tick-sched.c 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254
  1. /*
  2. * linux/kernel/time/tick-sched.c
  3. *
  4. * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
  5. * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
  6. * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
  7. *
  8. * No idle tick implementation for low and high resolution timers
  9. *
  10. * Started by: Thomas Gleixner and Ingo Molnar
  11. *
  12. * Distribute under GPLv2.
  13. */
  14. #include <linux/cpu.h>
  15. #include <linux/err.h>
  16. #include <linux/hrtimer.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/kernel_stat.h>
  19. #include <linux/percpu.h>
  20. #include <linux/profile.h>
  21. #include <linux/sched.h>
  22. #include <linux/module.h>
  23. #include <linux/irq_work.h>
  24. #include <linux/posix-timers.h>
  25. #include <linux/perf_event.h>
  26. #include <linux/context_tracking.h>
  27. #include <asm/irq_regs.h>
  28. #include "tick-internal.h"
  29. #include <trace/events/timer.h>
  30. /*
  31. * Per cpu nohz control structure
  32. */
  33. DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
  34. /*
  35. * The time, when the last jiffy update happened. Protected by jiffies_lock.
  36. */
  37. static ktime_t last_jiffies_update;
  38. struct tick_sched *tick_get_tick_sched(int cpu)
  39. {
  40. return &per_cpu(tick_cpu_sched, cpu);
  41. }
  42. /*
  43. * Must be called with interrupts disabled !
  44. */
  45. static void tick_do_update_jiffies64(ktime_t now)
  46. {
  47. unsigned long ticks = 0;
  48. ktime_t delta;
  49. /*
  50. * Do a quick check without holding jiffies_lock:
  51. */
  52. delta = ktime_sub(now, last_jiffies_update);
  53. if (delta.tv64 < tick_period.tv64)
  54. return;
  55. /* Reevalute with jiffies_lock held */
  56. write_seqlock(&jiffies_lock);
  57. delta = ktime_sub(now, last_jiffies_update);
  58. if (delta.tv64 >= tick_period.tv64) {
  59. delta = ktime_sub(delta, tick_period);
  60. last_jiffies_update = ktime_add(last_jiffies_update,
  61. tick_period);
  62. /* Slow path for long timeouts */
  63. if (unlikely(delta.tv64 >= tick_period.tv64)) {
  64. s64 incr = ktime_to_ns(tick_period);
  65. ticks = ktime_divns(delta, incr);
  66. last_jiffies_update = ktime_add_ns(last_jiffies_update,
  67. incr * ticks);
  68. }
  69. do_timer(++ticks);
  70. /* Keep the tick_next_period variable up to date */
  71. tick_next_period = ktime_add(last_jiffies_update, tick_period);
  72. } else {
  73. write_sequnlock(&jiffies_lock);
  74. return;
  75. }
  76. write_sequnlock(&jiffies_lock);
  77. update_wall_time();
  78. }
  79. /*
  80. * Initialize and return retrieve the jiffies update.
  81. */
  82. static ktime_t tick_init_jiffy_update(void)
  83. {
  84. ktime_t period;
  85. write_seqlock(&jiffies_lock);
  86. /* Did we start the jiffies update yet ? */
  87. if (last_jiffies_update.tv64 == 0)
  88. last_jiffies_update = tick_next_period;
  89. period = last_jiffies_update;
  90. write_sequnlock(&jiffies_lock);
  91. return period;
  92. }
  93. static void tick_sched_do_timer(ktime_t now)
  94. {
  95. int cpu = smp_processor_id();
  96. #ifdef CONFIG_NO_HZ_COMMON
  97. /*
  98. * Check if the do_timer duty was dropped. We don't care about
  99. * concurrency: This happens only when the cpu in charge went
  100. * into a long sleep. If two cpus happen to assign themself to
  101. * this duty, then the jiffies update is still serialized by
  102. * jiffies_lock.
  103. */
  104. if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
  105. && !tick_nohz_full_cpu(cpu))
  106. tick_do_timer_cpu = cpu;
  107. #endif
  108. /* Check, if the jiffies need an update */
  109. if (tick_do_timer_cpu == cpu)
  110. tick_do_update_jiffies64(now);
  111. }
  112. static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
  113. {
  114. #ifdef CONFIG_NO_HZ_COMMON
  115. /*
  116. * When we are idle and the tick is stopped, we have to touch
  117. * the watchdog as we might not schedule for a really long
  118. * time. This happens on complete idle SMP systems while
  119. * waiting on the login prompt. We also increment the "start of
  120. * idle" jiffy stamp so the idle accounting adjustment we do
  121. * when we go busy again does not account too much ticks.
