rmap.c 48 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758
  1. /*
  2. * mm/rmap.c - physical to virtual reverse mappings
  3. *
  4. * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
  5. * Released under the General Public License (GPL).
  6. *
  7. * Simple, low overhead reverse mapping scheme.
  8. * Please try to keep this thing as modular as possible.
  9. *
  10. * Provides methods for unmapping each kind of mapped page:
  11. * the anon methods track anonymous pages, and
  12. * the file methods track pages belonging to an inode.
  13. *
  14. * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15. * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16. * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17. * Contributions by Hugh Dickins 2003, 2004
  18. */
  19. /*
  20. * Lock ordering in mm:
  21. *
  22. * inode->i_mutex (while writing or truncating, not reading or faulting)
  23. * mm->mmap_sem
  24. * page->flags PG_locked (lock_page)
  25. * mapping->i_mmap_mutex
  26. * anon_vma->rwsem
  27. * mm->page_table_lock or pte_lock
  28. * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
  29. * swap_lock (in swap_duplicate, swap_info_get)
  30. * mmlist_lock (in mmput, drain_mmlist and others)
  31. * mapping->private_lock (in __set_page_dirty_buffers)
  32. * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
  33. * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
  34. * sb_lock (within inode_lock in fs/fs-writeback.c)
  35. * mapping->tree_lock (widely used, in set_page_dirty,
  36. * in arch-dependent flush_dcache_mmap_lock,
  37. * within bdi.wb->list_lock in __sync_single_inode)
  38. *
  39. * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
  40. * ->tasklist_lock
  41. * pte map lock
  42. */
  43. #include <linux/mm.h>
  44. #include <linux/pagemap.h>
  45. #include <linux/swap.h>
  46. #include <linux/swapops.h>
  47. #include <linux/slab.h>
  48. #include <linux/init.h>
  49. #include <linux/ksm.h>
  50. #include <linux/rmap.h>
  51. #include <linux/rcupdate.h>
  52. #include <linux/export.h>
  53. #include <linux/memcontrol.h>
  54. #include <linux/mmu_notifier.h>
  55. #include <linux/migrate.h>
  56. #include <linux/hugetlb.h>
  57. #include <linux/backing-dev.h>
  58. #include <asm/tlbflush.h>
  59. #include "internal.h"
  60. static struct kmem_cache *anon_vma_cachep;
  61. static struct kmem_cache *anon_vma_chain_cachep;
  62. static inline struct anon_vma *anon_vma_alloc(void)
  63. {
  64. struct anon_vma *anon_vma;
  65. anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
  66. if (anon_vma) {
  67. atomic_set(&anon_vma->refcount, 1);
  68. /*
  69. * Initialise the anon_vma root to point to itself. If called
  70. * from fork, the root will be reset to the parents anon_vma.
  71. */
  72. anon_vma->root = anon_vma;
  73. }
  74. return anon_vma;
  75. }
  76. static inline void anon_vma_free(struct anon_vma *anon_vma)
  77. {
  78. VM_BUG_ON(atomic_read(&anon_vma->refcount));
  79. /*
  80. * Synchronize against page_lock_anon_vma_read() such that
  81. * we can safely hold the lock without the anon_vma getting
  82. * freed.
  83. *
  84. * Relies on the full mb implied by the atomic_dec_and_test() from
  85. * put_anon_vma() against the acquire barrier implied by
  86. * down_read_trylock() from page_lock_anon_vma_read(). This orders:
  87. *
  88. * page_lock_anon_vma_read() VS put_anon_vma()
  89. * down_read_trylock() atomic_dec_and_test()
  90. * LOCK MB
  91. * atomic_read() rwsem_is_locked()
  92. *
  93. * LOCK should suffice since the actual taking of the lock must
  94. * happen _before_ what follows.
  95. */
  96. might_sleep();
  97. if (rwsem_is_locked(&anon_vma->root->rwsem)) {
  98. anon_vma_lock_write(anon_vma);
  99. anon_vma_unlock_write(anon_vma);
  100. }
  101. kmem_cache_free(anon_vma_cachep, anon_vma);
  102. }
  103. static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
  104. {
  105. return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
  106. }
  107. static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
  108. {
  109. kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
  110. }
  111. static void anon_vma_chain_link(struct vm_area_struct *vma,
  112. struct anon_vma_chain *avc,
  113. struct anon_vma *anon_vma)
  114. {
  115. avc->vma = vma;
  116. avc->anon_vma = anon_vma;
  117. list_add(&avc->same_vma, &vma->anon_vma_chain);
  118. anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
  119. }
  120. /**
  121. * anon_vma_prepare - attach an anon_vma to a memory region
  122. * @vma: the memory region in question
  123. *
  124. * This makes sure the memory mapping described by 'vma' has
  125. * an 'anon_vma' attached to it, so that we can associate the
  126. * anonymous pages mapped into it with that anon_vma.
  127. *
  128. * The common case will be that we already have one, but if
  129. * not we either need to find an adjacent mapping that we
  130. * can re-use the anon_vma from (very common when the only
  131. * reason for splitting a vma has been mprotect()), or we
  132. * allocate a new one.
  133. *
  134. * Anon-vma allocations are very subtle, because we may have
  135. * optimistically looked up an anon_vma in page_lock_anon_vma_read()
  136. * and that may actually touch the spinlock even in the newly
  137. * allocated vma (it depends on RCU to make sure that the
  138. * anon_vma isn't actually destroyed).
  139. *
  140. * As a result, we need to do proper anon_vma locking even
  141. * for the new allocation. At the same time, we do not want
  142. * to do any locking for the common case of already having
  143. * an anon_vma.
  144. *
  145. * This must be called with the mmap_sem held for reading.
  146. */
  147. int anon_vma_prepare(struct vm_area_struct *vma)
  148. {
  149. struct anon_vma *anon_vma = vma->anon_vma;
  150. struct anon_vma_chain *avc;
  151. might_sleep();
  152. if (unlikely(!anon_vma)) {
  153. struct mm_struct *mm = vma->vm_mm;
  154. struct anon_vma *allocated;
  155. avc = anon_vma_chain_alloc(GFP_KERNEL);
  156. if (!avc)
  157. goto out_enomem;
  158. anon_vma = find_mergeable_anon_vma(vma);
  159. allocated = NULL;
  160. if (!anon_vma) {
  161. anon_vma = anon_vma_alloc();
  162. if (unlikely(!anon_vma))
  163. goto out_enomem_free_avc;
  164. allocated = anon_vma;
  165. }
  166. anon_vma_lock_write(anon_vma);
  167. /* page_table_lock to protect against threads */
  168. spin_lock(&mm->page_table_lock);
  169. if (likely(!vma->anon_vma)) {
  170. vma->anon_vma = anon_vma;
  171. anon_vma_chain_link(vma, avc, anon_vma);
  172. allocated = NULL;
  173. avc = NULL;
  174. }
  175. spin_unlock(&mm->page_table_lock);
  176. anon_vma_unlock_write(anon_vma);
  177. if (unlikely(allocated))
  178. put_anon_vma(allocated);
  179. if (unlikely(avc))
  180. anon_vma_chain_free(avc);
  181. }
  182. return 0;
  183. out_enomem_free_avc:
  184. anon_vma_chain_free(avc);
  185. out_enomem:
  186. return -ENOMEM;
  187. }
  188. /*
  189. * This is a useful helper function for locking the anon_vma root as
  190. * we traverse the vma->anon_vma_chain, looping over anon_vma's that
  191. * have the same vma.
