
  3024. {
  3025. static __initdata struct kmem_cache boot_kmem_cache,
  3026. boot_kmem_cache_node;
  3027. if (debug_guardpage_minorder())
  3028. slub_max_order = 0;
  3029. kmem_cache_node = &boot_kmem_cache_node;
  3030. kmem_cache = &boot_kmem_cache;
  3031. create_boot_cache(kmem_cache_node, "kmem_cache_node",
  3032. sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
  3033. register_hotmemory_notifier(&slab_memory_callback_nb);
  3034. /* Able to allocate the per node structures */
  3035. slab_state = PARTIAL;
  3036. create_boot_cache(kmem_cache, "kmem_cache",
  3037. offsetof(struct kmem_cache, node) +
  3038. nr_node_ids * sizeof(struct kmem_cache_node *),
  3039. SLAB_HWCACHE_ALIGN);
  3040. kmem_cache = bootstrap(&boot_kmem_cache);
  3041. /*
  3042. * Allocate kmem_cache_node properly from the kmem_cache slab.
  3043. * kmem_cache_node is separately allocated so no need to
  3044. * update any list pointers.
  3045. */
  3046. kmem_cache_node = bootstrap(&boot_kmem_cache_node);
  3047. /* Now we can use the kmem_cache to allocate kmalloc slabs */
  3048. create_kmalloc_caches(0);
  3049. #ifdef CONFIG_SMP
  3050. register_cpu_notifier(&slab_notifier);
  3051. #endif
  3052. pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
  3053. cache_line_size(),
  3054. slub_min_order, slub_max_order, slub_min_objects,
  3055. nr_cpu_ids, nr_node_ids);
  3056. }
  3057. void __init kmem_cache_init_late(void)
  3058. {
  3059. }
  3060. struct kmem_cache *
  3061. __kmem_cache_alias(const char *name, size_t size, size_t align,
  3062. unsigned long flags, void (*ctor)(void *))
  3063. {
  3064. struct kmem_cache *s;
  3065. s = find_mergeable(size, align, flags, name, ctor);
  3066. if (s) {
  3067. int i;
  3068. struct kmem_cache *c;
  3069. s->refcount++;
  3070. /*
  3071. * Adjust the object sizes so that we clear
  3072. * the complete object on kzalloc.
  3073. */
  3074. s->object_size = max(s->object_size, (int)size);
  3075. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  3076. for_each_memcg_cache_index(i) {
  3077. c = cache_from_memcg_idx(s, i);
  3078. if (!c)
  3079. continue;
  3080. c->object_size = s->object_size;
  3081. c->inuse = max_t(int, c->inuse,
  3082. ALIGN(size, sizeof(void *)));
  3083. }
  3084. if (sysfs_slab_alias(s, name)) {
  3085. s->refcount--;
  3086. s = NULL;
  3087. }
  3088. }
  3089. return s;
  3090. }
  3091. int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
  3092. {
  3093. int err;
  3094. err = kmem_cache_open(s, flags);
  3095. if (err)
  3096. return err;
  3097. /* Mutex is not taken during early boot */
  3098. if (slab_state <= UP)
  3099. return 0;
  3100. memcg_propagate_slab_attrs(s);
  3101. err = sysfs_slab_add(s);
  3102. if (err)
  3103. kmem_cache_close(s);
  3104. return err;
  3105. }
  3106. #ifdef CONFIG_SMP
  3107. /*
  3108. * Use the cpu notifier to insure that the cpu slabs are flushed when
  3109. * necessary.
  3110. */
  3111. static int slab_cpuup_callback(struct notifier_block *nfb,
  3112. unsigned long action, void *hcpu)
  3113. {
  3114. long cpu = (long)hcpu;
  3115. struct kmem_cache *s;
  3116. unsigned long flags;
  3117. switch (action) {
  3118. case CPU_UP_CANCELED:
  3119. case CPU_UP_CANCELED_FROZEN:
  3120. case CPU_DEAD:
  3121. case CPU_DEAD_FROZEN:
  3122. mutex_lock(&slab_mutex);
  3123. list_for_each_entry(s, &slab_caches, list) {
  3124. local_irq_save(flags);
  3125. __flush_cpu_slab(s, cpu);
  3126. local_irq_restore(flags);
  3127. }
  3128. mutex_unlock(&slab_mutex);
  3129. break;
  3130. default:
  3131. break;
  3132. }
  3133. return NOTIFY_OK;
  3134. }
  3135. static struct notifier_block slab_notifier = {
  3136. .notifier_call = slab_cpuup_callback
  3137. };
  3138. #endif
  3139. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
  3140. {
  3141. struct kmem_cache *s;
  3142. void *ret;
  3143. if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
  3144. return kmalloc_large(size, gfpflags);
  3145. s = kmalloc_slab(size, gfpflags);
  3146. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3147. return s;
  3148. ret = slab_alloc(s, gfpflags, caller);
  3149. /* Honor the call site pointer we received. */
  3150. trace_kmalloc(caller, ret, size, s->size, gfpflags);
  3151. return ret;
  3152. }
  3153. #ifdef CONFIG_NUMA
  3154. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  3155. int node, unsigned long caller)
  3156. {
  3157. struct kmem_cache *s;
  3158. void *ret;
  3159. if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
  3160. ret = kmalloc_large_node(size, gfpflags, node);
  3161. trace_kmalloc_node(caller, ret,
  3162. size, PAGE_SIZE << get_order(size),
  3163. gfpflags, node);
  3164. return ret;
  3165. }
  3166. s = kmalloc_slab(size, gfpflags);
  3167. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3168. return s;
  3169. ret = slab_alloc_node(s, gfpflags, node, caller);
  3170. /* Honor the call site pointer we received. */
  3171. trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
  3172. return ret;
  3173. }
  3174. #endif
  3175. #ifdef CONFIG_SYSFS
