slab.h 9.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363
  1. #ifndef MM_SLAB_H
  2. #define MM_SLAB_H
  3. /*
  4. * Internal slab definitions
  5. */
  6. #ifdef CONFIG_SLOB
  7. /*
  8. * Common fields provided in kmem_cache by all slab allocators
  9. * This struct is either used directly by the allocator (SLOB)
  10. * or the allocator must include definitions for all fields
  11. * provided in kmem_cache_common in their definition of kmem_cache.
  12. *
  13. * Once we can do anonymous structs (C11 standard) we could put a
  14. * anonymous struct definition in these allocators so that the
  15. * separate allocations in the kmem_cache structure of SLAB and
  16. * SLUB is no longer needed.
  17. */
  18. struct kmem_cache {
  19. unsigned int object_size;/* The original size of the object */
  20. unsigned int size; /* The aligned/padded/added on size */
  21. unsigned int align; /* Alignment as calculated */
  22. unsigned long flags; /* Active flags on the slab */
  23. const char *name; /* Slab name for sysfs */
  24. int refcount; /* Use counter */
  25. void (*ctor)(void *); /* Called on object slot creation */
  26. struct list_head list; /* List of all slab caches on the system */
  27. };
  28. #endif /* CONFIG_SLOB */
  29. #ifdef CONFIG_SLAB
  30. #include <linux/slab_def.h>
  31. #endif
  32. #ifdef CONFIG_SLUB
  33. #include <linux/slub_def.h>
  34. #endif
  35. #include <linux/memcontrol.h>
  36. /*
  37. * State of the slab allocator.
  38. *
  39. * This is used to describe the states of the allocator during bootup.
  40. * Allocators use this to gradually bootstrap themselves. Most allocators
  41. * have the problem that the structures used for managing slab caches are
  42. * allocated from slab caches themselves.
  43. */
  44. enum slab_state {
  45. DOWN, /* No slab functionality yet */
  46. PARTIAL, /* SLUB: kmem_cache_node available */
  47. PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */
  48. UP, /* Slab caches usable but not all extras yet */
  49. FULL /* Everything is working */
  50. };
  51. extern enum slab_state slab_state;
  52. /* The slab cache mutex protects the management structures during changes */
  53. extern struct mutex slab_mutex;
  54. /* The list of all slab caches on the system */
  55. extern struct list_head slab_caches;
  56. /* The slab cache that manages slab cache information */
  57. extern struct kmem_cache *kmem_cache;
  58. unsigned long calculate_alignment(unsigned long flags,
  59. unsigned long align, unsigned long size);
  60. #ifndef CONFIG_SLOB
  61. /* Kmalloc array related functions */
  62. void create_kmalloc_caches(unsigned long);
  63. /* Find the kmalloc slab corresponding for a certain size */
  64. struct kmem_cache *kmalloc_slab(size_t, gfp_t);
  65. #endif
  66. /* Functions provided by the slab allocators */
  67. extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags);
  68. extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size,
  69. unsigned long flags);
  70. extern void create_boot_cache(struct kmem_cache *, const char *name,
  71. size_t size, unsigned long flags);
  72. struct mem_cgroup;
  73. int slab_unmergeable(struct kmem_cache *s);
  74. struct kmem_cache *find_mergeable(size_t size, size_t align,
  75. unsigned long flags, const char *name, void (*ctor)(void *));
  76. #ifndef CONFIG_SLOB
  77. struct kmem_cache *
  78. __kmem_cache_alias(const char *name, size_t size, size_t align,
  79. unsigned long flags, void (*ctor)(void *));
  80. unsigned long kmem_cache_flags(unsigned long object_size,
  81. unsigned long flags, const char *name,
  82. void (*ctor)(void *));
  83. #else
  84. static inline struct kmem_cache *
  85. __kmem_cache_alias(const char *name, size_t size, size_t align,
  86. unsigned long flags, void (*ctor)(void *))
  87. { return NULL; }