  122. */
  123. if (ts->tick_stopped) {
  124. touch_softlockup_watchdog();
  125. if (is_idle_task(current))
  126. ts->idle_jiffies++;
  127. }
  128. #endif
  129. update_process_times(user_mode(regs));
  130. profile_tick(CPU_PROFILING);
  131. }
  132. #ifdef CONFIG_NO_HZ_FULL
  133. cpumask_var_t tick_nohz_full_mask;
  134. cpumask_var_t housekeeping_mask;
  135. bool tick_nohz_full_running;
  136. static bool can_stop_full_tick(void)
  137. {
  138. WARN_ON_ONCE(!irqs_disabled());
  139. if (!sched_can_stop_tick()) {
  140. trace_tick_stop(0, "more than 1 task in runqueue\n");
  141. return false;
  142. }
  143. if (!posix_cpu_timers_can_stop_tick(current)) {
  144. trace_tick_stop(0, "posix timers running\n");
  145. return false;
  146. }
  147. if (!perf_event_can_stop_tick()) {
  148. trace_tick_stop(0, "perf events running\n");
  149. return false;
  150. }
  151. /* sched_clock_tick() needs us? */
  152. #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
  153. /*
  154. * TODO: kick full dynticks CPUs when
  155. * sched_clock_stable is set.
  156. */
  157. if (!sched_clock_stable()) {
  158. trace_tick_stop(0, "unstable sched clock\n");
  159. /*
  160. * Don't allow the user to think they can get
  161. * full NO_HZ with this machine.
  162. */
  163. WARN_ONCE(tick_nohz_full_running,
  164. "NO_HZ FULL will not work with unstable sched clock");
  165. return false;
  166. }
  167. #endif
  168. return true;
  169. }
  170. static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now);
  171. /*
  172. * Re-evaluate the need for the tick on the current CPU
  173. * and restart it if necessary.
  174. */
  175. void __tick_nohz_full_check(void)
  176. {
  177. struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
  178. if (tick_nohz_full_cpu(smp_processor_id())) {
  179. if (ts->tick_stopped && !is_idle_task(current)) {
  180. if (!can_stop_full_tick())
  181. tick_nohz_restart_sched_tick(ts, ktime_get());
  182. }
  183. }
  184. }
  185. static void nohz_full_kick_work_func(struct irq_work *work)
  186. {
  187. __tick_nohz_full_check();
  188. }
  189. static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
  190. .func = nohz_full_kick_work_func,
  191. };
  192. /*
  193. * Kick this CPU if it's full dynticks in order to force it to
  194. * re-evaluate its dependency on the tick and restart it if necessary.
  195. * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
  196. * is NMI safe.
  197. */
  198. void tick_nohz_full_kick(void)
  199. {
  200. if (!tick_nohz_full_cpu(smp_processor_id()))
  201. return;
  202. irq_work_queue(&__get_cpu_var(nohz_full_kick_work));
  203. }
  204. /*
  205. * Kick the CPU if it's full dynticks in order to force it to
  206. * re-evaluate its dependency on the tick and restart it if necessary.
  207. */
  208. void tick_nohz_full_kick_cpu(int cpu)
  209. {
  210. if (!tick_nohz_full_cpu(cpu))
  211. return;
  212. irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
  213. }
  214. static void nohz_full_kick_ipi(void *info)
  215. {
  216. __tick_nohz_full_check();
  217. }
  218. /*
  219. * Kick all full dynticks CPUs in order to force these to re-evaluate
  220. * their dependency on the tick and restart it if necessary.
  221. */
  222. void tick_nohz_full_kick_all(void)
  223. {
  224. if (!tick_nohz_full_running)
  225. return;
  226. preempt_disable();
  227. smp_call_function_many(tick_nohz_full_mask,
  228. nohz_full_kick_ipi, NULL, false);
  229. tick_nohz_full_kick();
  230. preempt_enable();
  231. }
  232. /*
  233. * Re-evaluate the need for the tick as we switch the current task.
  234. * It might need the tick due to per task/process properties:
  235. * perf events, posix cpu timers, ...
  236. */
  237. void __tick_nohz_task_switch(struct task_struct *tsk)
  238. {
  239. unsigned long flags;
  240. local_irq_save(flags);
  241. if (!tick_nohz_full_cpu(smp_processor_id()))
  242. goto out;
  243. if (tick_nohz_tick_stopped() && !can_stop_full_tick())
  244. tick_nohz_full_kick();
  245. out:
  246. local_irq_restore(flags);
  247. }
  248. /* Parse the boot-time nohz CPU list from the kernel parameters. */
  249. static int __init tick_nohz_full_setup(char *str)
  250. {
  251. alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
  252. if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
  253. pr_warning("NOHZ: Incorrect nohz_full cpumask\n");
  254. free_bootmem_cpumask_var(tick_nohz_full_mask);
  255. return 1;
  256. }
  257. tick_nohz_full_running = true;
  258. return 1;
  259. }
  260. __setup("nohz_full=", tick_nohz_full_setup);
  261. static int tick_nohz_cpu_down_callback(struct notifier_block *nfb,
  262. unsigned long action,
  263. void *hcpu)
  264. {
  265. unsigned int cpu = (unsigned long)hcpu;
  266. switch (action & ~CPU_TASKS_FROZEN) {
  267. case CPU_DOWN_PREPARE:
  268. /*
  269. * If we handle the timekeeping duty for full dynticks CPUs,
  270. * we can't safely shutdown that CPU.