  3176. static int count_inuse(struct page *page)
  3177. {
  3178. return page->inuse;
  3179. }
  3180. static int count_total(struct page *page)
  3181. {
  3182. return page->objects;
  3183. }
  3184. #endif
  3185. #ifdef CONFIG_SLUB_DEBUG
  3186. static int validate_slab(struct kmem_cache *s, struct page *page,
  3187. unsigned long *map)
  3188. {
  3189. void *p;
  3190. void *addr = page_address(page);
  3191. if (!check_slab(s, page) ||
  3192. !on_freelist(s, page, NULL))
  3193. return 0;
  3194. /* Now we know that a valid freelist exists */
  3195. bitmap_zero(map, page->objects);
  3196. get_map(s, page, map);
  3197. for_each_object(p, s, addr, page->objects) {
  3198. if (test_bit(slab_index(p, s, addr), map))
  3199. if (!check_object(s, page, p, SLUB_RED_INACTIVE))
  3200. return 0;
  3201. }
  3202. for_each_object(p, s, addr, page->objects)
  3203. if (!test_bit(slab_index(p, s, addr), map))
  3204. if (!check_object(s, page, p, SLUB_RED_ACTIVE))
  3205. return 0;
  3206. return 1;
  3207. }
  3208. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  3209. unsigned long *map)
  3210. {
  3211. slab_lock(page);
  3212. validate_slab(s, page, map);
  3213. slab_unlock(page);
  3214. }
  3215. static int validate_slab_node(struct kmem_cache *s,
  3216. struct kmem_cache_node *n, unsigned long *map)
  3217. {
  3218. unsigned long count = 0;
  3219. struct page *page;
  3220. unsigned long flags;
  3221. spin_lock_irqsave(&n->list_lock, flags);
  3222. list_for_each_entry(page, &n->partial, lru) {
  3223. validate_slab_slab(s, page, map);
  3224. count++;
  3225. }
  3226. if (count != n->nr_partial)
  3227. pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
  3228. s->name, count, n->nr_partial);
  3229. if (!(s->flags & SLAB_STORE_USER))
  3230. goto out;
  3231. list_for_each_entry(page, &n->full, lru) {
  3232. validate_slab_slab(s, page, map);
  3233. count++;
  3234. }
  3235. if (count != atomic_long_read(&n->nr_slabs))
  3236. pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
  3237. s->name, count, atomic_long_read(&n->nr_slabs));
  3238. out:
  3239. spin_unlock_irqrestore(&n->list_lock, flags);
  3240. return count;
  3241. }
  3242. static long validate_slab_cache(struct kmem_cache *s)
  3243. {
  3244. int node;
  3245. unsigned long count = 0;
  3246. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3247. sizeof(unsigned long), GFP_KERNEL);
  3248. struct kmem_cache_node *n;
  3249. if (!map)
  3250. return -ENOMEM;
  3251. flush_all(s);
  3252. for_each_kmem_cache_node(s, node, n)
  3253. count += validate_slab_node(s, n, map);
  3254. kfree(map);
  3255. return count;
  3256. }
  3257. /*
  3258. * Generate lists of code addresses where slabcache objects are allocated
  3259. * and freed.
  3260. */
  3261. struct location {
  3262. unsigned long count;
  3263. unsigned long addr;
  3264. long long sum_time;
  3265. long min_time;
  3266. long max_time;
  3267. long min_pid;
  3268. long max_pid;
  3269. DECLARE_BITMAP(cpus, NR_CPUS);
  3270. nodemask_t nodes;
  3271. };
  3272. struct loc_track {
  3273. unsigned long max;
  3274. unsigned long count;
  3275. struct location *loc;
  3276. };
  3277. static void free_loc_track(struct loc_track *t)
  3278. {
  3279. if (t->max)
  3280. free_pages((unsigned long)t->loc,
  3281. get_order(sizeof(struct location) * t->max));
  3282. }
  3283. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  3284. {
  3285. struct location *l;
  3286. int order;
  3287. order = get_order(sizeof(struct location) * max);
  3288. l = (void *)__get_free_pages(flags, order);
  3289. if (!l)
  3290. return 0;
  3291. if (t->count) {
  3292. memcpy(l, t->loc, sizeof(struct location) * t->count);
  3293. free_loc_track(t);
  3294. }
  3295. t->max = max;
  3296. t->loc = l;
  3297. return 1;
  3298. }
  3299. static int add_location(struct loc_track *t, struct kmem_cache *s,
  3300. const struct track *track)
  3301. {
  3302. long start, end, pos;
  3303. struct location *l;
  3304. unsigned long caddr;
  3305. unsigned long age = jiffies - track->when;
  3306. start = -1;
  3307. end = t->count;
  3308. for ( ; ; ) {
  3309. pos = start + (end - start + 1) / 2;
  3310. /*
  3311. * There is nothing at "end". If we end up there
  3312. * we need to add something to before end.
  3313. */
  3314. if (pos == end)
  3315. break;
  3316. caddr = t->loc[pos].addr;
  3317. if (track->addr == caddr) {
  3318. l = &t->loc[pos];
  3319. l->count++;
  3320. if (track->when) {
  3321. l->sum_time += age;
  3322. if (age < l->min_time)
  3323. l->min_time = age;
  3324. if (age > l->max_time)
  3325. l->max_time = age;
  3326. if (track->pid < l->min_pid)
  3327. l->min_pid = track->pid;
  3328. if (track->pid > l->max_pid)
  3329. l->max_pid = track->pid;
  3330. cpumask_set_cpu(track->cpu,
  3331. to_cpumask(l->cpus));
  3332. }
  3333. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3334. return 1;
  3335. }
  3336. if (track->addr < caddr)
  3337. end = pos;
  3338. else
  3339. start = pos;
  3340. }
  3341. /*
  3342. * Not found. Insert new tracking element.