  192. *
  193. * Such anon_vma's should have the same root, so you'd expect to see
  194. * just a single mutex_lock for the whole traversal.
  195. */
  196. static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
  197. {
  198. struct anon_vma *new_root = anon_vma->root;
  199. if (new_root != root) {
  200. if (WARN_ON_ONCE(root))
  201. up_write(&root->rwsem);
  202. root = new_root;
  203. down_write(&root->rwsem);
  204. }
  205. return root;
  206. }
  207. static inline void unlock_anon_vma_root(struct anon_vma *root)
  208. {
  209. if (root)
  210. up_write(&root->rwsem);
  211. }
  212. /*
  213. * Attach the anon_vmas from src to dst.
  214. * Returns 0 on success, -ENOMEM on failure.
  215. */
  216. int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
  217. {
  218. struct anon_vma_chain *avc, *pavc;
  219. struct anon_vma *root = NULL;
  220. list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
  221. struct anon_vma *anon_vma;
  222. avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
  223. if (unlikely(!avc)) {
  224. unlock_anon_vma_root(root);
  225. root = NULL;
  226. avc = anon_vma_chain_alloc(GFP_KERNEL);
  227. if (!avc)
  228. goto enomem_failure;
  229. }
  230. anon_vma = pavc->anon_vma;
  231. root = lock_anon_vma_root(root, anon_vma);
  232. anon_vma_chain_link(dst, avc, anon_vma);
  233. }
  234. unlock_anon_vma_root(root);
  235. return 0;
  236. enomem_failure:
  237. unlink_anon_vmas(dst);
  238. return -ENOMEM;
  239. }
  240. /*
  241. * Attach vma to its own anon_vma, as well as to the anon_vmas that
  242. * the corresponding VMA in the parent process is attached to.
  243. * Returns 0 on success, non-zero on failure.
  244. */
  245. int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
  246. {
  247. struct anon_vma_chain *avc;
  248. struct anon_vma *anon_vma;
  249. /* Don't bother if the parent process has no anon_vma here. */
  250. if (!pvma->anon_vma)
  251. return 0;
  252. /*
  253. * First, attach the new VMA to the parent VMA's anon_vmas,
  254. * so rmap can find non-COWed pages in child processes.
  255. */
  256. if (anon_vma_clone(vma, pvma))
  257. return -ENOMEM;
  258. /* Then add our own anon_vma. */
  259. anon_vma = anon_vma_alloc();
  260. if (!anon_vma)
  261. goto out_error;
  262. avc = anon_vma_chain_alloc(GFP_KERNEL);
  263. if (!avc)
  264. goto out_error_free_anon_vma;
  265. /*
  266. * The root anon_vma's spinlock is the lock actually used when we
  267. * lock any of the anon_vmas in this anon_vma tree.
  268. */
  269. anon_vma->root = pvma->anon_vma->root;
  270. /*
  271. * With refcounts, an anon_vma can stay around longer than the
  272. * process it belongs to. The root anon_vma needs to be pinned until
  273. * this anon_vma is freed, because the lock lives in the root.
  274. */
  275. get_anon_vma(anon_vma->root);
  276. /* Mark this anon_vma as the one where our new (COWed) pages go. */
  277. vma->anon_vma = anon_vma;
  278. anon_vma_lock_write(anon_vma);
  279. anon_vma_chain_link(vma, avc, anon_vma);
  280. anon_vma_unlock_write(anon_vma);
  281. return 0;
  282. out_error_free_anon_vma:
  283. put_anon_vma(anon_vma);
  284. out_error:
  285. unlink_anon_vmas(vma);
  286. return -ENOMEM;
  287. }
  288. void unlink_anon_vmas(struct vm_area_struct *vma)
  289. {
  290. struct anon_vma_chain *avc, *next;
  291. struct anon_vma *root = NULL;
  292. /*
  293. * Unlink each anon_vma chained to the VMA. This list is ordered
  294. * from newest to oldest, ensuring the root anon_vma gets freed last.
  295. */
  296. list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
  297. struct anon_vma *anon_vma = avc->anon_vma;
  298. root = lock_anon_vma_root(root, anon_vma);
  299. anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
  300. /*
  301. * Leave empty anon_vmas on the list - we'll need
  302. * to free them outside the lock.
  303. */
  304. if (RB_EMPTY_ROOT(&anon_vma->rb_root))
  305. continue;
  306. list_del(&avc->same_vma);
  307. anon_vma_chain_free(avc);
  308. }
  309. unlock_anon_vma_root(root);
  310. /*
  311. * Iterate the list once more, it now only contains empty and unlinked
  312. * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
  313. * needing to write-acquire the anon_vma->root->rwsem.
  314. */
  315. list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
  316. struct anon_vma *anon_vma = avc->anon_vma;
  317. put_anon_vma(anon_vma);
  318. list_del(&avc->same_vma);
  319. anon_vma_chain_free(avc);
  320. }
  321. }
  322. static void anon_vma_ctor(void *data)
  323. {
  324. struct anon_vma *anon_vma = data;
  325. init_rwsem(&anon_vma->rwsem);
  326. atomic_set(&anon_vma->refcount, 0);
  327. anon_vma->rb_root = RB_ROOT;
  328. }
  329. void __init anon_vma_init(void)
  330. {
  331. anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
  332. 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
  333. anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
  334. }
  335. /*
  336. * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
  337. *
  338. * Since there is no serialization what so ever against page_remove_rmap()
  339. * the best this function can do is return a locked anon_vma that might
  340. * have been relevant to this page.
  341. *
  342. * The page might have been remapped to a different anon_vma or the anon_vma
  343. * returned may already be freed (and even reused).
  344. *
  345. * In case it was remapped to a different anon_vma, the new anon_vma will be a
  346. * child of the old anon_vma, and the anon_vma lifetime rules will therefore
  347. * ensure that any anon_vma obtained from the page will still be valid for as
  348. * long as we observe page_mapped() [ hence all those page_mapped() tests ].
  349. *
  350. * All users of this function must be very careful when walking the anon_vma
  351. * chain and verify that the page in question is indeed mapped in it
  352. * [ something equivalent to page_mapped_in_vma() ].
  353. *
  354. * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
  355. * that the anon_vma pointer from page->mapping is valid if there is a
  356. * mapcount, we can dereference the anon_vma after observing those.
  357. */
  358. struct anon_vma *page_get_anon_vma(struct page *page)
  359. {
  360. struct anon_vma *anon_vma = NULL;
  361. unsigned long anon_mapping;
  362. rcu_read_lock();
  363. anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
  364. if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
  365. goto out;
  366. if (!page_mapped(page))
  367. goto out;
  368. anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
  369. if (!atomic_inc_not_zero(&anon_vma->refcount)) {
  370. anon_vma = NULL;
  371. goto out;
  372. }
  373. /*
  374. * If this page is still mapped, then its anon_vma cannot have been
  375. * freed. But if it has been unmapped, we have no security against the
  376. * anon_vma structure being freed and reused (for another anon_vma:
  377. * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
  378. * above cannot corrupt).
  379. */
  380. if (!page_mapped(page)) {
  381. rcu_read_unlock();
  382. put_anon_vma(anon_vma);
  383. return NULL;
  384. }
  385. out:
  386. rcu_read_unlock();
  387. return anon_vma;
  388. }
  389. /*
  390. * Similar to page_get_anon_vma() except it locks the anon_vma.
  391. *
  392. * Its a little more complex as it tries to keep the fast path to a single
  393. * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
  394. * reference like with page_get_anon_vma() and then block on the mutex.