  271. */
  272. if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
  273. return NOTIFY_BAD;
  274. break;
  275. }
  276. return NOTIFY_OK;
  277. }
  278. /*
  279. * Worst case string length in chunks of CPU range seems 2 steps
  280. * separations: 0,2,4,6,...
  281. * This is NR_CPUS + sizeof('\0')
  282. */
  283. static char __initdata nohz_full_buf[NR_CPUS + 1];
  284. static int tick_nohz_init_all(void)
  285. {
  286. int err = -1;
  287. #ifdef CONFIG_NO_HZ_FULL_ALL
  288. if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
  289. WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
  290. return err;
  291. }
  292. err = 0;
  293. cpumask_setall(tick_nohz_full_mask);
  294. tick_nohz_full_running = true;
  295. #endif
  296. return err;
  297. }
  298. void __init tick_nohz_init(void)
  299. {
  300. int cpu;
  301. if (!tick_nohz_full_running) {
  302. if (tick_nohz_init_all() < 0)
  303. return;
  304. }
  305. if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
  306. WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
  307. cpumask_clear(tick_nohz_full_mask);
  308. tick_nohz_full_running = false;
  309. return;
  310. }
  311. /*
  312. * Full dynticks uses irq work to drive the tick rescheduling on safe
  313. * locking contexts. But then we need irq work to raise its own
  314. * interrupts to avoid circular dependency on the tick
  315. */
  316. if (!arch_irq_work_has_interrupt()) {
  317. pr_warning("NO_HZ: Can't run full dynticks because arch doesn't "
  318. "support irq work self-IPIs\n");
  319. cpumask_clear(tick_nohz_full_mask);
  320. cpumask_copy(housekeeping_mask, cpu_possible_mask);
  321. tick_nohz_full_running = false;
  322. return;
  323. }
  324. cpu = smp_processor_id();
  325. if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
  326. pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu);
  327. cpumask_clear_cpu(cpu, tick_nohz_full_mask);
  328. }
  329. cpumask_andnot(housekeeping_mask,
  330. cpu_possible_mask, tick_nohz_full_mask);
  331. for_each_cpu(cpu, tick_nohz_full_mask)
  332. context_tracking_cpu_set(cpu);
  333. cpu_notifier(tick_nohz_cpu_down_callback, 0);
  334. cpulist_scnprintf(nohz_full_buf, sizeof(nohz_full_buf), tick_nohz_full_mask);
  335. pr_info("NO_HZ: Full dynticks CPUs: %s.\n", nohz_full_buf);
  336. }
  337. #endif
  338. /*
  339. * NOHZ - aka dynamic tick functionality
  340. */
  341. #ifdef CONFIG_NO_HZ_COMMON
  342. /*
  343. * NO HZ enabled ?
  344. */
  345. static int tick_nohz_enabled __read_mostly = 1;
  346. int tick_nohz_active __read_mostly;
  347. /*
  348. * Enable / Disable tickless mode
  349. */
  350. static int __init setup_tick_nohz(char *str)
  351. {
  352. if (!strcmp(str, "off"))
  353. tick_nohz_enabled = 0;
  354. else if (!strcmp(str, "on"))
  355. tick_nohz_enabled = 1;
  356. else
  357. return 0;
  358. return 1;
  359. }
  360. __setup("nohz=", setup_tick_nohz);
  361. /**
  362. * tick_nohz_update_jiffies - update jiffies when idle was interrupted
  363. *
  364. * Called from interrupt entry when the CPU was idle
  365. *
  366. * In case the sched_tick was stopped on this CPU, we have to check if jiffies
  367. * must be updated. Otherwise an interrupt handler could use a stale jiffy
  368. * value. We do this unconditionally on any cpu, as we don't know whether the
  369. * cpu, which has the update task assigned is in a long sleep.