  88. static inline unsigned long kmem_cache_flags(unsigned long object_size,
  89. unsigned long flags, const char *name,
  90. void (*ctor)(void *))
  91. {
  92. return flags;
  93. }
  94. #endif
  95. /* Legal flag mask for kmem_cache_create(), for various configurations */
  96. #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
  97. SLAB_DESTROY_BY_RCU | SLAB_DEBUG_OBJECTS )
  98. #if defined(CONFIG_DEBUG_SLAB)
  99. #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
  100. #elif defined(CONFIG_SLUB_DEBUG)
  101. #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  102. SLAB_TRACE | SLAB_DEBUG_FREE)
  103. #else
  104. #define SLAB_DEBUG_FLAGS (0)
  105. #endif
  106. #if defined(CONFIG_SLAB)
  107. #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
  108. SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | SLAB_NOTRACK)
  109. #elif defined(CONFIG_SLUB)
  110. #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
  111. SLAB_TEMPORARY | SLAB_NOTRACK)
  112. #else
  113. #define SLAB_CACHE_FLAGS (0)
  114. #endif
  115. #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
  116. int __kmem_cache_shutdown(struct kmem_cache *);
  117. int __kmem_cache_shrink(struct kmem_cache *);
  118. void slab_kmem_cache_release(struct kmem_cache *);
  119. struct seq_file;
  120. struct file;
  121. struct slabinfo {
  122. unsigned long active_objs;
  123. unsigned long num_objs;
  124. unsigned long active_slabs;
  125. unsigned long num_slabs;
  126. unsigned long shared_avail;
  127. unsigned int limit;
  128. unsigned int batchcount;
  129. unsigned int shared;
  130. unsigned int objects_per_slab;
  131. unsigned int cache_order;
  132. };
  133. void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
  134. void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
  135. ssize_t slabinfo_write(struct file *file, const char __user *buffer,
  136. size_t count, loff_t *ppos);
  137. #ifdef CONFIG_MEMCG_KMEM
  138. static inline bool is_root_cache(struct kmem_cache *s)
  139. {
  140. return !s->memcg_params || s->memcg_params->is_root_cache;
  141. }
  142. static inline bool slab_equal_or_root(struct kmem_cache *s,
  143. struct kmem_cache *p)
  144. {
  145. return (p == s) ||
  146. (s->memcg_params && (p == s->memcg_params->root_cache));
  147. }
  148. /*
  149. * We use suffixes to the name in memcg because we can't have caches
  150. * created in the system with the same name. But when we print them
  151. * locally, better refer to them with the base name
  152. */
  153. static inline const char *cache_name(struct kmem_cache *s)
  154. {
  155. if (!is_root_cache(s))
  156. return s->memcg_params->root_cache->name;
  157. return s->name;
  158. }
  159. /*
  160. * Note, we protect with RCU only the memcg_caches array, not per-memcg caches.
  161. * That said the caller must assure the memcg's cache won't go away. Since once
  162. * created a memcg's cache is destroyed only along with the root cache, it is
  163. * true if we are going to allocate from the cache or hold a reference to the
  164. * root cache by other means. Otherwise, we should hold either the slab_mutex
  165. * or the memcg's slab_caches_mutex while calling this function and accessing
  166. * the returned value.
  167. */
  168. static inline struct kmem_cache *
  169. cache_from_memcg_idx(struct kmem_cache *s, int idx)
  170. {
  171. struct kmem_cache *cachep;
  172. struct memcg_cache_params *params;
  173. if (!s->memcg_params)
  174. return NULL;
  175. rcu_read_lock();
  176. params = rcu_dereference(s->memcg_params);
  177. cachep = params->memcg_caches[idx];
  178. rcu_read_unlock();
  179. /*
  180. * Make sure we will access the up-to-date value. The code updating
  181. * memcg_caches issues a write barrier to match this (see
  182. * memcg_register_cache()).