  395. */
  396. struct anon_vma *page_lock_anon_vma_read(struct page *page)
  397. {
  398. struct anon_vma *anon_vma = NULL;
  399. struct anon_vma *root_anon_vma;
  400. unsigned long anon_mapping;
  401. rcu_read_lock();
  402. anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
  403. if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
  404. goto out;
  405. if (!page_mapped(page))
  406. goto out;
  407. anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
  408. root_anon_vma = ACCESS_ONCE(anon_vma->root);
  409. if (down_read_trylock(&root_anon_vma->rwsem)) {
  410. /*
  411. * If the page is still mapped, then this anon_vma is still
  412. * its anon_vma, and holding the mutex ensures that it will
  413. * not go away, see anon_vma_free().
  414. */
  415. if (!page_mapped(page)) {
  416. up_read(&root_anon_vma->rwsem);
  417. anon_vma = NULL;
  418. }
  419. goto out;
  420. }
  421. /* trylock failed, we got to sleep */
  422. if (!atomic_inc_not_zero(&anon_vma->refcount)) {
  423. anon_vma = NULL;
  424. goto out;
  425. }
  426. if (!page_mapped(page)) {
  427. rcu_read_unlock();
  428. put_anon_vma(anon_vma);
  429. return NULL;
  430. }
  431. /* we pinned the anon_vma, its safe to sleep */
  432. rcu_read_unlock();
  433. anon_vma_lock_read(anon_vma);
  434. if (atomic_dec_and_test(&anon_vma->refcount)) {
  435. /*
  436. * Oops, we held the last refcount, release the lock
  437. * and bail -- can't simply use put_anon_vma() because
  438. * we'll deadlock on the anon_vma_lock_write() recursion.
  439. */
  440. anon_vma_unlock_read(anon_vma);
  441. __put_anon_vma(anon_vma);
  442. anon_vma = NULL;
  443. }
  444. return anon_vma;
  445. out:
  446. rcu_read_unlock();
  447. return anon_vma;
  448. }
  449. void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
  450. {
  451. anon_vma_unlock_read(anon_vma);
  452. }
  453. /*
  454. * At what user virtual address is page expected in @vma?
  455. */
  456. static inline unsigned long
  457. __vma_address(struct page *page, struct vm_area_struct *vma)
  458. {
  459. pgoff_t pgoff = page_to_pgoff(page);
  460. return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
  461. }
  462. inline unsigned long
  463. vma_address(struct page *page, struct vm_area_struct *vma)
  464. {
  465. unsigned long address = __vma_address(page, vma);
  466. /* page should be within @vma mapping range */
  467. VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
  468. return address;
  469. }
  470. /*
  471. * At what user virtual address is page expected in vma?
  472. * Caller should check the page is actually part of the vma.
  473. */
  474. unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
  475. {
  476. unsigned long address;
  477. if (PageAnon(page)) {
  478. struct anon_vma *page__anon_vma = page_anon_vma(page);
  479. /*
  480. * Note: swapoff's unuse_vma() is more efficient with this
  481. * check, and needs it to match anon_vma when KSM is active.
  482. */
  483. if (!vma->anon_vma || !page__anon_vma ||
  484. vma->anon_vma->root != page__anon_vma->root)
  485. return -EFAULT;
  486. } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
  487. if (!vma->vm_file ||
  488. vma->vm_file->f_mapping != page->mapping)
  489. return -EFAULT;
  490. } else
  491. return -EFAULT;
  492. address = __vma_address(page, vma);
  493. if (unlikely(address < vma->vm_start || address >= vma->vm_end))
  494. return -EFAULT;
  495. return address;
  496. }
  497. pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
  498. {
  499. pgd_t *pgd;
  500. pud_t *pud;
  501. pmd_t *pmd = NULL;
  502. pmd_t pmde;
  503. pgd = pgd_offset(mm, address);
  504. if (!pgd_present(*pgd))
  505. goto out;
  506. pud = pud_offset(pgd, address);
  507. if (!pud_present(*pud))
  508. goto out;
  509. pmd = pmd_offset(pud, address);
  510. /*
  511. * Some THP functions use the sequence pmdp_clear_flush(), set_pmd_at()
  512. * without holding anon_vma lock for write. So when looking for a
  513. * genuine pmde (in which to find pte), test present and !THP together.
  514. */
  515. pmde = ACCESS_ONCE(*pmd);
  516. if (!pmd_present(pmde) || pmd_trans_huge(pmde))
  517. pmd = NULL;
  518. out:
  519. return pmd;
  520. }
  521. /*
  522. * Check that @page is mapped at @address into @mm.
  523. *
  524. * If @sync is false, page_check_address may perform a racy check to avoid
  525. * the page table lock when the pte is not present (helpful when reclaiming
  526. * highly shared pages).
  527. *
  528. * On success returns with pte mapped and locked.
  529. */
  530. pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
  531. unsigned long address, spinlock_t **ptlp, int sync)
  532. {
  533. pmd_t *pmd;
  534. pte_t *pte;
  535. spinlock_t *ptl;
  536. if (unlikely(PageHuge(page))) {
  537. /* when pud is not present, pte will be NULL */
  538. pte = huge_pte_offset(mm, address);
  539. if (!pte)
  540. return NULL;
  541. ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
  542. goto check;
  543. }
  544. pmd = mm_find_pmd(mm, address);
  545. if (!pmd)
  546. return NULL;
  547. pte = pte_offset_map(pmd, address);
  548. /* Make a quick check before getting the lock */
  549. if (!sync && !pte_present(*pte)) {
  550. pte_unmap(pte);
  551. return NULL;
  552. }
  553. ptl = pte_lockptr(mm, pmd);
  554. check:
  555. spin_lock(ptl);
  556. if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
  557. *ptlp = ptl;
  558. return pte;
  559. }
  560. pte_unmap_unlock(pte, ptl);
  561. return NULL;
  562. }
  563. /**
  564. * page_mapped_in_vma - check whether a page is really mapped in a VMA
  565. * @page: the page to test
  566. * @vma: the VMA to test
  567. *
  568. * Returns 1 if the page is mapped into the page tables of the VMA, 0
  569. * if the page is not mapped into the page tables of this VMA. Only
  570. * valid for normal file or anonymous VMAs.
  571. */
  572. int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
  573. {
  574. unsigned long address;
  575. pte_t *pte;
  576. spinlock_t *ptl;
  577. address = __vma_address(page, vma);
  578. if (unlikely(address < vma->vm_start || address >= vma->vm_end))
  579. return 0;
  580. pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
  581. if (!pte) /* the page is not in this mm */
  582. return 0;
  583. pte_unmap_unlock(pte, ptl);
  584. return 1;
  585. }
  586. struct page_referenced_arg {
  587. int mapcount;
  588. int referenced;
  589. unsigned long vm_flags;
  590. struct mem_cgroup *memcg;
  591. };
  592. /*
  593. * arg: page_referenced_arg will be passed
  594. */
  595. static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
  596. unsigned long address, void *arg)
  597. {
  598. struct mm_struct *mm = vma->vm_mm;
  599. spinlock_t *ptl;
  600. int referenced = 0;
  601. struct page_referenced_arg *pra = arg;
  602. if (unlikely(PageTransHuge(page))) {
  603. pmd_t *pmd;
  604. /*
  605. * rmap might return false positives; we must filter
  606. * these out using page_check_address_pmd().