  370. */
  371. static void tick_nohz_update_jiffies(ktime_t now)
  372. {
  373. unsigned long flags;
  374. __this_cpu_write(tick_cpu_sched.idle_waketime, now);
  375. local_irq_save(flags);
  376. tick_do_update_jiffies64(now);
  377. local_irq_restore(flags);
  378. touch_softlockup_watchdog();
  379. }
  380. /*
  381. * Updates the per cpu time idle statistics counters
  382. */
  383. static void
  384. update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
  385. {
  386. ktime_t delta;
  387. if (ts->idle_active) {
  388. delta = ktime_sub(now, ts->idle_entrytime);
  389. if (nr_iowait_cpu(cpu) > 0)
  390. ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
  391. else
  392. ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
  393. ts->idle_entrytime = now;
  394. }
  395. if (last_update_time)
  396. *last_update_time = ktime_to_us(now);
  397. }
  398. static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
  399. {
  400. update_ts_time_stats(smp_processor_id(), ts, now, NULL);
  401. ts->idle_active = 0;
  402. sched_clock_idle_wakeup_event(0);
  403. }
  404. static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
  405. {
  406. ktime_t now = ktime_get();
  407. ts->idle_entrytime = now;
  408. ts->idle_active = 1;
  409. sched_clock_idle_sleep_event();
  410. return now;
  411. }
  412. /**
  413. * get_cpu_idle_time_us - get the total idle time of a cpu
  414. * @cpu: CPU number to query
  415. * @last_update_time: variable to store update time in. Do not update
  416. * counters if NULL.
  417. *
  418. * Return the cummulative idle time (since boot) for a given
  419. * CPU, in microseconds.
  420. *
  421. * This time is measured via accounting rather than sampling,
  422. * and is as accurate as ktime_get() is.
  423. *
  424. * This function returns -1 if NOHZ is not enabled.
  425. */
  426. u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
  427. {
  428. struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
  429. ktime_t now, idle;
  430. if (!tick_nohz_active)
  431. return -1;
  432. now = ktime_get();
  433. if (last_update_time) {
  434. update_ts_time_stats(cpu, ts, now, last_update_time);
  435. idle = ts->idle_sleeptime;
  436. } else {
  437. if (ts->idle_active && !nr_iowait_cpu(cpu)) {
  438. ktime_t delta = ktime_sub(now, ts->idle_entrytime);
  439. idle = ktime_add(ts->idle_sleeptime, delta);
  440. } else {
  441. idle = ts->idle_sleeptime;
  442. }
  443. }
  444. return ktime_to_us(idle);
  445. }
  446. EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
  447. /**
  448. * get_cpu_iowait_time_us - get the total iowait time of a cpu
  449. * @cpu: CPU number to query
  450. * @last_update_time: variable to store update time in. Do not update
  451. * counters if NULL.
  452. *
  453. * Return the cummulative iowait time (since boot) for a given
  454. * CPU, in microseconds.
  455. *
  456. * This time is measured via accounting rather than sampling,
  457. * and is as accurate as ktime_get() is.
  458. *
  459. * This function returns -1 if NOHZ is not enabled.
  460. */
  461. u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
  462. {
  463. struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
  464. ktime_t now, iowait;
  465. if (!tick_nohz_active)
  466. return -1;
  467. now = ktime_get();
  468. if (last_update_time) {
  469. update_ts_time_stats(cpu, ts, now, last_update_time);
  470. iowait = ts->iowait_sleeptime;
  471. } else {
  472. if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
  473. ktime_t delta = ktime_sub(now, ts->idle_entrytime);
  474. iowait = ktime_add(ts->iowait_sleeptime, delta);
  475. } else {
  476. iowait = ts->iowait_sleeptime;
  477. }
  478. }
  479. return ktime_to_us(iowait);
  480. }
  481. EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
  482. static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
  483. ktime_t now, int cpu)
  484. {
  485. unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
  486. ktime_t last_update, expires, ret = { .tv64 = 0 };
  487. unsigned long rcu_delta_jiffies;
  488. struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
  489. u64 time_delta;
  490. time_delta = timekeeping_max_deferment();
  491. /* Read jiffies and the time when jiffies were updated last */
  492. do {
  493. seq = read_seqbegin(&jiffies_lock);
  494. last_update = last_jiffies_update;
  495. last_jiffies = jiffies;
  496. } while (read_seqretry(&jiffies_lock, seq));
  497. if (rcu_needs_cpu(cpu, &rcu_delta_jiffies) ||
  498. arch_needs_cpu() || irq_work_needs_cpu()) {
  499. next_jiffies = last_jiffies + 1;
  500. delta_jiffies = 1;
  501. } else {
  502. /* Get the next timer wheel timer */
  503. next_jiffies = get_next_timer_interrupt(last_jiffies);
  504. delta_jiffies = next_jiffies - last_jiffies;
  505. if (rcu_delta_jiffies < delta_jiffies) {
  506. next_jiffies = last_jiffies + rcu_delta_jiffies;
  507. delta_jiffies = rcu_delta_jiffies;
  508. }
  509. }
  510. /*
  511. * Do not stop the tick, if we are only one off (or less)
  512. * or if the cpu is required for RCU:
  513. */
  514. if (!ts->tick_stopped && delta_jiffies <= 1)
  515. goto out;
  516. /* Schedule the tick, if we are at least one jiffie off */
  517. if ((long)delta_jiffies >= 1) {
  518. /*
  519. * If this cpu is the one which updates jiffies, then
  520. * give up the assignment and let it be taken by the
  521. * cpu which runs the tick timer next, which might be
  522. * this cpu as well. If we don't drop this here the
  523. * jiffies might be stale and do_timer() never
  524. * invoked. Keep track of the fact that it was the one
  525. * which had the do_timer() duty last. If this cpu is
  526. * the one which had the do_timer() duty last, we
  527. * limit the sleep time to the timekeeping
  528. * max_deferement value which we retrieved
  529. * above. Otherwise we can sleep as long as we want.