  3343. */
  3344. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  3345. return 0;
  3346. l = t->loc + pos;
  3347. if (pos < t->count)
  3348. memmove(l + 1, l,
  3349. (t->count - pos) * sizeof(struct location));
  3350. t->count++;
  3351. l->count = 1;
  3352. l->addr = track->addr;
  3353. l->sum_time = age;
  3354. l->min_time = age;
  3355. l->max_time = age;
  3356. l->min_pid = track->pid;
  3357. l->max_pid = track->pid;
  3358. cpumask_clear(to_cpumask(l->cpus));
  3359. cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
  3360. nodes_clear(l->nodes);
  3361. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3362. return 1;
  3363. }
  3364. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  3365. struct page *page, enum track_item alloc,
  3366. unsigned long *map)
  3367. {
  3368. void *addr = page_address(page);
  3369. void *p;
  3370. bitmap_zero(map, page->objects);
  3371. get_map(s, page, map);
  3372. for_each_object(p, s, addr, page->objects)
  3373. if (!test_bit(slab_index(p, s, addr), map))
  3374. add_location(t, s, get_track(s, p, alloc));
  3375. }
  3376. static int list_locations(struct kmem_cache *s, char *buf,
  3377. enum track_item alloc)
  3378. {
  3379. int len = 0;
  3380. unsigned long i;
  3381. struct loc_track t = { 0, 0, NULL };
  3382. int node;
  3383. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3384. sizeof(unsigned long), GFP_KERNEL);
  3385. struct kmem_cache_node *n;
  3386. if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3387. GFP_TEMPORARY)) {
  3388. kfree(map);
  3389. return sprintf(buf, "Out of memory\n");
  3390. }
  3391. /* Push back cpu slabs */
  3392. flush_all(s);
  3393. for_each_kmem_cache_node(s, node, n) {
  3394. unsigned long flags;
  3395. struct page *page;
  3396. if (!atomic_long_read(&n->nr_slabs))
  3397. continue;
  3398. spin_lock_irqsave(&n->list_lock, flags);
  3399. list_for_each_entry(page, &n->partial, lru)
  3400. process_slab(&t, s, page, alloc, map);
  3401. list_for_each_entry(page, &n->full, lru)
  3402. process_slab(&t, s, page, alloc, map);
  3403. spin_unlock_irqrestore(&n->list_lock, flags);
  3404. }
  3405. for (i = 0; i < t.count; i++) {
  3406. struct location *l = &t.loc[i];
  3407. if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
  3408. break;
  3409. len += sprintf(buf + len, "%7ld ", l->count);
  3410. if (l->addr)
  3411. len += sprintf(buf + len, "%pS", (void *)l->addr);
  3412. else
  3413. len += sprintf(buf + len, "<not-available>");
  3414. if (l->sum_time != l->min_time) {
  3415. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3416. l->min_time,
  3417. (long)div_u64(l->sum_time, l->count),
  3418. l->max_time);
  3419. } else
  3420. len += sprintf(buf + len, " age=%ld",
  3421. l->min_time);
  3422. if (l->min_pid != l->max_pid)
  3423. len += sprintf(buf + len, " pid=%ld-%ld",
  3424. l->min_pid, l->max_pid);
  3425. else
  3426. len += sprintf(buf + len, " pid=%ld",
  3427. l->min_pid);
  3428. if (num_online_cpus() > 1 &&
  3429. !cpumask_empty(to_cpumask(l->cpus)) &&
  3430. len < PAGE_SIZE - 60) {
  3431. len += sprintf(buf + len, " cpus=");
  3432. len += cpulist_scnprintf(buf + len,
  3433. PAGE_SIZE - len - 50,
  3434. to_cpumask(l->cpus));
  3435. }
  3436. if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
  3437. len < PAGE_SIZE - 60) {
  3438. len += sprintf(buf + len, " nodes=");
  3439. len += nodelist_scnprintf(buf + len,
  3440. PAGE_SIZE - len - 50,
  3441. l->nodes);
  3442. }
  3443. len += sprintf(buf + len, "\n");
  3444. }
  3445. free_loc_track(&t);
  3446. kfree(map);
  3447. if (!t.count)
  3448. len += sprintf(buf, "No data\n");
  3449. return len;
  3450. }
  3451. #endif
  3452. #ifdef SLUB_RESILIENCY_TEST
  3453. static void __init resiliency_test(void)
  3454. {
  3455. u8 *p;
  3456. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
  3457. pr_err("SLUB resiliency testing\n");
  3458. pr_err("-----------------------\n");
  3459. pr_err("A. Corruption after allocation\n");
  3460. p = kzalloc(16, GFP_KERNEL);
  3461. p[16] = 0x12;
  3462. pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
  3463. p + 16);
  3464. validate_slab_cache(kmalloc_caches[4]);
  3465. /* Hmmm... The next two are dangerous */
  3466. p = kzalloc(32, GFP_KERNEL);
  3467. p[32 + sizeof(void *)] = 0x34;
  3468. pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
  3469. p);
  3470. pr_err("If allocated object is overwritten then not detectable\n\n");
  3471. validate_slab_cache(kmalloc_caches[5]);
  3472. p = kzalloc(64, GFP_KERNEL);
  3473. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  3474. *p = 0x56;
  3475. pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  3476. p);
  3477. pr_err("If allocated object is overwritten then not detectable\n\n");
  3478. validate_slab_cache(kmalloc_caches[6]);
  3479. pr_err("\nB. Corruption after free\n");
  3480. p = kzalloc(128, GFP_KERNEL);
  3481. kfree(p);
  3482. *p = 0x78;
  3483. pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  3484. validate_slab_cache(kmalloc_caches[7]);
  3485. p = kzalloc(256, GFP_KERNEL);
  3486. kfree(p);
  3487. p[50] = 0x9a;
  3488. pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
  3489. validate_slab_cache(kmalloc_caches[8]);
  3490. p = kzalloc(512, GFP_KERNEL);
  3491. kfree(p);
  3492. p[512] = 0xab;
  3493. pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  3494. validate_slab_cache(kmalloc_caches[9]);
  3495. }
  3496. #else
  3497. #ifdef CONFIG_SYSFS
  3498. static void resiliency_test(void) {};
  3499. #endif
  3500. #endif
  3501. #ifdef CONFIG_SYSFS
  3502. enum slab_stat_type {
  3503. SL_ALL, /* All slabs */
  3504. SL_PARTIAL, /* Only partially allocated slabs */
  3505. SL_CPU, /* Only slabs used for cpu caches */
  3506. SL_OBJECTS, /* Determine allocated objects not slabs */
  3507. SL_TOTAL /* Determine object capacity not slabs */
  3508. };
  3509. #define SO_ALL (1 << SL_ALL)
  3510. #define SO_PARTIAL (1 << SL_PARTIAL)
  3511. #define SO_CPU (1 << SL_CPU)
  3512. #define SO_OBJECTS (1 << SL_OBJECTS)
  3513. #define SO_TOTAL (1 << SL_TOTAL)
  3514. static ssize_t show_slab_objects(struct kmem_cache *s,