  607. */
  608. pmd = page_check_address_pmd(page, mm, address,
  609. PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl);
  610. if (!pmd)
  611. return SWAP_AGAIN;
  612. if (vma->vm_flags & VM_LOCKED) {
  613. spin_unlock(ptl);
  614. pra->vm_flags |= VM_LOCKED;
  615. return SWAP_FAIL; /* To break the loop */
  616. }
  617. /* go ahead even if the pmd is pmd_trans_splitting() */
  618. if (pmdp_clear_flush_young_notify(vma, address, pmd))
  619. referenced++;
  620. spin_unlock(ptl);
  621. } else {
  622. pte_t *pte;
  623. /*
  624. * rmap might return false positives; we must filter
  625. * these out using page_check_address().
  626. */
  627. pte = page_check_address(page, mm, address, &ptl, 0);
  628. if (!pte)
  629. return SWAP_AGAIN;
  630. if (vma->vm_flags & VM_LOCKED) {
  631. pte_unmap_unlock(pte, ptl);
  632. pra->vm_flags |= VM_LOCKED;
  633. return SWAP_FAIL; /* To break the loop */
  634. }
  635. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  636. /*
  637. * Don't treat a reference through a sequentially read
  638. * mapping as such. If the page has been used in
  639. * another mapping, we will catch it; if this other
  640. * mapping is already gone, the unmap path will have
  641. * set PG_referenced or activated the page.
  642. */
  643. if (likely(!(vma->vm_flags & VM_SEQ_READ)))
  644. referenced++;
  645. }
  646. pte_unmap_unlock(pte, ptl);
  647. }
  648. if (referenced) {
  649. pra->referenced++;
  650. pra->vm_flags |= vma->vm_flags;
  651. }
  652. pra->mapcount--;
  653. if (!pra->mapcount)
  654. return SWAP_SUCCESS; /* To break the loop */
  655. return SWAP_AGAIN;
  656. }
  657. static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
  658. {
  659. struct page_referenced_arg *pra = arg;
  660. struct mem_cgroup *memcg = pra->memcg;
  661. if (!mm_match_cgroup(vma->vm_mm, memcg))
  662. return true;
  663. return false;
  664. }
  665. /**
  666. * page_referenced - test if the page was referenced
  667. * @page: the page to test
  668. * @is_locked: caller holds lock on the page
  669. * @memcg: target memory cgroup
  670. * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  671. *
  672. * Quick test_and_clear_referenced for all mappings to a page,
  673. * returns the number of ptes which referenced the page.
  674. */
  675. int page_referenced(struct page *page,
  676. int is_locked,
  677. struct mem_cgroup *memcg,
  678. unsigned long *vm_flags)
  679. {
  680. int ret;
  681. int we_locked = 0;
  682. struct page_referenced_arg pra = {
  683. .mapcount = page_mapcount(page),
  684. .memcg = memcg,
  685. };
  686. struct rmap_walk_control rwc = {
  687. .rmap_one = page_referenced_one,
  688. .arg = (void *)&pra,
  689. .anon_lock = page_lock_anon_vma_read,
  690. };
  691. *vm_flags = 0;
  692. if (!page_mapped(page))
  693. return 0;
  694. if (!page_rmapping(page))
  695. return 0;
  696. if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
  697. we_locked = trylock_page(page);
  698. if (!we_locked)
  699. return 1;
  700. }
  701. /*
  702. * If we are reclaiming on behalf of a cgroup, skip
  703. * counting on behalf of references from different
  704. * cgroups
  705. */
  706. if (memcg) {
  707. rwc.invalid_vma = invalid_page_referenced_vma;
  708. }
  709. ret = rmap_walk(page, &rwc);
  710. *vm_flags = pra.vm_flags;
  711. if (we_locked)
  712. unlock_page(page);
  713. return pra.referenced;
  714. }
  715. static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
  716. unsigned long address, void *arg)
  717. {
  718. struct mm_struct *mm = vma->vm_mm;
  719. pte_t *pte;
  720. spinlock_t *ptl;
  721. int ret = 0;
  722. int *cleaned = arg;
  723. pte = page_check_address(page, mm, address, &ptl, 1);
  724. if (!pte)
  725. goto out;
  726. if (pte_dirty(*pte) || pte_write(*pte)) {
  727. pte_t entry;
  728. flush_cache_page(vma, address, pte_pfn(*pte));
  729. entry = ptep_clear_flush(vma, address, pte);
  730. entry = pte_wrprotect(entry);
  731. entry = pte_mkclean(entry);
  732. set_pte_at(mm, address, pte, entry);
  733. ret = 1;
  734. }
  735. pte_unmap_unlock(pte, ptl);
  736. if (ret) {
  737. mmu_notifier_invalidate_page(mm, address);
  738. (*cleaned)++;
  739. }
  740. out:
  741. return SWAP_AGAIN;
  742. }
  743. static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
  744. {
  745. if (vma->vm_flags & VM_SHARED)
  746. return false;
  747. return true;
  748. }
  749. int page_mkclean(struct page *page)
  750. {
  751. int cleaned = 0;
  752. struct address_space *mapping;
  753. struct rmap_walk_control rwc = {
  754. .arg = (void *)&cleaned,
  755. .rmap_one = page_mkclean_one,
  756. .invalid_vma = invalid_mkclean_vma,
  757. };
  758. BUG_ON(!PageLocked(page));
  759. if (!page_mapped(page))
  760. return 0;
  761. mapping = page_mapping(page);
  762. if (!mapping)
  763. return 0;
  764. rmap_walk(page, &rwc);
  765. return cleaned;
  766. }
  767. EXPORT_SYMBOL_GPL(page_mkclean);
  768. /**
  769. * page_move_anon_rmap - move a page to our anon_vma
  770. * @page: the page to move to our anon_vma
  771. * @vma: the vma the page belongs to
  772. * @address: the user virtual address mapped
  773. *
  774. * When a page belongs exclusively to one process after a COW event,
  775. * that page can be moved into the anon_vma that belongs to just that
  776. * process, so the rmap code will not search the parent or sibling
  777. * processes.
  778. */
  779. void page_move_anon_rmap(struct page *page,
  780. struct vm_area_struct *vma, unsigned long address)
  781. {
  782. struct anon_vma *anon_vma = vma->anon_vma;
  783. VM_BUG_ON_PAGE(!PageLocked(page), page);
  784. VM_BUG_ON_VMA(!anon_vma, vma);
  785. VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page);
  786. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  787. page->mapping = (struct address_space *) anon_vma;
  788. }
  789. /**
  790. * __page_set_anon_rmap - set up new anonymous rmap
  791. * @page: Page to add to rmap
  792. * @vma: VM area to add page to.
  793. * @address: User virtual address of the mapping
  794. * @exclusive: the page is exclusively owned by the current process
  795. */
  796. static void __page_set_anon_rmap(struct page *page,
  797. struct vm_area_struct *vma, unsigned long address, int exclusive)
  798. {
  799. struct anon_vma *anon_vma = vma->anon_vma;
  800. BUG_ON(!anon_vma);
  801. if (PageAnon(page))
  802. return;
  803. /*
  804. * If the page isn't exclusively mapped into this vma,
  805. * we must use the _oldest_ possible anon_vma for the
  806. * page mapping!
  807. */
  808. if (!exclusive)
  809. anon_vma = anon_vma->root;
  810. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  811. page->mapping = (struct address_space *) anon_vma;
  812. page->index = linear_page_index(vma, address);
  813. }
  814. /**
  815. * __page_check_anon_rmap - sanity check anonymous rmap addition
  816. * @page: the page to add the mapping to
  817. * @vma: the vm area in which the mapping is added
  818. * @address: the user virtual address mapped
  819. */
  820. static void __page_check_anon_rmap(struct page *page,
  821. struct vm_area_struct *vma, unsigned long address)
  822. {
  823. #ifdef CONFIG_DEBUG_VM
  824. /*
  825. * The page's anon-rmap details (mapping and index) are guaranteed to
  826. * be set up correctly at this point.