  530. */
  531. if (cpu == tick_do_timer_cpu) {
  532. tick_do_timer_cpu = TICK_DO_TIMER_NONE;
  533. ts->do_timer_last = 1;
  534. } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
  535. time_delta = KTIME_MAX;
  536. ts->do_timer_last = 0;
  537. } else if (!ts->do_timer_last) {
  538. time_delta = KTIME_MAX;
  539. }
  540. #ifdef CONFIG_NO_HZ_FULL
  541. if (!ts->inidle) {
  542. time_delta = min(time_delta,
  543. scheduler_tick_max_deferment());
  544. }
  545. #endif
  546. /*
  547. * calculate the expiry time for the next timer wheel
  548. * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
  549. * that there is no timer pending or at least extremely
  550. * far into the future (12 days for HZ=1000). In this
  551. * case we set the expiry to the end of time.
  552. */
  553. if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
  554. /*
  555. * Calculate the time delta for the next timer event.
  556. * If the time delta exceeds the maximum time delta
  557. * permitted by the current clocksource then adjust
  558. * the time delta accordingly to ensure the
  559. * clocksource does not wrap.
  560. */
  561. time_delta = min_t(u64, time_delta,
  562. tick_period.tv64 * delta_jiffies);
  563. }
  564. if (time_delta < KTIME_MAX)
  565. expires = ktime_add_ns(last_update, time_delta);
  566. else
  567. expires.tv64 = KTIME_MAX;
  568. /* Skip reprogram of event if its not changed */
  569. if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
  570. goto out;
  571. ret = expires;
  572. /*
  573. * nohz_stop_sched_tick can be called several times before
  574. * the nohz_restart_sched_tick is called. This happens when
  575. * interrupts arrive which do not cause a reschedule. In the
  576. * first call we save the current tick time, so we can restart
  577. * the scheduler tick in nohz_restart_sched_tick.
  578. */
  579. if (!ts->tick_stopped) {
  580. nohz_balance_enter_idle(cpu);
  581. calc_load_enter_idle();
  582. ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
  583. ts->tick_stopped = 1;
  584. trace_tick_stop(1, " ");
  585. }
  586. /*
  587. * If the expiration time == KTIME_MAX, then
  588. * in this case we simply stop the tick timer.
  589. */
  590. if (unlikely(expires.tv64 == KTIME_MAX)) {
  591. if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
  592. hrtimer_cancel(&ts->sched_timer);
  593. goto out;
  594. }
  595. if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
  596. hrtimer_start(&ts->sched_timer, expires,
  597. HRTIMER_MODE_ABS_PINNED);
  598. /* Check, if the timer was already in the past */
  599. if (hrtimer_active(&ts->sched_timer))
  600. goto out;
  601. } else if (!tick_program_event(expires, 0))
  602. goto out;
  603. /*
  604. * We are past the event already. So we crossed a
  605. * jiffie boundary. Update jiffies and raise the
  606. * softirq.
  607. */
  608. tick_do_update_jiffies64(ktime_get());
  609. }
  610. raise_softirq_irqoff(TIMER_SOFTIRQ);
  611. out:
  612. ts->next_jiffies = next_jiffies;
  613. ts->last_jiffies = last_jiffies;
  614. ts->sleep_length = ktime_sub(dev->next_event, now);
  615. return ret;
  616. }
  617. static void tick_nohz_full_stop_tick(struct tick_sched *ts)
  618. {
  619. #ifdef CONFIG_NO_HZ_FULL
  620. int cpu = smp_processor_id();
  621. if (!tick_nohz_full_cpu(cpu) || is_idle_task(current))
  622. return;
  623. if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
  624. return;
  625. if (!can_stop_full_tick())
  626. return;
  627. tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
  628. #endif
  629. }
  630. static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
  631. {
  632. /*
  633. * If this cpu is offline and it is the one which updates
  634. * jiffies, then give up the assignment and let it be taken by
  635. * the cpu which runs the tick timer next. If we don't drop
  636. * this here the jiffies might be stale and do_timer() never
  637. * invoked.