  3515. char *buf, unsigned long flags)
  3516. {
  3517. unsigned long total = 0;
  3518. int node;
  3519. int x;
  3520. unsigned long *nodes;
  3521. nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3522. if (!nodes)
  3523. return -ENOMEM;
  3524. if (flags & SO_CPU) {
  3525. int cpu;
  3526. for_each_possible_cpu(cpu) {
  3527. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
  3528. cpu);
  3529. int node;
  3530. struct page *page;
  3531. page = ACCESS_ONCE(c->page);
  3532. if (!page)
  3533. continue;
  3534. node = page_to_nid(page);
  3535. if (flags & SO_TOTAL)
  3536. x = page->objects;
  3537. else if (flags & SO_OBJECTS)
  3538. x = page->inuse;
  3539. else
  3540. x = 1;
  3541. total += x;
  3542. nodes[node] += x;
  3543. page = ACCESS_ONCE(c->partial);
  3544. if (page) {
  3545. node = page_to_nid(page);
  3546. if (flags & SO_TOTAL)
  3547. WARN_ON_ONCE(1);
  3548. else if (flags & SO_OBJECTS)
  3549. WARN_ON_ONCE(1);
  3550. else
  3551. x = page->pages;
  3552. total += x;
  3553. nodes[node] += x;
  3554. }
  3555. }
  3556. }
  3557. get_online_mems();
  3558. #ifdef CONFIG_SLUB_DEBUG
  3559. if (flags & SO_ALL) {
  3560. struct kmem_cache_node *n;
  3561. for_each_kmem_cache_node(s, node, n) {
  3562. if (flags & SO_TOTAL)
  3563. x = atomic_long_read(&n->total_objects);
  3564. else if (flags & SO_OBJECTS)
  3565. x = atomic_long_read(&n->total_objects) -
  3566. count_partial(n, count_free);
  3567. else
  3568. x = atomic_long_read(&n->nr_slabs);
  3569. total += x;
  3570. nodes[node] += x;
  3571. }
  3572. } else
  3573. #endif
  3574. if (flags & SO_PARTIAL) {
  3575. struct kmem_cache_node *n;
  3576. for_each_kmem_cache_node(s, node, n) {
  3577. if (flags & SO_TOTAL)
  3578. x = count_partial(n, count_total);
  3579. else if (flags & SO_OBJECTS)
  3580. x = count_partial(n, count_inuse);
  3581. else
  3582. x = n->nr_partial;
  3583. total += x;
  3584. nodes[node] += x;
  3585. }
  3586. }
  3587. x = sprintf(buf, "%lu", total);
  3588. #ifdef CONFIG_NUMA
  3589. for (node = 0; node < nr_node_ids; node++)
  3590. if (nodes[node])
  3591. x += sprintf(buf + x, " N%d=%lu",
  3592. node, nodes[node]);
  3593. #endif
  3594. put_online_mems();
  3595. kfree(nodes);
  3596. return x + sprintf(buf + x, "\n");
  3597. }
  3598. #ifdef CONFIG_SLUB_DEBUG
  3599. static int any_slab_objects(struct kmem_cache *s)
  3600. {
  3601. int node;
  3602. struct kmem_cache_node *n;
  3603. for_each_kmem_cache_node(s, node, n)
  3604. if (atomic_long_read(&n->total_objects))
  3605. return 1;
  3606. return 0;
  3607. }
  3608. #endif
  3609. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3610. #define to_slab(n) container_of(n, struct kmem_cache, kobj)
  3611. struct slab_attribute {
  3612. struct attribute attr;
  3613. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3614. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3615. };
  3616. #define SLAB_ATTR_RO(_name) \
  3617. static struct slab_attribute _name##_attr = \
  3618. __ATTR(_name, 0400, _name##_show, NULL)
  3619. #define SLAB_ATTR(_name) \
  3620. static struct slab_attribute _name##_attr = \
  3621. __ATTR(_name, 0600, _name##_show, _name##_store)
  3622. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3623. {
  3624. return sprintf(buf, "%d\n", s->size);
  3625. }
  3626. SLAB_ATTR_RO(slab_size);
  3627. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3628. {
  3629. return sprintf(buf, "%d\n", s->align);
  3630. }
  3631. SLAB_ATTR_RO(align);
  3632. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3633. {
  3634. return sprintf(buf, "%d\n", s->object_size);
  3635. }
  3636. SLAB_ATTR_RO(object_size);
  3637. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3638. {
  3639. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3640. }
  3641. SLAB_ATTR_RO(objs_per_slab);
  3642. static ssize_t order_store(struct kmem_cache *s,
  3643. const char *buf, size_t length)
  3644. {
  3645. unsigned long order;
  3646. int err;
  3647. err = kstrtoul(buf, 10, &order);
  3648. if (err)
  3649. return err;
  3650. if (order > slub_max_order || order < slub_min_order)
  3651. return -EINVAL;
  3652. calculate_sizes(s, order);
  3653. return length;
  3654. }
  3655. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3656. {
  3657. return sprintf(buf, "%d\n", oo_order(s->oo));
  3658. }
  3659. SLAB_ATTR(order);
  3660. static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
  3661. {
  3662. return sprintf(buf, "%lu\n", s->min_partial);
  3663. }
  3664. static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
  3665. size_t length)
  3666. {
  3667. unsigned long min;
  3668. int err;
  3669. err = kstrtoul(buf, 10, &min);
  3670. if (err)
  3671. return err;
  3672. set_min_partial(s, min);
  3673. return length;
  3674. }
  3675. SLAB_ATTR(min_partial);
  3676. static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
  3677. {
  3678. return sprintf(buf, "%u\n", s->cpu_partial);
  3679. }
  3680. static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
  3681. size_t length)
  3682. {
  3683. unsigned long objects;
  3684. int err;
  3685. err = kstrtoul(buf, 10, &objects);
  3686. if (err)
  3687. return err;
  3688. if (objects && !kmem_cache_has_cpu_partial(s))
  3689. return -EINVAL;
  3690. s->cpu_partial = objects;
  3691. flush_all(s);
  3692. return length;
  3693. }
  3694. SLAB_ATTR(cpu_partial);
  3695. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3696. {
  3697. if (!s->ctor)
  3698. return 0;
  3699. return sprintf(buf, "%pS\n", s->ctor);
  3700. }
  3701. SLAB_ATTR_RO(ctor);
  3702. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3703. {
  3704. return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
  3705. }
  3706. SLAB_ATTR_RO(aliases);
  3707. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3708. {
  3709. return show_slab_objects(s, buf, SO_PARTIAL);
  3710. }
  3711. SLAB_ATTR_RO(partial);
  3712. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3713. {
  3714. return show_slab_objects(s, buf, SO_CPU);
  3715. }
  3716. SLAB_ATTR_RO(cpu_slabs);