  827. *
  828. * We have exclusion against page_add_anon_rmap because the caller
  829. * always holds the page locked, except if called from page_dup_rmap,
  830. * in which case the page is already known to be setup.
  831. *
  832. * We have exclusion against page_add_new_anon_rmap because those pages
  833. * are initially only visible via the pagetables, and the pte is locked
  834. * over the call to page_add_new_anon_rmap.
  835. */
  836. BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
  837. BUG_ON(page->index != linear_page_index(vma, address));
  838. #endif
  839. }
  840. /**
  841. * page_add_anon_rmap - add pte mapping to an anonymous page
  842. * @page: the page to add the mapping to
  843. * @vma: the vm area in which the mapping is added
  844. * @address: the user virtual address mapped
  845. *
  846. * The caller needs to hold the pte lock, and the page must be locked in
  847. * the anon_vma case: to serialize mapping,index checking after setting,
  848. * and to ensure that PageAnon is not being upgraded racily to PageKsm
  849. * (but PageKsm is never downgraded to PageAnon).
  850. */
  851. void page_add_anon_rmap(struct page *page,
  852. struct vm_area_struct *vma, unsigned long address)
  853. {
  854. do_page_add_anon_rmap(page, vma, address, 0);
  855. }
  856. /*
  857. * Special version of the above for do_swap_page, which often runs
  858. * into pages that are exclusively owned by the current process.
  859. * Everybody else should continue to use page_add_anon_rmap above.
  860. */
  861. void do_page_add_anon_rmap(struct page *page,
  862. struct vm_area_struct *vma, unsigned long address, int exclusive)
  863. {
  864. int first = atomic_inc_and_test(&page->_mapcount);
  865. if (first) {
  866. /*
  867. * We use the irq-unsafe __{inc|mod}_zone_page_stat because
  868. * these counters are not modified in interrupt context, and
  869. * pte lock(a spinlock) is held, which implies preemption
  870. * disabled.
  871. */
  872. if (PageTransHuge(page))
  873. __inc_zone_page_state(page,
  874. NR_ANON_TRANSPARENT_HUGEPAGES);
  875. __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
  876. hpage_nr_pages(page));
  877. }
  878. if (unlikely(PageKsm(page)))
  879. return;
  880. VM_BUG_ON_PAGE(!PageLocked(page), page);
  881. /* address might be in next vma when migration races vma_adjust */
  882. if (first)
  883. __page_set_anon_rmap(page, vma, address, exclusive);
  884. else
  885. __page_check_anon_rmap(page, vma, address);
  886. }
  887. /**
  888. * page_add_new_anon_rmap - add pte mapping to a new anonymous page
  889. * @page: the page to add the mapping to
  890. * @vma: the vm area in which the mapping is added
  891. * @address: the user virtual address mapped
  892. *
  893. * Same as page_add_anon_rmap but must only be called on *new* pages.
  894. * This means the inc-and-test can be bypassed.
  895. * Page does not have to be locked.
  896. */
  897. void page_add_new_anon_rmap(struct page *page,
  898. struct vm_area_struct *vma, unsigned long address)
  899. {
  900. VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
  901. SetPageSwapBacked(page);
  902. atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
  903. if (PageTransHuge(page))
  904. __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
  905. __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
  906. hpage_nr_pages(page));
  907. __page_set_anon_rmap(page, vma, address, 1);
  908. }
  909. /**
  910. * page_add_file_rmap - add pte mapping to a file page
  911. * @page: the page to add the mapping to
  912. *
  913. * The caller needs to hold the pte lock.
  914. */
  915. void page_add_file_rmap(struct page *page)
  916. {
  917. bool locked;
  918. unsigned long flags;
  919. mem_cgroup_begin_update_page_stat(page, &locked, &flags);
  920. if (atomic_inc_and_test(&page->_mapcount)) {
  921. __inc_zone_page_state(page, NR_FILE_MAPPED);
  922. mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
  923. }
  924. mem_cgroup_end_update_page_stat(page, &locked, &flags);
  925. }
  926. /**
  927. * page_remove_rmap - take down pte mapping from a page
  928. * @page: page to remove mapping from
  929. *
  930. * The caller needs to hold the pte lock.
  931. */
  932. void page_remove_rmap(struct page *page)
  933. {
  934. bool anon = PageAnon(page);
  935. bool locked;
  936. unsigned long flags;
  937. /*
  938. * The anon case has no mem_cgroup page_stat to update; but may
  939. * uncharge_page() below, where the lock ordering can deadlock if
  940. * we hold the lock against page_stat move: so avoid it on anon.
  941. */
  942. if (!anon)
  943. mem_cgroup_begin_update_page_stat(page, &locked, &flags);
  944. /* page still mapped by someone else? */
  945. if (!atomic_add_negative(-1, &page->_mapcount))
  946. goto out;
  947. /*
  948. * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
  949. * and not charged by memcg for now.
  950. *
  951. * We use the irq-unsafe __{inc|mod}_zone_page_stat because
  952. * these counters are not modified in interrupt context, and
  953. * these counters are not modified in interrupt context, and
  954. * pte lock(a spinlock) is held, which implies preemption disabled.
  955. */
  956. if (unlikely(PageHuge(page)))
  957. goto out;
  958. if (anon) {
  959. if (PageTransHuge(page))
  960. __dec_zone_page_state(page,
  961. NR_ANON_TRANSPARENT_HUGEPAGES);
  962. __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
  963. -hpage_nr_pages(page));
  964. } else {
  965. __dec_zone_page_state(page, NR_FILE_MAPPED);
  966. mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
  967. mem_cgroup_end_update_page_stat(page, &locked, &flags);
  968. }
  969. if (unlikely(PageMlocked(page)))
  970. clear_page_mlock(page);
  971. /*
  972. * It would be tidy to reset the PageAnon mapping here,
  973. * but that might overwrite a racing page_add_anon_rmap
  974. * which increments mapcount after us but sets mapping
  975. * before us: so leave the reset to free_hot_cold_page,
  976. * and remember that it's only reliable while mapped.
  977. * Leaving it set also helps swapoff to reinstate ptes
  978. * faster for those pages still in swapcache.
  979. */
  980. return;
  981. out:
  982. if (!anon)
  983. mem_cgroup_end_update_page_stat(page, &locked, &flags);
  984. }
  985. /*
  986. * @arg: enum ttu_flags will be passed to this argument
  987. */
  988. static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
  989. unsigned long address, void *arg)
  990. {
  991. struct mm_struct *mm = vma->vm_mm;
  992. pte_t *pte;
  993. pte_t pteval;
  994. spinlock_t *ptl;
  995. int ret = SWAP_AGAIN;
  996. enum ttu_flags flags = (enum ttu_flags)arg;
  997. pte = page_check_address(page, mm, address, &ptl, 0);
  998. if (!pte)
  999. goto out;
  1000. /*
  1001. * If the page is mlock()d, we cannot swap it out.
  1002. * If it's recently referenced (perhaps page_referenced
  1003. * skipped over this mm) then we should reactivate it.