  638. */
  639. if (unlikely(!cpu_online(cpu))) {
  640. if (cpu == tick_do_timer_cpu)
  641. tick_do_timer_cpu = TICK_DO_TIMER_NONE;
  642. return false;
  643. }
  644. if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
  645. ts->sleep_length = (ktime_t) { .tv64 = NSEC_PER_SEC/HZ };
  646. return false;
  647. }
  648. if (need_resched())
  649. return false;
  650. if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
  651. static int ratelimit;
  652. if (ratelimit < 10 &&
  653. (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
  654. pr_warn("NOHZ: local_softirq_pending %02x\n",
  655. (unsigned int) local_softirq_pending());
  656. ratelimit++;
  657. }
  658. return false;
  659. }
  660. if (tick_nohz_full_enabled()) {
  661. /*
  662. * Keep the tick alive to guarantee timekeeping progression
  663. * if there are full dynticks CPUs around
  664. */
  665. if (tick_do_timer_cpu == cpu)
  666. return false;
  667. /*
  668. * Boot safety: make sure the timekeeping duty has been
  669. * assigned before entering dyntick-idle mode,
  670. */
  671. if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
  672. return false;
  673. }
  674. return true;
  675. }
  676. static void __tick_nohz_idle_enter(struct tick_sched *ts)
  677. {
  678. ktime_t now, expires;
  679. int cpu = smp_processor_id();
  680. now = tick_nohz_start_idle(ts);
  681. if (can_stop_idle_tick(cpu, ts)) {
  682. int was_stopped = ts->tick_stopped;
  683. ts->idle_calls++;
  684. expires = tick_nohz_stop_sched_tick(ts, now, cpu);
  685. if (expires.tv64 > 0LL) {
  686. ts->idle_sleeps++;
  687. ts->idle_expires = expires;
  688. }
  689. if (!was_stopped && ts->tick_stopped)
  690. ts->idle_jiffies = ts->last_jiffies;
  691. }
  692. }
  693. /**
  694. * tick_nohz_idle_enter - stop the idle tick from the idle task
  695. *
  696. * When the next event is more than a tick into the future, stop the idle tick
  697. * Called when we start the idle loop.
  698. *
  699. * The arch is responsible of calling:
  700. *
  701. * - rcu_idle_enter() after its last use of RCU before the CPU is put
  702. * to sleep.
  703. * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
  704. */
  705. void tick_nohz_idle_enter(void)
  706. {
  707. struct tick_sched *ts;
  708. WARN_ON_ONCE(irqs_disabled());
  709. /*
  710. * Update the idle state in the scheduler domain hierarchy
  711. * when tick_nohz_stop_sched_tick() is called from the idle loop.
  712. * State will be updated to busy during the first busy tick after
  713. * exiting idle.
  714. */
  715. set_cpu_sd_state_idle();
  716. local_irq_disable();
  717. ts = this_cpu_ptr(&tick_cpu_sched);
  718. ts->inidle = 1;
  719. __tick_nohz_idle_enter(ts);
  720. local_irq_enable();
  721. }
  722. EXPORT_SYMBOL_GPL(tick_nohz_idle_enter);
  723. /**
  724. * tick_nohz_irq_exit - update next tick event from interrupt exit
  725. *
  726. * When an interrupt fires while we are idle and it doesn't cause
  727. * a reschedule, it may still add, modify or delete a timer, enqueue
  728. * an RCU callback, etc...
  729. * So we need to re-calculate and reprogram the next tick event.
  730. */
  731. void tick_nohz_irq_exit(void)
  732. {
  733. struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
  734. if (ts->inidle)
  735. __tick_nohz_idle_enter(ts);
  736. else
  737. tick_nohz_full_stop_tick(ts);
  738. }
  739. /**
  740. * tick_nohz_get_sleep_length - return the length of the current sleep
  741. *
  742. * Called from power state control code with interrupts disabled
  743. */
  744. ktime_t tick_nohz_get_sleep_length(void)
  745. {
  746. struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
  747. return ts->sleep_length;
  748. }
  749. static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
  750. {
  751. hrtimer_cancel(&ts->sched_timer);
  752. hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
  753. while (1) {
  754. /* Forward the time to expire in the future */
  755. hrtimer_forward(&ts->sched_timer, now, tick_period);
  756. if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
  757. hrtimer_start_expires(&ts->sched_timer,
  758. HRTIMER_MODE_ABS_PINNED);
  759. /* Check, if the timer was already in the past */
  760. if (hrtimer_active(&ts->sched_timer))
  761. break;
  762. } else {
  763. if (!tick_program_event(
  764. hrtimer_get_expires(&ts->sched_timer), 0))
  765. break;
  766. }
  767. /* Reread time and update jiffies */
  768. now = ktime_get();
  769. tick_do_update_jiffies64(now);
  770. }
  771. }
  772. static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
  773. {
  774. /* Update jiffies first */
  775. tick_do_update_jiffies64(now);
  776. update_cpu_load_nohz();
  777. calc_load_exit_idle();
  778. touch_softlockup_watchdog();
  779. /*
  780. * Cancel the scheduled timer and restore the tick
  781. */
  782. ts->tick_stopped = 0;
  783. ts->idle_exittime = now;
  784. tick_nohz_restart(ts, now);
  785. }
  786. static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
  787. {
  788. #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
  789. unsigned long ticks;
  790. if (vtime_accounting_enabled())
  791. return;
  792. /*
  793. * We stopped the tick in idle. Update process times would miss the
  794. * time we slept as update_process_times does only a 1 tick
  795. * accounting. Enforce that this is accounted to idle !