  3717. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3718. {
  3719. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3720. }
  3721. SLAB_ATTR_RO(objects);
  3722. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3723. {
  3724. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  3725. }
  3726. SLAB_ATTR_RO(objects_partial);
  3727. static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
  3728. {
  3729. int objects = 0;
  3730. int pages = 0;
  3731. int cpu;
  3732. int len;
  3733. for_each_online_cpu(cpu) {
  3734. struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
  3735. if (page) {
  3736. pages += page->pages;
  3737. objects += page->pobjects;
  3738. }
  3739. }
  3740. len = sprintf(buf, "%d(%d)", objects, pages);
  3741. #ifdef CONFIG_SMP
  3742. for_each_online_cpu(cpu) {
  3743. struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
  3744. if (page && len < PAGE_SIZE - 20)
  3745. len += sprintf(buf + len, " C%d=%d(%d)", cpu,
  3746. page->pobjects, page->pages);
  3747. }
  3748. #endif
  3749. return len + sprintf(buf + len, "\n");
  3750. }
  3751. SLAB_ATTR_RO(slabs_cpu_partial);
  3752. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  3753. {
  3754. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  3755. }
  3756. static ssize_t reclaim_account_store(struct kmem_cache *s,
  3757. const char *buf, size_t length)
  3758. {
  3759. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  3760. if (buf[0] == '1')
  3761. s->flags |= SLAB_RECLAIM_ACCOUNT;
  3762. return length;
  3763. }
  3764. SLAB_ATTR(reclaim_account);
  3765. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  3766. {
  3767. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  3768. }
  3769. SLAB_ATTR_RO(hwcache_align);
  3770. #ifdef CONFIG_ZONE_DMA
  3771. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  3772. {
  3773. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  3774. }
  3775. SLAB_ATTR_RO(cache_dma);
  3776. #endif
  3777. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  3778. {
  3779. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  3780. }
  3781. SLAB_ATTR_RO(destroy_by_rcu);
  3782. static ssize_t reserved_show(struct kmem_cache *s, char *buf)
  3783. {
  3784. return sprintf(buf, "%d\n", s->reserved);
  3785. }
  3786. SLAB_ATTR_RO(reserved);
  3787. #ifdef CONFIG_SLUB_DEBUG
  3788. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  3789. {
  3790. return show_slab_objects(s, buf, SO_ALL);
  3791. }
  3792. SLAB_ATTR_RO(slabs);
  3793. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  3794. {
  3795. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  3796. }
  3797. SLAB_ATTR_RO(total_objects);
  3798. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  3799. {
  3800. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  3801. }
  3802. static ssize_t sanity_checks_store(struct kmem_cache *s,
  3803. const char *buf, size_t length)
  3804. {
  3805. s->flags &= ~SLAB_DEBUG_FREE;
  3806. if (buf[0] == '1') {
  3807. s->flags &= ~__CMPXCHG_DOUBLE;
  3808. s->flags |= SLAB_DEBUG_FREE;
  3809. }
  3810. return length;
  3811. }
  3812. SLAB_ATTR(sanity_checks);
  3813. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  3814. {
  3815. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  3816. }
  3817. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  3818. size_t length)
  3819. {
  3820. /*
  3821. * Tracing a merged cache is going to give confusing results
  3822. * as well as cause other issues like converting a mergeable
  3823. * cache into an umergeable one.
  3824. */
  3825. if (s->refcount > 1)
  3826. return -EINVAL;
  3827. s->flags &= ~SLAB_TRACE;
  3828. if (buf[0] == '1') {
  3829. s->flags &= ~__CMPXCHG_DOUBLE;
  3830. s->flags |= SLAB_TRACE;
  3831. }
  3832. return length;
  3833. }
  3834. SLAB_ATTR(trace);
  3835. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  3836. {
  3837. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  3838. }
  3839. static ssize_t red_zone_store(struct kmem_cache *s,
  3840. const char *buf, size_t length)
  3841. {
  3842. if (any_slab_objects(s))
  3843. return -EBUSY;
  3844. s->flags &= ~SLAB_RED_ZONE;
  3845. if (buf[0] == '1') {
  3846. s->flags &= ~__CMPXCHG_DOUBLE;
  3847. s->flags |= SLAB_RED_ZONE;
  3848. }
  3849. calculate_sizes(s, -1);
  3850. return length;
  3851. }
  3852. SLAB_ATTR(red_zone);
  3853. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  3854. {
  3855. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  3856. }
  3857. static ssize_t poison_store(struct kmem_cache *s,
  3858. const char *buf, size_t length)
  3859. {
  3860. if (any_slab_objects(s))
  3861. return -EBUSY;
  3862. s->flags &= ~SLAB_POISON;
  3863. if (buf[0] == '1') {
  3864. s->flags &= ~__CMPXCHG_DOUBLE;
  3865. s->flags |= SLAB_POISON;
  3866. }
  3867. calculate_sizes(s, -1);
  3868. return length;
  3869. }
  3870. SLAB_ATTR(poison);
  3871. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  3872. {
  3873. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  3874. }
  3875. static ssize_t store_user_store(struct kmem_cache *s,
  3876. const char *buf, size_t length)
  3877. {
  3878. if (any_slab_objects(s))
  3879. return -EBUSY;
  3880. s->flags &= ~SLAB_STORE_USER;
  3881. if (buf[0] == '1') {
  3882. s->flags &= ~__CMPXCHG_DOUBLE;
  3883. s->flags |= SLAB_STORE_USER;
  3884. }
  3885. calculate_sizes(s, -1);
  3886. return length;
  3887. }
  3888. SLAB_ATTR(store_user);
  3889. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  3890. {
  3891. return 0;
  3892. }
  3893. static ssize_t validate_store(struct kmem_cache *s,
  3894. const char *buf, size_t length)
  3895. {
  3896. int ret = -EINVAL;
  3897. if (buf[0] == '1') {
  3898. ret = validate_slab_cache(s);
  3899. if (ret >= 0)
  3900. ret = length;
  3901. }
  3902. return ret;
  3903. }
  3904. SLAB_ATTR(validate);
  3905. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  3906. {
  3907. if (!(s->flags & SLAB_STORE_USER))
  3908. return -ENOSYS;
  3909. return list_locations(s, buf, TRACK_ALLOC);
  3910. }
  3911. SLAB_ATTR_RO(alloc_calls);