  183. */
  184. smp_read_barrier_depends();
  185. return cachep;
  186. }
  187. static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
  188. {
  189. if (is_root_cache(s))
  190. return s;
  191. return s->memcg_params->root_cache;
  192. }
  193. static __always_inline int memcg_charge_slab(struct kmem_cache *s,
  194. gfp_t gfp, int order)
  195. {
  196. if (!memcg_kmem_enabled())
  197. return 0;
  198. if (is_root_cache(s))
  199. return 0;
  200. return __memcg_charge_slab(s, gfp, order);
  201. }
  202. static __always_inline void memcg_uncharge_slab(struct kmem_cache *s, int order)
  203. {
  204. if (!memcg_kmem_enabled())
  205. return;
  206. if (is_root_cache(s))
  207. return;
  208. __memcg_uncharge_slab(s, order);
  209. }
  210. #else
  211. static inline bool is_root_cache(struct kmem_cache *s)
  212. {
  213. return true;
  214. }
  215. static inline bool slab_equal_or_root(struct kmem_cache *s,
  216. struct kmem_cache *p)
  217. {
  218. return true;
  219. }
  220. static inline const char *cache_name(struct kmem_cache *s)
  221. {
  222. return s->name;
  223. }
  224. static inline struct kmem_cache *
  225. cache_from_memcg_idx(struct kmem_cache *s, int idx)
  226. {
  227. return NULL;
  228. }
  229. static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
  230. {
  231. return s;
  232. }
  233. static inline int memcg_charge_slab(struct kmem_cache *s, gfp_t gfp, int order)
  234. {
  235. return 0;
  236. }
  237. static inline void memcg_uncharge_slab(struct kmem_cache *s, int order)
  238. {
  239. }
  240. #endif
  241. static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
  242. {
  243. struct kmem_cache *cachep;
  244. struct page *page;
  245. /*
  246. * When kmemcg is not being used, both assignments should return the
  247. * same value. but we don't want to pay the assignment price in that
  248. * case. If it is not compiled in, the compiler should be smart enough
  249. * to not do even the assignment. In that case, slab_equal_or_root
  250. * will also be a constant.
  251. */
  252. if (!memcg_kmem_enabled() && !unlikely(s->flags & SLAB_DEBUG_FREE))
  253. return s;
  254. page = virt_to_head_page(x);
  255. cachep = page->slab_cache;
  256. if (slab_equal_or_root(cachep, s))
  257. return cachep;
  258. pr_err("%s: Wrong slab cache. %s but object is from %s\n",
  259. __func__, cachep->name, s->name);
  260. WARN_ON_ONCE(1);
  261. return s;
  262. }
  263. #ifndef CONFIG_SLOB
  264. /*
  265. * The slab lists for all objects.
  266. */
  267. struct kmem_cache_node {
  268. spinlock_t list_lock;
  269. #ifdef CONFIG_SLAB
  270. struct list_head slabs_partial; /* partial list first, better asm code */
  271. struct list_head slabs_full;
  272. struct list_head slabs_free;
  273. unsigned long free_objects;
  274. unsigned int free_limit;
  275. unsigned int colour_next; /* Per-node cache coloring */
  276. struct array_cache *shared; /* shared per node */
  277. struct alien_cache **alien; /* on other nodes */
  278. unsigned long next_reap; /* updated without locking */
  279. int free_touched; /* updated without locking */
  280. #endif
  281. #ifdef CONFIG_SLUB
  282. unsigned long nr_partial;
  283. struct list_head partial;
  284. #ifdef CONFIG_SLUB_DEBUG
  285. atomic_long_t nr_slabs;
  286. atomic_long_t total_objects;
  287. struct list_head full;
  288. #endif
  289. #endif
  290. };
  291. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  292. {
  293. return s->node[node];
  294. }
  295. /*
  296. * Iterator over all nodes. The body will be executed for each node that has
  297. * a kmem_cache_node structure allocated (which is true for all online nodes)
  298. */
  299. #define for_each_kmem_cache_node(__s, __node, __n) \
  300. for (__node = 0; __node < nr_node_ids; __node++) \
  301. if ((__n = get_node(__s, __node)))
  302. #endif
  303. void *slab_next(struct seq_file *m, void *p, loff_t *pos);
  304. void slab_stop(struct seq_file *m, void *p);
  305. #endif /* MM_SLAB_H */