  1004. */
  1005. if (!(flags & TTU_IGNORE_MLOCK)) {
  1006. if (vma->vm_flags & VM_LOCKED)
  1007. goto out_mlock;
  1008. if (flags & TTU_MUNLOCK)
  1009. goto out_unmap;
  1010. }
  1011. if (!(flags & TTU_IGNORE_ACCESS)) {
  1012. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  1013. ret = SWAP_FAIL;
  1014. goto out_unmap;
  1015. }
  1016. }
  1017. /* Nuke the page table entry. */
  1018. flush_cache_page(vma, address, page_to_pfn(page));
  1019. pteval = ptep_clear_flush(vma, address, pte);
  1020. /* Move the dirty bit to the physical page now the pte is gone. */
  1021. if (pte_dirty(pteval))
  1022. set_page_dirty(page);
  1023. /* Update high watermark before we lower rss */
  1024. update_hiwater_rss(mm);
  1025. if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
  1026. if (!PageHuge(page)) {
  1027. if (PageAnon(page))
  1028. dec_mm_counter(mm, MM_ANONPAGES);
  1029. else
  1030. dec_mm_counter(mm, MM_FILEPAGES);
  1031. }
  1032. set_pte_at(mm, address, pte,
  1033. swp_entry_to_pte(make_hwpoison_entry(page)));
  1034. } else if (pte_unused(pteval)) {
  1035. /*
  1036. * The guest indicated that the page content is of no
  1037. * interest anymore. Simply discard the pte, vmscan
  1038. * will take care of the rest.
  1039. */
  1040. if (PageAnon(page))
  1041. dec_mm_counter(mm, MM_ANONPAGES);
  1042. else
  1043. dec_mm_counter(mm, MM_FILEPAGES);
  1044. } else if (PageAnon(page)) {
  1045. swp_entry_t entry = { .val = page_private(page) };
  1046. pte_t swp_pte;
  1047. if (PageSwapCache(page)) {
  1048. /*
  1049. * Store the swap location in the pte.
  1050. * See handle_pte_fault() ...
  1051. */
  1052. if (swap_duplicate(entry) < 0) {
  1053. set_pte_at(mm, address, pte, pteval);
  1054. ret = SWAP_FAIL;
  1055. goto out_unmap;
  1056. }
  1057. if (list_empty(&mm->mmlist)) {
  1058. spin_lock(&mmlist_lock);
  1059. if (list_empty(&mm->mmlist))
  1060. list_add(&mm->mmlist, &init_mm.mmlist);
  1061. spin_unlock(&mmlist_lock);
  1062. }
  1063. dec_mm_counter(mm, MM_ANONPAGES);
  1064. inc_mm_counter(mm, MM_SWAPENTS);
  1065. } else if (IS_ENABLED(CONFIG_MIGRATION)) {
  1066. /*
  1067. * Store the pfn of the page in a special migration
  1068. * pte. do_swap_page() will wait until the migration
  1069. * pte is removed and then restart fault handling.
  1070. */
  1071. BUG_ON(!(flags & TTU_MIGRATION));
  1072. entry = make_migration_entry(page, pte_write(pteval));
  1073. }
  1074. swp_pte = swp_entry_to_pte(entry);
  1075. if (pte_soft_dirty(pteval))
  1076. swp_pte = pte_swp_mksoft_dirty(swp_pte);
  1077. set_pte_at(mm, address, pte, swp_pte);
  1078. BUG_ON(pte_file(*pte));
  1079. } else if (IS_ENABLED(CONFIG_MIGRATION) &&
  1080. (flags & TTU_MIGRATION)) {
  1081. /* Establish migration entry for a file page */
  1082. swp_entry_t entry;
  1083. entry = make_migration_entry(page, pte_write(pteval));
  1084. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  1085. } else
  1086. dec_mm_counter(mm, MM_FILEPAGES);
  1087. page_remove_rmap(page);
  1088. page_cache_release(page);
  1089. out_unmap:
  1090. pte_unmap_unlock(pte, ptl);
  1091. if (ret != SWAP_FAIL && !(flags & TTU_MUNLOCK))
  1092. mmu_notifier_invalidate_page(mm, address);
  1093. out:
  1094. return ret;
  1095. out_mlock:
  1096. pte_unmap_unlock(pte, ptl);
  1097. /*
  1098. * We need mmap_sem locking, Otherwise VM_LOCKED check makes
  1099. * unstable result and race. Plus, We can't wait here because
  1100. * we now hold anon_vma->rwsem or mapping->i_mmap_mutex.
  1101. * if trylock failed, the page remain in evictable lru and later
  1102. * vmscan could retry to move the page to unevictable lru if the
  1103. * page is actually mlocked.
  1104. */
  1105. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  1106. if (vma->vm_flags & VM_LOCKED) {
  1107. mlock_vma_page(page);
  1108. ret = SWAP_MLOCK;
  1109. }
  1110. up_read(&vma->vm_mm->mmap_sem);
  1111. }
  1112. return ret;
  1113. }
  1114. /*
  1115. * objrmap doesn't work for nonlinear VMAs because the assumption that
  1116. * offset-into-file correlates with offset-into-virtual-addresses does not hold.
  1117. * Consequently, given a particular page and its ->index, we cannot locate the
  1118. * ptes which are mapping that page without an exhaustive linear search.
  1119. *
  1120. * So what this code does is a mini "virtual scan" of each nonlinear VMA which
  1121. * maps the file to which the target page belongs. The ->vm_private_data field
  1122. * holds the current cursor into that scan. Successive searches will circulate
  1123. * around the vma's virtual address space.
  1124. *
  1125. * So as more replacement pressure is applied to the pages in a nonlinear VMA,
  1126. * more scanning pressure is placed against them as well. Eventually pages
  1127. * will become fully unmapped and are eligible for eviction.
  1128. *
  1129. * For very sparsely populated VMAs this is a little inefficient - chances are
  1130. * there there won't be many ptes located within the scan cluster. In this case
  1131. * maybe we could scan further - to the end of the pte page, perhaps.
  1132. *
  1133. * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
  1134. * acquire it without blocking. If vma locked, mlock the pages in the cluster,
  1135. * rather than unmapping them. If we encounter the "check_page" that vmscan is
  1136. * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
  1137. */
  1138. #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
  1139. #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
  1140. static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
  1141. struct vm_area_struct *vma, struct page *check_page)
  1142. {
  1143. struct mm_struct *mm = vma->vm_mm;
  1144. pmd_t *pmd;
  1145. pte_t *pte;
  1146. pte_t pteval;
  1147. spinlock_t *ptl;
  1148. struct page *page;
  1149. unsigned long address;
  1150. unsigned long mmun_start; /* For mmu_notifiers */
  1151. unsigned long mmun_end; /* For mmu_notifiers */
  1152. unsigned long end;
  1153. int ret = SWAP_AGAIN;
  1154. int locked_vma = 0;
  1155. address = (vma->vm_start + cursor) & CLUSTER_MASK;
  1156. end = address + CLUSTER_SIZE;
  1157. if (address < vma->vm_start)
  1158. address = vma->vm_start;
  1159. if (end > vma->vm_end)
  1160. end = vma->vm_end;
  1161. pmd = mm_find_pmd(mm, address);
  1162. if (!pmd)
  1163. return ret;
  1164. mmun_start = address;
  1165. mmun_end = end;
  1166. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1167. /*
  1168. * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
  1169. * keep the sem while scanning the cluster for mlocking pages.