  3912. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  3913. {
  3914. if (!(s->flags & SLAB_STORE_USER))
  3915. return -ENOSYS;
  3916. return list_locations(s, buf, TRACK_FREE);
  3917. }
  3918. SLAB_ATTR_RO(free_calls);
  3919. #endif /* CONFIG_SLUB_DEBUG */
  3920. #ifdef CONFIG_FAILSLAB
  3921. static ssize_t failslab_show(struct kmem_cache *s, char *buf)
  3922. {
  3923. return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
  3924. }
  3925. static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
  3926. size_t length)
  3927. {
  3928. if (s->refcount > 1)
  3929. return -EINVAL;
  3930. s->flags &= ~SLAB_FAILSLAB;
  3931. if (buf[0] == '1')
  3932. s->flags |= SLAB_FAILSLAB;
  3933. return length;
  3934. }
  3935. SLAB_ATTR(failslab);
  3936. #endif
  3937. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  3938. {
  3939. return 0;
  3940. }
  3941. static ssize_t shrink_store(struct kmem_cache *s,
  3942. const char *buf, size_t length)
  3943. {
  3944. if (buf[0] == '1') {
  3945. int rc = kmem_cache_shrink(s);
  3946. if (rc)
  3947. return rc;
  3948. } else
  3949. return -EINVAL;
  3950. return length;
  3951. }
  3952. SLAB_ATTR(shrink);
  3953. #ifdef CONFIG_NUMA
  3954. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  3955. {
  3956. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  3957. }
  3958. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  3959. const char *buf, size_t length)
  3960. {
  3961. unsigned long ratio;
  3962. int err;
  3963. err = kstrtoul(buf, 10, &ratio);
  3964. if (err)
  3965. return err;
  3966. if (ratio <= 100)
  3967. s->remote_node_defrag_ratio = ratio * 10;
  3968. return length;
  3969. }
  3970. SLAB_ATTR(remote_node_defrag_ratio);
  3971. #endif
  3972. #ifdef CONFIG_SLUB_STATS
  3973. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  3974. {
  3975. unsigned long sum = 0;
  3976. int cpu;
  3977. int len;
  3978. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  3979. if (!data)
  3980. return -ENOMEM;
  3981. for_each_online_cpu(cpu) {
  3982. unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
  3983. data[cpu] = x;
  3984. sum += x;
  3985. }
  3986. len = sprintf(buf, "%lu", sum);
  3987. #ifdef CONFIG_SMP
  3988. for_each_online_cpu(cpu) {
  3989. if (data[cpu] && len < PAGE_SIZE - 20)
  3990. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  3991. }
  3992. #endif
  3993. kfree(data);
  3994. return len + sprintf(buf + len, "\n");
  3995. }
  3996. static void clear_stat(struct kmem_cache *s, enum stat_item si)
  3997. {
  3998. int cpu;
  3999. for_each_online_cpu(cpu)
  4000. per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
  4001. }
  4002. #define STAT_ATTR(si, text) \
  4003. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  4004. { \
  4005. return show_stat(s, buf, si); \
  4006. } \
  4007. static ssize_t text##_store(struct kmem_cache *s, \
  4008. const char *buf, size_t length) \
  4009. { \
  4010. if (buf[0] != '0') \
  4011. return -EINVAL; \
  4012. clear_stat(s, si); \
  4013. return length; \
  4014. } \
  4015. SLAB_ATTR(text); \
  4016. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  4017. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  4018. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  4019. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  4020. STAT_ATTR(FREE_FROZEN, free_frozen);
  4021. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  4022. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  4023. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  4024. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  4025. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  4026. STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
  4027. STAT_ATTR(FREE_SLAB, free_slab);
  4028. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  4029. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  4030. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  4031. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  4032. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  4033. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  4034. STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
  4035. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  4036. STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
  4037. STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
  4038. STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
  4039. STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
  4040. STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
  4041. STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
  4042. #endif
  4043. static struct attribute *slab_attrs[] = {
  4044. &slab_size_attr.attr,
  4045. &object_size_attr.attr,
  4046. &objs_per_slab_attr.attr,
  4047. &order_attr.attr,
  4048. &min_partial_attr.attr,
  4049. &cpu_partial_attr.attr,
  4050. &objects_attr.attr,
  4051. &objects_partial_attr.attr,
  4052. &partial_attr.attr,
  4053. &cpu_slabs_attr.attr,
  4054. &ctor_attr.attr,
  4055. &aliases_attr.attr,
  4056. &align_attr.attr,
  4057. &hwcache_align_attr.attr,
  4058. &reclaim_account_attr.attr,
  4059. &destroy_by_rcu_attr.attr,
  4060. &shrink_attr.attr,
  4061. &reserved_attr.attr,
  4062. &slabs_cpu_partial_attr.attr,
  4063. #ifdef CONFIG_SLUB_DEBUG
  4064. &total_objects_attr.attr,
  4065. &slabs_attr.attr,
  4066. &sanity_checks_attr.attr,
  4067. &trace_attr.attr,
  4068. &red_zone_attr.attr,
  4069. &poison_attr.attr,
  4070. &store_user_attr.attr,
  4071. &validate_attr.attr,
  4072. &alloc_calls_attr.attr,
  4073. &free_calls_attr.attr,
  4074. #endif
  4075. #ifdef CONFIG_ZONE_DMA
  4076. &cache_dma_attr.attr,
  4077. #endif
  4078. #ifdef CONFIG_NUMA
  4079. &remote_node_defrag_ratio_attr.attr,
  4080. #endif
  4081. #ifdef CONFIG_SLUB_STATS
  4082. &alloc_fastpath_attr.attr,
  4083. &alloc_slowpath_attr.attr,
  4084. &free_fastpath_attr.attr,
  4085. &free_slowpath_attr.attr,
  4086. &free_frozen_attr.attr,
  4087. &free_add_partial_attr.attr,
  4088. &free_remove_partial_attr.attr,
  4089. &alloc_from_partial_attr.attr,