  796. */
  797. ticks = jiffies - ts->idle_jiffies;
  798. /*
  799. * We might be one off. Do not randomly account a huge number of ticks!
  800. */
  801. if (ticks && ticks < LONG_MAX)
  802. account_idle_ticks(ticks);
  803. #endif
  804. }
  805. /**
  806. * tick_nohz_idle_exit - restart the idle tick from the idle task
  807. *
  808. * Restart the idle tick when the CPU is woken up from idle
  809. * This also exit the RCU extended quiescent state. The CPU
  810. * can use RCU again after this function is called.
  811. */
  812. void tick_nohz_idle_exit(void)
  813. {
  814. struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
  815. ktime_t now;
  816. local_irq_disable();
  817. WARN_ON_ONCE(!ts->inidle);
  818. ts->inidle = 0;
  819. if (ts->idle_active || ts->tick_stopped)
  820. now = ktime_get();
  821. if (ts->idle_active)
  822. tick_nohz_stop_idle(ts, now);
  823. if (ts->tick_stopped) {
  824. tick_nohz_restart_sched_tick(ts, now);
  825. tick_nohz_account_idle_ticks(ts);
  826. }
  827. local_irq_enable();
  828. }
  829. EXPORT_SYMBOL_GPL(tick_nohz_idle_exit);
  830. static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
  831. {
  832. hrtimer_forward(&ts->sched_timer, now, tick_period);
  833. return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
  834. }
  835. /*
  836. * The nohz low res interrupt handler
  837. */
  838. static void tick_nohz_handler(struct clock_event_device *dev)
  839. {
  840. struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
  841. struct pt_regs *regs = get_irq_regs();
  842. ktime_t now = ktime_get();
  843. dev->next_event.tv64 = KTIME_MAX;
  844. tick_sched_do_timer(now);
  845. tick_sched_handle(ts, regs);
  846. /* No need to reprogram if we are running tickless */
  847. if (unlikely(ts->tick_stopped))
  848. return;
  849. while (tick_nohz_reprogram(ts, now)) {
  850. now = ktime_get();
  851. tick_do_update_jiffies64(now);
  852. }
  853. }
  854. /**
  855. * tick_nohz_switch_to_nohz - switch to nohz mode
  856. */
  857. static void tick_nohz_switch_to_nohz(void)
  858. {
  859. struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
  860. ktime_t next;
  861. if (!tick_nohz_enabled)
  862. return;
  863. local_irq_disable();
  864. if (tick_switch_to_oneshot(tick_nohz_handler)) {
  865. local_irq_enable();
  866. return;
  867. }
  868. tick_nohz_active = 1;
  869. ts->nohz_mode = NOHZ_MODE_LOWRES;
  870. /*
  871. * Recycle the hrtimer in ts, so we can share the
  872. * hrtimer_forward with the highres code.
  873. */
  874. hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
  875. /* Get the next period */
  876. next = tick_init_jiffy_update();
  877. for (;;) {
  878. hrtimer_set_expires(&ts->sched_timer, next);
  879. if (!tick_program_event(next, 0))
  880. break;
  881. next = ktime_add(next, tick_period);
  882. }
  883. local_irq_enable();
  884. }
  885. /*
  886. * When NOHZ is enabled and the tick is stopped, we need to kick the
  887. * tick timer from irq_enter() so that the jiffies update is kept
  888. * alive during long running softirqs. That's ugly as hell, but
  889. * correctness is key even if we need to fix the offending softirq in
  890. * the first place.
  891. *
  892. * Note, this is different to tick_nohz_restart. We just kick the
  893. * timer and do not touch the other magic bits which need to be done
  894. * when idle is left.
  895. */
  896. static void tick_nohz_kick_tick(struct tick_sched *ts, ktime_t now)
  897. {
  898. #if 0
  899. /* Switch back to 2.6.27 behaviour */
  900. ktime_t delta;
  901. /*
  902. * Do not touch the tick device, when the next expiry is either
  903. * already reached or less/equal than the tick period.