  1170. */
  1171. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  1172. locked_vma = (vma->vm_flags & VM_LOCKED);
  1173. if (!locked_vma)
  1174. up_read(&vma->vm_mm->mmap_sem); /* don't need it */
  1175. }
  1176. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  1177. /* Update high watermark before we lower rss */
  1178. update_hiwater_rss(mm);
  1179. for (; address < end; pte++, address += PAGE_SIZE) {
  1180. if (!pte_present(*pte))
  1181. continue;
  1182. page = vm_normal_page(vma, address, *pte);
  1183. BUG_ON(!page || PageAnon(page));
  1184. if (locked_vma) {
  1185. if (page == check_page) {
  1186. /* we know we have check_page locked */
  1187. mlock_vma_page(page);
  1188. ret = SWAP_MLOCK;
  1189. } else if (trylock_page(page)) {
  1190. /*
  1191. * If we can lock the page, perform mlock.
  1192. * Otherwise leave the page alone, it will be
  1193. * eventually encountered again later.
  1194. */
  1195. mlock_vma_page(page);
  1196. unlock_page(page);
  1197. }
  1198. continue; /* don't unmap */
  1199. }
  1200. /*
  1201. * No need for _notify because we're within an
  1202. * mmu_notifier_invalidate_range_ {start|end} scope.
  1203. */
  1204. if (ptep_clear_flush_young(vma, address, pte))
  1205. continue;
  1206. /* Nuke the page table entry. */
  1207. flush_cache_page(vma, address, pte_pfn(*pte));
  1208. pteval = ptep_clear_flush(vma, address, pte);
  1209. /* If nonlinear, store the file page offset in the pte. */
  1210. if (page->index != linear_page_index(vma, address)) {
  1211. pte_t ptfile = pgoff_to_pte(page->index);
  1212. if (pte_soft_dirty(pteval))
  1213. ptfile = pte_file_mksoft_dirty(ptfile);
  1214. set_pte_at(mm, address, pte, ptfile);
  1215. }
  1216. /* Move the dirty bit to the physical page now the pte is gone. */
  1217. if (pte_dirty(pteval))
  1218. set_page_dirty(page);
  1219. page_remove_rmap(page);
  1220. page_cache_release(page);
  1221. dec_mm_counter(mm, MM_FILEPAGES);
  1222. (*mapcount)--;
  1223. }
  1224. pte_unmap_unlock(pte - 1, ptl);
  1225. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1226. if (locked_vma)
  1227. up_read(&vma->vm_mm->mmap_sem);
  1228. return ret;
  1229. }
  1230. static int try_to_unmap_nonlinear(struct page *page,
  1231. struct address_space *mapping, void *arg)
  1232. {
  1233. struct vm_area_struct *vma;
  1234. int ret = SWAP_AGAIN;
  1235. unsigned long cursor;
  1236. unsigned long max_nl_cursor = 0;
  1237. unsigned long max_nl_size = 0;
  1238. unsigned int mapcount;
  1239. list_for_each_entry(vma,
  1240. &mapping->i_mmap_nonlinear, shared.nonlinear) {
  1241. cursor = (unsigned long) vma->vm_private_data;
  1242. if (cursor > max_nl_cursor)
  1243. max_nl_cursor = cursor;
  1244. cursor = vma->vm_end - vma->vm_start;
  1245. if (cursor > max_nl_size)
  1246. max_nl_size = cursor;
  1247. }
  1248. if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
  1249. return SWAP_FAIL;
  1250. }
  1251. /*
  1252. * We don't try to search for this page in the nonlinear vmas,
  1253. * and page_referenced wouldn't have found it anyway. Instead
  1254. * just walk the nonlinear vmas trying to age and unmap some.
  1255. * The mapcount of the page we came in with is irrelevant,
  1256. * but even so use it as a guide to how hard we should try?
  1257. */
  1258. mapcount = page_mapcount(page);
  1259. if (!mapcount)
  1260. return ret;
  1261. cond_resched();
  1262. max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
  1263. if (max_nl_cursor == 0)
  1264. max_nl_cursor = CLUSTER_SIZE;
  1265. do {
  1266. list_for_each_entry(vma,
  1267. &mapping->i_mmap_nonlinear, shared.nonlinear) {
  1268. cursor = (unsigned long) vma->vm_private_data;
  1269. while (cursor < max_nl_cursor &&
  1270. cursor < vma->vm_end - vma->vm_start) {
  1271. if (try_to_unmap_cluster(cursor, &mapcount,
  1272. vma, page) == SWAP_MLOCK)
  1273. ret = SWAP_MLOCK;
  1274. cursor += CLUSTER_SIZE;
  1275. vma->vm_private_data = (void *) cursor;
  1276. if ((int)mapcount <= 0)
  1277. return ret;
  1278. }
  1279. vma->vm_private_data = (void *) max_nl_cursor;
  1280. }
  1281. cond_resched();
  1282. max_nl_cursor += CLUSTER_SIZE;
  1283. } while (max_nl_cursor <= max_nl_size);
  1284. /*
  1285. * Don't loop forever (perhaps all the remaining pages are
  1286. * in locked vmas). Reset cursor on all unreserved nonlinear
  1287. * vmas, now forgetting on which ones it had fallen behind.
  1288. */
  1289. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear)
  1290. vma->vm_private_data = NULL;
  1291. return ret;
  1292. }
  1293. bool is_vma_temporary_stack(struct vm_area_struct *vma)
  1294. {
  1295. int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
  1296. if (!maybe_stack)
  1297. return false;
  1298. if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
  1299. VM_STACK_INCOMPLETE_SETUP)
  1300. return true;
  1301. return false;
  1302. }
  1303. static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
  1304. {
  1305. return is_vma_temporary_stack(vma);
  1306. }
  1307. static int page_not_mapped(struct page *page)
  1308. {
  1309. return !page_mapped(page);
  1310. };
  1311. /**
  1312. * try_to_unmap - try to remove all page table mappings to a page
  1313. * @page: the page to get unmapped
  1314. * @flags: action and flags
  1315. *
  1316. * Tries to remove all the page table entries which are mapping this
  1317. * page, used in the pageout path. Caller must hold the page lock.
  1318. * Return values are:
  1319. *
  1320. * SWAP_SUCCESS - we succeeded in removing all mappings
  1321. * SWAP_AGAIN - we missed a mapping, try again later
  1322. * SWAP_FAIL - the page is unswappable
  1323. * SWAP_MLOCK - page is mlocked.
  1324. */
  1325. int try_to_unmap(struct page *page, enum ttu_flags flags)
  1326. {
  1327. int ret;
  1328. struct rmap_walk_control rwc = {
  1329. .rmap_one = try_to_unmap_one,
  1330. .arg = (void *)flags,
  1331. .done = page_not_mapped,
  1332. .file_nonlinear = try_to_unmap_nonlinear,
  1333. .anon_lock = page_lock_anon_vma_read,
  1334. };
  1335. VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page);
  1336. /*
  1337. * During exec, a temporary VMA is setup and later moved.
  1338. * The VMA is moved under the anon_vma lock but not the
  1339. * page tables leading to a race where migration cannot
  1340. * find the migration ptes. Rather than increasing the
  1341. * locking requirements of exec(), migration skips
  1342. * temporary VMAs until after exec() completes.
  1343. */
  1344. if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
  1345. rwc.invalid_vma = invalid_migration_vma;
  1346. ret = rmap_walk(page, &rwc);
  1347. if (ret != SWAP_MLOCK && !page_mapped(page))
  1348. ret = SWAP_SUCCESS;
  1349. return ret;
  1350. }
  1351. /**
  1352. * try_to_munlock - try to munlock a page
  1353. * @page: the page to be munlocked
  1354. *
  1355. * Called from munlock code. Checks all of the VMAs mapping the page
  1356. * to make sure nobody else has this page mlocked. The page will be
  1357. * returned with PG_mlocked cleared if no other vmas have it mlocked.