  4090. &alloc_slab_attr.attr,
  4091. &alloc_refill_attr.attr,
  4092. &alloc_node_mismatch_attr.attr,
  4093. &free_slab_attr.attr,
  4094. &cpuslab_flush_attr.attr,
  4095. &deactivate_full_attr.attr,
  4096. &deactivate_empty_attr.attr,
  4097. &deactivate_to_head_attr.attr,
  4098. &deactivate_to_tail_attr.attr,
  4099. &deactivate_remote_frees_attr.attr,
  4100. &deactivate_bypass_attr.attr,
  4101. &order_fallback_attr.attr,
  4102. &cmpxchg_double_fail_attr.attr,
  4103. &cmpxchg_double_cpu_fail_attr.attr,
  4104. &cpu_partial_alloc_attr.attr,
  4105. &cpu_partial_free_attr.attr,
  4106. &cpu_partial_node_attr.attr,
  4107. &cpu_partial_drain_attr.attr,
  4108. #endif
  4109. #ifdef CONFIG_FAILSLAB
  4110. &failslab_attr.attr,
  4111. #endif
  4112. NULL
  4113. };
  4114. static struct attribute_group slab_attr_group = {
  4115. .attrs = slab_attrs,
  4116. };
  4117. static ssize_t slab_attr_show(struct kobject *kobj,
  4118. struct attribute *attr,
  4119. char *buf)
  4120. {
  4121. struct slab_attribute *attribute;
  4122. struct kmem_cache *s;
  4123. int err;
  4124. attribute = to_slab_attr(attr);
  4125. s = to_slab(kobj);
  4126. if (!attribute->show)
  4127. return -EIO;
  4128. err = attribute->show(s, buf);
  4129. return err;
  4130. }
  4131. static ssize_t slab_attr_store(struct kobject *kobj,
  4132. struct attribute *attr,
  4133. const char *buf, size_t len)
  4134. {
  4135. struct slab_attribute *attribute;
  4136. struct kmem_cache *s;
  4137. int err;
  4138. attribute = to_slab_attr(attr);
  4139. s = to_slab(kobj);
  4140. if (!attribute->store)
  4141. return -EIO;
  4142. err = attribute->store(s, buf, len);
  4143. #ifdef CONFIG_MEMCG_KMEM
  4144. if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
  4145. int i;
  4146. mutex_lock(&slab_mutex);
  4147. if (s->max_attr_size < len)
  4148. s->max_attr_size = len;
  4149. /*
  4150. * This is a best effort propagation, so this function's return
  4151. * value will be determined by the parent cache only. This is
  4152. * basically because not all attributes will have a well
  4153. * defined semantics for rollbacks - most of the actions will
  4154. * have permanent effects.
  4155. *
  4156. * Returning the error value of any of the children that fail
  4157. * is not 100 % defined, in the sense that users seeing the
  4158. * error code won't be able to know anything about the state of
  4159. * the cache.
  4160. *
  4161. * Only returning the error code for the parent cache at least
  4162. * has well defined semantics. The cache being written to
  4163. * directly either failed or succeeded, in which case we loop
  4164. * through the descendants with best-effort propagation.
  4165. */
  4166. for_each_memcg_cache_index(i) {
  4167. struct kmem_cache *c = cache_from_memcg_idx(s, i);
  4168. if (c)
  4169. attribute->store(c, buf, len);
  4170. }
  4171. mutex_unlock(&slab_mutex);
  4172. }
  4173. #endif
  4174. return err;
  4175. }
  4176. static void memcg_propagate_slab_attrs(struct kmem_cache *s)
  4177. {
  4178. #ifdef CONFIG_MEMCG_KMEM
  4179. int i;
  4180. char *buffer = NULL;
  4181. struct kmem_cache *root_cache;
  4182. if (is_root_cache(s))
  4183. return;
  4184. root_cache = s->memcg_params->root_cache;
  4185. /*
  4186. * This mean this cache had no attribute written. Therefore, no point
  4187. * in copying default values around
  4188. */
  4189. if (!root_cache->max_attr_size)
  4190. return;
  4191. for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
  4192. char mbuf[64];
  4193. char *buf;
  4194. struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
  4195. if (!attr || !attr->store || !attr->show)
  4196. continue;
  4197. /*
  4198. * It is really bad that we have to allocate here, so we will
  4199. * do it only as a fallback. If we actually allocate, though,
  4200. * we can just use the allocated buffer until the end.
  4201. *
  4202. * Most of the slub attributes will tend to be very small in
  4203. * size, but sysfs allows buffers up to a page, so they can
  4204. * theoretically happen.
  4205. */
  4206. if (buffer)
  4207. buf = buffer;
  4208. else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
  4209. buf = mbuf;
  4210. else {
  4211. buffer = (char *) get_zeroed_page(GFP_KERNEL);
  4212. if (WARN_ON(!buffer))
  4213. continue;
  4214. buf = buffer;
  4215. }
  4216. attr->show(root_cache, buf);
  4217. attr->store(s, buf, strlen(buf));
  4218. }
  4219. if (buffer)
  4220. free_page((unsigned long)buffer);
  4221. #endif
  4222. }
  4223. static void kmem_cache_release(struct kobject *k)
  4224. {
  4225. slab_kmem_cache_release(to_slab(k));
  4226. }
  4227. static const struct sysfs_ops slab_sysfs_ops = {
  4228. .show = slab_attr_show,
  4229. .store = slab_attr_store,
  4230. };
  4231. static struct kobj_type slab_ktype = {
  4232. .sysfs_ops = &slab_sysfs_ops,
  4233. .release = kmem_cache_release,
  4234. };
  4235. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  4236. {
  4237. struct kobj_type *ktype = get_ktype(kobj);
  4238. if (ktype == &slab_ktype)
  4239. return 1;
  4240. return 0;
  4241. }
  4242. static const struct kset_uevent_ops slab_uevent_ops = {
  4243. .filter = uevent_filter,
  4244. };
  4245. static struct kset *slab_kset;
  4246. static inline struct kset *cache_kset(struct kmem_cache *s)
  4247. {
  4248. #ifdef CONFIG_MEMCG_KMEM
  4249. if (!is_root_cache(s))
  4250. return s->memcg_params->root_cache->memcg_kset;
  4251. #endif
  4252. return slab_kset;
  4253. }
  4254. #define ID_STR_LENGTH 64
  4255. /* Create a unique string id for a slab cache:
  4256. *
  4257. * Format :[flags-]size
  4258. */
  4259. static char *create_unique_id(struct kmem_cache *s)
  4260. {
  4261. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  4262. char *p = name;
  4263. BUG_ON(!name);
  4264. *p++ = ':';
  4265. /*
  4266. * First flags affecting slabcache operations. We will only
  4267. * get here for aliasable slabs so we do not need to support
  4268. * too many flags. The flags here must cover all flags that
  4269. * are matched during merging to guarantee that the id is
  4270. * unique.