  904. */
  905. delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
  906. if (delta.tv64 <= tick_period.tv64)
  907. return;
  908. tick_nohz_restart(ts, now);
  909. #endif
  910. }
  911. static inline void tick_nohz_irq_enter(void)
  912. {
  913. struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
  914. ktime_t now;
  915. if (!ts->idle_active && !ts->tick_stopped)
  916. return;
  917. now = ktime_get();
  918. if (ts->idle_active)
  919. tick_nohz_stop_idle(ts, now);
  920. if (ts->tick_stopped) {
  921. tick_nohz_update_jiffies(now);
  922. tick_nohz_kick_tick(ts, now);
  923. }
  924. }
  925. #else
  926. static inline void tick_nohz_switch_to_nohz(void) { }
  927. static inline void tick_nohz_irq_enter(void) { }
  928. #endif /* CONFIG_NO_HZ_COMMON */
  929. /*
  930. * Called from irq_enter to notify about the possible interruption of idle()
  931. */
  932. void tick_irq_enter(void)
  933. {
  934. tick_check_oneshot_broadcast_this_cpu();
  935. tick_nohz_irq_enter();
  936. }
  937. /*
  938. * High resolution timer specific code
  939. */
  940. #ifdef CONFIG_HIGH_RES_TIMERS
  941. /*
  942. * We rearm the timer until we get disabled by the idle code.
  943. * Called with interrupts disabled.
  944. */
  945. static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
  946. {
  947. struct tick_sched *ts =
  948. container_of(timer, struct tick_sched, sched_timer);
  949. struct pt_regs *regs = get_irq_regs();
  950. ktime_t now = ktime_get();
  951. tick_sched_do_timer(now);
  952. /*
  953. * Do not call, when we are not in irq context and have
  954. * no valid regs pointer
  955. */
  956. if (regs)
  957. tick_sched_handle(ts, regs);
  958. /* No need to reprogram if we are in idle or full dynticks mode */
  959. if (unlikely(ts->tick_stopped))
  960. return HRTIMER_NORESTART;
  961. hrtimer_forward(timer, now, tick_period);
  962. return HRTIMER_RESTART;
  963. }
  964. static int sched_skew_tick;
  965. static int __init skew_tick(char *str)
  966. {
  967. get_option(&str, &sched_skew_tick);
  968. return 0;
  969. }
  970. early_param("skew_tick", skew_tick);
  971. /**
  972. * tick_setup_sched_timer - setup the tick emulation timer
  973. */
  974. void tick_setup_sched_timer(void)
  975. {
  976. struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
  977. ktime_t now = ktime_get();
  978. /*
  979. * Emulate tick processing via per-CPU hrtimers:
  980. */
  981. hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
  982. ts->sched_timer.function = tick_sched_timer;
  983. /* Get the next period (per cpu) */
  984. hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
  985. /* Offset the tick to avert jiffies_lock contention. */
  986. if (sched_skew_tick) {
  987. u64 offset = ktime_to_ns(tick_period) >> 1;
  988. do_div(offset, num_possible_cpus());
  989. offset *= smp_processor_id();
  990. hrtimer_add_expires_ns(&ts->sched_timer, offset);
  991. }
  992. for (;;) {
  993. hrtimer_forward(&ts->sched_timer, now, tick_period);
  994. hrtimer_start_expires(&ts->sched_timer,
  995. HRTIMER_MODE_ABS_PINNED);
  996. /* Check, if the timer was already in the past */
  997. if (hrtimer_active(&ts->sched_timer))
  998. break;
  999. now = ktime_get();
  1000. }
  1001. #ifdef CONFIG_NO_HZ_COMMON
  1002. if (tick_nohz_enabled) {
  1003. ts->nohz_mode = NOHZ_MODE_HIGHRES;
  1004. tick_nohz_active = 1;
  1005. }
  1006. #endif
  1007. }
  1008. #endif /* HIGH_RES_TIMERS */
  1009. #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
  1010. void tick_cancel_sched_timer(int cpu)
  1011. {
  1012. struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
  1013. # ifdef CONFIG_HIGH_RES_TIMERS
  1014. if (ts->sched_timer.base)
  1015. hrtimer_cancel(&ts->sched_timer);
  1016. # endif
  1017. memset(ts, 0, sizeof(*ts));
  1018. }
  1019. #endif
  1020. /**
  1021. * Async notification about clocksource changes
  1022. */
  1023. void tick_clock_notify(void)
  1024. {
  1025. int cpu;
  1026. for_each_possible_cpu(cpu)
  1027. set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
  1028. }
  1029. /*
  1030. * Async notification about clock event changes
  1031. */
  1032. void tick_oneshot_notify(void)
  1033. {
  1034. struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
  1035. set_bit(0, &ts->check_clocks);
  1036. }
  1037. /**
  1038. * Check, if a change happened, which makes oneshot possible.
  1039. *
  1040. * Called cyclic from the hrtimer softirq (driven by the timer
  1041. * softirq) allow_nohz signals, that we can switch into low-res nohz
  1042. * mode, because high resolution timers are disabled (either compile
  1043. * or runtime).
  1044. */
  1045. int tick_check_oneshot_change(int allow_nohz)
  1046. {
  1047. struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
  1048. if (!test_and_clear_bit(0, &ts->check_clocks))
  1049. return 0;
  1050. if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
  1051. return 0;
  1052. if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
  1053. return 0;
  1054. if (!allow_nohz)
  1055. return 1;
  1056. tick_nohz_switch_to_nohz();
  1057. return 0;
  1058. }