  1358. *
  1359. * Return values are:
  1360. *
  1361. * SWAP_AGAIN - no vma is holding page mlocked, or,
  1362. * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
  1363. * SWAP_FAIL - page cannot be located at present
  1364. * SWAP_MLOCK - page is now mlocked.
  1365. */
  1366. int try_to_munlock(struct page *page)
  1367. {
  1368. int ret;
  1369. struct rmap_walk_control rwc = {
  1370. .rmap_one = try_to_unmap_one,
  1371. .arg = (void *)TTU_MUNLOCK,
  1372. .done = page_not_mapped,
  1373. /*
  1374. * We don't bother to try to find the munlocked page in
  1375. * nonlinears. It's costly. Instead, later, page reclaim logic
  1376. * may call try_to_unmap() and recover PG_mlocked lazily.
  1377. */
  1378. .file_nonlinear = NULL,
  1379. .anon_lock = page_lock_anon_vma_read,
  1380. };
  1381. VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
  1382. ret = rmap_walk(page, &rwc);
  1383. return ret;
  1384. }
  1385. void __put_anon_vma(struct anon_vma *anon_vma)
  1386. {
  1387. struct anon_vma *root = anon_vma->root;
  1388. anon_vma_free(anon_vma);
  1389. if (root != anon_vma && atomic_dec_and_test(&root->refcount))
  1390. anon_vma_free(root);
  1391. }
  1392. static struct anon_vma *rmap_walk_anon_lock(struct page *page,
  1393. struct rmap_walk_control *rwc)
  1394. {
  1395. struct anon_vma *anon_vma;
  1396. if (rwc->anon_lock)
  1397. return rwc->anon_lock(page);
  1398. /*
  1399. * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
  1400. * because that depends on page_mapped(); but not all its usages
  1401. * are holding mmap_sem. Users without mmap_sem are required to
  1402. * take a reference count to prevent the anon_vma disappearing
  1403. */
  1404. anon_vma = page_anon_vma(page);
  1405. if (!anon_vma)
  1406. return NULL;
  1407. anon_vma_lock_read(anon_vma);
  1408. return anon_vma;
  1409. }
  1410. /*
  1411. * rmap_walk_anon - do something to anonymous page using the object-based
  1412. * rmap method
  1413. * @page: the page to be handled
  1414. * @rwc: control variable according to each walk type
  1415. *
  1416. * Find all the mappings of a page using the mapping pointer and the vma chains
  1417. * contained in the anon_vma struct it points to.
  1418. *
  1419. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1420. * where the page was found will be held for write. So, we won't recheck
  1421. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1422. * LOCKED.
  1423. */
  1424. static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc)
  1425. {
  1426. struct anon_vma *anon_vma;
  1427. pgoff_t pgoff = page_to_pgoff(page);
  1428. struct anon_vma_chain *avc;
  1429. int ret = SWAP_AGAIN;
  1430. anon_vma = rmap_walk_anon_lock(page, rwc);
  1431. if (!anon_vma)
  1432. return ret;
  1433. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1434. struct vm_area_struct *vma = avc->vma;
  1435. unsigned long address = vma_address(page, vma);
  1436. if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
  1437. continue;
  1438. ret = rwc->rmap_one(page, vma, address, rwc->arg);
  1439. if (ret != SWAP_AGAIN)
  1440. break;
  1441. if (rwc->done && rwc->done(page))
  1442. break;
  1443. }
  1444. anon_vma_unlock_read(anon_vma);
  1445. return ret;
  1446. }
  1447. /*
  1448. * rmap_walk_file - do something to file page using the object-based rmap method
  1449. * @page: the page to be handled
  1450. * @rwc: control variable according to each walk type
  1451. *
  1452. * Find all the mappings of a page using the mapping pointer and the vma chains
  1453. * contained in the address_space struct it points to.
  1454. *
  1455. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1456. * where the page was found will be held for write. So, we won't recheck
  1457. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1458. * LOCKED.
  1459. */
  1460. static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc)
  1461. {
  1462. struct address_space *mapping = page->mapping;
  1463. pgoff_t pgoff = page_to_pgoff(page);
  1464. struct vm_area_struct *vma;
  1465. int ret = SWAP_AGAIN;
  1466. /*
  1467. * The page lock not only makes sure that page->mapping cannot
  1468. * suddenly be NULLified by truncation, it makes sure that the
  1469. * structure at mapping cannot be freed and reused yet,
  1470. * so we can safely take mapping->i_mmap_mutex.
  1471. */
  1472. VM_BUG_ON_PAGE(!PageLocked(page), page);
  1473. if (!mapping)
  1474. return ret;
  1475. mutex_lock(&mapping->i_mmap_mutex);
  1476. vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
  1477. unsigned long address = vma_address(page, vma);
  1478. if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
  1479. continue;
  1480. ret = rwc->rmap_one(page, vma, address, rwc->arg);
  1481. if (ret != SWAP_AGAIN)
  1482. goto done;
  1483. if (rwc->done && rwc->done(page))
  1484. goto done;
  1485. }
  1486. if (!rwc->file_nonlinear)
  1487. goto done;
  1488. if (list_empty(&mapping->i_mmap_nonlinear))
  1489. goto done;
  1490. ret = rwc->file_nonlinear(page, mapping, rwc->arg);
  1491. done:
  1492. mutex_unlock(&mapping->i_mmap_mutex);
  1493. return ret;
  1494. }
  1495. int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
  1496. {
  1497. if (unlikely(PageKsm(page)))
  1498. return rmap_walk_ksm(page, rwc);
  1499. else if (PageAnon(page))
  1500. return rmap_walk_anon(page, rwc);
  1501. else
  1502. return rmap_walk_file(page, rwc);
  1503. }
  1504. #ifdef CONFIG_HUGETLB_PAGE
  1505. /*
  1506. * The following three functions are for anonymous (private mapped) hugepages.
  1507. * Unlike common anonymous pages, anonymous hugepages have no accounting code
  1508. * and no lru code, because we handle hugepages differently from common pages.
  1509. */
  1510. static void __hugepage_set_anon_rmap(struct page *page,
  1511. struct vm_area_struct *vma, unsigned long address, int exclusive)
  1512. {
  1513. struct anon_vma *anon_vma = vma->anon_vma;
  1514. BUG_ON(!anon_vma);
  1515. if (PageAnon(page))
  1516. return;
  1517. if (!exclusive)
  1518. anon_vma = anon_vma->root;
  1519. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  1520. page->mapping = (struct address_space *) anon_vma;
  1521. page->index = linear_page_index(vma, address);
  1522. }
  1523. void hugepage_add_anon_rmap(struct page *page,
  1524. struct vm_area_struct *vma, unsigned long address)
  1525. {
  1526. struct anon_vma *anon_vma = vma->anon_vma;
  1527. int first;
  1528. BUG_ON(!PageLocked(page));
  1529. BUG_ON(!anon_vma);
  1530. /* address might be in next vma when migration races vma_adjust */
  1531. first = atomic_inc_and_test(&page->_mapcount);
  1532. if (first)
  1533. __hugepage_set_anon_rmap(page, vma, address, 0);
  1534. }
  1535. void hugepage_add_new_anon_rmap(struct page *page,
  1536. struct vm_area_struct *vma, unsigned long address)
  1537. {
  1538. BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  1539. atomic_set(&page->_mapcount, 0);
  1540. __hugepage_set_anon_rmap(page, vma, address, 1);
  1541. }
  1542. #endif /* CONFIG_HUGETLB_PAGE */