  4271. */
  4272. if (s->flags & SLAB_CACHE_DMA)
  4273. *p++ = 'd';
  4274. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  4275. *p++ = 'a';
  4276. if (s->flags & SLAB_DEBUG_FREE)
  4277. *p++ = 'F';
  4278. if (!(s->flags & SLAB_NOTRACK))
  4279. *p++ = 't';
  4280. if (p != name + 1)
  4281. *p++ = '-';
  4282. p += sprintf(p, "%07d", s->size);
  4283. BUG_ON(p > name + ID_STR_LENGTH - 1);
  4284. return name;
  4285. }
  4286. static int sysfs_slab_add(struct kmem_cache *s)
  4287. {
  4288. int err;
  4289. const char *name;
  4290. int unmergeable = slab_unmergeable(s);
  4291. if (unmergeable) {
  4292. /*
  4293. * Slabcache can never be merged so we can use the name proper.
  4294. * This is typically the case for debug situations. In that
  4295. * case we can catch duplicate names easily.
  4296. */
  4297. sysfs_remove_link(&slab_kset->kobj, s->name);
  4298. name = s->name;
  4299. } else {
  4300. /*
  4301. * Create a unique name for the slab as a target
  4302. * for the symlinks.
  4303. */
  4304. name = create_unique_id(s);
  4305. }
  4306. s->kobj.kset = cache_kset(s);
  4307. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
  4308. if (err)
  4309. goto out_put_kobj;
  4310. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  4311. if (err)
  4312. goto out_del_kobj;
  4313. #ifdef CONFIG_MEMCG_KMEM
  4314. if (is_root_cache(s)) {
  4315. s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
  4316. if (!s->memcg_kset) {
  4317. err = -ENOMEM;
  4318. goto out_del_kobj;
  4319. }
  4320. }
  4321. #endif
  4322. kobject_uevent(&s->kobj, KOBJ_ADD);
  4323. if (!unmergeable) {
  4324. /* Setup first alias */
  4325. sysfs_slab_alias(s, s->name);
  4326. }
  4327. out:
  4328. if (!unmergeable)
  4329. kfree(name);
  4330. return err;
  4331. out_del_kobj:
  4332. kobject_del(&s->kobj);
  4333. out_put_kobj:
  4334. kobject_put(&s->kobj);
  4335. goto out;
  4336. }
  4337. void sysfs_slab_remove(struct kmem_cache *s)
  4338. {
  4339. if (slab_state < FULL)
  4340. /*
  4341. * Sysfs has not been setup yet so no need to remove the
  4342. * cache from sysfs.
  4343. */
  4344. return;
  4345. #ifdef CONFIG_MEMCG_KMEM
  4346. kset_unregister(s->memcg_kset);
  4347. #endif
  4348. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  4349. kobject_del(&s->kobj);
  4350. kobject_put(&s->kobj);
  4351. }
  4352. /*
  4353. * Need to buffer aliases during bootup until sysfs becomes
  4354. * available lest we lose that information.
  4355. */
  4356. struct saved_alias {
  4357. struct kmem_cache *s;
  4358. const char *name;
  4359. struct saved_alias *next;
  4360. };
  4361. static struct saved_alias *alias_list;
  4362. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  4363. {
  4364. struct saved_alias *al;
  4365. if (slab_state == FULL) {
  4366. /*
  4367. * If we have a leftover link then remove it.
  4368. */
  4369. sysfs_remove_link(&slab_kset->kobj, name);
  4370. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  4371. }
  4372. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  4373. if (!al)
  4374. return -ENOMEM;
  4375. al->s = s;
  4376. al->name = name;
  4377. al->next = alias_list;
  4378. alias_list = al;
  4379. return 0;
  4380. }
  4381. static int __init slab_sysfs_init(void)
  4382. {
  4383. struct kmem_cache *s;
  4384. int err;
  4385. mutex_lock(&slab_mutex);
  4386. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  4387. if (!slab_kset) {
  4388. mutex_unlock(&slab_mutex);
  4389. pr_err("Cannot register slab subsystem.\n");
  4390. return -ENOSYS;
  4391. }
  4392. slab_state = FULL;
  4393. list_for_each_entry(s, &slab_caches, list) {
  4394. err = sysfs_slab_add(s);
  4395. if (err)
  4396. pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
  4397. s->name);
  4398. }
  4399. while (alias_list) {
  4400. struct saved_alias *al = alias_list;
  4401. alias_list = alias_list->next;
  4402. err = sysfs_slab_alias(al->s, al->name);
  4403. if (err)
  4404. pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
  4405. al->name);
  4406. kfree(al);
  4407. }
  4408. mutex_unlock(&slab_mutex);
  4409. resiliency_test();
  4410. return 0;
  4411. }
  4412. __initcall(slab_sysfs_init);
  4413. #endif /* CONFIG_SYSFS */
  4414. /*
  4415. * The /proc/slabinfo ABI
  4416. */
  4417. #ifdef CONFIG_SLABINFO
  4418. void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
  4419. {
  4420. unsigned long nr_slabs = 0;
  4421. unsigned long nr_objs = 0;
  4422. unsigned long nr_free = 0;
  4423. int node;
  4424. struct kmem_cache_node *n;
  4425. for_each_kmem_cache_node(s, node, n) {
  4426. nr_slabs += node_nr_slabs(n);
  4427. nr_objs += node_nr_objs(n);
  4428. nr_free += count_partial(n, count_free);
  4429. }
  4430. sinfo->active_objs = nr_objs - nr_free;
  4431. sinfo->num_objs = nr_objs;
  4432. sinfo->active_slabs = nr_slabs;
  4433. sinfo->num_slabs = nr_slabs;
  4434. sinfo->objects_per_slab = oo_objects(s->oo);
  4435. sinfo->cache_order = oo_order(s->oo);
  4436. }
  4437. void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
  4438. {
  4439. }
  4440. ssize_t slabinfo_write(struct file *file, const char __user *buffer,
  4441. size_t count, loff_t *ppos)
  4442. {
  4443. return -EIO;
  4444. }
  4445. #endif /* CONFIG_SLABINFO */